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Introduction

Let F: M—>M be a minimal isometric immersion of a compact Riemannian
manifold M. For a variation {Ft} of F the second variation of the volume
V(i) of Ft(M) is described by a differential operator 5, called the Jacobi di-
fferential operator, on the normal bundle as

f=0

where EN denotes the infinitesimal normal variation of {Ft} (see section 1).
The Jacobi differential operator S is self-adjoint and strongly elliptic. There-
fore the index and the nullity of F are obtained from the spectra of S. Here
the index and the nullity are defined as those of the Hessian at F of the volume
integral on the space of immersions of M into M modulo diffeomorphisms of
M. For the study of minimal isometric immersions it seems to be important to
study S and its spectra.* However there have been few studies on these pro-
blems except for the recent works of Hasegawa and others. Hasegawa [4]
studies the spectral geometry of minimal submanifolds.

Let M be a compact symmetric space, M a unit sphere, and F an equivariant

*) This study is partially supported by Yukawa Foundation



116 T. NAGURA

minimal isometric immersion. Under this situation we study the Jacobi di-
fferential operator S, applying the representation theory of compact Lie groups.
In section 1 we recall some results on minimal isometric immersions. In
section 2 we study equivariant isometric immersions of compact homogeneous
spaces and their Killing nullities (see Hsiang and Lawson [6] p. 14 for Killing
nullities). In section 3 we study equivariant minimal isometric immersions
of compact symmetric spaces into unit spheres. And we compute the Jacobi
differential operator S in this case (Theorem 1). In section 4, recalling some
results on invariant differential operators, we give some propositions, which
give criterions in order that our operator *S reduces to the Casimir operator.
In section 5 the problem of computing the spectra of S is reduced to the eigen-
value problems for certain linear mappings Sσ of finite dimensional vector
spaces (Theorem 3).

In the forthcoming papers we shall study the linear mappings Sσ in de-
tail under certain conditions, and study the index and the nullity of minimally
immersed spheres into spheres.

The author would like to express his sincere gratitude to Professor M.
Takeuchi and Professor S. Murakami for their valuable suggestions and en-
couragements.

1. Preliminaries

1.1. Let (M,g) be an n-dimensional compact connected Riemannian mani-
fold without boundary, and (M,g) an 7/z-dimensional Riemannian manifold.
Let F: M-+M be an isometric immersion of M into M. We consider the
tangent space TX(M) of M at x^M as a vector subspace of the tangent space
TF(X)(M) of M at F(x)^M. We denote by NX(M) the orthogonal comple-
ment of TX(M) in TF(X)(M), which is called the normal space of the immersed
submanifold M of M at x. Let T(M) (resp. T(M)) be the tangent bundle of
M(resp. of M). We denote by T(M)\M the bundle induced by F from T{M).
The bundle N(M)= U NX(M) is called the normal bundle of M. We denote

by X(M) (resp. Y(N{M))) the space of all C°° cross-sections of T(M) (resp. of

Let B: Tx(M)xTx(M)-+Nx(M) be the second fundamental form of M,
and A: Nx(M)xTx(M)->Tx(M) the Weingarten form of M. The second
fundamental form B is a symmetric bilinear mapping^and Avy v^Nx(M)y is a
self-adjoint linear mapping of TX(M). Let V(resp. V) be the Riemannian con-
nection of M(resp. M). Let D be the normal connection of M. For any vector
fields X, 7 G Ϊ ( M ) and for any normal vector field £eΓ(iV(M)), we have the
following equations (cf. Kobayashi and Nomizu [7] Vol. II Chap. 7 section 3):

(1.1.1) VXY=V
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(1.1.2) ψxξ =-AtX+Dxξ ,

(1.1.3) g{ς,B(X,Y)) = g{AtX, Y).

We denote by H the mean curvature of M. Let {el9 •••, en} be an ortho-
normal basis of TX(M). Then we have

The isometric immersion F: M-+M is said to be minimal, if the mean curvature
H of M vanishes identically.

1.2. Let R be the curvature tensor of M. For x G M w e define linear
mappings A and R of NX{M) as follows:

(1.2.1) A(v) =

(1.2.2) R(v) = Σ (*(*„ *)*)" for v(ΞNx(M),

where {̂ , •••,£„} is an orthonormal basis of TX(M) and (i?(*, *)*)^ denotes
the normal component of !?(*, *)*. The linear mappings A and R are inde-
pendent of the choice of an orthonormal basis.

If ikf is a space of constant sectional curvature ky we have for any vector
fields X, Y and Z on M (cf. Kobayashi and Nomizu [7] Vol. I p. 203):

R{X, Y)Z = k(g(Z, Y)X-g{Zy X) Y).

Therefore we have

(1.2.3) R(v) = -nkv for v<=Nx(M).

We denote by Δ the Laplace operator on N(M) (cf. Simons [10] p. 64).
Let {Ely -~9En} be an orthonormal local basis of T(M) on a neighborhood of
x e M. Then w e have

(1.2.4) Δ/(*) = Σ (DEiDEif)(x)-± (DVEiEif)(x) for/eΓ(ΛΓ(M)).

We define a differential operator S, called the Jacobi differential operator, on N(M)
as follows:

(1.2.5) S= -A-A+R.

Let/be an open interval containing Oej?. A 1-parameter family {Ft}tGI

of immersions of M into M is called a variation of F, if F=F0 and if the mapping
/: IχM->My defined by f(t, x)—Ft(x)y is differentiable. The variation vector
field E of the variation {Ft} /€Ξ/ is defined by
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Er = df((4-

Proposition 1.2.1 (cf. Simons [10] p. 73). Let F: M-+M be a minimal
isometric immersion, {Ft} /€Ξ/ a variation of F, and E the variation vector field of

{Ft}. We denote by V(t) the volume of M with respect to the Riemannian metric

induced by the immersion Ft. Let EN be the normal component of E, which is a

cross-section of N{M). Then we have

(1.2.6) *M
dt2

f = 0

= ( g(8(EN), EN)dx,
J M

where dx is the Riemannian measure of (M, g).

The vector space T(N(M)) is a pre-Hilbert space with the inner product

for/,/'€ΞΓ(iV(M)).

We denote by L\N{M)) the completion of Γ(iV(M)). We consider T(N(M))
as a linear subspace of L2(N(M)). The Jacobi differential operator S is a self-
adjoint strongly elliptic operator on Γ(iV(M)). Therefore we have

Proposition 1.2.2 (cf. Simons [10] p. 74). (1) The Jacobi differential
operator S is diagonalizable in the sense that there exists a complete orthonormal

system {ea}Λ<=A °f L\N(M)) such that each ea is contained in T(N(M)) and

that each ea is an eigenvector of S.

(2) Each eigenspace of S is finite dimensional. Let

λ 1 <λ 2 < < λ ί < •••

be the eigenvalues of S. Then the sequence {λ,},^. . is divergent to oo.

REMARK 1.2.1. By Proposition 1.2.2 the spectra of S acting on V(N(M))
coincide with ones of S acting on T(N(M))C> the complexification of Γ(N(M)).

We define a bilinear form /( , ) on T(N(M)) as follows:

I(V, W) = ί g(8(V), W)dx for F, W^T(N(M)).
v M

The index and the nullity of F are those of the bilinear form /( , ). By
Proposition 1.2.1 and 1.2.2 the index of F is the sum of the dimensions of the
eigenspaces corresponding to negative eigenvalues of 5, and the nullity of F is
the dimension of the 0-eigenspace of S.

