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ABSTRACT

Optical emission spectroscopy (OES) is a highly valuable tool for real-time
monitoring of plasma properties due to its non-intrusive and versatile nature.
However, utilizing OES for real-time monitoring presents specific challenges,
such as extracting the desired plasma characteristics from the information in
the measured spectra and developing a corresponding real-time prediction
model of the plasma properties. This work aims to address these specific chal-
lenges associated with determining the plasma parameters from the spectral

measurements.

The first part of this work takes a step towards a better understanding of
the physics behind the measured spectra by validating existing widely-used
simulation models with experimental measurements. Spectral line intensities
are calculated through the one-way coupling of a one-dimensional Particle-in-
Cell/Monte Carlo Collision (PIC/MCC) simulations with a global collisional-
radiative model. In this way, the line intensities can be determined from spe-
cific electron density n. and the electron energy distribution function (EEDF)
values calculated using the PIC/MCC simulation for a capacitively coupled
radiofrequency argon plasma with pressure ranging from 2 to 100 Pa. Compar-
ison of simulated spectral intensities to experimentally-measured ones shows
reasonable agreement for a gas pressure up to 20 Pa. The discrepancies at high

pressures are attributed to incomplete ionization balance due to the neglect



of the contribution from the metastable levels in basic PIC/MCC simulations,

which is found to be important at this pressure range.

The second part of this work aims to then make a prediction model of the n,
and the EEDF from the spectral data using machine learning (ML) techniques.
It uses two different models to predict the normalized EEDF, namely the Kernel
Regression for Functional Data and an artificial neural network. To predict the
n., a Random Forest regression model is used. The ML models are trained with
normalized simulated spectral intensities described in the first work, but this
time with the peak-to-peak voltage varied from 200 V - 500 V. All three ML
models developed in this study are found to predict the plasma parameters
from the simulated spectral test data well. As an additional test, the model
is also used to predict from experimentally measured normalized spectral in-
tensities, in which the models show limited capability in predicting the n. and
the EEDF, indicating a need for further improvement in the robustness of these

models.

The last part aims to address the determination of plasma parameters during
fluctuations and instabilities happening in magnetically confined plasmas over
a short period of time (~ 1004s). For such measurements, spectrometers with
a high optical transmission-to-spectral resolution ratio must be used. A spatial
heterodyne spectrometer (SHS) has field-widening prisms that realign the light
passing through a detector, such that a higher resolution can still be achieved
even with a large aperture size. In this study, the performance of an SHS in

ii



charge exchange spectroscopic measurements of the toroidal flow velocity and
the ion temperature of the C°t impurity ion in the Large Helical Device is
explored. Additionally, the resulting measurements are compared to those of
conventional dispersive spectrometers typically used and found to be in good

agreement with them.
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Chapter 1

Introduction

Plasmas are generated by introducing energy into a neutral gas, typically
through electrical breakdown aided by external electric and magnetic fields.
During this process, charged particles are accelerated by the electric field, re-
sulting in the creation of electrons and ions when high-energy electrons or
photons collide with neutral atoms and molecules in the gas’ These interac-
tions can also trigger reactions and collisions required for various applications.
Therefore, plasmas have diverse applications across multiple fields, including
semiconductor manufacturing, thin film processing, nanotechnology, cutting,

biomedicine, gas conversion, propulsion systems, and nuclear fusion.!%2

1.1 Real-time monitoring in semiconductor manufacturing

In semiconductor manufacturing, one of the applications of plasma is in
etching and deposition of patterns in flash memories. NAND flash memories
have shifted to 3D and deep thin holes with high aspect ratio almost reaching
200 has to be achieved. In order to achieve thinner and deeper etched features
and deposited films, better nanoscale process control, improved uniformity,
higher selectivity, increased throughput, higher aspect ratios, and minimized
damage are required.”® For such requirements, the energy and the flux of the

incoming ions and radicals to the substrate should be controlled. Electron
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properties are also very vital as it is usually the electrons which gets heated up
from the electric field and transfer their energies to other species. To measure
such properties, significant advancements in plasma diagnostics have yielded
refined diagnostic techniques like spectroscopy, Langmuir probes, Thomson
scattering, and mass spectrometry.!*1°

Ensuring a high wafer-to-wafer reproducibility amidst a narrow process
window necessitates immediate detection and minimization of process drifts,
particularly those occurring during plasma etching and deposition. These
shifts can be caused by multiple factors such as variability in the radiofrequency
(RF) current discharge or duty cycle,'*!” contamination accumulation on cham-
ber walls,'” temperature changes inside the chamber, non-uniformity in
plasma gas composition,'” or even aging of pumps.? Hence, real-time in situ
plasma monitoring with feedback control becomes crucial for ensuring a con-
sistent and stable plasma process.

Traditional monitoring approaches employed in the manufacturing pro-
cess often rely on statistical process control charts, where critical measurements
are periodically taken for a set of samples from each batch.?! If the measure-
ments fall outside the control limits, process diagnosis and corrective actions
are implemented. However, the time delay caused by sampling, offline mea-
surements, and identification of problematic processes can result in a huge
amount of wasted products. In addition to such batch sampling, real-time

in-situ measurements and process diagnostics must be implemented.?
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Previous works on real-time monitoring involves the use of the use of
diagnostics such as a mass spectrometers, residual gas analyzers, ,”?* flat cut-

off array, sensor® self-excited electron resonance spectroscopy,”®? laser-based

15,28,29 0

methods, and ellipsometry.,* and other measurement systems on the
walls of the chamber.'*3! Data gathered from equipment parts such as mass
flow controller, power supply, or other sensors such as the voltage-current
probe, temperature sensors can also be used to monitor the plasma.'® %327

In semiconductor manufacturing, information that can be typically ob-
tained in-process includes the optical emission spectra and the current-voltage
waveform measured from the oscilloscope. Most manufactured etching cham-
bers typically already include small ports in which optical fibers can see through
since the emission spectra is also very helpful in determining the etch stop such
that a different species comes out in the spectra once etching the desired pat-
tern is done. OES is a widely used non-invasive plasma diagnostic valued
for its versatility and simplicity as compared to other diagnostic tools.”?* It
is extensively employed in characterizing plasma composition and tracking
dynamic changes in the plasma.?>* Moreover, OES can be employed to de-
termine plasma parameters, such as the electron density n. and the electron
energy distribution function (EEDF) or the electron temperature 7., as the elec-
tron kinetics are reflected in the excitation dynamics.

Several methods exist to determine the electron density n, and EEDF
from the optical emission spectra. One approach involves determining the ex-

citation temperature (7¢x.) from the slope of the Boltzmann plot of In(/\/g2A;5)

4
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versus the energy of the higher excited level, where I, ), g2, and A, represent
the intensity, wavelength, statistical weight, and Einstein A-coefficient of the
transition, respectively. Under local thermal equilibrium (LTE), the electron
temperature (7;) can be equated to T¢., or alternatively, it can be determined
using the Saha equation and the line-continuum ratio. The electron density
(n.) is then derived from Stark broadening measurements.*'** However, this
method assumes LTE, which typically occurs only at high electron densities
and pressures.!

Another method assumes a corona regime, relating 7., to the ratio of emis-
sion line intensities from two excited levels, with one line usually originating
from an ionic level and the other from a neutral level of the same species.*!*4
This assumption is generally valid only at low pressures.®* When trace gases
are added to the plasma, actinometry and trace rare gas optical emission spec-
troscopy (OES) can also determine ground-state species density and 7,.44

A commonly used method to relate spectral line intensities to plasma
parameters employs collisional-radiative models (CRMs).*#>* CRMs account
for the processes that populate and depopulate each excited level, solving
a rate balance equation for these levels. This allows plasma parameters af-
fecting electron impact collisions such as n. and the EEDF to be related to
the rate of spontaneous emission reflected in spectral line intensities. Typi-
cally, CRM parameters n. and 7, are varied until the resulting intensities align

46,54-64

closely with measured OES intensities. However, these calculations of-

54,57-60,62,65,66

ten assume a single-temperature Maxwellian or two-temperature
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41,63,67,68 8,69,70

distributions, which may not accurately reflect actual conditions.
A more straightforward approach uses n. and the EEDF as input parameters
to the CRM to generate corresponding spectral intensities. To determine a
value for the n. and a generalized form of the EEDF, plasma simulation mod-
els such as the PIC/MCC method can be used.”* This approach is based on
the first principles aand tracks charged particles, represented as superparticles
(collections of real particles), within time- and space-varying external fields.
Therefore it is possible to couple these commonly used models by first calcu-
lating the n. and the EEDF and then using these electron parameters as input
to the CRM to calculate the corresponding spectral intensities. As far as we
know, such one-way coupling of the two models (denoted as 'PIC+CRM’ in
the rest of the text) have not been done before this study. In the same way,
an investigation of the validity of the coupling of these two commonly-used
plasma models in calculating the spectral intensities has to be first done before
employing it for monitoring activities.

