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Introduction

Let F: M— M be a minimal isometric immersion of a compact Riemannian
manifold M. For a variation {F,} of F the second variation of the volume
V() of F(M) is described by a differential operator S, called the Jacobi di-
fferential operator, on the normal bundle as

ax(t)
dr?

- SM<§(EN), EMdsx,

t=0

where E¥ denotes the infinitesimal normal variation of {F,} (see section 1).
The Jacobi differential operator S is self-adjoint and strongly elliptic. There-
fore the index and the nullity of F are obtained from the spectra of S. Here
the index and the nullity are defined as those of the Hessian at F of the volume
integral on the space of immersions of M into M modulo diffeomorphisms of
M. For the study of minimal isometric immersions it seems to be important to
study S and its spectras However there have been few studies on these pro-
blems except for the recent works of Hasegawa and others. Hasegawa [4]
studies the spectral geometry of minimal submanifolds.

Let M be a compact symmetric space, M a unit sphere, and F an equivariant

*) This study is partially supported by Yukawa Foundation



116 T. NAGURA

minimal isometric immersion. Under this situation we study the Jacobi di-
fferential operator S, applying the representation theory of compact Lie groups.
In section 1 we recall some results on minimal isometric immersions. In
section 2 we study equivariant isometric immersions of compact homogeneous
spaces and their Killing nullities (see Hsiang and Lawson [6] p. 14 for Killing
nullities). In section 3 we study equivariant minimal isometric immersions
of compact symmetric spaces into unit spheres. And we compute the Jacobi
differential operator S in this case (Theorem 1). In section 4, recalling some
results on invariant differential operators, we give some propositions, which
give criterions in order that our operator S reduces to the Casimir operator.
In section 5 the problem of computing the spectra of S is reduced to the eigen-
value problems for certain linear mappings S, of finite dimensional vector
spaces (Theorem 3).

In the forthcoming papers we shall study the linear mappings S, in de-
tail under certain conditions, and study the index and the nullity of minimally
immersed spheres into spheres.

The author would like to express his sincere gratitude to Professor M.
Takeuchi and Professor S. Murakami for their valuable suggestions and en-
couragements.

1. Preliminaries

1.1. Let (M, g) be an n-dimensional compact connected Riemannian mani-
fold without boundary, and (M, z) an m-dimensional Riemannian manifold.
Let F: M— M be an isometric immersion of M into M. We consider the
tangent space 7,(M) of M at xM as a vector subspace of the tangent space
Tro(M) of M at F(x)eM. We denote by N, (M) the orthogonal comple-
ment of T,(M) in Tr»(M), which is called the normal space of the immersed
submanifold M of M at x. Let T(M) (resp. T(M)) be the tangent bundle of
M(resp. of M). We denote by T(M)|,, the bundle induced by F from T(M).
The bundle N(M):,,E,,Nx(M) is called the nmormal bundle of M. We denote

by (M) (resp. T'(N(M))) the space of all C= cross-sections of T(M) (resp. of
N(M)).

Let B: T(M)x T (M)—>N,/M) be the second fundamental form of M,
and A: N (M)X T (M)—T,M) the Weingarten form of M. The second
fundamental form B is a symmetric bilinear mapping and 4,, vEN (M), is a
self-adjoint linear mapping of 7T,(M). Let V(resp. V) be the Riemannian con-
nection of M(resp. M). Let D be the normal connection of M. For any vector
fields X, Y €X(M) and for any normal vector field £ eT'(N(M)), we have the
following equations (cf. Kobayashi and Nomizu [7] Vol. II Chap. 7 section 3):

(1.1.1) VY =V Y+B(X,Y),
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(112) Vi = —AX+DsE,
(L13) 2 BX, Y)) = g(4eX, V).
We denote by H the mean curvature of M. Let {e, -:+, ¢,} be an ortho-
normal basis of T,(M). Then we have
Hx - i B(e,', e,') .
The isometric immersion F: M — M is said to be minimal, if the mean curvature
H of M vanishes identically.

1.2. Let R be the curvature tensor of M. For x&M we define linear
mappings 4 and R of N, (M) as follows:

(121) 4@ =380, Ble, ¢)Bes ¢),
(1.2.2) R(v)zg (R(e;, v)e))"  for vEN (M),

where {e,, -+, ¢,} is an orthonormal basis of T,(M) and (R(*, *)¥)" denotes
the normal component of R(*, *)*. The linear mappings 4 and R are inde-
pendent of the choice of an orthonormal basis.

If M is a space of constant sectional curvature k, we have for any vector
fields X, Y and Z on M (cf. Kobayashi and Nomizu [7] Vol. I p. 203):

R(X, Y)Z = k(@(Z, V)X—g(Z, X)Y).
Therefore we have
(1.2.3) R(v) = —nkv for veN,(M).

We denote by A the Laplace operator on N(M) (cf. Simons [10] p. 64).
Let {E,, -+, E,} be an orthonormal local basis of T(M) on a neighborhood of
x€M. Then we have

(124)  Af(x) =33 (DeDef)®)—3) Dgrf)®)  for fET(N(M)).

We define a differential operator S, called the Jacobi differential operator, on N(M)
as follows:

(125) S=-A-A+R.

Let I be an open interval containing 0& R. A 1-parameter family {F,},c;
of immersions of M into M is called a variation of F, if F=F, and if the mapping
f: IXM— M, defined by f(t, x)=F,(x), is differentiable. The variation vector
field E of the variation {F,},c, is defined by
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E.=df ((%)(o,:))*

Proposition 1.2.1 (cf. Simons [10] p. 73). Let F: M— M be a minimal
isometric immersion, {F},c; a variation of F, and E the variation vector field of
{F.}. We denote by V(t) the volume of M with respect to the Riemannian metric
induced by the immersion F,. Let E¥ be the normal component of E, which is a
cross-section of N(M). Then we have

(1.2.6) %Vtg_t) - Sﬂ%g(g(EN), EMdx,

t=0

where dx is the Riemannian measure of (M, g).

The vector space I'(N(M)) is a pre-Hilbert space with the inner product
(,):
= ghpax forf perevon).
We denote by LA N(M)) the completion of T'(N(M)). We consider I'(N(M))

as a linear subspace of L*(N(M)). The Jacobi differential operator S is a self-
adjoint strongly elliptic operator on I'(N(M)). Therefore we have

Proposition 1.2.2 (cf. Simons [10] p. 74). (1) The Jacobi differential
operator S is diagonalizable in the sense that there exists a complete orthonormal
system {ea}wca Of L*(N(M)) such that each e, is contained in T'(N(M)) and
that each e, is an eigenvector of S.

(2) Each eigenspace of S is finite dimensional. Let

A<]A L e <N < e
be the eigenvalues of S. Then the sequence {\.};—, .. 15 divergent to oo.

ReEMARK 1.2.1. By Proposition 1.2.2 the spectra of § acting on T'(N(M))
coincide with ones of S acting on T'(N(M))C, the complexification of T'(N(M)).

We define a bilinear form I( , ) on I'(N(M)) as follows:
Iw,w)y= S 28(V), Wydx  for V, WET(N(M)).
M

The index and the nmullity of F are those of the bilinear form I( , ). By
Proposition 1.2.1 and 1.2.2 the index of F is the sum of the dimensions of the
eigenspaces corresponding to negative eigenvalues of S, and the nullity of F is
the dimension of the 0-eigenspace of S.