2. Equivariant isometric immersions

2.1. In section 2 we assume the followings. Let G be a compact con-
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nected Lie group, and K a closed subgroup of G. Let g be the Lie algebra
of G, and I the Lie subalgebra of g corresponding to the Lie subgroup K.
Let < , y be an ^4</(G)-invariant inner product on g. Then we have an or-
thogonal decomposition Q=l-\-p, where p is the orthogonal complement of ϊ.
We denote by M the quotient space G/K. We canonically identify p with the
tangent space T0(M) of M at o=π(e)> where π is the natural projection of G
onto M=GIK, We also denote by < , > the G-invariant Riemannian metric
on Λf which coincides with the inner product < , > on p=T0(M). Let
F: (M, £< , »->ifef be an isometric immersion for some c>0 which is
equivariant in the following sense: There exists a Lie group homomorphism p of
G into I(M), the group of all isometries of Λf, such that F(x(yK))=ρ(x)F(yK)
for xy y^G. We also denote by < , > the Riemannian metric on M. Moreover
we assume that the image F{M) of M does not coincide with M.

We define an action σ of G on T(N(M)) by

) for /

and x,

where d(ρ(x)) denotes the differential of the isometry p(x). We define an
action of G on T(T(M)\M) in the same way as for Γ(N(M)), where Γ(T(M)|M)
is the space of all C°° cross-sections of T(M) \ M. We also denote by σ the action
of G on T(T(M)\M), Then we have by the equivariance of F

Zoσ(χ) = σ(X)oA ,

ttoσ(χ) = σ(x)oR .

Therefore we have

(2.1.1) Soσ(χ) = σ(x)oS.

Moreover if F is minimal, each eigenspace of S is G-invariant.

Put U=N0(M). Then K acts on U by the differential of p(k)y k<=K, at
F(o). We denote by φ this action of K on U. We denote by 2? the vector
bundle GxκU associated with G by φ. Put

C"(G; U)κ = {/: G->U C~ mapping;.

for«
J\x) 1

The space Γ(Z?) of C°° cross-sections of E is identified with C°°(G; U)κ by the
following correspondence:

(2.1.2) C~(G; U)κΞ>f^f<=Γ(E), f(xK) = Λo/(Λ) for

where χof(χ) is the image of (x, f(x))GGX t/ by the natural projection Gx



120 T . NAGURA

GxκU. We define an action L of G on C°°(G; U)κ as follows:

(2.1.3) (Lxf)(y) = f(x'ιy) for fϊΞC~(G; U)κ and χ9

Put V= TF(o)(M) and W= T0(M). Then K also acts on V (resp. PF) by the
differential of p(&)(resp. of k), k^K, at F(o) (resp. at ό). We denote by
/(resp. i/) the associated vector bundle Gxκ F(resρ. Gx^PF). We define a
space C°°(G; V)κ(resp. C°°(G; W)κ) and an action L of G on C°°(G; F)^(resp.
on C°°(G; W)κ) in the same way. We can identify T(M)\M(resp. N(M) and
T(M)) with /(resp. £ and H) and Γ(Γ(fi)|M)(resp.Γ(iV(M)) and ϊ(M)) with
C°°(G; Γ)^(resp. C°°(G; ί/)^ and C°°(G; W)κ) in the following way.

Proposition 2.1.1. (1) The vector bundle homomorphism

i: / - > T(M)\My ι{χov) = d(ρ(x))v for *<=G andv^V,

w an isomorphism, and t induces an isomorphism of E(resp. H) onto N(M)
(resp. T(M)).

(2) Also denoting by t the isomorphism of C°°(G; V)κ onto T(T(M)\M) in-
duced from i: J-*T{M)\My the following diagram is commutative:

\Lχ

C~(G; V)κ >T(T(M)\M)

The isomorphism r. C°°(G; V)K-*Γ(T(M)\M) induces an isomorphism of C°°(G; U)κ

(resp. C~(G\ W)κ) onto Y(N(M)) (resp. Tί(M)).

For f^C°°(G; V)κ we denote by / the image of/ by the isomorphism t.

2.2. For tf^G we define a diffeomorphism τx of M by τx(yK)—xyK.
Then rx is an isometry of (M> < , » . For Z G g w e denote by X* the infini-
tesimal transformation on M which generates the 1-parameter group of trans-
formations τeκptx on M. We define differential operators Ao and Δo on N(M)
as follows:

(2.2.1) A0(f) = ϊί£(£.*, AjE?),
1 = 1

(2.2.2) Δo(/) = ϊίDEi,DB*{ϊ) for/eΓ(iV(M)),

where {El9 *",En+p} is an orthonormal basis of g. The operators Ao and Δo

are independent of the choice of an orthonormal basis of g.

Proposition 2.2.1. For the operators Ao and A we have the following equa-
tion:
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(2.2.3) cA = AQ.

Proof. Choose an orthonormal basis {Elf •••, En+p} of g with the property
that {Eu •••,£„} (resp. {En+U •- ,En+p}) is an orthonormal basis of $>(resp. f).

Then f—^(^j*),, ...,—}=(En*)0) is an orthonormal basis of TJM) and
We v c )

{En+*)o= - = (En+p*)o = Q> For *<^G put Fi = Ad(x)Ei9 i=l,2,~ ,n+ρ.
Then {Fl9 •••, Fn+p} is an orthonormal basis of g, and we have

/-*x _ ^ e x p ^ A d ^ ) ^ ) ' ^
1 ' )xK~ dt

Therefore (-^(Fj*),,, - , -4=(F.*) Λ ] is an orthonormal basis of TxK(M)
We v c )

and ( F , + I * ) Λ = = ( F . + > * ) J Λ = O . For oeJVrf(Λf) we have

Σ

By (1.1.3) we have

Hence we have by (1.2.1)

= cΛ(v).
Q.E.D.

Proposition 2.2.2. If the curve c(t)=exp tX o is a geodesic of M for any
e have

(2.2.4) cΔ = Δ 0 .

Proof. Fix x<=G and let {El9—,Eu+p} and {Fu—9Fn+p} be ortho-
normal bases in the proof of Proposition 2.2.1. Then we have for f
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(2.2.5) (Aof)(xK) = g (DFi.DFi*f)(xK).

We have

(F*s _d{expt(Ad(x)Ej)-(x
at

__ d{x(exp(t+s)Ei)*o}
~ dt

,=0

t=o

Hence the curve #(exp tE^ o is an integral curve of F*. Since the curves
x(txptEi) o, i=ίy ••-,#, are geodesies, then

(2.2.6)

Let U be a normal neighborhood of xK. Let Xh t— 1, •••, n, be the vector fields
on U adapted to (-F. *)**, i.e. (Z l ) 9=τ? i Γ( JF f*)^, where τ*κ is the parallel tran-
slation along the unique geodesic segment in U which joins xK and q. Then
there exists S>0 such that ( ^ )Λ(expί£l ) o = (ί1,ί|e)Λ(eχp<£,•)•* for — f <t<6. Hence
(Z)χ/)(*(expί^) o) = (Z)Fί /)(Λ(expί^).o) for /eΓ(JV(M)) and
Hence we have

(2.2.7) (DXiDXij)(xK) = (DFi.DFi.f)(xK).

