

Title	Rheology and Structure of Model Smectite Clay Using Molecular Dynamics
Author(s)	林, 朱元
Citation	大阪大学, 2024, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/98728
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Abstract of Thesis

Name (Zhuyuan Lin)	
Title	Rheology and Structure of Model Smectite Clay Using Molecular Dynamics (分子動力学法を用いたスメクタイト粘土モデルのレオロジーと構造)
<p>Abstract of Thesis</p> <p>Smectite clay is commonly found in the shallow part of the upper crust and plays a critical role in controlling the rheology and stability of clay-rich faults. Despite extensive studies on its frictional properties and fabric development, the underlying mechanisms are not fully understood. While shear experiments characterize smectite clay as frictionally stable, field observations and clay suspension experiments reveal conditional instability. It is crucial to examine whether the clay system can exhibit instability under varying conditions. Given smectite clay's ability to carry charge and absorb water, conventional understanding based on friction at contact surface may not fully explain its shear resistance. A particle level study on the microscopic shear mechanism can provide deeper insights into the macroscopic behavior of clay-rich faults. In this study, we perform shear simulations on a model clay system using molecular dynamics, where clay platelets are simplified as oblate ellipsoids interacting via the Gay-Berne potential. The primary aim is to investigate the effect of different factors on the rheology and structure of the model clay system, focusing on strain rate, normal stress, and energy anisotropy.</p> <p>The current model successfully reproduces key features of the clay system in both rheology and structure and captures unstable flow behavior under various scenarios. The 3D clay system shows velocity-strengthening behavior, which can be described by the Herschel-Bulkley model. Shear banding occurs at low strain rates, with particles in the shear zone aligning in a preferred orientation. The result suggests the clay-rich faults are predominantly controlled by thin shear band at realistic strain rate. The system's structure can be quantitatively described by nematic order and parallel radial distribution function. At low strain rates, the structure development occurs in two stages: particle rearrange to align with shear as shear stress increases to the peak, followed by shear banding as shear stress reaches a steady-state value. The shear process in simulation is consistent with experimental observations.</p> <p>In a 2D clay system under high normal stress, similar structure and rheology to the 3D system are observed. However, at low normal stress, shear is characterized by collective movement of clusters which result in significant fluctuations in volume and particle alignment. Stable shear bands form at much lower strain rate in the 2D system, and intermediate strain rate is governed by long-lived fluctuating nonlinear velocity profiles. Higher energy anisotropy enhances shear resistance but also promotes cluster formation.</p> <p>We also tested the instability of a confined 2D clay system with moving upper plate. The system exhibited clear stick-slip motion together with global velocity-strengthening behavior. The stress peak during stick-slip is close to the static yield stress. Increasing normal stress result in decreasing stress drop. Wall slip near the upper plate is observed at low normal stress and the shear zone is wider at higher normal stress.</p> <p>Our results suggest the typical characteristics of clay gouge, including velocity strengthening behavior and fabric development during shear, can be observed in this simple model clay system. The shear behavior of clay can be described using a yield stress fluid model, beyond conventional considerations on sliding friction. Despite a monotonic global flow curve showing the shear stress increases with finite strain rate, the model clay system can exhibit instability including shear band and stick-slip motion at low strain rate and during shear startup.</p>	

論文審査の結果の要旨及び担当者

氏名 (林 朱元)		
論文審査担当者	(職)	氏名
	主査 教授	波多野 恭弘
	副査 教授	桂木 洋光
	副査 教授	吉野 元
	副査 准教授	西 真之
	副査 准教授	湯川 諭

論文審査の結果の要旨

本学位論文は、粘土鉱物の簡素なモデルを用いた分子動力学シミュレーションによって粘土鉱物の摩擦特性の解明を微視的観点から試みる計算的研究である。

近年の掘削調査から、沈み込み帯におけるプレート境界には粘土鉱物が豊富に存在することが分かっており、その摩擦特性はプレート境界型巨大地震にも少なからず影響を与えるという認識が地質学・地震学分野で固まりつつある。そのため、これまで主に室内実験によって粘土鉱物の摩擦特性が積極的に調べられてきたが、その結果を微視的機構も含めて理解するためには分子動力学法などの計算的手法を用いた研究が必要とされている。本学位論文ではそのような学術的背景を踏まえ、経験論的粒子間相互作用を仮定した比較的単純な状況下において、粘土鉱物の摩擦特性に関して基礎物理学的観点から研究を行った。