2. Equivariant isometric immersions

2.1. In section 2 we assume the followings. Let G be a compact con-
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nected Lie group, and K a closed subgroup of G. Let g be the Lie algebra
of G, and t the Lie subalgebra of g corresponding to the Lie subgroup K.
Let <, > be an Ad(G)-invariant inner product on g. Then we have an or-
thogonal decomposition g=F-p, where p is the orthogonal complement of £.
We denote by M the quotient space G/K. We canonically identify p with the
tangent space T,(M) of M at o=mn(e), where = is the natural projection of G
onto M=G/K. We also denote by < , > the G-invariant Riemannian metric
on M which coincides with the inner product <, > on p=T,(M). Let
F: (M, ¢, >)—>M be an isometric immersion for some ¢>0 which is
equivariant in the following sense: There exists a Lie group homomorphism p of
G into I(M), the group of all isometries of M, such that F(x(yK))=p(x)F(yK)
for x, yEG. Wealso denote by < , > the Riemannian metric on M. Moreover
we assume that the image F(M) of M does not coincide with M.
We define an action o of G on I'(N(M)) by

(c(®)f)(9K) = d(p(x)) f(x'y)  for f ET(N(M))
and x, yEG,

where d(p(x)) denotes the differential of the isometry p(x). We define an
action of G on T'(T'(M)|,) in the same way as fo: T\(N(M)), where T(T(M)|,,)
is the space of all C* cross-sections of T(M)|,. We also denote by o the action
of G on T'(T(M)|,). Then we have by the equivariance of F

Aog(x) = a(x)o A,
Aoo(x) = o(x)o4,
Rog(x) = o(x)oR .
Therefore we have
(2.1.1) Soa(x) = o(x)°S.
Moreover if F is minimal, each eigenspace of S is G-invariant.

Put U=N,(M). Then K acts on U by the differential of p(k), k€K, at
F(0). We denote by ¢ this action of K on U. We denote by E the vector
bundle G X xU associated with G by ¢. Put

C~(G; Uy = {f: G=>U C= mapping; f(xk) = (k) f(x) }
for x€G and keK '

The space T'(E) of C* cross-sections of E is identified with C*(G; U)g by the
following correspondence:

2.12)  C%G; U)xDf> FET(E), f(xK) = xof(x) for xEG,

where xof(x) is the image of (x, f(x))€G X U by the natural projection GX U—
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GXx xU. We define an action L of G on C*(G; U)g as follows:

(2.1.3) (L)) = f(x"1y) for feC”(G; U)g and %, yEG.

Put V="Ty)(M) and W=T,(M). Then K also acts on V (resp. W) by the
differential of p(k)(resp. of k), k€K, at F(o) (resp. at 0). We denote by
J (resp. H) the associated vector bundle G X x V(resp. GX xW). We define a
space C*(G; V)g(resp. C(G; W)g) and an action L of G on C=(G; V )g(resp.
on C*(G; W)) in the same way. We can identify T(M)|(resp. N(M) and
T(M)) with J(resp. E and H) and T(T(M)|,)(resp. T(N(M)) and %(M)) with
C>(G; V)g(resp. C=(G; U)g and C*(G; W)k) in the following way.

Proposition 2.1.1. (1) The vector bundle homomorphism
¢: J = T(M)| y, (xov) = d(p(x))v  for x€G and vEV,

is an isomorphism, and ¢ induces an isomorphism of E(resp. H) omto N(M)
(resp. T(M)). '

(2) Also denoting by ¢ the isomorphism of C=(G; V)x onto T(T(M)|,,) in-
duced from ¢: J— T(M)|,, the following diagram is commutative:

[2 —
C™(G; V)g — T(T(M) | u)
L, o(x)
L —
C°(G; V)k —> T(T(M)|y)  for xeG.
The isomorphism ¢: C=(G; V)g—T(T(M)|,) induces an isomorphism of C=(G; U)g
(resp. C=(G; W)g) onto T(N(M)) (resp. X(M)).
For feC~(G; V)¢ we denote by f the image of f by the isomorphism .

2.2. For x&G we define a diffeomorphism 7, of M by 7.(yK)=xyK.
Then 7, is an isometry of (M, < , >). For X &g we denote by X* the infini-
tesimal transformation on M which generates the 1-parameter group of trans-
formations 7.,p,x on M. We define differential operators 4, and A, on N(M)
as follows:

@21) AN =¥ BE* 458,

(222)  A(F) =L DspDen(f)  for FET(N(M)),

where {E,, -+, E,,,} is an orthonormal basis of g. The operators 4, and A,
are independent of the choice of an orthonormal basis of g.

Proposition 2.2.1.  For the operators A, and A we have the following equa-
tion:
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223) cd=4,.

Proof. Choose an orthonormal basis {E, -, E,.,} of g with the property
that {E,, -+, E,} (resp. {Eyy, - E,4,}) is an orthonormal basis of p (resp. E).
Then {\—/}?(El*),,, -y 71_6—_(E,,*),,} is an orthonormal basis of T,(M) and

(Epir*)o="=(Eus,*)y=0. For x€G put F;=Ad(x)E; i=1,2, -, n+p.
Then {F,, -+, F,,,} is an orthonormal basis of g, and we have

(Fi*)ex = d(exp t(Aciz’(:c JE:2) t=0
_ dx(exptE)-0)|  _ 4o (¥, .
— dt t=0

Therefore {\/—lc;(F F)eres ---,\—/I—T(F,,*),K} is an orthonormal basis of T,.(M)
and (Fp,¥)x="""=(Fps,*):x=0. For vEN, (M) we have

A(0) = E B(FF)axs ALF )
) (\/_E;_(F;*),K, A,,(Vl— (F2.4)).

<
By (1.1.3) we have
1 z 1 1 1
A= D) = B = F ), = F > (F o
Hence we have by (1.2.1)

20 = ¢330 B (P, S=(F x|

B (s = (F, )

= cA(v).
Q.E.D.

Proposition 2.2.2. If the curve c(t)=exp tX-o is a geodesic of M for any
X ey, we have

224)  cA=A,.

Proof. Fix x€G and let {E, -, E,,,} and {F, -, F,,,} be ortho-
normal bases in the proof of Proposition 2.2.1. Then we have for f €T(N(M))
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225)  (Mf)EK) = 3} (DreDrrIK) -

We have
(Fi*) toxpsze = d {exp t(Ad (x)E:i)t- (x(exp sE;)-0)}

_ d{x(exp (t+s5)E;)-0}
dt

t=0

t=0

Hence the curve x(exp ¢E;)-0 is an integral curve of F;*. Since the curves
x(exp tE;)+0, i=1, +-+, n, are geodesics, then

(22.6)  Vim, F*=0.

Let U be a normal neighborhood of xK. Let X, i=1, «--,n, be the vector fields
on U adapted to (F;*),g, i.e. (X;);=7ix(F;*),x, where 7ig is the parallel tran-
slation along the unique geodesic segment in U which joins xK and ¢. Then
there exists €20 such that (X;).expzi-o = (Fi*)stexptrp-o for —E<t<E. Hence
(Dy,f)(x(exp tE;)-0) = (Dp,s f )(x(exp tE;)+0) for fET(N(M)) and —E<t<E.
Hence we have

2.27)  (Dx,Dx,f)*K) = (DssDrsf)xK) .
We have by (1.2.4), (2.5.5), (2.2.6) and (2.2.7)

(AN@EK) =3 Dy Dy F)K)
= 2 3 DxDxSK)
— L 3 DD K)

= L @))EK),
which proves (2.2.4). Q.E.D.

ReEMARK 2.2.1.  Suppose that the pair (G, K) is a Riemannian symmetric pair
and that the inner product  , > on g is invariant under the involutive auto-
morphism of g associated to the pair (G, K). Then the condition of Proposi-
tion 2.2.2 is satisfied (cf. Helgason [5] pp. 174-177).