We have by (1.2.4), (2.5.5), (2.2.6) and (2.2.7)

(Af)(xK) = ±(DJ_DJ_ f)(xK)

=-tl(DXiDXif)(xK)
C i

C 1 =

which proves (2.2.4). Q.E.D.

REMARK 2.2.1. Suppose that the pair (G, K) is a Riemannian symmetric pair
and that the inner product < , > on g is invariant under the involutive auto-
morphism of g associated to the pair (G, K). Then the condition of Proposi-
tion 2.2.2 is satisfied (cf. Helgason [5] pp. 174-177).

In what follows, for a Riemannian symmetric pair (G, K) the inner product
< , > on g will be always assumed to have the above property.

2.3. In this subsection we moreover assume that the equivariant iso-
metric immersion F: (M, cζ , »-*M is minimal and that M is compact.
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Let £ be a Killing vector field on M and EN the normal component of
the restriction of E to M. The dimension of the space {EN; E is a Killing vector
field on M) is called the Killing nullity of F. We have S(EN)=0 (Simons
[10] p. 74). Hence the nullity is not less than the Killing nullity. Let I(M, M)
be the group of isometries of M which leave F(M) invariant. Then I(M, M)
is a closed subgroup of I{M). Since M is compact, the Killing nullity of F is
equal to dim I(M)H(M, M).

Proposition 2.3.1. Assume that M is a compact connected Riemannian
homogeneous space and that the equivariant isometric immersion F: M->M is mini-
mal. Then the Killing nullity of F is strictly positive.

Proof. If the Killing nullity is equal to 0, then dim I(M)=dim I(M,M).
Since M is connected, the group I{M, M) is transitive on M (cf. Helgason [5]
p. 114). Therefore we have F(M)=I(M, M)(F(M)) = M, which is a contra-
diction. Q.E.D.

3. Equivariant minimal isometric immersions into spheres

3.1. In section 3 the assumptions and the notation are the same as in
subsection 2.1. Moreover we assume that V is a Euclidean vector space with
an inner product < , > and that M is the unit sphere S of V with the center 0,
the origin of V. Since the isometric immersion F: M->S is equivariant, there
exists an orthogonal representation p: G->GL(V) such that p(k)vo = vo for any
k<=K, where v0=F(o).

We identify the tangent space of V with V itself in a canonical way. Then
we have d(ρ(x)) = ρ(x) for x^G. Since the induced bundle T(V)\M is trivial,
we consider T(T(V)\M)9 the space of all C°° cross-sections of T(V)\M, as the
space of all F-valued C°° functions on M.

Under the above identification we have an orthogonal decomposition of
the tangent space TVQ(V) as follows:

(3.1.1) T9O(V)=V*+VT+VN,

where V°=Rvω VT=TO(M) and VN = N0(M). By Proposition 2.1.1 we have
the following proposition.

Proposition 3.1.1. (1) The vector bundle homomorphism

ι:GxκV-»T(V)\M, t(χoV) = p(x)v for X G G and

is an isomorphism, and i induces an isomorphism of GxκV
N(resp. GxκV

τ) onto
N(M) (resp. T(M)).

(2) The following diagram is commutative:
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C~(G; V)K-(()\M

lL* c lσ{x)

G F ) U ( Γ F ) U ) for

The isomorphism c: C°°(G; V)K-^T(T{V) | M) induces an isomorphism of C°°{G; VN)K

{resp. C°°(G; Vτ)κ) onto T{N{M)) (resp.

For /eC°°(G; V)κ we denote t(/) by /. We denote by S the operator of
C°°(G; VN)K corresponding to § by the isomorphism i.

Let V be the connection in T(V)]M induced from the flat connection in
T(V). Then we have for feC"(G; V)κ and a vector field F 6 Ϊ ( M )

(3.1.2) V κ / = Yf,

where we consider / as a V-valued function on M. For X e g we denote by Jt
the right invariant vector field on G such that Xe=Xe, where we consider g as
the Lie algebra of left invariant vector fields on G and e is the unit element of G.

Lemma 3.1.2. We have

(3.1.3) V**/ = t(Jtf+dP(Ad(^)X)f) forf£ΞC~(G; V)κ andX^Q .

Here dρ(Ad(*~ι)X)f is the V-valued C°° function defined by

(dP(Ad(^)X)f)(x) = dP(Ad(χ-ι)X)f(x),

dp is the differential of the homomorphism p, and X * denotes the infinitesimal
transformation which generates the l-parameter group of transformations τexptx.

Proof. Let g be an element of C°°(G; V)κ such that g=Vx*f. By (2.1.2)
and Proposition 3.1.1 we have for/eC°°(G; V)κ and Λ G G

f(XK) = txofa)) = p(χ)f(χ) .

Hence we have by (3.1.2)

g(x) = P(χ)-χψx.f)(xK) = p{χ)-ιX\J

= PW- lίm i-(/((exp tX)xX)-f(xK))

= p(x)-> lim i - {p((exp tX)x)f((exp tX)x)-P(x)f(x)}

= lim— {p(exp i(Ad(af ^ / ( ( e x p ίX)x)-/((exp tX)x)

+McxptX)x)-f(X)}

= dP(Ad (x-
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This proves the lemma. Q.E.D.

REMARK 3.1.1. Since left translations of G are commutative with right
translations of G, we have Xf^C°°(G; V)κ. Therefore we have dp(Kά(*-χ)X)f

Lemma 3.1.3. (1) We have for ZGg andf^C°°(G; VN)K

(3.1.4) z W = c(Xf+ {dp(Ad(*

(3.1.5) -A7X* = t({dp(Ad(*-

where we denote by gN(resp.gτ) the VN-component (resp. Vτ-component) of g&
C°°{G; V)κ with respect to the decomposition (3.1.1).

(2) We have for l e g andfeC°°(G; Vτ)κ

(3.1.6) B(X*, f) = i{dP(Ad(^)X)f}N).

Proof. The lemma is an easy consequence of (1.1.1), (1.1.2), Proposition
3.1.1 and Lemma 3.1.2. Q.E.D.

For the differential operators Λo and Δo defined in subsection 2.2, we
obtain the following two propositions.

Proposition 3.1.4. We have for fELC°°(G; VN)K

(3.1.7) Λ0(f) = c ( - Σ {dp(Ei)(dP{Ei)mN) >

where {Eu •••, En+P} is an orthonormal basis of Q.

Proof. Applying Lemma 3.1.3, we have

22

= Σ *(-

Put Ad(x)Ei=
S£$aJ

((x)Ej for * ε G . Then (aί

j(x))u=lr..ιn+p is an orthogonal

matrix. We have for

Σ

= "H ( Σ β'K*-VK*'1) {dp{E,){dP{Ek)f{x)Y}
j k l i l
H (

j,k=l i =
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Therefore

Q.E.D.

Proposition 3.1.5. We have for f<ΞC°°(G; VN)K

(3.1.8) Δo/~ = φ^

+ί${dp(Ei)(dp(Ei)f)«}η,
1 = 1

where {Eϊy •••, En+p} is an orthσnormal basis of g.