Recently, there have also been a growing number of studies employing
machine learning (ML) to determine the plasma parameters from the OES
line intensities.”® Shojaei and Mangolini used the OES and Langmuir probe
measurements to predict the EEPF from normalized emission spectral intensi-
ties.”? van der Gaag et. al. used a genetic algorithm to predict regions of the
EEDF from the emission from electron-atom bremsstrahlung.”® Park et. al also
predicted T, and n,. from the OES intensities.”! In the same way, employing

machine learning to somehow “invert’ the CRM and be able to quickly predict

6
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n. and the EEDF from spectral intensities can be vital for real-time monitoring
of plasmas during the etching processes. This is especially useful since solving
for the inverse of the CRM is often challenging due to the complexity of deter-
mining the realistic shape of the EEDF represented with a limited number of
parameters.

The goal of this study is therefore to develop ML models trained from
intensities calculated from this one-way coupling in the PIC+CRM. Therefore
machine learning models are created for the prediction of the n, and the EEDF
from the spectral intensities. However, before such ML predictions are done,
the validity of the PIC+CRM method is first investigated in Chapter 5. The
study on the ML prediction of plasma parameters from intensities then follows
in Chapter 6.

The scope of this study is limited to low-pressure (p < 100 Pa) RF-driven
Ar CCPs with a symmetric pair of large parallel electrodes. For the simulations,

a one-dimensional (1D) PIC/MCC code and a 0D global CRM for Ar are used.

1.2 High optical transmission-to-spectral resolution measure-

ments in fusion plasma

Spectroscopy is also widely used in fusion plasmas, especially due to
the high temperature which makes the use of probes difficult. It can be used
to monitor the parameters of the plasma especially during instabilities and
turbulences. Turbulence in magnetically confined plasmas is a major chal-

7
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lenge because it negatively impacts the confinement of particles, energy, and
momentum. Caused by radial gradients in plasma density and temperature,
this turbulence increases transport levels, disrupting the stability needed to
keep plasma species from reaching the reactor walls.”#® In particular, these
turbulence-induced fluctuations, along with the magnetic field ripples and
plasma instabilities, can affect the behavior of the fast ions, which are vital for
sustaining fusion reactions and magnetic configurations.”® Therefore, under-
standing the mechanism and mitigating these fluctuations and instabilities are
important in order to sustain the stable discharge with a significant amount of
energetic particles in the plasma.””

Some fluctuations and instabilities, however, needs to be highly-resolved
in order to be characterized. For example, fluctuations in the intrinsic elec-
tric field of the plasma which results to velocity fluctuations can only be de-
tected by small changes in the spectral separation of the beam emission com-
ponents.”® Additionally, the loss of energetic particles and the distortion from
Maxwell-Boltzmann distribution of carbon impurity ions are reported to oc-
cur in the LHD just before magnetohydrodynamic (MHD) bursts.” Such fluc-
tuations occur at a short time of ~ 100us. To quantify these deviations, a
dispersive spectrometer (DS) is typically used in the LHD to measure the ion
temperature (7¢6+) and the toroidal flow velocity (V) by charge exchange spec-
troscopy (CXS). However, the measurements are found to be noisy and it was
not easy to quantify these deviations in the velocity distribution. Increasing
the aperture size and the amount of photon collected, however, typically de-

8
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grades the spectral resolution in these kinds of dispersive spectrometers. As
a consequence, conditional averaging had to be done for intensities measured
for ~ 30 events of MHD bursts for a time period of ~ 1s.”

Recently, Burke et al. reported the use an SHS to measure the Stark split
neutral beam emissions.”® An SHS employs field-widening prisms that rotate
the grating images so that they appear perpendicular to the optical axis and
coincident at the output, allowing for a larger aperture size.”” ' This config-
uration enables the collection of more photons without substantially compro-
mising spectral resolution. Hence, in this study, we explored the utilization of
an SHS for measuring the toroidal flow velocity (V) and the ion temperature

(Tce+) of C®F impurity ion in the LHD by CXS.

1.3 Objectives

In this dissertation, we aim to address the two problems discussed above.

In order to achieve this, the following specific objectives will be undertaken:

1.To investigate the one-way coupling of a PIC/MCC simulation and CRM
and perform its validation by comparing the resulting calculated intensities

with experimental measurements

2.To predict the plasma parameters such as the electron density n, and the
electron energy distribution function (EEDF) from the spectral data of argon
plasma using machine learning (ML)

9
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3.To explore the use of a spatial heterodyne spectrometer (SHS) to measure the
toroidal flow velocity V; and the ion temperature Tcs+ of the C®" impurity

ion by CXS

10



Chapter 2

Fundamental concepts

2.1 Specific plasma characteristics

2.1.1 Energy distribution function

The type of discharge created in a plasma is primarily dependent on sev-
eral key plasma characteristics. To begin with, the energy stored in a plasma
is defined by the energy carried by the species present within it. In low-
temperature plasmas, electrons are heated more easily due to their smaller
mass, resulting in electron temperatures typically around =~ 30,000 K.'°! In
contrast, neutrals and ions generally remain near room temperature. Such plas-
mas are ideal for low-temperature applications where it is crucial to prevent
the substrate from heating up.

The probability of finding a single species at a specific energy or velocity
(kinetic energy) is often expressed in terms of distribution functions. If we
assume that the species get heated up around the same rate that it loses its
energy to collisions, the shape of this distribution function for a homogeneous
plasma often follows a Maxwellian (also knows as Maxwell-Boltzmann) dis-
tribution.!? If normalized such that the area under the curve of the isotropic

distribution is unity, this Maxwellian energy distribution is given by:'"!
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f(e) =24/ 7T]€€T3 exp ;—; (2.1)

where ¢ represents each energy bin in the energy distribution, £ is the Boltz-
mann constant having a value of k£ = 1.38 x 1072 JK™!, T is the temperature
of the species. However, certain conditions such as infrequent collisions or the
presence of high-energy electrons (e.g., from secondary emission) can cause
deviations from the Maxwellian distribution.

The energy distribution of the electrons dictates some of the processes
happening inside the plasma. That is, if the electron has an energy below
ionization threshold but above the excitation threshold of a certain excited
level, then excitation to that excited state will more likely happen. Moreover,

at energies below the excitation threshold, elastic collision happens mostly.

2.1.2 Plasma density

Another parameter that defines plasma is its degree of ionization, or
plasma density. At lengths longer than a Debye length, the plasma typically
maintains a state of quasineutrality because ions and electrons cannot move
independently without creating an electric field that acts to keep them together.
However, in some regions, such as plasma sheaths, a positive space charge is
usually maintained. Therefore, in general, the charge density of negative and
positive ions in the bulk plasma can be assumed to be equal.
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Plasma density can span over 28 orders of magnitude, from 10° m™® in
interstellar space to 10** m~* within the cores of stars. Some technological
applications, such as semiconductor manufacturing, do not require a very high
degree of ionization, while discharges used in fusion typically involve high-

density plasmas.

2.2 Radiofrequency capacitively-coupled plasmas

RF discharges usually operate in the frequency range of 1-100 MHz.”
At such frequencies, the heavy ions are not able to follow the modulation of
the oscillating electric field. This allow ions ions impact the surfaces with
controlled energy near room temperature, enabling precise and directional

processing.!®

The power coupling in RF discharges can be achieved by either
capacitive coupling or inductive coupling.

A conventional RF CCP typically comprises three main components: an
RF power source, an impedance matching network, and the reactor. The RF
power source operates within a frequency band that is licensed for commer-
cial use. Since the impedance of the plasma discharge often does not match
the impedance of the power source (usually 50 (), a matching network is
employed. This matching network adjusts the reactance components of the
impedance of the plasma to ensure efficient power transfer and stable plasma
generation.” A blocking capacitor is typically included in the matching net-

work to block the DC component of the voltage. A CCP reactor typically has
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two electrodes: one is usually grounded and the other powered by an RF gen-
erator with voltages in the hundreds. The whole system works by igniting
plasma between the electrodes, forming a capacitor in the system’s electrical
circuit.'"