In what follows, for a Riemannian symmetric pair (G, K) the inner product
{, > on g will be always assumed to have the above property.

2.3. In this subsection we moreover assume that the equivariant iso-
metric immersion F: (M, ¢ , >)—>M is minimal and that M is compact.
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Let E be a Killing vector field on M and E¥ the normal component of
the restriction of E to M. 'The dimension of the space {E¥; E is a Killing vector
field on M} is called the Killing nullity of F. We have S(EV)=0 (Simons
[10] p. 74). Hence the nullity is not less than the Killing nullity. Let I(M, M)
be the group of isometries of M which leave F(M) invariant. Then I(M, M)
is a closed subgroup of I(M). Since M is compact, the Killing nullity of F is
equal to dim I(M)/I(M, M).

Proposition 2.3.1. Assume that M is a compact connected Riemannian
homogeneous space and that the equivariant isometric immersion F: M — M is mini-
mal. Then the Killing nullity of F is strictly positive.

Proof. If the Killing nullity is equal to 0, then dim I(M)=dim I(M, M).
Since M is connected, the group I(M, M) is transitive on M (cf. Helgason [5]
p. 114). Therefore we have F(M)=I(M, M)(F(M))=»M, which is a contra-
diction. Q.E.D.

3. Equivariant minimal isometric immersions into spheres

3.1. In section 3 the assumptions and the notation are the same as in
subsection 2.1. Moreover we assume that 7 is a Euclidean vector space with
an inner product < , > and that M is the unit sphere S of V with the center 0,
the origin of V. Since the isometric immersion F: M —>S is equivariant, there
exists an orthogonal representation p: G— GL(V') such that p(k)v,=v, for any
ke K, where v,=F(o).

We identify the tangent space of V' with V itself in a canonical way. Then
we have d(p(x))=p(x) for x€G. Since the induced bundle T'(V)|,, is trivial,
we consider T'(T(V)| ), the space of all C= cross-sections of T(V)|,, as the
space of all V-valued C* functions on M.

Under the above identification we have an orthogonal decomposition of
the tangent space T, (V') as follows:

GB.11) T (V)= V4VT+VY,

where V°=Ruv,, V'=T,(M) and V¥=N,(M). By Proposition 2.1.1 we have
the following proposition.

Proposition 3.1.1. (1) The vector bundle homomorphism
¢ GXgV—=>TW) |y, t(x00) = p(x)v  for x€G and vEV,

is an isomorphism, and ¢ induces an isomorphism of G X xV¥(resp. GX (VT) onto

N(M) (resp. T(M)).
(2) The following diagram is commutative:
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C(G; V)x —> T(T(7) |)
Lo e
C*(G; Vx——>T(T(V)ly)  for x€G.

The isomorphism ¢: C=(G; V)g—>T(T(V)| ) induces an isomorphism of C=(G; V¥)x
(resp. C=(G; VT)g) onto T(N(M)) (resp. X(M)).

For fEC>(G; V)x we denote ¢(f) by f. We denote by S the operator of
C=(G; V¥)g corresponding to S by the isomorphism ..

Let ¥ be the connection in T(V)]|, induced from the flat connection in
T(V). Then we have for f€C~(G; V) and a vector field Y ¥%(M)

(3.1.2) Vf=Yf,

where we consider f as a V-valued function on M. For X &g we denote by X
the right invariant vector field on G such that X,=X,, where we consider g as
the Lie algebra of left invariant vector fields on G and e is the unit element of G.

Lemma 3.1.2. We have
(3.13)  Vpf = «Xf+dp(Ad(xN)X)f)  for fEC™(G; V)gx and X g .
Here dp(Ad(+ ) X)f is the V-valued C* function defined by
(dp(Ad(x)X)f)(x) = dp(Ad(x)X)f(x) ,

dp is the differential of the homomorphism p, and X* denotes the infinitesimal
transformation which generates the 1-parameter group of transformations Teyp;x.

Proof. Let g be an element of C*(G; V), such that §=Vf. By (2.1.2)
and Proposition 3.1.1 we have for f€C~(G; V), and x€G

FK) = o(xof(x)) = p(x)f(x).
Hence we have by (3.1.2)
(%) = p(@) (Ve f)(xK) = p(6) " X* i f
— p(0)™ lim —((exp tX)sX)—f(xK)

= p()" lim - {p((exp £X))f(exp X)) —p(=)f ()}

= tim 1 {p(exp (Ad(x) X)) ((exp X)) —f((exp £X)1)

A +/((exp 1X)x)—f(x)}
= dp(Ad (™) X)f(x)+(Xf)(x) .
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This proves the lemma. Q.E.D.

Remark 3.1.1. Since A]eft translations of G are commutative with right
translations of G, we have XfeC=(G; V),. Therefore we have dp(Ad(* ) X)f
eC>(G; V)g.

Lemma 3.1.3. (1) We have for X&g and f €C~(G; V),

(314)  Dypf = o Xf+{dp(Ad(x ) X)f}"),
(3.1.5) —AyX* = (({dp(Ad(* ) X)f}T),

where we denote by g¥(resp.g") the VN-component (resp. VT-component) of g €
C=(G; V)g with respect to the decomposition (3.1.1).
(2) We have for XEg and f =C~(G; VT)k

(3.16)  B(X*, J) = ({dp(Ad(x ) X)f}") .

Proof. The lemma is an easy consequence of (1.1.1), (1.1.2), Proposition
3.1.1 and Lemma 3.1.2. Q.E.D.

For the differential operators 4, and A, defined in subsection 2.2, we
obtain the following two propositions.

Proposition 3.1.4. We have for fC~(G; V),
(B17) A= (—ﬁ {dp(E)(dp(ENf)TIY),

where {E,, -, E,,} is an orthonormal basis of g.

Proof. Applying Lemma 3.1.3, we have
4(f) = S BEX, 478
= $ (@A (™)) {dp(Ad(= DENIT)Y)

Put Ad(x)E,-z’ifaf',-(x)Ej for x€G. Then (a'j(x)); j-1,-n+, is an orthogonal

matrix. We have for x&€G

$1 (dp(Ad(* ) {dp(Ad(*)E)f}T)(x)

= 3 (@p(Ad () E) (dp (A EN )
= S Bl @t () Wp(E e E )T

+
g

{dp(E;)(dp(E))f)} (%) -

n
j

[
-
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Therefore
A(F) = (=2 {ap(ENPEN)H) -

Proposition 3.1.5. We have for f€C=(G; V),

Q.E.D.

(18  Af= (S EEf2 3 @pENEN)
+35 {p(ENdRENNY),

where {E,, -+, E,,} is an orthonormal basis of g.

Proof. Applying Lemma 3.1.3, we have
Af =3I DgeDy
— o3 BB+ {dpAdCEY)
+{dp(Ad( I E) B f+ {dp(AdG)ENF )
— (3 BES+E BAdp(AdsTEN
+35 {dp(Ad (s EN B}
+3 {dp(Ad (+)E) {dp(Ad)+ Ef}H)

We have (cf. Takeuchi [12] p. 51)
319 AL = S{E.E,.