Proof. Applying Lemma 3.1.3, we have

We have (cf. Takeuchi [12] p. 51)

(3.1.9) 'iSέA = 'HE.E, .
i=l 1=1

Put Ad(x)Ei=
:Σaj

i(x)Ej. Then we have for
•7 = 1

(3.1.10) (J^.), = ArJίE,). = dlx{dlx-idrx{E,))

where ^(resp. lx) denotes the right translation (resp. left translation) by
We obtain

(3.1.11) {dpiAd^EtfUx) = dp(Ad(χ-i)E{)f(x)
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By (3.1.11) and (3.1.10) we have

{dp(Ej)(Ejf)}».

Since the inner product <( , > on g is Ad(G)-invariant, we have

Φ^i){x) = Hm i«Ad((exp tEt)x)Eh Ei>-<Ad(x)Ej,

= lim—<Ad(exp tEi)Ad{x)Ej-Ad(x)EJ, E(>

t +o t

= <ad(Ei)Ad(x)E); Et>

= -<Ad(x)Ej, adiE^y = 0
Therefore we obtain

(3.1.12) "HέΛdpiAd^Edfy = Σ {dp{Ei)(Eif)V .

We have by (3.1.10) and (3.1.11)

(3.1.13)

n +

We have by (3.1.11)

(3.1.14) i f {
ί l
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We obtain (3.1.8) by (3.1.9), (3.1.12), (3.1.13) and (3.1.14). Q.E.D.

3.2. In the rest of this section we moreover assume that the equivariant
isometric immersion F: (M, c<( , » - » £ is minimal. Let AM be the Laplace
operator of the Riemannian manifold (M, < , » acting on functions. Then
we have (cf. Wallach [13] p. 20)

where {Elf ••>, En+p) is an orthonormal basis of g. Hence the Laplace operator
AM(c) of (M,cζ , >) is given by the following equation:

(3.2.1) Δu(c) =
C « = 1

Let {eu -~,eN] be an orthonormal basis of V and (xly ~ ,xN) the coordi-
nate system on V with respect to {ely - m,eN}. Put F~(fu •••,/#)> i.e. fi{ocK)
=<eh F(xK)>. Then it is known (Takahashi [11] p. 383) that

(3.2.2) AHM =-nfi, ί = l , ...,JV.

We define an action L of G on C°°(M), the space of C°° functions on M, as
follows:

(Lxf)(yK) = f{x~ιyK) for x,y e G and / e C°°(M).

Proposition 3.2.1. Le£ p: G-*GL(V)be an orthogonal representation of G.
Let F: (M,c( , »-^5 f, F(xK) = ρ(x)F(o), be an equivariant miniaml isometric
immersion. If F is full, i.e. if the image F(M) of M is not contained in any great
spheres, then the following equation holds:

(3.2.3) ^

where ίv denotes the identity transformation of V.

Proof. Let {ely •••, eN} be an orthonormal basis of V and put F=(fly ••s/w)
with respect to this basis. We define a linear mapping φ: V->C~(M) by
Φ(V)(XK)=<Ό, F(xK)> for Ϊ ) 6 F and x^G. Then the subspace φ(V) of
C°°(M) is spanned by flf •• ,/^. We have for x, y^G and

φ(P(x)v)(yK) = <p(φ, F(yK)> =



JACOBI DIFFERENTIAL OPERATORS 129

Hence φ is a G-module homomorphism. Let ψ: G-*GL(φ(V)) be a repre-
sentation defined by ψ(x)=Lx\φ(V). Then we have for Z E g

(3.2.4) dψ{X) = - X * .

We assert that dim φ(V)=N. If the assertion is not true, there exist real

numbers cly •••, cNy which are not all equal to zero, such that 2 £,•/,•=(). Then

the image F(M) is contained in the hyperpLme 2 ct#t =0, which is a contra-
ί = l

diction. Therefore φ: V-*φ(V) is a G-module isomorphism. It follows from
(3.2.4), (3.2.1) and (3.2.2) that

» = 1 i = l

= cAM(c)fk = -ncfk.

n + p

Hence we have 2 dΛJr(Ei)dψ(Ei) = nclφ(V)y where lψ(7> denotes the identity trans-

formation of φ(V). Since φ: K-^φ(F) is a G-module isomorphism, we have
UHdP(Ei)dp(Ei)=-nclv.

Q.E.D.

REMARK 3.2.1. Suppose that the linear isotropy representation of G/K
is irreducible. Let p: G-+GL(V) be a real spherical representation of (G, K),
i.e. p is an irreducible orthogonal representation of G such that there is a unit
vector Ϊ ) G F with the property that p(k)v=v for any k^K. Then we can
construct a full equivariant minimal isometric immersion of M=G/K in the
following way. Let S be the unit sphere of V with the center 0. Define a
mapping F: M-+S by F(xK)=p(x)v for X G G . Then there exists a positive
number c such that F: (M, c< , »->£ is a minimal isometric immersion (cf.
Wallach [13] p. 21).

Let t be a Cartan subalgebra of g. We denote by g c the complexification
of g. For a linear subspace u of g we denote by nc the complex linear sub-
space of gc generated by it. Let t be the root system of gc with respect to t.
A non-zero element λ ^ t is a root, if and only if there exists a non-zero
element X^QC such that [H, X]=V^Γ|<λ, H>X for any ί / e t . Choosing
a linear order in t, we denote by x+ the set of all positive roots. Put

Let (G, K) be a Riemannian symmetric pair and D(G, K) the set of all equi-
valence classes of complex spherical representations of (GjK). Recall that an
irreducible complex representation φ: G->GL(W) is called a complex spherical
representation of (G,K)y if there exists a non-zero vector w^W such, that
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φ(k)w=w for any k^K. For a complex irreducible representation φ: G-+
GL(W), we denote by [φ] the equivalence class to which φ belongs. For
[φ]^D(G, K) we denote by o[φ](M) the subspace of C°°(M)C generated by G-
submodules of C°°(M)C which are isomorphic to φ, where C°°(M)C is the com-
plexification of C°°(M) (We will not distinguish G-modules and representa-
tions of G). Then θ[ψ](M) is isomorphic to φ as G-module and the Laplace
operator AM acts on θ[φ](M) as a scalar operator C[φ^. The scalar r[ψ] is given by
—<Λ+2δ, Λ>, where Λ is the highest weight of φ (cf. Takeuchi [12] p. 20,
P 207).

If the Riemannian symmetric pair (G, K) is of rank 1, there exists a domi-
nant integral form Λo such that the highest weight Λ of each complex spherical
representation φ is given by Λ=AΛ0 for some non-negative integer k (cf.
Takeuchi [12] p. 166). Hence the scalar Γ[ψ] is given by — <&Λ0+2δ, &Λ0>=
—(&2<Λo, Λo>+2β<δ, Λo». Since both <Λo, ΛQ> and <δ, Λo> are positive, it
follows that cίφlΦcίφn for [φ], [φ'](ΞZ)(G, K) with [φ]Φ[φ'] Therefore we
have the following lemma.

Lemma 3.2.2. If (G,K) is a Riemannian symmetric pair of rank 1, then
each eigenspace of the Laplace operator AM acting on C°°(M)C is irreducible.

Proposition 3.2.3. Assume that (G, K) is a Riemannian symmetric pair of
rank 1. Let p: G^>GL(V) be an orthogonal representation and the mapping
F: (M,c< , y)-*S> F(xK)=ρ(x)F(o), an equivariant minimal isometric immersion.
If F is full, the complexification p: G->GL(VC) of p is irreducible. Therefore
p: G-*GL(V) is irreducible.