Once the plasma is ignited, the faster electrons are lost to the walls form-
ing a sheath positive space charge. During the positive half-cycle of the RF
signal, electrons are attracted towards the powered electrode, leading to a
momentary accumulation of negative charge. During the negative half-cycle,
electrons are repelled, but due to their higher mobility, they leave the electrode
region faster than ions can arrive to neutralize the charge. This creates a neg-
ative DC potential which is isolated in the plasma due to the presence of a
blocking capacitor between the electrodes and the power supply.” A higher DC
self-bias allows for a higher etching rate.”

The electron density can range from 10**°10'm? in a CCP RF discharge
and can reach up to 10'"m™? at higher frequencies.”'** At low pressures and
with the same voltage settings, the density of the background gas is lower,
resulting in fewer collisions between electrons and background gases. Conse-
quently, the mean free path of electrons is longer, allowing them to be thermal-
ized to higher energies. These low-pressure conditions are typically ideal for
semiconductor applications.

As the pressure increases, the frequency of collisions between electrons
and background gas molecules rises, shortening the mean free path of electrons.

This increased collision rate leads to a greater transfer of energy from electrons

14
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to background particles, depleting the population of high-energy electrons.
At a constant voltage (not power), the electron and ion densities (which are
nearly equal in a quasineutral plasma) increase with pressure due to a higher

ionization rate at elevated pressures.

2.3 Fusion

Fusion energy has been a topic of interest for decades due to its many ben-
efits. It offers high power densities, abundant fuel sources like deuterium and
tritium, and minimal greenhouse gas emissions, resulting in a low carbon foot-
print. Fusion is inherently safe because it lacks chain reactions and can reduce
high-level waste.'®% Since about 75% of global greenhouse gas emissions
come from the energy sector, fusion energy could significantly help achieve
sustainable development goals. Although commercial fusion is expected in the
latter half of the 21st century, private companies and startups might speed up
its integration into the energy mix.!®-112

Fusion reactor design mainly focuses on two methods: magnetic confine-
ment and inertial confinement. In magnetic confinement, magnetic fields hold
the plasma ions and electrons in place, keeping them in thermal equilibrium
so thermonuclear reactions can occur. Methods like neutral beam injection,
radiofrequency heating, and electron cyclotron resonance heating are used

to raise the plasma temperature and encourage fusion reactions. In inertial
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confinement, small fuel pellets are compressed with lasers or particle beams,

quickly heating them to initiate fusion reactions.'® 13

2.3.1 Stellarators and Tokamaks

Magnetic confinement devices, such as tokamaks and stellarators, are
widely-used to control plasma in fusion research. Tokamaks, which has become
the more popular choice, use superconducting coils around a donut-shaped
chamber to generate magnetic fields. These fields, along with electric currents,
help stabilize the plasma. However, a significant challenge is maintaining
continuous operation because plasma currents are generated intermittently.
Well-known tokamaks worldwide include JET in the UK, ASDEX Upgrade in
Germany, and EAST in China. ITER represents a major advancement toward
achieving commercial fusion.!0%113-115

On the other hand, stellarators take a different approach. They use
twisted coils to control plasma without relying on electric currents. This de-
sign ensures inherent stability, enabling continuous operation and greater flex-
ibility in plasma control compared to tokamaks. Notable stellarator projects
include Wendelstein 7-X in Germany, HSX in the US, and the Large Helical
Device in Japan. Private initiatives are also increasingly exploring stellarator
109,113-115

concepts.
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2.3.1.1 LHD

The LHD at the National Institute of Fusion Science in Gifu, Japan is a
type of stellarator designed to enhance plasma performance and study the
physics of torus-shaped plasmas. It uses fully superconducting coils and sev-
eral methods to heat the plasma, including injecting neutral beams and using
electron cyclotron heating. The LHD can store magnetic energy up to 0.77 GJ,
making it a vital tool for studying how fusion plasma behaves. The main heat-
ing method is neutral beam injection, which delivers a significant 23 MW of
power through multiple beam lines. Additionally, electron cyclotron heating

provides 3.7 MW for localized heating and adjusting power levels.> 16

Figure 2.1: A diagram of the LHD. Image taken from Ref. 5
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Figure 2.2: Three Radiative Transitions

2.4 Optical spectroscopy

Optical spectroscopic techniques measure the intensity of radiation emit-
ted through three main processes involving quantum energy levels: sponta-
neous emission, absorption, and stimulated emission, as illustrated in Figure
2.2. Spontaneous emission occurs when an excited species at a higher energy
level j releases a photon as it decays to a lower energy level i. Absorption takes
place when a photon is absorbed, causing a species to move from levels i to j.
In stimulated emission, a photon interacts with an excited species at a higher
level j, inducing its transition to level i and emit a photon that is identical to
the incoming photon.”
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The wavelength of the intensity emitted in a spontaneous emission pro-
cess is calculated from the energy £ of the photon emitted by

A= 2.2)

Here, h is the Planck’s constant and c is the speed of light. F is given by the
difference of E; or the energy of the excited species at upper level j and E; or

the energy of the the species at lower level i as given by

E=E;—E;. (2.3)

On the other hand, the absolute line intensity [;; in units of photons (m?s™!) is
given by

where A;; is the Einstein-A coefficient (see Section 4.2.3.3) and N; is the number
density of species at the higher level j. This shows that the spectral data can
be used as a method to calculate IV;. The line intensity can also be calculated

in units of Wm?sr~! using the line emission coefficient given by

he

€ji = NjAjz‘m

(2.5)

where 47 is the solid angle df2 in steradians.'"”
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Figure 2.3: Schematics of a typical dispersive spectrometer. Figure adapted

from Ref. 6

In optical emission spectroscopy, the focal wavelength range typically
lies within the visible spectrum, from 380 to 780 nm. In this range, both the
surrounding air and quartz glass remain transparent, enabling radiation to exit
the chamber without distortion. To the naked eye, this radiation appears pink

for argon or helium gas, red for neon, and purple for hydrogen.!!7-118

2.4.1 Spectrometers

Optical spectrometers are available in several types, each tailored for
specific tasks and spectral ranges. Dispersive spectrometers, the most com-
mon type, use elements such as prisms or diffraction gratings to split light
into its constituent wavelengths. Prism spectrometers rely on differences in
refractive indices, while grating spectrometers utilize diffraction properties for
dispersion. Interferometric spectrometers constitute another significant cate-
gory, measuring spectral information through interference patterns. Examples
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include Fabry-Pérot and Michelson interferometers, which manipulate light
through multiple reflections or beam splitting and recombination.'"

Filter-based spectrometers employ absorption or interference filters to
isolate specific wavelengths for analysis. FTIR (Fourier Transform Infrared)
spectrometers employ interferometry to simultaneously measure a broad range
of wavelengths after light passes through a sample.

Each type of spectrometer has distinct advantages and limitations, with
selection criteria including desired spectral range, resolution, sensitivity, and
sample characteristics. Ongoing technological advancements continually en-
hance spectrometer sophistication and capabilities, driving progress in scien-

tific research and industrial applications.!”

2.4.2 Calibration

Calibration is a crucial step in ensuring the accuracy and reliability of
spectroscopic measurements. Two main aspects of calibration are the calibra-
tion of the wavelength axis and the intensity axis. Wavelength calibration
involves comparing measured values with known values using spectral lamps
and wavelength tables, facilitating the verification of the grating angular posi-
tion and wavelength designation to individual pixels."'”'?* On the other hand,
intensity calibration can be either relative or absolute. For the calibration of
intensity axis, it can either be an absolute or a relative calibration. In rela-
tive calibration, the spectral sensitivity of the system is calibrated along the
wavelength axis. Absolute calibration on the other hand, converts the intensity
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signals (usually given in counts or voltage) to Wm?sr~! or photons as given in
Eq. 2.4 and 2.5 which allows calculation of parameters such as N,. However, in
absolute calibration, imaging of the plasma tends to be tedious as the solid an-
gle needs to be conserved.'” In relative calibration, the solid angle parameter

is cancelled out.