Put Ad (x)E,-=;V+‘_,pa",-(x)Ej. Then we have for x€G
=1

(3.1.10)  (B), = dr(E), = di(dl,-dr(E),)
= dl(Ad(x™)E)),

= S ai (e dL(E)),
= 3@ ,@@E.,

where 7,(resp. [,) denotes the right translation (resp. left translation) by x€G.
We obtain

(.1.11)  {dp(Ad(*T)E;)f}(x) = dp(Ad(x™")E;)f(x)
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3 @ () dp (B ()

2 @' i(@)dp(Ef(x) -
By (3.1.11) and (3.1.10) we have
3 B {dp(Ad()ENH

I

+ It
hy

= S (Bt )P B+ {dp(E B}
=3 (B )apE )y + 3 @il B BN
= 3 (B! )dp(ENN)+ 2 {dpENEN}
Since the inner product < , > on g is Ad(G)-invariant, we have
(Bid'))(®) = lim %((Ad((exp 1E)%)E;, E>—<Ad®)E;, E.)
— lim %(Ad (exp tE) Ad (x)E;— Ad(x)E;, E;>

= (ad(E;)Ad(x)E;, E>
= —(Ad(%)E;, ad(E)E;> = 0

Therefore we obtain
(3.1.12) z’:’E {dp(Ad(* ME)f}V = ﬁ {dp(ENEN}" .
We have by (3.1.10) and (3.1.11)
(3.113) 3 {dp(Ad(:)E B}
=3 St (BB}
=3 o) BN}
We have by (3.1.11)J_
(3.114) 3T {dp(Ad(E) {dp(Ad(xDE)}H
=33 (51 aan(E) & drde® 111}
= 3 3 el (dp(E)dp(ENN"
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= 33 {an(E,)dp(E )"}
We obtain (3.1.8) by (3.1.9), (3.1.12), (3.1.13) and (3.1.14). Q.E.D.

3.2. In the rest of this section we moreover assume that the equivariant
isometric immersion F: (M, ¢ , >)— S is minimal. Let A, be the Laplace
operator of the Riemannian manifold (M, { , >) acting on functions. Then
we have (cf. Wallach [13] p. 20)

AM = ”Zﬂ,(Ex*)z ’
where {E,, -, E,;,} is an orthonormal basis of g. Hence the Laplace operator
Ay(c) of (M, ¢ , D) is given by the following equation:

(B21)  Ay(e)= %:Z:f(E.-*)z-

Let {e, «*-, ey} be an orthonormal basis of V' and (xy, **-, xy) the coordi-
nate system on J with respect to {ej, -+, ey}. Put F=(f,, -, fx), i.e. fi(xK)
=<e;, F(xK)>. Then it is known (Takahashi [11] p. 383) that

(3.2.2) Aylo)f; = —nf;, i=1, -, N.

We define an action L of G on C~(M), the space of C* functions on M, as
follows:

(L:f)(yK) = f(x"ywK) for x, y€G and f€C~(M).

Proposition 3.2.1. Let p: G—>GL(V) be an orthogonal representation of G.
Let F: (M, c< , >)— S, F(xK)=p(x)F(0), be an equivariant miniaml isometric
immersion. If F is full, i.e. if the image F(M) of M is not contained in any great
spheres, then the following equation holds:

(3.2.3) zf dp(E))dp(E;)=—ncly,

where 1y, denotes the identity transformation of V.

Proof. Let {e,, ::-, ey} be an orthonormal basis of ¥ and put F=(f;, ***, fx)
with respect to this basis. We define a linear mapping ¢: V—>C=(M) by
¢(v) (xK)=<v, F(xK)> for v€V and xG. Then the subspace ¢(V) of
C=(M) is spanned by f,, -+, fy.  We have for x, yEG and vV

B(p(x)0)(¥K) = <{p(*)v, F(yK)> = <o, p(x)F(yK)>
= <o, Flx™'yK)> = ¢(v)(x"yK)
= (L:h(0))(9K) -
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Hence ¢ is a G-module homomorphism. Let 4r: G— GL(¢(V)) be a repre-
sentation defined by Yr(¥)=L,|sw). Then we have for X g

(3.2.4) d(X) = —

We assert that dim ¢(V)=N. If the assertion is not true, there exist real
numbers ¢,, :++, ¢y, which are not all equal to zero, such that Z‘ ¢;f;=0. Then
the image F(M) is contained in the hyperplane 2 c;ix; =0, Wthh is a contra-

diction. Therefore ¢: V—¢(V) is a G-module 1somorph1sm. It follows from
(3.2.4), (3.2.1) and (3.2.2) that

S AWENW(EN, = 3 EFE M,
= cAy(o)fy = —ncf, .
Hence we have ﬁd\[r(E DAV (E;)=nclyy), where 14(,) denotes the identity trans-
formation of ¢(lI/_'; Since ¢: V—¢(V) is a G-module isomorphism, we have

S dp(E)dp(E) = —nel, .
QED.

RemArk 3.2.1. Suppose that the linear isotropy representation of G/K
is irreducible. Let p: G— GL(V) be a real spherical representation of (G, K),
i.e. p is an irreducible orthogonal representation of G such that there is a unit
vector vEV with the property that p(k)v=v for any kK. Then we can
construct a full equivariant minimal isometric immersion of M=G|/K in the
following way. Let S be the unit sphere of V' with the center 0. Define a
mapping F: M— S by F(xK)=p(x)v for x&G. Then there exists a positive
number ¢ such that F: (M, ¢< , >)—S is a minimal isometric immersion (cf.
Wallach [13] p. 21).

Let t be a Cartan subalgebra of g. We denote by g¢ the complexification
of g. For a linear subspace 1t of g we denote by 11¢ the complex linear sub-
space of g€ generated by . Let t be the root system of g¢ with respect to t.
A non-zero element A&t is a root, if and only if there exists a non-zero
element X g€ such that [H, X]=+/—1{\, H>X for any H&t. Choosing
a linear order in t, we denote by r* the set of all positive roots. Put
o= 2 /IE*)L

Let (G, K) be a Riemannian symmetric pair and D(G, K) the set of all equi-
valence classes of complex spherical representations of (G, K). Recall that an
irreducible complex representation ¢: G—>GL(W) is called a complex spherical
representation of (G, K), if there exists a non-zero vector w& W such that
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¢(kF)yw=w for any kK. For a complex irreducible representation ¢: G—
GL(W), we denote by [¢] the equivalence class to which ¢ belongs. For
[¢]€D(G, K) we denote by o4 (M) the subspace of C~(M)¢ generated by G-
submodules of C*(M)¢ which are isomorphic to ¢, where C(M)¢ is the com-
plexificaiion of C*(M) (We will not distinguish G-modules and representa-
tions of G). Then ogg3(M) is isomorphic to ¢ as G-module and the Laplace
operator Ay, acts on oe)(M) as a scalar operator crg3. The scalar ¢y is given by
—{A+28, A>, where A is the highest weight of ¢ (cf. Takeuchi [12] p. 20,
p. 207).

If) the Riemannian symmetric pair (G, K) is of rank 1, there exists a domi-
nant integral form A, such that the highest weight A of each complex spherical
representation ¢ is given by A=kA, for some non-negative integer k (cf.
Takeuchi [12] p. 166). Hence the scalar cy; is given by —<kA+28, kA=
— (R Ay, A>+2ER8, Ap). Since both {Ay, Ay> and <8, A,) are positive, it
follows that ¢gg13=cro1 for [¢], [¢'1€D(G, K) with [¢p]=[p']. Therefore we
have the following lemma.

Lemma 3.2.2. If (G, K) is a Riemannian symmetric pair of rank 1, then
each eigenspace of the Laplace operator Ay acting on C™(M)C is irreducible.

Proposition 3.2.3. Assume that (G, K) is a Riemannian symmetric pair of
rank 1. Let p: G—GL(V) be an orthogonal representation and the mapping
F: (M, , >)—S, F(xK)=p(x)F(0), an equivariant minimal isometric immersion.
If F is full, the complexification p: G—>GL(V°) of p is irreducible. Therefore
p: G—GL(V) is irreducible.