Proof. Put F=(f1' -,fN) as in the proof of Proposition 3.2.1. We also
denote by < , y the Hermitian inner product on F c which is the extension of
the inner product < , > on V. Let φ: VC->C°°(M)C be the C-linear map-
ping defined by φ(υ)(xK)=ζΌ, F(xK)y for v^Vc and x<=G. We assert that
ί/i> •">/#} *s linear independent over C. If the assertion is not true, there
exist complex numbers cl9 " ycNy which are not all equal to zero, such that

Σ ^ / ι=0. Put Ci=CLi-\-\/ — \biy where a{ and bt are real numbers. Then at

least one of the equations 2 #,•#,•=0 and ^bixi = 0 defines a hyperplane.
ί = l » = 1

Since every / t is real valued, the image F(M) is contained in this hyperplane.
This is a contradiction. Hence by the proof of Proposition 3.2.1 we have that
φ: Vc-^φ(Vc) is a G-module isomorphism and that AMf=—ncf for f^φ(Vc).
Therefore it follows from Lemma 3.2.2 that φ(Vc) is an irreducible G-module.
Hence p: G-* GL(VC) is irreducible. Q.E.D.

REMARK 3.2.2. Assume that (G, K) is a Riemannian symmetric pair of
rank 1. Then full equivariant minimal isometric immersions of M=GjK into
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spheres are in one-to-one correspondence with complex spherical representa-
tions of (G, K). In fact a complex spherical representation of (G, K) corres-
ponds to a full equivariant minimal isometric immersion F: (M, c< , »-*S by
Proposition 3.2.3. Conversely since (G,K) is of rank 1, every zonal spherical
function is real-valued (Do Carmo and Wallach [3] p. 98). Therefore every
complex spherical representation of (G, K) is the complexification of a real
spherical representation of (G, K). Hence a full equivariant minimal isometric
immersion corresponds to a complex spherical representation of (G, K) (Remark
3.2.1).

3.3. In this subsection we assume that (G, K) is a Riemannian symmetric
pair.

Theorem 1. Let p: G->GL(V) be an orthogonal representation and F:
(M, c< , »->*?, F(xK)=ρ(x)F(o), a full equivariant minimal isometric immersion.
Then we have for f<=C°°{G; VN)K

(3.3.1) Sf= -^(Z
C ί=i

where cp=—nc and {E1} •••, En+p} is an orthonormal basis of g.

Proof. Since the condition of Proposition 2.2.2 is satisfied (Remark 2.2.1), it

follows from (1.2.5), (1.2.3), (2.2.3) and (2.2.4) that £ = - — (
cc

where 1Γ(JV(M)) is the identity transformation of Y(N{M)). Hence we have by
(3.1.7) and (3.1.8)

Sf = i

Applying (3.2.3), we have

n + p

ϊ = l

n+p n + P

ί = l * * 7^1

= -nεf- Σ {diEMdiEM)"} " Σ
ί =
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In the above equation (dρ(Ei)ff denotes the F°-component of dp(Ei)f with
respect to the orthogonal decomposition (3.1.1). Since dρ(Q)vo=Vτ, we have

N==0. Hence we have

n + fi

+2Σ
» = 1

Q.E.D.

REMARK 3.3.1. It "follows from Remark 3.1.1, (3.1.9), (3.1.12) and (3.1.14)

that Σ E,E{f, Σ {dpiEftEif)}", Σ idp(Ei)(dp{Eι)f)κ)κe C°°(G; VN)K for
i — 1 i — l ί = 1

/eC°°(G; VN)K. Moreover each of the above three operators is commutative
with Lx for all

We define an operator S,: C"(G; VN)K-*C°°{G; VN)K by

SJ= Σ {rf/>(^)(^/)}w+Σϊ {dp(Ei)(dP(Ei)fr}N

forf£ΞC"(G;VN)κ.

By Proposition 3.1.1 the operator 5Ί corresponds to a first order differential
operator on N(M). We denote by S1 the corresponding differential operator
on N(M). If S1=0y the operator S reduces to the simple operator

- — ( Σ EM-2cPlc~(G; y * ) ) ,

where 1C~(G; F ^ } is the identity transformation of C°°(G; VN)K. The following

lemma provides a sufficient condition for S1~ 0. In fact this condition is also

necessary (see Proposition 4.2.2).

Lemma 3.3.1. // (dp(X)v)N=0 for Z e p and v(=VN

y then we have

Proof. Choose an orthonormal basis {Eu •••, En+P} of g such that {Eu •••,

En} (resp. {En+ly — , J?Λ+/>}) is an orthonormal basis of £ (resp. of ϊ ) . We have

for *<ΞG, f<=C°°(G; VN)K and .E1,-, i=n+l9

= lim |
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Hence

J= Σ {dpiEdiEiβy+Σ {dP{Ei){dp{Ei)f)1'V
ί = l ι = l

= Σ ί
ί = l

+ Σ {dp(Ei)(dP(Ei)f)N}»+%i {dp(Ei)(dp{Et)f)M}N -

Since VN is invariant under ρ(k) for k^Ky we have {dρ(Ei)f)N=dp(Ei)f,
n-\-ly , w+^>. Therefore we have

J Σ

Thus we obtain the proposition. Q.E.D.

REMARK 3.3.2. In the following cases the operator Sx vanishes.
(1) The case of the minimal isometric immersion of Sn induced from

the representation p2, which is defined as follows: When (GΛ K)=(SO(n-]-i)y

SO(n))y the highest weight φx of the canonical representation of SO(n-\-ί) has
the property of ΛQ in the proof of Lemma 3.2.2. Our representation ρ2 is
the real spherical representation whose complexification has the highest weight
2φ1 (Remark 3.2.2).

(2) The cases of minimal symmetric i?-spaces (see Nagura [8]), which
include (1) as a special case.

3.4. Let N be a connected Riemannian manifold and N the universal
Riemannian covering manifold of N. Then we have by the universal property

Lemma 3.4.1. For each isometry x^I(N) there exists an isometry X^
I(N) such that πoθt=iχoπy where n\ N-+N is the covering map.

In this subsection we assume that G acts on M almost effectively. This
means that ϊ does not contain any trivial ideals of g.

Proposition 3.4.2. Let M be the universal Riemannian covering manifold
of M. If the equivariant minimal isometric immersion F: (M, c( , »-> 5, F{xK)
= ρ(x)F(o), is full and if dim G=dim I{M)> then the Killing nullity of F is equal

to m(fn-1) -dim G. Here m=dim V.
2

Proof. Let Γ(S, M) be the identity component of I(S, M). By the argu-
ment in subsection 2.3 it is sufficient to show that dim Γ(S, M)=dim G.
It is trivial that Γ(S, M) contains p(G). Put K' = {x^G; p(x)F(o) = F(o)}.
Since F is an immersion, dim X"'=dim K and hence the Lie algebra of K' coin-
cides with ϊ. Therefore G acts on V almost effectively and we have
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(3.4.1) dim p(G) = dim G.