2.4.3 Dispersive Spectrometers

As illustrated in Figure 2.3, dispersive spectrometers typically consist of
an entrance slit, a dispersing element (usually prisms or gratings), an optical
system, and a detector at the exit slit.'?/"1?? These spectrometers work by sep-
arating incoming radiation into its spectral components. The optical system
captures an image of the plasma and disperses it into a spectrum at the en-
trance, often using optical fibers. The choice of grating determines the spectral
resolution—the finer the grating, the clearer the spectrum. The entrance slit
controls how much light enters, affecting optical resolution. Once through the
entrance slit, the light beam spreads out and is straightened by a collimating
mirror before hitting the diffraction grating (or prism). This component splits
the light into its wavelengths through diffraction. Echelle gratings, a specific
type, offer especially high spectral resolution. The detector at the exit slit, typ-
ically a photomultiplier tube (PMT) or a charge-coupled device (CCD) array,
also impacts the system’s sensitivity. PMT-based systems scan the spectrum,
with the exit slit width affecting resolution, while CCD arrays record a specific
117,118,121-124

wavelength range, with pixel size influencing resolution.
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2.4.4 Spatial heterodyne spectrometer (SHS)

An SHS operates similarly to a Michelson interferometer but utilizes
diffraction gratings instead of mirrors. This allows the spectrometer to spa-
tially encode spectral data, providing advantages in simplicity, stability, and
sensitivity. It also incorporates prisms to widen the field of view and utilizes
high-order diffraction gratings to enhance its capabilities for various applica-
tions. It is commonly employed in fields like astrophysics, planetary explo-
ration, and atmospheric spectroscopy. The core principle of the SHS involves
directing light from a source, splitting it into two paths using diffraction grat-
ings, dispersing the light, then recombining it to generate Fizeau fringes. These
fringes, captured by an imaging detector, encode wavelength-specific informa-
tion into a spatial interferogram. Fourier transformation of this interferogram

allows for spectrum recovery.” 100119

2.4.5 Charge exchange spectroscopy (CXS)

CXS is characterized by the charge transfer from the impurity ions in
the plasma to the neutral atoms coming from the neutral beam, leaving the
impurity ion in the excited state.!® For a fully ionized carbon, this reaction is
given by

HY . +C% = HY + C°F(n =38). (2.6)

The spontaneous emission of the excited impurity ion given by C°*(n=8 — 7)
emits light at A = 529.05 nm. This emitted radiation can then be measured
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by the spectrometer. From the Doppler broadening and Doppler shift of the

spectral line, the 76+ and the V; can be calculated.
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Chapter 3

Experimental set-ups

In this section, the experimental details for the RF CCP and the SHS

configuration in the LHD are discussed.

3.1 Radiofrequency CCP set-up

The OES intensity measurements were conducted in the Budapest v.3
Cell.’* This RF CCP set-up consists of geometrically highly symmetric plane-
parallel electrode CCP source that makes the experiments compatible with
one-dimensional (1D) PIC/MCC simulation. In this system, the DC self-bias
is estimated to be about 1% of the amplitude of the RF excitation voltage.The
electrodes each having a diameter of 14.2 cm are set 4 cm apart and enclosed
in a quartz cell. The chamber is evacuated to a base pressure of 10~° Pa using
a turbomolecular and a rotary pump. Argon gas is introduced at a flow rate
of 1 sccm using a mass flow controller, with a needle valve on the pump side
allowing fine control of the gas pressure, monitored by a capacitive gauge
(Pfeiffer Vacuum CMR264). Measurements were taken across a pressure range
of 2 to 100 Pa.

The upper electrode is powered by a 13.56 MHz generator (Tokyo HY-
Power RF-150) through a matching network (Tokyo HY-Power MB-300), while

the lower electrode is grounded. The RF voltage, maintained at a peak-to-
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peak value of 300 V, is monitored near the electrode by a Solayl Vigilant RF
Voltage-Current Probe. To ensure accuracy, sufficient time was allowed for
the electrodes to reach a stable temperature after any change in gas pressure,
with recent studies'” indicating thermalization times of approximately 30-40

minutes. A diagram of the experimental setup is shown in Figure 3.1.
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Figure 3.1: Schematic diagram of the experimental set-up for the TDLAS and

OES measurements.

3.1.1 OES measurements set-up

In the OES experiments, a Carl Zeiss Jena PGS-2 spectrometer equipped
with an APHALAS CCD-53600-D-UV detector is used for the measurement
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of the intensities of selected spectral lines belonging to the set of 2p — 1s
(Paschen notation) transitions in the 696 - 826 nm wavelength domain. The pro-
cedure involves capturing the narrow spectral segments around the emission
lines of interest. In this way the line intensities are recorded without taking
complete spectra of the discharge. The wavelength-dependent sensitivity of
the spectrometer is determined using an RS-15 Total Flux Calibration Light
Source having a certified calibration report (that specifies the radiant flux of
the lamp as a function of the wavelength in the range between 300 nm and
1100 nm) provided by Gamma Scientific. This calibration procedure is based
on the measurement of the intensity of the radiation emitted by this lamp (at
the conditions 12V, 8.333 A), with the same optical components (including the
quartz cylinder, fiber collimator lens, and fiber optic cable) as in the plasma
OES measurements. Comparison of the measured intensity as a function of the
wavelength with the certified calibration report data of the lamp allows us to
derive the wavelength-dependent calibration factor that needs to be applied
to the measured plasma OES recordings to eliminate the overall wavelength
dependence of the sensitivity. No attempt is made to accomplish an absolute
intensity calibration of the system. The OES measurements capture the light
from the central, ~1 cm-diameter region of the plasma, with the fiber oriented
perpendicularly to the principal axis of the discharge.

Due to the relatively low intensity of some of the lines, the slit of the
spectrometer is set to 100 um. The spectral resolution achieved this way still
allows for the separation of the closely-situated peaks 750.4 nm and 751.5nm,
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as well as 800.6 nm and 801.5 nm. However, the 772.38 nm and 772.42 nm lines
are unresolved and the measured intensity values in this case represent the

sum of the intensities of these two lines.

3.1.2 Tunable Diode Laser Absorption Spectroscopy

Tunable Diode Laser Absorption Spectroscopy (TDLAS) is applied to ob-
tain the gas temperature and the density of the 1s; metastable Ar atoms.!?13!
The approach relies on the determination of the absorption on a selected spec-
tral line over which the laser wavelength is scanned through. In our case, we
use the transition Ar(1s; — 2pg) at a wavelength of 772.376 nm.

In the experimental setup the beam of a laser diode (Toptica LD-0773-
0075-DFB-1) driven by a control unit (Toptica DLC DFB PRO L) is coupled into
an optical fiber, and then transferred to a splitter so that only 10% of the laser
power is directed towards the plasma reactor. It passes through the middle of
the plasma horizontally and is detected at the other side of the chamber by a
photodiode. The remaining 90% of the power enters an Fabry—Pérot interfer-
ometer (FPI) for wavelength calibration. Both the signal transmitted through
the plasma and the reference signal of the FPI are recorded by an oscilloscope
(Oscilloscope (2) in Fig. 3.1), which communicates with a computer that runs
a LabVIEW control and data acquisition program. To perform proper back-
ground subtraction, detector signals are recorded with and without discharge,
both with laser on and off states. Assuming a dominating Doppler broaden-

ing with a Gaussian spectral profile, the amplitude of the absorption provides
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information about the line-integrated metastable density, while the width of
the line conveys information about the gas temperature. For a more detailed
description, the reader is referred to a recent publication of Ref. 132.

The Ar gas temperature 7, thus measured for the RF-driven Ar CCPs
under our experimental conditions is plotted as a function of the gas pressure
in Fig. 3.2. A best-fit line has been incorporated into the figure as a guide to
the eye and as a measure for the scattering of the measured 7, values. The gas
temperature data are used in the numerical simulations to have a better corre-
spondence with the actual experimental conditions. The measured metastable
density values obtained from TDLAS are compared with those obtained from

the numerical simulations and thus will be presented later.
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Figure 3.2: Gas temperature 7, of RF-driven Ar CCPs under our experimental
conditions obtained from TDLAS as a function of the Ar gas pressure. The

dashed curve is only a guide to the eye.
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3.2 LHD set-up

3.21 SHSin LHD

Fig. 3.3(a) shows the schematic view of the LHD with the line-of-sight
(LOS) of the DS and SHS systems. The LHD is a heliotron device consisting of
three tangential beams (neutral beam (NB)#1-3) and two perpendicular beams
(NB#4-5). The SHS is connected to the lens located at the viewing port 9-O. The
NB#5, which is located at port 1-O, is used to induce the charge exchange reac-
tion corresponding to the SHS measurements. NB#5 is oriented perpendicular
to the magnetic flux surface along the major radius. Using mirrors, the LOS
of the lens at port 9-O was arranged such that it intersected with NB#5 at an
angle of 113.6°. The intersecting region spans from the magnetic axis to the
outboard edge of the LHD plasma. However, in this study, SHS measurements
were only done in the portion of the intersecting region near the magnetic axis,
that is, at R = 3.66 m. The SHS was placed on an anti-vibration table to increase
resilience to vibrations.