Proof. Put F=(f,::-,fy) as in the proof of Proposition 3.2.1. We also
denote by < , > the Hermitian inner product on V¢ which is the extension of
the inner product < , > on V. Let ¢: VC¢—C=(M)C be the C-linear map-
ping defined by ¢(v)(xK)=={v, F(xK))> for vV and x&G. We assert that
{fi, =+, fa} is linear independent over C. If the assertion is not true, there
exist complex numbers ¢, :*+, cy, which are not all equal to zero, such that

N

lec‘ fi=0. Put ¢;=a;++/—1b;, where a; and b; are real numbers. Then at

least one of the equations éa,x;:() and f‘,b,.x,:o defines a hyperplane.
i=1 i=1

Since every f; is real valued, the image F(M) is contained in this hyperplane.
This is a contradiction. Hence by the proof of Proposition 3.2.1 we have that
¢: Ve—¢(V°) is a G-module isomorphism and that A, f=—ncf for f Ep(VC).
Therefore it follows from Lemma 3.2.2 that ¢(V'€) is an irreducible G-module.
Hence p: G— GL(V°) is irreducible. Q.E.D.

REMARK 3.2.2. Assume that (G, K) is a Riemannian symmetric pair of
rank 1. Then full equivariant minimal isometric immersions of M=G/K into
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spheres are in one-to-one correspondence with complex spherical representa-
tions of (G, K). In fact a complex spherical representation of (G, K) corres-
ponds to a full equivariant minimal isometric immersion F: (M, ¢{ , >)—S by
Proposition 3.2.3. Conversely since (G, K) is of rank 1, every zonal spherical
function is real-valued (Do Carmo and Wallach [3] p. 98). Therefore every
complex spherical representation of (G, K) is the complexification of a real
spherical representation of (G, K). Hence a full equivariant minimal isometric
immersion corresponds to a complex spherical representation of (G, K) (Remark
3.2.1).

3.3. In this subsection we assume that (G, K) is a Riemannian symmetric
pair.

Theorem 1. Let p: G—GL(V) be an orthogonal representation and F:
(M, <, D)—=S, F(xK)=p(x)F(0), a full equivariant minimal isometric immersion.
Then we have for f€C=(G; V¥)x

(33.1)  Sf= —%(zi’ E.E,f—2c,f
+2 35 {dp(ENE V23 {dp(B)dpEN)H),

where c,=—nc and {E,, -++, E,,,} is an orthonormal basis of g.

Proof. Since the condition of Proposition 2.2.2 is satisfied (Remark 2.2.1), it
follows from (1.2.5), (1.2.3), (2.2.3) and (2.2.4) that S= —}—(Ao—}—Ao—f—nclp(N(M»),
¢

where 1p(ya is the identity transformation of T'(N(M)). Hence we have by
(3.1.7) and (3.1.8)

§7 =~ L& BB+ E @ ENE L)
+38 4dp(E) BN — S BN BN Y —cof) ).

Applying (3.2.3), we have
5% {dp(E)dp(BN)}
— S {dp(EN o (BEINY S Hdp(EN (BN}
— 5 {dp(E)dp(BN )}
= —nef— 33 {dp(E)dp(BNf)}'— 2 {dp(E) PN}
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In the above equation (dp(E;)f)" denotes the V°-component of dp(E,)f with
respect to the orthogonal decomposition (3.1.1). Since dp(g)v,=V7, we have

gf {dp(E)(dp(E)f)}¥=0. Hence we have

Sf = — LG EE S 125 Wan(B)EN}

n+p
+2 35 {dp(E)(dp(E )} "—26,1)
Q.E.D.
RemMARK 3.3.1. It follows from Remark 3.1.1, (3.1.9), (3.1.12) and (3.1.14)

n+p

that SIEE.f, 33 {dp(ENENY, 33 {dp(E)dp(ENf)}Y € C=(G; V) for

fEC™(G; V™)g. Moreover each of the above three operators is commutative
with L, for all x€G.

We define an operator S,: C=(G; V¥),—C=(G; V"), by

n+p n+p
Sif = 2 Adp(B)E 23 {dp(E)(dp(ENNHM
for feC~(G; VV)k.
By Proposition 3.1.1 the operator S, corresponds to a first order differential

operator on N(M). We denote by S, the corresponding differential operator
on N(M). If S,=0, the operator S reduces to the simple operator

1 n+p
_7('2:—:: EE;—2c1¢: VN)K) ’

where 1ge(;; vE) is the identity transformation of C*(G; V*)k. The following
lemma provides a sufficient condition for S;=0. In fact this condition is also
necessary (see Proposition 4.2.2).

Lemma 3.3.1. If (dp(X)v)¥=0 for XEp and vEV", then we have
S,=0.

Proof. Choose an orthonormal basis {E,, -+, E,,} of g such that {E,, ---,
E,} (resp. {E,sy, ***, E,4,}) is an orthonormal basis of p (resp. of £). We have
for x€G, feC(G; VY)g and E;, i=n+1, -+, n+p,

(E:f)(e) = lim - (f((exp tE))—f(x)

— lim - (p(exp—tE)f(x) (%)

= —dp(E)f@).
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Hence

+

I

Sif = £} UpENES}+E; 1dp(E)p(EN )"

ntd

33 {dp(B)(E.)} "33 {dp(E)(dp(EN}

=n+

*
|

Il

3 BB} B, pE)NdREN VY

Since V¥ is invariant under p(k) for k€K, we have (dp(E;)f)"=dp(E))f, i=
n+1, .-, n+p. Therefore we have

Sif = 3 p(ENE S} 23 dp(ENAp(ENf)"} .
Thus we obtain the proposition. Q.E.D.

ReMARK 3.3.2. In the following cases the operator S, vanishes.

(1) The case of the minimal isometric immersion of S” induced from
the representation p,, which is defined as follows: When (G, K)=(SO(n+1),
SO(n)), the highest weight ¢, of the canonical representation of SO(n+1) has
the property of A, in the proof of Lemma 3.2.2. Our representation p, is
the real spherical representation whose complexification has the highest weight
2¢, (Remark 3.2.2).

(2) The cases of minimal symmetric R-spaces (see Nagura [8]), which
include (1) as a special case.

34. Let N be a connected Riemannian manifold and N the universal
Riemannian covering manifold of N. Then we have by the universal property

Lemma 3.4.1. For each isometry xEI(N) there exists an isometry X<
I(N) such that woX=xon, where w: N—N is the covering map.

In this subsection we assume that G acts on M almost effectively. This
means that ¥ does not contain any trivial ideals of g.

Proposition 3.4.2. Let M be the universal Riemannian covering manifold
of M. If the equivariant minimal isometric immersion F: (M, ¢ , >)— S, F(xK)
= p(x)F(0), is full and if dim G=dim I(M), then the Killing nullity of F is equal

m(m—1)

to —Z—-dim G. Here m=dim V.

Proof. Let I°(S, M) be the identity component of I(S, M). By the argu-
ment in subsection 2.3 it is sufficient to show that dim I(S, M)=dim G.
It is trivial that I°(S, M) contains p(G). Put K'= {x&G; p(x)F(0)= F(0)}.
Since F is an immersion, dim K'=dim K and hence the Lie algebra of K’ coin-
cides with £. Therefore G acts on V almost effectively and we have
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(341)  dimp(G)=dimG.

Since the image F(M) of M is the orbit of G through F(o), F(M) is a regular
submanifold of S. Let I°(F(M)) be the identity component of I(F(M)), the
group of all isometries of the Riemannian manifold F(M). Since F is full, we
may consider p(G) as a closed subgroup of I°(F(M)). It follows from Lemma
3.4.1, the assumption of the proposition and (3.4.1) that

dim I°(F(M))<dim I(M ) = dim p(G) .
Therefore we have
I(FEOD) = p(G).