Since the image F(M) of M is the orbit of G through F(o)> F(M) is a regular
submanifold of S. Let Γ(F(M)) be the identity component of I(F(M))y the
group of all isometries of the Riemannian manifold F(M). Since F is full, we
may consider ρ(G) as a closed subgroup of I°(F(M)). It follows from Lemma
3.4.1, the assumption of the proposition and (3.4.1) that

dim Γ(F(M))^dim I{M) = dim p(G).

Therefore we have

Let A be an element of Γ(S, M). Since F(M) is a regular submanifold of S, A
induces an isometry of F(M), which is contained in Γ(F(M)). Then there
exists an element Λ G G such that the actions p(x) and A coincide on F(M).
Since F is full, we have A=ρ(x). Therefore Γ(S, M) coincides with ρ{G).
Thus we obtain the proposition. Q.E.D.

REMARK 3.4.1. The condition dim G=dim I(M) is satisfied, when the pair
(G, K) is an almost effective Riemannian symmetric pair and when G is semi-
simple.

4. Invariant differential operators

4.1. Let G be a connected Lie group and K a closed subgroup of G. We
assume that the quotient space M=G/K is reductive, i.e. the Lie algebra g of
G may be decomposed into a vector space direct sum of the Lie algebra ! of
K and an Ad(i£)-invariant subspace p. We identify p with the tangent space
T0(M) at the origin oGM.

Let φ: K->GL(U) be a real (or complex) representation and put ξ=
GxκU. For each ^ G G w e define an automorphism ax: ξ-*ξ by

<Xχ{y°u) =xy°u fory^G and «G[/ .

We also denote by ax the automorphism ax of Γ(|), the space of all C°° cross-
sections of ξy defined by (axf){yK)=aJίϊ{χ-ιyK)) for / e Γ ( f ) and y<=G. We
have for/<ΞΓ(f), ά^C°°(M) and

(ax(άf))(yK) = Λ j ϊ

Hence we obtain

(4.1.1) ax(af) =
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Put

C"(G; U)κ = {/: G^ U, C mapping; f(xK) = φ(k-ι)f(x)

for XGG and

Then as in subsection 2.1 we have the isomorphism ι: C°°(G; U)κ—>T(ξ),
(t(f))(xK)=χof(χ)> and the following commutative diagram:

We denote by/the image ι(f) of/. Put

C°°(G)K = {a(=C°°(G): a(xk) = a(x) for *<ΞG and

Then the pull back 7Γ*: Coo(M)->Co°(G)iϊ: is an isomorphism, where π: G-+M=
G\K is the natural projection. We denote by a the inverse image π*~\ά) of
a<=C°°(G)κ. For/eC°°(G; f/)^ and atΞC°°(G)κ we have α/eC°°(G; [/)* and

(4.1.2) t(af) = άf.

Let o|r: K-+GL(V) be a real (or complex) representation and put v = GxκV.
We define automorphisms /?,: ??->^ and /Sx: Γ(^)-^Γ(?7) in the same manner
as for ξ. Let DiffA(f, 77) be the set of all h-th order differential operators
from ξ to ??. A differential operator Z)eDiffA(£, ^) is said to be invariant, if
Doax=βx°D for every x^G. Let Z) be an A-th order differential operator from
ξ to y. Then for each p^M the symbol σA(Z)) of Z) defines an A-th order homo-
geneous polynomial mapping from the cotangent space Tp*(M) to Hom(f/>, ηp)
(cf. Palais [9] p. 62), where Homd^, ηp) denotes the vector space of all linear
mappings from ξp to ηp.

Let t(dτ3) be the transposed mapping of the differential dτx of τX9

Then we have for a(ΞC°°(M) and x,

(4.1.3) d{τx-i*S)xyK = τx-i*(dά)yK = \dτx-i)(dά)yK .

Proposition 4.1.1. Assume that a differential operator D^Diffh(ξ, η) is
invariant. Then we have for x,y^G, v^TyK*(M) and ω^ξyK

(4.1.4) σh(D)(\dτx-ήv)(ax(ω)) = βx(ah(D)(v)(ω)) .

Proof. Take ά^C°°{M) (resp./eΓ(f)) which satisfies « ( ^ ) = 0 and
dayK=v(resp. f(yK)=ω). Then we have
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and

(aJ)(xyK) = ajJ(yK)) = a,(ω).

By (4.1.3) we have

d(τt-i*S)tyK = '(dτx-ι)(dS),κ = '(dτx-ήv.

Applying (4.1.1), we have

Hence it follows from the definition of the symbol σh(D) and the invariance
of D that

= D (ax{^ά

Q.E.D.

Corollary 1. Assume that D^Diffh(ξ, η) is invariant. If σh(D)o=0, then
<rk{D)=0.

Proof. The corollary is an immediate consequence of the proposition.
Q.E.D.

If D is a first order differential operator, the symbol σι(D)p, p^M9 de-
fines a bilinear mapping from Tp*(M)xξp to ηp. We also denote by σι(D)p the
linear mapping from T*(M)®ξp to yp induced from the bilinear mapping
σι(D)p. We have easily the following corollary.

Corollary 2. If a differential operator D^Diff^ξ, y) is invariant, then the
linear mapping σx{D)0: p*® U= T0*(M)®ξ0->'η0= V is a K-module homomorphism,
i.e. for each k^K

σ^D^Ad^k-^φik) = ψ(k)oσi(D)0,

where the action AdJk) is the restriction of Ad(k) to p and p* denotes the dual
space of p.

4.2. In this subsection the assumptions and the notation are the same as
in subsection 3.3.
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The differential operator §x on N(M) defined in subsection 3.3 is invariant
by Remark 3.3.1. Choose an orthonormal basis {El9 "-,En+p} of g such that
{El9 •••, En} (resp. {En+1, •••, En+p}) is an orthonormal basis of p (resp. I). Let
{φi> •"> Φn+p} be the basis of the dual space of g dual to {El9 •••, En+p). We
consider {φlf •••, φn} as a basis of T0*(M). Then we obtain

Lemma 4.2.1. We have for φ t eΓ 0 *(M), i = l , - ,w, <mrf υ<=VN

(4.2.1) σ1(51)(φ, )W = W ^ W .

Proof. Let N be an open neighborhood of oGilί such that π~\N) is
diffeomorphic to NxK, where π: G->G/K is the natural projection. Let

n

(Λ?X, •••, xn) be the local coordinate system on N defined by x{(exρ(Σj sjEj)K)=Si

for —6<ί t <6, where £ is some positive number. For i e F we define a
F^-valued C°° function ασ on π~\N) by

^y)ft) = p{k~ι)v for

Taking £ '>0 such that £'<£, put

N' = {exp ( g SJEJ)K; -S'KsjKS'} .

Then there exists a F^-valued C°° function a\ on G such that av=a'υ on
π'\Nf). We define a Γ^-valued C°° function /?„ on G by

& ( * ) = ( p(k)a\{xk)dk fovx^G,
JK

where dk denotes the normalized Haar measure of K. Then βv^C°°(G; VN)K.
In fact we have for x^G and

βv(xh) = ( p(k)a'v(xhk)dk
JK

= ί P(h-\hk))a\(xhk)dk
J K

p(hk)a\(xhk)dk

We have for *=exp φ SjEj)h(-€'<Sj<S')

&(*) = P(A-χ) ( P(*)α'.(«p ( Σ *ŷ /

= p(h-χ) \ vdk = p(A"> .
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Therefore βv(o)=c(eoβv(e))=v. Take / teC°°(M) such that /,=*,- on N' and
then take fi&C-(G)κ such that »*/,=/,. Then /,(o)=0 and (#•)•= Φ* We
have by (4.1.2)

= Έ{dp(Ej)(Ej(fiβv))(e)}».