Charge exchange between fully ionized carbons and thermal neutrals in
the plasma produces light emission which overlaps the wavelength range of
the target emission. To measure the background emission coming from this
charge exchange with the thermal neutrals, NB#5 was modulated on and off.
The background emission corresponded to the intensity measured when the
beam was off.
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Figure 3.3: (a) SHS and DS configuration in the LHD and (b) the schematic

diagram of SHS 31
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For comparison purposes, the intensity of the charge exchange line col-
lected using a DS (Bunkoukeiki Co., Ltd. CLP-400) was also measured. The DS
is located at port 6-O, wherein the neutral beam CXS (NBCXS) is induced by
NB#4. The LOS of the DS intersects with the NB#4 at an angle of 103°. Similar
to the SHS measurements, the DS measurements used in this study were those

measured at R = 3.66 m.

3.2.2 SHS set-up

The set-up of an SHS is fundamentally similar to a Michelson interferom-
eter, but with diffraction gratings instead of mirrors. A schematic diagram of
the SHS (Bunkoukeiki Co., Ltd. BSH-529P) used in this experiment is shown
in Fig. 3.3(b).

The light collected by the lens at the LHD port 9-O is directed to the SHS
fiber bundle. This fiber bundle contains 91 fiber cores with a bundle diameter
of 4.62 mm. The divergent incident light is then collimated by an achromatic
collimator lens and guided to a three-cavity band pass filter centered at 529.0
nm. After that, the light beam is split into two by the beam splitter and the
resulting beams are directed to the two gratings. The synthetic quartz compen-
sating plate on the beam splitter was compensated for the variation of optical
path induced in one arm. Field widening prisms are inserted between the
splitter and the gratings. Upon reaching the gratings, light is diffracted at an
angle that is dependent on the wavelength. At a wavelength called the Littrow
wavelength, light is returned to the same direction of incidence. The angle of
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the tilt of the gratings with respect to the optical axis is called the Littrow angle.
The SHS used in this study has a tunable Littrow wavelength.

On the way to the detector, light is made to pass through a telecentric
lens to reduce perspective errors. For each wavelength that goes through the
filter, two wavefronts with a wavelength-dependent crossing angle in between
them reach the detector. The superposition of these two wavefronts leads to
the formation of a Fizeau fringe pattern. The spatial frequency of the Fizeau

pattern is dependent on the corresponding wavelength.

3.2.2.1 SHS Calibration

To calibrate the SHS, the intensity of the light coming from a tunable
wavelength monochromatic light source (TLS) was measured and transformed
into spectra. The wavelength of the TLS was tuned from 527-530.8 nm. The
spectrum line width of the monochromatic light can be varied by changing
the width of the exit slit of the TLS. Fig. 3.4(a)-(c) shows the Fizeau fringe
image produced at the detector from the light at 528 nm, 529 nm, and 530 nm.
Here, the spatial frequency of the fringe patterns is observed to decrease with
increasing wavelength. The spectra given in Fig. 3.4(d) are then derived from
the fast Fourier transform (FFT) of these fringe patterns. It can be observed
from Fig. 3.4(d) that distinct peaks were successfully measured at each specific
wavelength value. A zero spatial frequency was measured at 530.8 nm, setting

it as the Littrow wavelength.
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Figure 3.4: Measured fringe patterns at (a) 528 nm, (b) 529 nm, and (c) 530 nm

34



Chapter 4

Simulation Methods
41 PIC/MCC simulation

The distribution function f(r,v,t) is fundamental quantity describing the
behavior of a given species and represents the number of particles within a
six-dimensional phase space (7, v) at time ¢. For collisional plasmas, this can be

expressed using the Boltzmann Equation:3%13

of

[2+a-vv+v-vr}f(r,v,t) = (E

Gt )coll (41)

where a is the acceleration and (%_{)coll is the collision term accounting for col-

lision effects. The gradients taken in velocity space V, and real space V, are

given by
.0 9 0
Vv, —I%—f‘ya—yﬁ-Z& (42)
L0 0 .0
V, = x&’vx + y@vy + ZE)UZ (4.3)

Solving the Boltzmann equation (BE) can be complex and often neces-
sitates approximations, such as the two-term approximation. One approach
to solve it involves deriving moments of the BE, leading to macroscopic fluid

equations. These equations, commonly used to simulate high-pressure plas-
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mas with complex chemistry, depend on the drift-diffusion approximation for
solving BE moments but have difficulty accurately modeling nonlocal and non-
linear effects.'>

An alternative to solving the BE is using particle simulation methods,
which can solve for the distribution function by tracking individual particles
in the plasma.®’ The most prevalent particle simulation method is the Particle-
in-Cell/Monte Carlo Collision (PIC/MCC) method, which employs two main
approaches. The first approach uses a spatial numerical grid to solve the equa-
tions of motion and Poisson’s equation, thereby avoiding the need to account
for pairwise particle interactions.’ !> The second approach uses superparti-
cles, which represent groups of real particles, significantly reducing the num-
ber of particles to a manageable level.* Since the distance between particles
is much smaller than both the typical molecular diameter and the de Broglie
wavelength, RF CCP particle simulations primarily adhere to classical princi-
ples. Furthermore, with no external magnetic field applied and the skin effect
only appearing in specific scenarios, these simulations are typically considered

electrostatic.118134

4.1.1 PIC/MCC simulation elementary steps

An electrostatic PIC/MCC simulation works by tracking the charged par-
ticles (i.e. electrons and ions) in the plasma and calculating how the electric
tield and collisions affects the particles. Figure 4.1 shows the elementary steps
followed in an electrostatic PIC/MCC cycle.?®

36



CHAPTER 4. SIMULATION METHODS
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Figure 4.1: Elementary steps in a PIC/MCC simulation

Initially, the superparticles have a random spatial distribution inside the
discharge gap. The numerical grid is divided into equidistant gridpoints by
with distance Az in between,

Ar = (4.4)

L
N

Here, L is the length of the discharge gap and N is the number of gridpoints.

4.1.1.1 Calculate charged particle densities

The first step in a PIC/MCC cycle is calculating the densities on each grid
points from nearby particles. The densities are assigned by a method called
weighting. In this method, the densiies are assigned to surrounding grid points
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Xj
i @

Xk+1

Figure 4.2: Assigning density to grid points through particle weighting in a 1D

simulation

based on the distance between the particle and the grid point,'*® as shown in
Figure 4.2.
If particle a located at x, has a density of q,, g, will be divided to the

surrounding grid points x; and x;, by

oy = ((b+1)Az — x,) (4.5)

AAz?

Inpy1 = (T — kAx) (4.6)

AAz2

where ony, dny41 gives the charged particle densities calculated at grid
point k, W is the weight of a superparticle or the number of real particles
represented by a superparticle, and A is the surface area of the electrode.
The corresponding charge density at grid point b, denoted as p; is then
calculated by
Pr = e(ni,b - ne,b)‘ (4.7)
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where n;, and n.; are the densities of the single charge positive and negative

ions and e is the elementary charge.

4.1.1.2 Calculate potential and electric field

From the charge distribution, potential ¢ is calculated from the charge

density p using the Poisson’s equation given by®

V2p=—L
€0

(4.8)

where ¢ is the permittivity in free space with the value 8.854 x 10—12Fm™"'. To

implement Eq. (4.8) at the grid points z;, and x4, finite difference is applied

to obtain a discrete Poisson’s equation given by'*

Porr =200+ Pp1 b
Ax? €0 ‘

(4.9)

Since the upper electrode (b = 1) is powered and the lower electrode
(b = N) is grounded, potential difference between the electrodes is taken into

account by implementing boundary conditions given by

o1 = Veos(2m ft) (4.10)

dn =0 (4.11)

where V is the peak amplitude of the voltage applied and f is the frequency of
the power applied. Using Gauss’s Law and Poisson’s equation, electric field E
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can be expressed by

E=-Vé. (4.12)

Electric field at grid point x;, and at the boundaries are therefore given by

Opr1 — Pp—1
F=—-——"" 4.1
b 2Ax (4.13)
O1 — P2 Ax
E, = — pg— 4.14
1 Az Po 2%, ( )
¢N—1 - ¢N Ax
Ey="—"—""— — 4.1
N Ar + PN 90 (4.15)