Let A be an element of I°(S, M). Since F(M) is a regular submanifold of S, 4
induces an isometry of F(M), which is contained in I°(F(M)). Then there
exists an element x&G such that the actions p(x) and A4 coincide on F(M).
Since F is full, we have A=p(x). Therefore I°(S, M) coincides with p(G).
Thus we obtain the proposition. Q.E.D.

REMARK 3.4.1. The condition dim G=dim I(M) is satisfied, when the pair
(G, K) is an almost effective Riemannian symmetric pair and when G is semi-
simple.

4. Invariant differential operators

4.1. Let G be a connected Lie group and K a closed subgroup of G. We
assume that the quotient space M=G/K is reductive, i.e. the Lie algebra g of
G may be decomposed into a vector space direct sum of the Lie algebra £ of
K and an Ad(K)-invariant subspace p. We identify p with the tangent space
T,(M) at the origin o€ M.

Let ¢: K—GL(U) be a real (or complex) representation and put &=
GxxU. For each x€G we define an automorphism a,: £é—£ by

o (you) =xyou foryeG and uc U .

We also denote by «, the automorphism @, of I'(£), the space of all C* cross-
sections of £, defined by (a, f)(yK)=a(f(x'yK)) for fET'(£) and yeG. We
have for fET'(¥), aeC(M) and %, yEG

(@) (YK) = a(@(x"'yK)f(x"'yK))
= a(x'yK)a(f(x'yK))
= (r,-1*a)(yK)(a.f)(9K) .
Hence we obtain

(411) ax(df) = (Tx'l*d)(axf) .
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Put

C*(G; U)g = {f: G—>U, C~ mapping; f(xK) = $(k™")f(x) }
for x€G and ke K

Then as in subsection 2.1 we have the isomorphism :: C=(G; U)g—T'(£),
((f))(xK)=xo f(x), and the following commutative diagram:

C=(G; U)x —> T(£)
L, a,
L
C*(G; U)x—>T(E).

We denote by f the image «(f) of f. Put
C=(G)x = {a=C”(G): a(xk) = a(x)  for x=G and k€K} .

Then the pull back z*: C*(M)—C=(G) is an isomorphism, where z: G—M=
G/K is the natural projection. We denote by @ the inverse image z*~'(a) of
acsC=(G)x. For feC(G; U)g and a€C”(G)x we have af C~(G; U)g and

(412)  oaf)=af.

Let+r: K—GL(V) be areal (or complex) representation and put =G X V.
We define automorphisms B,: 7—% and B,: I'(»)—=TI'(7) in the same manner
as for £. Let Diff,(&, 7) be the set of all A-th order differential operators
from & to ». A differential operator DeDiff,(&, 1) is said to be invariant, if
Doa,=p,0D for every x&G. Let D be an h-th order differential operator from
£ ton. Then for each p& M the symbol o,(D) of D defines an A-th order homo-
geneous polynomial mapping from the cotangent space T,*(M) to Hom(£,, 7,)
(cf. Palais [9] p. 62), where Hom(&,, 7,) denotes the vector space of all linear
mappings from &, to 7,.

Let ‘(dt,) be the transposed mapping of the differential dr, of 7,, xEG.
Then we have for g€ C~(M) and x, yEG

(413)  d(7,1*8),yx = T-1*(dB),x = H(d7,-1)(d) ) -

Propositioh 4.1.1. Assume that a differential operator D& Diff (&, ) is
invariant. Then we have for x, yEG, vET x*(M) and 0w EE

(414) o (D)((dT.-)v)(a(w)) = Bou(D)(v)(@)) .

Proof. Take @=C=(M)(resp. fET(E)) which satisfies @(yK)=0 and
da x=2v(resp. f(yK)=w). Then we have

(r,-*a)(xyK) = 8(yK) = 0
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and

(@) (xyK) = a,(f(yK)) = a.(e).
By (4.1.3) we have
d(7.-1*@),yx = '(d7,-1)(dd) ) = "(d7,-1)v.

Applying (4.1.1), we have
1. 1 ~
a,(ﬁa" f) = (Te-r*@)Ma.f) .

Hence it follows from the definition of the symbol &,(D) and the invariance
of D that

D). e)(aw)) = D (5 (o2 @) )(vK)
-l 7)o

- 8,(p(L-27)ox))

= Bau(D)(2)(@)) -
QE.D.

Corollary 1. Assume that D < Diff, (€, ) is invariant. If o,(D),=0, then
on(D)=0.

Proof. The corollary is an immediate consequence of the proposition.

Q.E.D.

If D is a first order differential operator, the symbol o((D),, pEM, de-
fines a bilinear mapping from T,*(M) X, to 7,. We also denote by o,(D), the
linear mapping from T,*(M)®E, to 7, induced from the bilinear mapping
ai(D),. We have easily the following corollary.

Corollary 2. If a differential operator D& Diff\(E, n) is invariant, then the
linear mapping o(D),: p*QU=T,*(M)QE,~n,=V is a K-module homomorphism,
i.e. for each ke K

a1(D),o'Ady (k)@ p(k) = Y(k)oay(D), ,
where the action Ad,(k) is the restriction of Ad(k) to p and p* denotes the dual
space of .

4.2. In this subsection the assumptions and the notation are the same as
in subsection 3.3.
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The differential operator §; on N(M) defined in subsection 3.3 is invariant
by Remark 3.3.1. Choose an orthonormal basis {E,, -, E,,,} of g such that
{E,, -+, E,} (resp. {E,4y, ***, E,4,}) is an orthonormal basis of p (resp. f). Let
{¢1, ***, Pus,} be the basis of the dual space of g dual to {E,, -+, E,,,}. We
consider {¢,, ***, $,} as a basis of T,*(M). Then we obtain

Lemma 4.2.1. We have for $;=T,*(M), i=1, -+, n, and o€V
(#2.1)  o(S)(¢:)() = (dp(Eyo)" .

Proof. Let N be an open neighborhood of o€M such that z () is
diffeomorphic to NX K, where z: G— G/K is the natural projection. Let

(%, -+, x,) be the local coordinate system on IV defined by x;(exp (i s;E;)K)=s;
ji=1

for —€<s;<¢&, where € is some positive number. For vV we define a
V¥-valued C~ function a, on z~}(IV) by

a(exp (U EDK) = p(k™o  for keK .
Taking €'>0 such that £’<¢&, put
N’ = {exp (2"1 s;E)K; —€'<s;<€'}.

Then there exists a V¥-valued C* function a’, on G such that a,=a’, on
7~ Y(N’). We define a V' ¥-valued C~ function 8, on G by

Bu(x) = SK (R’ (xk)dk  for xEG,

where dk denotes the normalized Haar measure of K. Then B8,C~(G; V).
In fact we have for x&G and hie K

Bu(xh) = SK p(R)a’(xhk)dk
— SK p(hY(hR))ot'(xhk)dk
— p(h™Y) SK p(hK)a’ (xhk)dR
= p(h™")By(%) .
We have for x=exp (z‘, S;Eh(—E' <s5;<E")
B.9) = p(h) [ ol (exp (3 5Bk

— p(h™) SK vdk = p(h™)o.
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Therefore B,(0)=t(ecB,(¢))=v. Take f;=C=(M) such that f;=x; on N’ and
then take f;&€C=(G)g such that z*f;=f;. Then f,(0)=0 and (df.),=¢:.. We
have by (4.1.2) '
a:(8))(:)(®) = Si(fiB.)(0) = Si(«fiB))(0)
= S\(fiB:)(0) = Si(fiB,)(e)
= S (E)E (BN} -
We have by (3.1.13)
3 {dp(E,) EL(f )N}
= S {dp(AdE) B (8O

= ST {pE) (B 1)@ HHNEAN
= (dp(E;)v)" .
This proves (4.2.1). Q.E.D.