本学位論文は六つの章から構成される。第一章では学術的背景が解説される。粘土鉱物に関する地質学的・鉱物学的概説（粘土鉱物粒子間の相互作用なども含む）から始めて、プレート境界浅部における粘土鉱物の存在が地質学分野における先行研究を引用しつつ説明される。その上で、粘土鉱物の摩擦特性に関する室内実験の先行研究が粘土鉱物の物質科学的知見とともにまとめられる。レオロジー的観点からは、粘土鉱物は降伏応力とチクソトロピーを持つ物質として特徴づけられるため、その文脈における統計物理学分野の関連研究も主要なものが紹介される。

第二章以降において本研究で得られた結果が論じられる。第二章では、本研究で用いられる粘土鉱物粒子間相互作用について説明したのち、歪み率一定で剪断をかけた系の挙動が紹介される。ここでの主な発見は以下 5 点にまとめられる。i) 定常状態における摩擦力の剪断率依存性は Herschel-Bulkley 則でよく記述できる。このことは摩擦力が速度強化型であることを意味する。ii) 低い剪断率においては一様剪断が実現されず変形が局在化し剪断帯が形成される。iii) 剪断がかかっている場所では粒子配向が特徴的な角度を示し、一種のネマティック相にある。iv) 粒子配向方向に関する粒子配置の空間相関は特徴的な距離を示し、その相関距離は剪断率について減少する。v) 粒子配置の相関距離は剪断を停止すると待機時間とともに回復し、その回復度合いは時間の対数関数でよく記述できる。上記のうちいくつかのものは先行研究でも一部得られているが、速度強化の度合いを表すパラメタが実験結果と概ね一致したことは特筆される。のみならず、ここで得られた結果を複数組み合わせた考察は興味深い結論を導く。特に、結果 i と ii から、速度強化型の摩擦特性にも関わらず剪断帯が形成されることが結論される。従来の一般的な認識では、速度強化型の摩擦則では剪断帯は形成されないと想されていたが、本研究はその重要な反例を提示しており、剪断帯形成の物理に関して重要な結果を与えている。また、結果 iv と v は本研究で初めて得られた結果として重要性が高いものである。摩擦力に関しては静止待機時間の対数関数で回復していくことがよく知られているが、粒子構造の特徴的サイズもそのような対数的回復過程に従うことは興味深い発見である。このような構造の回復過程と摩擦力の回復過程の関係は気になるところだが、本研究の設定ではいくつかの技術的理由から両者を直接結びつけることはできていない。この点は今後の重要な研究課題となるはずである。

第三章においては、剪断構造のより詳細な可視化を可能にするために実施した二次元系のシミュレーション結果

が解説される。二次元系についても、そのレオロジーは三次元と同様に Herschel-Bulkley 則が確認されるなど、多くの性質を三次元系と共有していることが分かった。ただし剪断の局在化については三次元の場合よりも複雑で、時間空間に関する揺らぎが非常に大きく、単純な相としては特徴づけにくいことが分かった。配向秩序の様子も法線応力に大きく依存し、法線応力が低い場合は配向秩序が少なく一見ランダムに見える場所が多く残ることが分かった。このことは剪断と配向秩序の関係について次元性が強く効くことを示唆しており、統計物理学的には有益な結果である。

第四章においては二次元系における摩擦の不安定性が論じられる。具体的には系の境界を壁で明示的にモデル化し、壁をバネで駆動するシミュレーションの結果が紹介される。前章までに得られた速度強化的な摩擦特性を考慮すると、この系のすべり運動は安定であると予想されるが、その予想に反して法線応力に依らず滑りは不安定であることが分かった。この結果は、速度強化型の摩擦を示す物質でも地震を起こす能力があることを示唆している。同時に、粘土鉱物においては速度状態依存摩擦法則に基づく理解が必ずしも適切でないことも示しており、地震学的には極めて重要な結果である。

第五章は一般的な議論、第六章はまとめと結論にあてられている。ここではシミュレーション系と実験系、および天然断層とのスケールの乖離、および計算モデルの限界についても論じられており、シミュレーション系が実験系のごく小さな一部分に注目していることが説明されている。そのような面は確かにあるにせよ、粘土鉱物の摩擦現象の背後にある微視的物理過程を解明し、摩擦特性と滑りの安定性に関して新しい発見をした意義は大きい。これらの発見は先行研究では十分なし得ていなかったものであり、地震学および地質学に対する重要な貢献ということができる。よって、本論文は博士（理学）の学位論文として十分価値あるものと認める。