4.1.1.3 Calculate forces acting on particles

After calculating the electric field at grid point x,, it is then applied back

to the particle 2 using

b+ 1)Ax — z, x, — bAx
E(xa) - ( )Ax (l’b) + TE(IZ)_H). (416)
The force F exerted back on the particle is therefore
F, = QaE(xa>‘ (417)
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4.1.1.4 Move the particles

Due to the force applied, the particles are then given a new position and

new velocity using the equations of motion!3®

dv

—=F 4.18
m— (4.18)

dx

hatad 4.19

il (4.19)

which are implemented through an integration scheme called the leap frog

method. In this method, the particle position is calculated at integer time steps,

while velocity is calculated at half-integer time steps (At/2)"* as given by
v(t+At/2) —vu(t — At/2)  q
N — LB (4.20)
wHA) =2ll) gy ) 4.21)

At

Since ions are much heavier than electrons, ions tend to move much slower.
To address the extended time required to move ions, ion subcycling is used to
ease computational demands. This method involves solving the equations of
motion for ions less frequently compared to electrons. In this code, one electron
time step matches a single RF cycle, whereas one ion time step corresponds to
20 electron time steps.
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4.1.1.5 Add or remove particles at boundaries

After moving the particles, it is essential to verify if any have reached the
electrodes or the walls. The boundary conditions that apply will vary based on
which particles have exited the computational domain.

When an ion exits the domain, it may either be absorbed or it may trigger
the emission of secondary electrons. If it is absorbed by the walls, the ion is
simply removed from the ensemble. However, if it causes secondary electron
emission, the ion is removed, and an additional electron is added to the system.
This process involves comparing a randomly generated number to the pre-
established secondary electron emission coefficient (SEEC) of the electrodes.
Typically, the SEEC is assumed to be constant, regardless of the incident angle
and energy of the particle.!¥ In this implementation, a constant ion-induced
SEEC of 0.07 is used, based on research indicating that SEEC generally remains
around this value for ion energies below 1000 eV.'

Electrons, on the other hand, may either be absorbed or reflected when
they exit the domain. Absorption results in the electron being removed from
the system, while reflection involves the electron being elastically backscattered
into the system. In this model, a constant electron reflection coefficient of 0.5 is
used. The decision between absorption and reflection is made by comparing a
randomly generated number to 0.5, similar to the process used for determining
118,139

secondary electron emission.

42



CHAPTER 4. SIMULATION METHODS

4.1.1.6 Check and execute collisions

The last step is to check if each particle experienced a collision after mov-
ing. The probability P, that particle 2 undergoes a collision after a time step At
is given by”*

P, =1 — exp[—ngor(e)vi" At]. (4.22)

Here, ngy refers to the density of the ground state Ar atom colliding with par-
ticle a, or refers to the energy-dependent total cross section of particle j, and
v is the relative velocity of particle of the collision partners. For ion-atom
collisions, v**' is determined by randomly sampling a potential collision part-
ner from the ensemble of thermal background gas atoms. In electron-atom
collisions, due to the large difference in mass the target atoms are assumed to
be stationary, following the ‘cold-gas approximation’. A collision occurs if the
randomly generated number is smaller than F,.

In most Ar PIC/MCC simulations, we only trace the e~ and Ar" ions.
However, we assume a homogenous background ground state Ar atoms, and
the collisions of the charged particles with these ground state atoms are consid-
ered. Appendix C gives the list of reactions included in this model. Except for
the ion-atom collisions, all cross-sections are taken from the Hayashi database
in LXCat.* The isotropic and backscattering ion-atom cross-sections are ob-

tained from Ref. 3.
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4.1.2 Constraints

For most simulation techniques, achieving a balance between accuracy
and speed is necessary. Therefore, in this study, we implemented specific
parameter constraints in the PIC/MCC simulations in order to meet stability

and accuracy criteria. This includes®'3*

1. Az =~ \p

The Debye length (A\p) is a key parameter in plasma, defining the shield-
ing distance around a test charge where significant charge densities can exist.
At a scale length less than \p, particle-particle effects are strongest and at dis-

tances greater than \p, collective effects dominate.'®1% )\, can be calculated

A=)l (4.23)
en,

The spatial grid resolution must resolve phenomena up to the Debye length

by

scale to prevent numerical heating due to finite grid instability.!4°

2.wpot <1
This constraint dictates that the time step At must be less than the inverse of

the electron plasma frequency w,, which is defined as

2
wy = 4| —. (4.24)
Eom
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Therefore, At < w™!. However, the leapfrog scheme mentioned in Section
4.1.1.4 is found to be numerically unstable when w,t > 2. Stability may be
achieved at 1 < w,dt < 2, although this can result to significant numerical

errors."*! Therefore in this study, a constraint of w,dt < (0.2 is maintained.

3. Upmaz At < Ax
This constraint is known as the Courant condition, which states that the
individual particles must not travel a distance greater than Ax within a
single time step to ensure proper charge assignment.®® Here, v,,,, denotes

the maximum velocity of a charged particle.

4. Np >>1
Here, Np is the number of particles in a Debye sphere. This constraint en-
sures that at least one superparticle is present in a Debye sphere and that
there are enough superparticles present in a grid cell to maintain good statis-

tical accuracy in the simulation.? '3

5.P, <0.05
This constraint assures that the collision probability 7, is kept below 0.05. By
doing so, particle j will not experience more than one collision per time step,

preventing the simulation from missing any collisions.” % 11813

4.2 Collisional-Radiative Model

Each spectral line measured in the spectra represents the radiative tran-
sition from a higher excited state level to a lower level. The intensity of this
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spectral line is determined by the number density of the upper level, which
is influenced by both the electron temperature and density.”® A CRM encom-
passes a set of rate equations that describe the populating and depopulating
processes—both collisional and radiative—of an excited state in a steady-state
plasma. These equations enable the calculation of the density of excited species
in each state.”® By determining the number of excited species undergoing spon-
taneous emission, the spectral lines of an emission spectrum can be modeled. In
this study, PIC/MCC combined with CRM was used to model specific spectral

lines in the Ar emission spectrum.

4.2.1 Notations

Throughout this work, Paschen’s notation is used. The Paschen’s notation
is an attempt to align the neon emission spectrum with hydrogen-like theory,
thus using »' instead of the principal quantum number n. Each quantum level
is denoted by n'l,,. In this system, the 4s states are labeled as 1s, and the 4p
states are labeled as 2p. Here, [ represents the angular momentum quantum
number, and w indicates the order of energy levels within the orbital in de-
scending order. For the 1s orbital, w = 5 represents the lowest energy level (1s5)
and w = 2 the highest (1s3), while for the 2p orbital, w = 10 is the lowest energy
level (2p1p) and w = 1 the highest (2p,).
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4.2.2 CRM used in this work

The numerical simulation code of the CRM developed in this study was
derived from the work of Siepa et al.>® The new code can take the EEDF ob-
tained from PIC/MCC simulations as input information. The CRM calculates
the population densities of the first 14 excited states of an Ar atom (1s and 2p
states in Paschen’s notation), which are given in Fig. 4.3 and Appendix B. For
each of the excited state levels, it solves the following balance equations.

For Ar atoms in the 1s metastable states m, namely the 1s; or 1s3, we have

nnggs—Mnne + Ne E naQa—)m + E naAa—wnT/m—m

a=1s,2p a=2p
a#£m
= [(Qm%gs + Z Qm%a + Qm%ion)ne + Z Oéa,mna(l + (5a,m> -+ Tﬂzl Mo, (4:25)
a=1s,2p a=1s
aFtm

For Ar atoms in the 1s resonant states r, namely the 1s, or 1s, state, we

have

NgsQas—rTe + Mo E naQHmLE NaAasrNr—a

a=1s,2p a=2p
a#r
= |:(Qr—>gs + Z Qr—)a + Qr—)ion)ne + Z aa,rna(l + 5a,r) + Ar—)gsngs—n" Ny
a=1s,2p a=1s
a#r

(4.26)
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Figure 4.3: Processes included in this CRM