Proposition 4.2.2. The following three conditions are equivalent:
(1) (@p(X)v)"=0 for X €p and ve V™.

2 S,=0.

3) a(S)=0.

Proof. Lemma 3.3.1 shows that (1) implies (2). It is evident that (2)
implies (3). Lemma 4.2.1 shows that (3) implies (1). Q.E.D.

The vector spaces V¥ and pQV Y are K-modules in a natural manner.
Since K is compact, we may decompose ¥ ¥(resp. p@ V%) into a direct sum of
irreducible K-modules.

Proposition 4.2.3. If any irreducible component of PQVY is not isomor-
phic to any irreducible component of V¥, then S,=0.

Proof. Since the representation Ad,: K—GL(p) is orthogonal, the con-
tragradient representation of Ad, coincides with itself. Hence it follows from
Corollary 2 for Proposition 4.1.1 and Schur’s lemma (cf. Chevalley [2] p. 182)
that ¢(S)),=0. Therefore we have our proposition by the above proposition.

Q.E.D.

5. Reduction to the finite dimensional eigenvalue problems

5.1. Let G be a compact connected Lie group and K a closed subgroup of
G. We denote by M the quotient space G/K. The G-invariant Riemannian
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metric < , > on M is the same as in subsection 2.1. Let D(G) be the set of
equivalence classes of complex irreducible representations of G. For a com-
plex irreducible representation o: G—>GL(W) we denote by ¢*: G—>GL(W*)
the contragradient representation of o on the dual space W* of W. Let
C=(G)¢ be the space of C-valued C* functionson G. We define actions L, and
R, of G on C=(G)C by the followings:

(L)) = f(=x7"9), (RS) ) =flyx)  for fEC™(G)°.

For [¢]=D(G) let o%,)(G) (resp. 0%,3(G)) be the subspace of C*(G)C gene-
rated by G-submodules of C*(G)¢ which are isomorphic to ¢ by the G-action
L(resp. by the G-action R). Then we have 0%,3(G)=0%+1(G).

Let U be a complex vector space with a Hermitian inner product {, > and
C=(G; U) the space of U-valued C* functions on G. We also denote by L,
(resp. R,) the action of G on C*(G; U): (L.f)(y)=f(x"1y)(resp. (R /)(3)=/(3))
for feC=(G; U). Note that our L,(resp. R,)is nothing but the tensor product
L,®1y (resp. R,®1y) on C*(G)°QU=C>(G; U). Let o: G—GL(W) be a
complex irreducible representation. We define a multilinear mapping ®°:
Wx W*x U-C=(G; U) by

D(w, w, u)(x) = w(ac'(X)w)u  forweW, veW* anducU.

We also denote by ®° the induced linear mapping of WQW*QU to C=(G; U).
We define an action L,(x)(resp. R,,(x)) of G on WQW*QU by L,(x)=c(x)®
1+Q@1y(resp. Rx(%)=1,Qc*(x)®@1,). Then we have ® oL (x¥)=L,0®" and
D7oR +(x)=R, oD’ for every xEG.

Theorem 5.1.1 (cf. Takeuchi [12] p. 15). (1) We consider WQW*QU
(resp. C=(G'; U)) as a G-module with the G-action L,(resp. L). Then ®° is a G-
module isomorphism of W QW *Q U onto o'(,1(G)Q U.

(2) We consider WQW*QU(resp. C=(G; U)) as a G-module with the G-
action Rys(resp. R). Then ®° is a G-module isomorphism of W QW*QU onto
0F(G)Q U =0"1,3(G)Q U.

Let ¢: K—GL(U) be a unitary representation and < , > the Hermitian
inner product on U. Put E=GXgU. Then £ has a natural Hermitian fibre
metric, which will be also denoted by < , >. We define a subspace C*(G; U)x
of C*(G; U) by

C=(G; U)x = {f€C(G; U); f(xk) = $(k™)f(x) }
for x€G and kK

We identify the space I'(¢) of C* cross-sections of £ with C*(G; U)gx. Then
C=(G; U)g is a G-module with the G-action L. We define a Hermitian inner
product < , > on C=(G; U)x as follows:
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<S= | S, gpas,
where dx is the normalized Haar measure of G. Then we have

{L.f,L.g>=<fg> for every x=G .
The space C=(G; U)g is a pre-Hilbert space. We denote by L*&) the com-
pletion of C*(G; U)g. Identifying as C=(G; U)=C"(G)°QU, we define an
action J of K on C=(G; U) by J(k)=R,Q¢(k) for kK. Then we have

(5.1.1)  C™(G; U)x = {f€C=(G; U); Jk)f =f  for keK}.

For a complex irreducible representation ¢: G—>GL(W), we define an action
J- of K on WQW*QU by J.(k)=1,Qc*(k)@p(k). Then we have

(5.1.2) D7 J (k) = J(k)oD’ for every keK .

Let og,3(¢) be the subspace of C*(G; U)x generated by all G-submodules of
C=(G; U)x which are isomorphic to W. Then og3(£) is a G-submodule of
DL[¢](G)® U. Put
0(§) = {f€C~(G; U)g; dim {L,f: x€G}c< o0},
D(G; K, ¢) = {[¢c1€D(G); o* | c®¢ contains a trivial
representation },

and
(W*QU), = {aeW*QU; (c*(k)Q¢(k))(a) = a for keK} .

Then WQ(W*QU), is a G-module with the G-action L,. We have the follow-
ing Peter-Weyl theorem for vector bundles.

Theorem 5.1.2. (Bott [1] p. 173). (1) The G-module isomorphism ®°: WQ
W*QU— 0 ,5(G)QU in (1) of Theorem 5.1.1 induces a G-module isomorphism
of WQ(W*QU), onto or,1(£).

(2) We have the following orthogonal decompositions:

o(£) :[a]ep;e:; K’@o[v](f) (algebraic direct sum),

sen . .
L¥§) _[U]ED(%‘,; K,@o[,,](g) (direct sum as Hilbert space).

We have the following theorem for an invariant differential operator.

Theorem 2. Let D be an invariant differential operator on & and consider
it as an operator on C=(G; U)g(see the commutative diagram in subsection 4.1).
Let o: G—>GL(W) be an irreducible representation with [¢]€D(G; K, ¢). Then
D leaves o1,)(E) invariant and there exists a unique linear mapping D, of (W*QU),
such that
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Do®” = ®°0(1,QD,) .
Proof. For f&o(£) the subspace {L,Df: x€G}¢= {DL,f: x = G}, of

C=(G, U) is finite dimensional, and hence D leaves o(§) invariant. It follows
from Schur’s lemma that every or,3(£) is invariant under D. Let D’ be the
linear mapping of WQ(W*QU), corresponding to D |o,3(€) by the G-module
isomorphism ®°: WQ(W*QU),—o,1(§). Let {ay, -**, a,,} be a basis of
(W*Q®U), We define linear mappings f;, 7, j=1, 2, :--, m,, of W as follows:
D'(w®a;) = z: fi@®a; forweW.
Then we have for x&€G
D'(Ly(x)(w®a;)) = D'(s(x)w®a;)

— 3 f o @m)@a;
On the other hand we have
D/(L(#)(@®a;)) = Lo(x)(D'(w®a;))
= Sl (f @) Bas.
Hence
fillo@m) = c@fi@),  ij=1,,m,.

It follows from Schur’s lemma that there exist complex numbers ¢;, 7, j=
1, -, m,, such that fi;=c*;1,,. Hence we have

D'(w®a;) = w®(§1} cjor) .
A linear mapping D, of (W*QU), defined by
D(,aj:i%::]c‘ja;, j=1, -, m,,
is the required one. Q.E.D.

