

Title	The Rubicon-WIPI axis regulates exosome biogenesis during ageing
Author(s)	柳川, 恭佑
Citation	大阪大学, 2024, 博士論文
Version Type	
URL	https://hdl.handle.net/11094/98732
rights	
Note	やむを得ない事由があると学位審査研究科が承認したため、全文に代えてその内容の要約を公開しています。全文のご利用をご希望の場合は、大阪大学の博士論文についてをご参照ください。

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

論文内容の要旨
Synopsis of Thesis

氏名 Name	柳川 恭佑
論文題名 Title	The Rubicon-WIPI axis regulates exosome biogenesis during ageing (Rubicon-WIPI軸は加齢におけるエクソソーム生合成を制御する)
論文内容の要旨	
〔目的(Purpose)〕	
<p>Cells release intraluminal vesicles (ILVs) in multivesicular bodies (MVBs) as exosomes, which are small extracellular vesicles (EVs) with a diameter ranging from 30 to 150 nm, to communicate with other cells. Exosome secretion is a complicated multistep process via the endocytic pathway. The ILVs bud inward from the endosomal membrane to form MVBs, which fuse with the plasma membrane and release their ILVs as exosomes. Indeed, previous reports showed that the endosomal sorting complex required for transport (ESCRT) components and their associated proteins are recruited to the specific sites on the endosome to mediate ILV formation. However, the detailed mechanism of this recruitment in exosome biogenesis remains largely elusive. Furthermore, although recent studies suggest an intimate link between exosome biogenesis and autophagy, the detailed mechanism is not fully understood. The purpose of this study is to investigate the relationship between autophagy-related factors and exosome biogenesis, aiming to elucidate the novel regulatory mechanism of exosome secretion.</p>	
〔方法ならびに成績(Methods/Results)〕	
<p>We employed comprehensive RNAi screening for autophagy-related factors and discovered that Run Domain Beclin-1-Interacting And Cysteine-Rich Domain-Containing Protein (Rubicon), a negative regulator of autophagy, is essential for exosome release. Rubicon recruits WD repeat domain phosphoinositide interacting protein 2d (WIPI2d) to endosomes to promote exosome biogenesis. Interactome analysis of WIPI2d identified the ESCRT components that are required for ILV formation. Notably, we found that Rubicon is required for an age-dependent increase of exosome release in mice. In addition, small RNA sequencing of serum exosomes revealed that Rubicon determines the fate of exosomal microRNAs associated with cellular senescence and longevity pathways.</p>	
〔総括(Conclusion)〕	
<p>Our current results suggest that the Rubicon-WIPI axis functions as a key regulator of exosome biogenesis and is responsible for the age-dependent changes in exosome quantity and quality.</p>	

論文審査の結果の要旨及び担当者

(申請者氏名) 柳川 恭佑		
論文審査担当者	(職)	氏 名
	主 査 大阪大学教授	坂田 泰史
	副 査 大阪大学教授	竹原 俊介
副 査 大阪大学教授	猪股 善隆	

論文審査の結果の要旨

エクソソームは多胞性エンドソーム由来の細胞外小胞であり、内容物のタンパク質や核酸をレシピエント細胞へ輸送して細胞間コミュニケーションを行うことが知られている。エクソソーム産生経路は細胞内大規模分解系であるオートファジーと関連があると報告されていたが、その詳細は不明である。申請者は”特定のオートファジー制御因子がエクソソーム産生制御を介して細胞間コミュニケーションに重要な役割を持つ”のではないかと仮説を立てて検証した。その結果、オートファジーの負の制御因子であるRubiconはオートファジーを介さない経路でPIP3結合タンパク質であるWIPI2をエンドソーム上にリクルートして内膜小胞形成を制御することでエクソソーム産生を促進することを見出した。またRubiconが老化促進エクソソームの分泌を亢進させることでレシピエント細胞の老化を制御することを明らかにした。これらは細胞外小胞および老化研究の双方に意義深い知見である。以上から本論文を学位に値するものと認める。