For Ar atoms in one of the 2p excited states, we have

nnggs—)Qpno + Ne E nls@ls—>2p

a=1s

= [(QQp—)gs + Z Q2p—>a + QQp—)ion)ne + Z A2p—>a77a—>2p + kq,Qpngs Nop- (427)

a=1s a=1s

Here the subscripts “gs” and “ion” indicate that the corresponding values
are those for the ground state of Ar atom and ions, 2p denotes any of the ten
2p states considered (e.g, 2p10, 2py, - - -, 2p1), and n, and n. denotes the density
of excited Ar atoms at level a and that of electrons. Among the various excited
states, m refers to one of the metastable states (m = 1s; or 1s3) and r denotes
one of the resonant states (r = 1s, or 1sy).
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Table 4.1: Processes included in the CRM. Here 1s refers to one of the 1s states

and 2p refers to one of the 2p states. The slash "/" refers to "or", e.g., "1s/2p"

refers to one of the 1s or 2p states

Process name Coefficient Reactions

Equation Reference

electron impact transitions Qi
from state i to state j

Ar(gs) + e <> Ar(1s/2p) + e
Ar(1s) + e <> Ar(1s/2p) + e

Ar(1s/2p) + e — Art +2e

Eq. (4.28)-(431)  [142,143]
[143]

[144]

spontaneous emission Aji Nissj Ar(1s4/1s2) <+ Ar(gs) + hv

from higher state j to lower
state ¢ with radiation trapping

Ar(2p) < Ar(1s)+hv

Eq. (4.35)-(4.36)  Table 1.1,
[145], [146]

diffusion time of metastables T
with m = 1s5 or 1s3

Ar(1ss/1s3) + wall — Ar(gs)

Eq. (4.38)-(4.40) [54, 63-147]

pooling ionization between Qg5
two atoms in the 1s state

Ar(1s) + Ar(1s) — Ar(gs) + Art +e Eq. (4.41)-(4.43) [54,148,149]

collisional quenching kq,2p
by Ar atoms

Ar(2p) + Ar(gs) — Ar(gs) + Ar(gs)

Table 4.3,
[1,2]

4.2.3 Processes included in the CRM

4.2.3.1 Electron Impact Excitation and De-excitation

The rate coefficient ();_,; for an electron collision-induced excitation from

a lower level i to a higher level j can be calculated using™

Qinsj = \/mie/aij(s)emfe(s)de
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(4.28)



CHAPTER 4. SIMULATION METHODS

where m, is the electron mass, ¢;; is the energy difference between level ¢

and level j, and o, is the collision cross-section.* 66150151

For the electron impact de-excitation, the rate coefficient @),_,; is usually

expressed as

51'_53'

kgT,

Qj—)z Qz—n eXP (429)

wherein g; and g; are the statistical weights of the lower and upper state respec-

tively. This equation is derived from principled of detailed balance which is

66,151

given by’

Nj Nz 5ij
g; 9; ( kTe

). (4.30)

However, in order to use a general form of the EEDF and not the 7 in calculat-

ing the rate coefficients, a more generalized form of ),_,; is used

gi |2
Qj i = g—j, / - /O'ij<€)gl/2 E— fe(e —&45)de. (4.31)

This expression follows from the relation between the cross sections for the

forward and the reverse process, 0;; and oj; i.e., €0;i(¢) = (€ + €i5) 045 (€ + €45)-

4.2.3.2 Electron Impact Ionization

While this model does not compute the population density of ionized
states directly, it includes electron impact ionization to adjust for the decrease
in population of excited states caused by step-wise ionization. The coefficient
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for electron impact ionization Q);_,;.,, is given by

2 oo
Qi%ion = \/ _/ Uz‘ﬁion(é‘)gl/QF(g)dg (432)
me €j—ion

wherein the ionization cross section o;_,;, is calculated using

H 2 -2
O’i%ion(é\) I47TCL3(€‘€1. ) 510@(6'8. ) (5~€- — 1) 111(1255166 )
i—ion i—ion i—ion i—ion

(4.33)

Here, ay is the Bohr radius of the hydrogen atom, !l is the ionization energy
of the atomic hydrogen from the ground state, ;_.;,, is the ionization energy
from level i, ; is the number of energetically equivalent electrons present in
the shell i (§ = 6 for the ground state and & = 1 for levels higher than the

ground state), and «; and f3; are level-dependent parameters.® 144151

4.2.3.3 Radiative Processes

In general, the rate equation for the change in density of an excited atom
in level j due to radiative processes is given by

dN;,

I = —A;iN; + ByW(w)N; — BjW (w)Nj. (4.34)

Here, the Einstein-A coefficient A;; and the Einstein-B coefficients B;; and Bj;
are the proportionality constants needed to calculate the rate of spontaneous
emission, absorption, and stimulated emission respectively. W (w) is the radia-
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tion field describing the amount of radiation available for the absorption and
stimulated emission to occur.”

The concept of absorption and stimulated emission is often simplified
the concept of an escape factor 7, in which the transition probability becomes
A;in.>%132 The escape factor is discussed in more detail in the Radiation Trap-
ping subsection given below.

The Einstein-A coefficients used in this are taken from the NIST database.'®?

Allowed Radiative Transitions

For radiative transitions, selection rules for electronic dipole transitions
are applied. The first rule is that the change in the angular momentum quantum
number Al is limited to +1. This implies that transitions from the 2p levels
to the ground state are not allowed. Another rule limits the change in total
angular momentum J to AJ = %1, with the transition from J = 0 to J = 0 not
allowed.” > Appendix B lists the total angular momentum number J for each
state.

Because of this, the 1s state can be categorized into two group. The first
group is called the resonant states which includes the 1s, and 1s, since they
have J = 1. That means their transitions to the ground state (J = 0) is allowed.
On the other hand, 1s; and 1s; has a total angular momentum number of J = 2
and therefore their spontaneous emission to the ground state is forbidden. As

an effect, 1s; and 1s3, which are termed as metastable states, have significantly
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longer lifetimes.

Radiation Trapping

Radiation trapping is the phenomenon wherein a photon emitted from
spontaneous decay from upper level j to lower level i is reabsorbed by a species
in i causing it to get excited to 5. This phenomenon is represented by the
radiation escape factor n previously introduced above. The escape factor used

in this study was from the equation given in Mewe (1967)*

2 — exp(—k;; R/1000)
i 1+ kR (4:35)

where R is the radius of the chamber and £ is the absorption coefficient given

by

N g: A omi/?
ey = 2201895 A oiMAr (4.36)

8 9i /2mkpTy "

Here, ) is the wavelength of the specific transition, m,, is the mass of the

atom, and 7}, is the gas temperature. The gas temperature values used in this
CRM are taken from the work of Schulenberg,'*® and similar to that used in the
PIC/MCC simulations. Table 4.2 shows the relation between the escape factor

value and the dominant radiative process.'
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This form of the escape factor in Eq. (4.35) has been preferred over other
available alternatives, e.g. Ref. [64,157-161] since its validity appears to have

been verified in other studies (Ref. [162,163]).

Table 4.2: 1 and the dominant radiative process

ni—; =1 Absorption and stimulated emission can be neglected

Nisj = 0 No net radiative transfer
Nis; <0 Absorption supersedes local emission
Nisj <1 Stimulated emission dominates

Since ko depends on N;, radiation trapping is stronger for states with
higher N;. This means that radiation trapping is strongest for transitions to
the ground state due to the high ground state density. Metastable states have
longer lifetimes and also tend to have high densities at low pressures, mak-
ing radiation trapping strong for transitions to these states, especially at low
pressures.

The transition parameters included in the CRM are taken from the NIST
database!® and are given in Table 1.1. The intensity of an emission line I;_,;
(i.e., photon flux or photon counts) due to the radiative transition from state ¢
to state p is given by

I = ngAjsimisg. (4.37)

The calculated intensities I; ,; are expressed in units of photons (m=3s~1)17

and are proportional to the measured relative intensity.
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4.2.3.4 Diffusion

As previously mentioned, metastable states have longer lifetimes and
therefore, especially at low pressures, they tend to diffuse around inside the
plasma. They can eventually collide with the walls and result to a loss in the
density of the metastable sates.”!** Its rate coefficient is represented by the
characteristic time of diffusion 7,,, which represents the amount of time it takes

for the metastable states to reach the walls. It is given by'®

2
T = g— , (4.38)

where A is dependent on chamber geometry and D is the diffusion coefficient.
In this work, equations for A and diffusion coefficient were taken from Ior-

danova and Koleva (2007)** given by

e (7)) () 4

and D,, is the diffusion coefficient given by

Dm = Dsc m Dsc Tg . (440)
) TO
gs g

Here Dy, nsc are the diffusion coefficient for the metastable atoms in state
"m" and Ar gas density at standard conditions. Following Refs. 54, 147, 63
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the values of Dg.n.. for the 1s; and 1s; states are set to 1.8 x 10'®¥*cm~'s~! and

1.9 x 10" em~"s™'. T is set to 300K and the electrode gap L = 4 cm.>*'¥

4.2.3.5 Heavy Particle Ionization

Ionization usually happens when electrons collide with atoms. However,
when two excited atoms collide, Penning ionization can occur. This process
uses the combined energy of both excited atoms to ionize one atom and return
the other to its ground state. In this model, ionization by heavy particles is
only considered for the 1s states and is ignored for the 2p states due to their

significantly lower densities. Rate coefficients « are given by>* 118,148,149

16kpT,
oy = 1.14 x 1072, [10ksTy a1 (4.41)
TIMAy

Q= 2.10 x 107 Pm?s ™ (4.42)
Qo = 1.20 x 107 Pm?s ™ (4.43)

where o, ,,, and a,,,,, are the rate coefficients for pooling ionization between
two atoms with each being in one of the resonant states, one being in one of
the resonant states and the other in one of the metastable states, and each atom
being in one of the metastable states, respectively.>* 14814
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Table 4.3: Constants used for collisional quenching of the 2p,, (n = 1,-- -, 10)

states by the background gas.!"?