ReEMARK 5.1.1. If an invariant differential operator D on & is self-adjoint
with respect to the inner product  , >, each Dloy yp is diagonalizable. If
furthermore D is elliptic, every eigensection ‘of D belongs to o(£). Thus the
problem of computing the spectra of D is reduced to the study of the eigen-
values of D, for each [¢]€D(G; K, ¢).

5.2. In this subsection the assumptions and the notation are the same as
in subsection 3.3. Moreover we assume that the minimal isometric immersion
F: (M, <, >)—>Sis full. We also denote by < , > the Hermitian inner pro-
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duct on V¢, the complexification of V, which is the extension of the inner
product {, > on V. Then the orthogonal representation p: G—GL(V) extends
to the unitary representation p: G—>GL(V ). Let (V")¢ be the subspace of
V¢ generated by V¥ and p": K—GL((V'")°) the unitary representation in-
duced from p: G—GL(V?). We may identify the complexification I'(/N(M))®
of T(N(M)) with C=(G; (V¥)€)k. Let (VT)resp. (V°)°) be the complex
linear subspace of V¢ generated by V7(resp. V?). We have the direct sum
decomposition V€= (V)¢ (VT)C4+(V¥)C. For vV we denote by v" the
(VM)C-component of v with respect to this decomposition of V€.

Let o: G—>GL(W) be a complex irreducible representation with [¢]E
D(G; K, p"). Put

(¥R M%) = {o€W*Q(V M) (¢*(R)Q P (R))(0) = @ }
for ke K

Let S’ be the linear mapping of WQ(W*Q(V'¥)C), corresponding to S| o, NO)
by the G-isomorphism ®°: WQ(W*Q®(V")C),— or,a(N(M)C), where N(M)C
denotes the complexification of the normal bundle N(M). Then we have by
Theorem 1 and (2) of Theorem 5.1.1

S = ——}<1W®{(ca*—ch)lw*@,wm%z 5 do*(E)@(dp(E))"
+2 33 15-@ {dp(E)dp(E))" D)

where c,« is the scalar determined by the Casimir operator Z} da*(E Yda*(E;)
of ¢*. Let ¢, be the scalar determined by the Casimir operator 2 do(E;)do(E;)

of o. Then c,+=c,. Put
ntp
So = =L {(co—2en) w2 ] do*(E)@(dp (B

+2.3 1. @ {dp(B)(dp(E)0)"} "} .

Then it follows from Remark 5.1.1, Theorem 2 and (2) of Theorem 5.1.2 that

the problem of computing the spectra of .S is reduced to the eigenvalue problems

of the linear mappings S, of (W*Q®(V¥)°), with [¢]€D(G; K, p").
Summarizing, we get the following theorem.

Theorem 3. Let F: (M, ¢, >)—S, F(xK)=p(x)F(0), be a full equivariant
minimal isometric immersion of a compact symmetric space M=G|K into a unit
sphere S. For a complex irreducible representation o: G—GL(W) with [o]E
D(G; K, p"), let {Mgi1 ***s No: mo} be the eigenvalues of S, on (W*Q(VY)C),
Then the spectra of the Jacobi differential operator S are given by
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{7\0':1’ R A ) 7\fa'?ma.v '} 7\'0-:»:6} ’
[61eD(G; K, p7) ~—ouou—" —_—

d, d,
where d,—=dim W.

For a complex irreducible representation o: G—GL(W) with [¢c]€D(G;
K, p"), it follows from Remark 3.3.1 and Theorem 2 that each of the linear

mappings 3 do*(E) @ (dp(E)H)Y and 331, @ {dp(E)(dp(EN0"}" leaves

(W*Q(V™)C), invariant. For the study of the linear mapping S, it is impor-
tant to study these linear mappings. We shall study these linear mappings.

Let g¢ be the complexification of g and (, ) the symmetric bilinear form
on g¢ which is the C-bilinear extension of the inner product {, > ong. Choose
bases {F,:-,F,.,} and {F’;, -, F’,.,} of g¢ with the property (F;, F';)=35;.
Let X: G—>GL(U) be an arbitrary unitary representation (not necessarily ir-
reducible). We define a linear mapping L(X, p) of UQV ¢ by

L(X, p) = 3} dX(F)@dp(F").

The linear mapping L(X, p) is independent of the choice of bases. In fact
let {H,, ---, H,,,} and {H', ---, H',,,} be bases of g€ with (H;, H';)=35;;. Let

H,.=:2”ak,.F,, and H',=S3b/,F", i=1, --,n-+p. Then we have
=1 h=1
8,‘1' == (H,', H’]) ='§ akibjk .
=1

Hence if we put A=(d";); j=1,..s4p and B=(b';); j-1 .. ssp We have B=A7"
Therefore we have

+
A

” nt+d

;‘;‘;dX(H.-)®dp(H )= at b dX(F)Qdp(F',)

kyh=1i=1
”

ra
AN

dX(F)Qdp(F"y) .

k=

-

We denote by Cyg,(resp. Cy and C,) the Casimir operator of the representation
XQ®p (resp. X and p). Since ,Z”dX(F,-)@dp(F ',~)=§dX(F "Y®dp(F;), we have
(5.2.1) 2L(X, p) = Cyp,—C®1,°—1,QC, .

We obtain the following lemma by (5.2.1) and the fact that the Casimir operator
commutes with the action of G.

Lemma 5.2.1. We have
(X@p)®)L(X, p) = L(X, p)o(X®p)x)  for xEG.
Put
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(URV®),= {oeUQVC; (XQp)(k)o = @  for kEK} .
Then we have by the above lemma
(522)  LX, p)(UV))(URVO),.

Now we come back to our complex irreducible representation o: G—
GL(W). We denote by p, the projection to the first component of the following
direct sum decomposition:

W*QV ¢ = (W*@(V")O)+(W*@{(V)°+(V°)%D) -

Then we have
Lemma 5.2.2.
(523) S do*E)REp(EWN" = p, S do*(E)RAp(E)  on WHRVE,
(5.24) S do*E)RAp(E)N(W*QV Y (W*RV ),
where (W*QV €)y = {0 W*QVE, (c*(k)Qp(k)o =  for kEK} .

Proof. The first equality is trivial. Since gda*(Ei)@)dp(E;):L(a*, p),
we have (5.2.4) by (5.2.2). Q.E.D.

Lemma 5.2.3. We have
(525)  p(k) 3 {dp(E)dp(EYo)"}"
— g’(dp(z«:,.) {dp(E)p(R)o}™)Y  for keK and vEVC.

Proof. For k=K the linear mapping p(k) leaves (V¥)¢, (V7)€ and (V)¢
invariant respectively. Therefore we have

p(B) 33 {dp(E)(dp(E o)}
= 53 ({e(erdp(Bp(k )} {p(R)dp(E) ok} p(RI")"

n+p
= 23 (dp(Ad(R)E;) {dp(Ad(R)E)(p(R)0)} )" -
Since {Ad(k)E,, -+, Ad(k)E,,,} is an orthonormal basis of g, we have

S (@p(Ad(R)E,) {dp(AdBE) (PRI} )"

ntd

= 23 (dp(E){dp(E:)(p(R)0)} )" .

i=1

Q.E.D.
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In the forthcoming papers we shall study the linear mappings

S do*(E)Rdp(E): (W*@V ), — (W*RV ),

3T {dp(B)dp(E))}: (V¥)E— (V).

These studies, together with Lemma 5.2.2 and Lemma 5.2.3, will give us in-
formations on the linear mapping S,.
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