We have by (3.1.13)

= Σ

This proves (4.2.1). Q.E.D.

Proposition 4.2.2. The following three conditions are equivalent:
(1) (dp(X)v)N=0for XtΞp andv(ΞVN.

(2) $=0.

(3)

Proof. Lemma 3.3.1 shows that (1) implies (2). It is evident that (2)
implies (3). Lemma 4.2.1 shows that (3) implies (1). Q.E.D.

The vector spaces VN and p®VN are ^-modules in a natural manner.
Since K is compact, we may decompose F^(resp. p®VN) into a direct sum of
irreducible i£-modules.

Proposition 4.2.3. If any irreducible component of p®VN is not isomor-
phic to any irreducible component of VN, then *SΊ=O.

Proof. Since the representation Ad^: K-*GL(p) is orthogonal, the con-
tragradient representation of Adp coincides with itself. Hence it follows from
Corollary 2 for Proposition 4.1.1 and Schur's lemma (cf. Chevalley [2] p. 182)
that σι(£^o=0. Therefore we have our proposition by the above proposition.

Q.E.D.

5. Reduction to the finite dimensional eigenvalue problems

5.1. Let G be a compact connected Lie group and K a closed subgroup of
G. We denote by M the quotient space G/K. The G-invariant Riemannian
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metric < , ) on M is the same as in subsection 2.1. Let D(G) be the set of
equivalence classes of complex irreducible representations of G. For a com-
plex irreducible representation σ\ G-+GL(W) we denote by σ*: G->GL(W*)
the contragradient representation of σ on the dual space W* of W. Let
C°°(G)C be the space of C-valued C°° functions on G. We define actions Lx and
Rx of G on C°°(G)C by the followings:

(LJ)(y) =f(χ-1y), (RJ)(y) =f(yx) for/eC~(G)*.

For [σ]Gfl(G) let oL

ί<rl(G) (resp. o*[(r](G)) be the subspace of C°°(G)C gene-
rated by G-submodules of C°°(G)C which are isomorphic to σ by the G-action
L(resp. by the G-action R). Then we have oL

ί<ri(G)=oR

ί(Γ*i(G).
Let U be a complex vector space with a Hermitian inner product <( , >̂ and

C°°(G; U) the space of U-valued C°° functions on G. We also denote by Lx

(resp. i?x) the action of G on C~(G; U): (Ls/)(y)=/(^-^)(resp. (RJ)(y)=f(yx))
for /eC°°(G; £/). Note that our LΛ(resρ. i?Λ) is nothing but the tensor product
L^l^resp.Λ,®^) on C"(G)C®U=C°°(G; U). Let σ\ G-*GL(W) be a
complex irreducible representation. We define a multilinear mapping Φ σ :
PFxfF*χ£/->C~(G; C7) by

Φσ(«;, ω, W)(Λ;) = ω(σ~\x)w)u for w(=W, ω<= W* and */<Ξ C7.

We also denote by Φ σ the induced linear mapping of W® W7*® U to C°°(G; C/).
We define an action Lσ(#)(resp._Rσm(x)) of G on W®W*®U by Lσ(Λ;) = σ(Λ)®
V*®lί/(resp. i?σ*(Λ;)=VΘσ*^)®^). Then we have ΦσoLXx)=LxoΦσ and
Φ ' Ό ^ ^ ^ ^ o Φ 0 " for every

Theorem 5.1.1 (cf. Takeuchi [12] p. 15). (1) We consider W®W*®U
{resp. C°°(G; U)) as a G-module with the G-action Lσ{resp. L). Then Φσ is a G-
module isomorphism of W® W*®U onto oL[(r](G)® U.

(2) We consider W®W*®U{resp. C°°(G; U)) as a G-module with the G-
action Rσ*(resp. R), Then Φ σ is a G-module isomorphism of W®W*®U onto

Let φ: K->GL(U) be a unitary representation and < , > the Hermitian
inner product on U. Put ξ=GxκU. Then | has a natural Hermitian fibre
metric, which will be also denoted by < , >. We define a subspace C°°{G\ U)κ

of C°°(G; ϋ) by

G; U)\f{xk) = φ(k-1)

for X G G and

We identify the space T(ξ) of C°° cross-sections of ? with C°°(G; U)κ. Then
C°°(G; ίT)^ is a G-module with the G-action L. We define a Hermitian inner
product < , > on C°°(G; U)κ as follows:
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</(*)> g(χ)>dx>

where dx is the normalized Haar measure of G. Then we have

<L,/, Lsg> = </, £> for every x^G .

The space C°°(G; U)κ is a pre-Hilbert space. We denote by L\ξ) the com-
pletion of C°°(G; U)κ. Identifying as C°°(G; U)=C°°(G)C®U, we define an
action / of K on C°°(G\ U) by J(k) = Rk®φ(k) for A&RΓ. Then we have

(5.1.1) C~(G; U)κ = { / G C ° ° ( G ; U);J(k)f = f for

For a complex irreducible representation σ: G->GL(W), we define an action
Jσ of i£ on IF®ίF*®t/ by yσ(A)=lIΓ®σ*(A)®φ(A). Then we have

(5.1.2) Φσ°/σ(^) — J(k)°Φσ for every ,

Let Oold) be the subspace of C°°(G; U)κ generated by all G-submodules of
C°°(G; U)κ which are isomorphic to W. Then o^ξ) is a G-submodule of
oLCα ](G)®ί7. Put

o(£) = {/^C°°(G; U)K\ dim {Lxf: xEΞG}cr<C°°} ,

D(G; K, φ) = {[σ]eD(G); σ* \K®Φ contains a trivial

representation

and

(W*®U)0 = {αePF*®U; (σ*(Λ)®φ(Λ))(α) = a for ,

Then W®{W*® U)o is a G-module with the G-action Lσ. We have the follow-
ing Peter-Weyl theorem for vector bundles.

Theorem 5.1.2. (Bott [1] p. 173). (1) The G-module isomorphism Φ σ : W®
W*®U-+oL[σ-\(G)®U in (1) of Theorem 5.1.1 induces a G-module isomorphism
of W®{W*®U\ onto oM(ξ).

(2) We have the following orthogonal decompositions:

Σ °[σ](?) (algebraic direct sum),

L2(ξ) = Σ °l<ri(ξ) (direct sum as Hiϊbert space).

We have the following theorem for an invariant differential operator.

Theorem 2. Let D be an invariant differential operator on ξ and consider

it as an operator on C°°(G; U)κ(see the commutative diagram in subsection 4.1).

Let σ: G->GL(W) be an irreducible representation with [σ]eZ)(G; K, φ). Then

D leaves 0[σ](f) invariant and there exists a unique linear mapping Dσ of ( W * ® U)o

suck that
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Proof. For / G O ( ? ) the subspace {LxDf: X<=ΞG}C = {DLJ: X<EΞ G}C of

C°°(G> U) is finite dimensional, and hence D leaves o(ξ) invariant. It follows
from Schur's lemma that every Oισi(ξ) is invariant under D. Let D' be the
linear mapping of W®(W*®U)0 corresponding to D\oι<ri(ξ) by the G-modυle
isomorphism Φσ: W®(W*® £/)0—>0[<r](f). Let {cCi, •••, amσ} be a basis of
(W*® U)o. We define linear mappings /*,-, i,j—l, 2, •••, mσ, of Was follows:

D'{w®aj) = Σ / ' i ( w ) ® α * for

Then we have for

^)) - D\σ{x)w®aj)

On the other hand we have

D'(Lσ(x)(w®aj)) = Lai

= Σ
ί = l

Hence

/S (σ(tf)«0 = σ{x)fi

j(to)9 i, j = 1, —, inσ .

It follows from Schur's lemma that there exist complex numbers c'y, i, j =
1, •••, ^ f f, such that/'y^^yV. Hence we have

A linear mapping D σ of (W*® U)o defined by

is the required one. Q.E.D.

REMARK 5.1.1. If an invariant differential operator D on ξ is self-adjoint
with respect to the inner product < , >, each D \ 0[σ-,($) is diagonalizable. If
furthermore D is elliptic, every eigensection "of D belongs to o(ξ). Thus the
problem of computing the spectra of D is reduced to the study of the eigen-
values of Dσ for each fσ]eD(G; K, φ).

5.2. In this subsection the assumptions and the notation are the same as
in subsection 3.3. Moreover we assume that the minimal isometric immersion
F: (My c< , »->S is full. We also denote by < , > the Hermitian inner pro-
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duct on Vc

y the complexification of V, which is the extension of the inner
product < , > on F. Then the orthogonal representation p: G^>GL(V) extends
to the unitary representation p: G-^GL(V°). Let (VN)C be the subspace of
Vc generated by VN and ρN: K-^GL^V1*)0) the unitary representation in-
duced from p: G->GL(VC). We may identify the complexification Γ(N(M))C

of Γ(N(M)) with C°°(G; (VN)C)K. Let (F τ)c(resp. (V°)c) be the complex
linear subspace of Vc generated by Fτ(resp. V°). We have the direct sum
decomposition VC=(V°)C+(VT)C+(VN)C. For v<=Vc we denote by vN the
(F^)c-component of v with respect to this decomposition of Vc.

Let σ\ G->GL(W) be a complex irreducible representation with [σ]G
D(G;K,pN). Put

(W*®(VN)C)O = { α ) G r ® ( H c ; (<r*(k)®pN(k))(ω) = ω

Let Sr be the linear mapping of W®(W*®(VN)C)O corresponding to S\Oίσl(N(M)c)
by the G-isomorphism Φ σ : W®(W*®(VN)%^oίal(N(M)% where * N(M)C

denotes the complexification of the normal bundle N(M). Then we have by
Theorem 1 and (2) of Theorem 5.1.1

n + P

where cσ* is the scalar determined by the Casimir operator Σ dσ*(Et)dσ*(Et)

of σ*. Let cσ be the scalar determined by the Casimir operator Σ dσ(Ei)dσ(Ei)

of σ. Then cσ*=cσ. Put
n+P

+ 2 Σ ipr*

Then it follows from Remark 5.1.1, Theorem 2 and (2) of Theorem 5.1.2 that
the problem of computing the spectra of S is reduced to the eigenvalue problems
of the linear mappings Sσ of (W*®(VN)% with [σ]eZ)(G; K, pN).

Summarizing, we get the following theorem.

Theorem 3. Let F: (M, r< , »->5, F(xK)=p(x)F(o), be a full equivariant
minimal isometric immersion of a compact symmetric space M=G/K into a unit
sphere S. For a complex irreducible representation σ: G->GL(W) with [σ]e
D(G; Ky p% let {λσ: i, - , λσ;Wσ} be the eigenvalues of Sσ on (W*®(VN)C)O.
Then the spectra of the Jacobi differential operator S are given by
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where d<τ=dim W.

For a complex irreducible representation σ: G->GL(W) with [σ]
/£, p*), it follows from Remark 3.3.1 and Theorem 2 that each of the linear

mappings ^dσ*(Ei)®(dp(Ei)*)N and S l r ® { J p ( £ , ) ( i i p ( i ( » T leaves
ί = l ί = l

(W*(&(VN)C)Q invariant. For the study of the linear mapping S* it is impor-
tant to study these linear mappings. We shall study these linear mappings.

Let g c be the complexification of g and ( , ) the symmetric bilinear form
on g c which is the C-bilinear extension of the inner product < , > on g. Choose
bases {F, -,FU+P} and {F\, -,F'n+p} of tf with the property (Fh F'j) = δij.
Let X: G-^GL(U) be an arbitrary unitary representation (not necessarily ir-
reducible). We define a linear mapping L(%, p) of U®VC by

The linear mapping L(X> p) is independent of the choice of bases. In fact

let {H19 - , Hu+P} and {H\, •••, H'u+P) be bases of g^ with (Hh £f /

y)= 8.v L e t

ff, = Σ ^ Λ and ff', = Σ o^F\, ί = l , - , w+/>. Then we have
A = l A = l

Hence if we put A = (ai

j)iJ=lt...n+p and B=(bi

j)ij=lr.n+p, we have B=A~1.
Therefore we have

We denote by Cx®p(resp. Cx and Cp) the Casimir operator of the representation

%®p (resp. X and p). Since t^dX(Fi)®dp(F'i)=JldX(F'i)®dp(Fi), we have

(5.2.1) 2L(%, p) = C^p-Cx®lv

c~

We obtain the following lemma by (5.2.1) and the fact that the Casimir operator
commutes with the action of G.

Lemma 5.2.1. We have

(X®p)(x)oL(X, p) = L(%, p)o(X®p)(x) for x<=G.

Put
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(U®VC)O = {ω£ΞU®Vc; (X®p)(k)ω = ω for k<ΞΞK} .

Then we have by the above lemma

(5.2.2) L(%, p)((U®V%)a(U®V% .

Now we come back to our complex irreducible representation σ\ G->
GL(W). We denote by px the projection to the first component of the following
direct sum decomposition:

Then we have

Lemma 5.2.2.

ί=l
(5.2.3) Ίldσ*(Ei)®(dp(Ei)*)N = Λ Σ dσ*(Ei)®dp(Ei) on W*®VC,

ί=l i=l

(5.2.4) !^dσ*(E{)®dp(Ei)((W*®V %)c(W*® V%,

where (W*®Vηo = {ω<=W*®Vc, {σ*{k)®p(k))ω = ω for k(ΞK} .

Proof. The first equality is trivial. Since ^dσ*(E,)®dp{E,)=L{σ*, p),
we have (5.2.4) by (5.2.2). i = 1 Q.E.D.

Lemma 5.2.3. We have

ΣΣ(5.2.5)

Proof. For k<=K the linear mapping p(k) leaves (VN)C, {Vτ)c and (V°)c

invariant respectively. Therefore we have

= %(dp{Ei){ip{Ei)μ(k)Ό}κ)li for k^K and v^Vc .

Since {Ad(k)Elt » ,Ad(k)E,,+^ is an orthonormal basis of fl, we have

i = l

n + P

Q.E.D.
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In the forthcoming papers we shall study the linear mappings

and

These studies, together with Lemma 5.2.2 and Lemma 5.2.3, will give us in-
formations on the linear mapping S^.
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