2p state 2p10 2p9 2ps  2p7  2ps  2ps  2ps 2p3 2p2 2py
kq2p [10_16m35_1] 0.20 059 024 0.77 013 0.12 056 1.10 053 0.16

4.2.3.6 Collisional quenching

The excited level atoms could collide with the neutral gas and de-excite
the excited atoms. The is can be expressed by adding a collisional quenching

term, which is represented by the collisional quenching constants given in

Table 4.3.
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Chapter 5

Machine Learning Models

Machine learning is defined as "the science (and art) of programming
computers so they can learn from data".'®* It encompasses three main cate-
gories: supervised learning, unsupervised learning, and reinforcement learn-
ing. Supervised learning involves training models on labeled data to predict
outcomes for new, unlabeled data. This process utilizes algorithms such as de-
cision trees, neural networks, and Bayesian classifiers to map inputs to outputs
and minimize prediction errors. In contrast, unsupervised learning operates on
unlabeled data to uncover hidden patterns or relationships, making it useful
for tasks like clustering and dimensionality reduction, often using techniques
such as principal component analysis. Reinforcement learning focuses on train-
ing agents to optimize their behavior in various environments to maximize
rewards, drawing from optimal control theory and operations research. The
choice of machine learning method depends on factors such as data complexity,
available computational resources, and the nature of the problem.!®>

In plasma applications, supervised learning has been used to predict
properties like chemical, physical, or electrical attributes of surfaces, as well
as plasma characteristics like gas dissociation and electron energy. To make
these predictions, machine learning uses input features such as optical emission

spectra, current-voltage signals, and mass spectrometry data.?!9%165166
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In this study, three distinct machine learning models were utilized: two
for predicting the EEDF and one for predicting n.. Specifically, the Kernel
Regression for Functional Data (KRFD) and artificial neural network (ANN)
models were employed to predict the EEDF, while n. was predicted using
RFR. The hyperparameters for each model were optimized using Bayesian
optimization with the Optuna Python library,'*” with 300 trials conducted for
each model. Five-fold cross-validation was used to select the validation set
and compute validation loss. This technique involves dividing the dataset
(excluding the test subset) into five equal parts. The model is trained and
tested five times, with each part serving as the test set once and the remaining

parts used for training.

5.1 Kernel Regression for Functional Data (KRFD)

One approach employed by some machine learning models, such as Sup-
port Vector Machines (SVM) and kernel regression, to handle nonlinear prob-
lems involves making predictions based on a similarity function that measures
the resemblance between instances. While utilizing similarity features can be
highly beneficial, calculating these similarities for large datasets can be compu-
tationally intensive. To address this, these models often utilize the kernel trick.
This involves using a kernel function that enables the computation of the dot
product of two data points in a higher-dimensional space without explicitly
transforming the input data.'®* For the kernels k(t,¢;), we use the Gaussian
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radial basis kernel function radial basis function (RBF) given by

k(t,t;) =1 exp (—M) (5.1)

202

where [ is a length scale parameter, o is the bandwidth parameter of the basis
function, and ||t — ¢;|| is the Euclidean distance of the electron energy ¢ from
the ith kernel center ¢;. While the use of other RBF can be explored as a future
work, a Gaussian RBF was chosen due to its wide usage as a kernel function
in kernel regression models. In this study, o is used as a hyperparameter to be
optimized for regularization. Increasing o decreases the width of the Gaussian
RBF, decreasing the range of influence of each instance.

The KRFD was originally developed in Ref. 168. The method allows to
obtain a function Y (¢) from an input vector X. The predicted output Y (X, ) is

modeled by

Y(X,t) =Y Bi(X)k(t,t:) + u(t) + 6. (52)

Here, T is the total number of data points in ¢. In this study, ¢ is set to be the
electron energy, Y (t; X) is assigned as the EEDF at that energy, while X repre-
sents the 16-dimensional input vector comprising OES intensities and pressure.
A set of T positive definite kernel functions, k(¢,¢;) (i = 1,...,T), is placed at
arbitrarily specified centers ¢; (: = 1, ...,7T) within the support of the electron
energy. The regression coefficient or weight parameter j3;(X) is modeled as

a function of X, which activate or deactivate each kernel. While in Ref. 168
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the coefficients were modeled with ANNSs, in this study kernel regressors are
used to achieve more robust and cost-effective modeling. Additionally, p(t) is a
baseline function that relies only on ¢, and ¢ is the noise term. Unlike ordinary
regression, where the output is typically given as a scalar variable or relatively
low-dimensional vector, the output variable here is treated as a function of ¢.
Such a task is called functional output regression.

The coefficient functions 3;(X) (i = 1,...,T) are modeled with additional

kernel regressors. Specifically, Eq. (5.2) is expressed as

N T N
V(X ) =) Ouka(X, Xp)kr(t ) + Y cmkn (X, X) +6. (5.3)

k=1 I=1 m=1

Here, 6i; and c,, represent the regression coefficients, kq(X,X;) and ks
(X,X,,) denote the Gaussian RBF kernels on variable X, kr(t,t;) is the RBF
kernel on ¢, and N denotes the number of the kernel functions for X. This can
be obtained by setting 3;(X) = S_r_, Orikc (X, X3) in Eq. (5.2).

In this study, ridge regression with ¢, regularization was performed to
estimate the coefficient parameters, 65, and c,,, where the objective function O

to be minimized during model training is given by

0(0,¢) =||Y — GOT — Mc1”|% + ag|G?OT| %

+arl|GOT'?|[% + acar |G2OT 2L + ay | M el |7, (5.4)
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where Y, G, ©, T, and M are N x T, N x N, N xT,T xT,and N x N
matrices whose entries are given by Y,;; = Y (X, t;), Gij = ka(Xi, X;), O =
O, Tij = kr(ti t;), Mi; = ky(Xi, X;), and ¢ = (¢1,- -+ ,cn)t. Here, 1 denotes
a T-dimensional vector whose entries are all one and a square matrix raised
to the power 1/2 is another square matrix whose product with itself gives the
original matrix. Additionally, || || r represents the Frobenius norm. The optimal
solutions for © and ¢ were determined by solving the system of equations
obtained by setting % =0 and % = 0.

In this study, each of the 16 input variables was standardized to have a
mean of 0 and a standard deviation of 1 in the training dataset. About 20% of
the total data was randomly selected for the test set, and the remainder was
used as the training set. The hyperparameters were selected using Optuna
through five-fold cross-validation within the training set. The parameters to
be selected were o, or, and oy, € {1,...,100} which is the bandwidth param-
eters for the Gaussian RBF kernels k¢ (X, Xi), kr(t,t;), and kp (X, X,,), and the
regularization coefficients ag, ar, and ay, € {107%, ... 1}. For the regulariza-
tion coefficients, the values were sampled from the logarithmic domain. The
best hyperparameters were selected to be o = 90.079, o1 = 98.626, o) = 24.894,

ag = 1.1412107%, ap = 3.9652107°, and ay, = 0.128.
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Figure 5.1: A sample artificial neural network (ANN)

5.2 Artificial neural network (ANN)

In recent years, the use of Artificial Neural Networks (ANNSs) has surged
across various applications, including image and speech recognition. The con-
cept of ANNSs dates back to 1943 when McCulloch and Pitts introduced a com-
putational model that simulates how neurons work together to perform com-
plex calculations. Their model featured a basic artificial neuron with one or
more binary inputs and a single binary output. In 1957, Frank Rosenblatt ad-
vanced this idea by developing the perceptron, a model where a step function
is applied to the weighted sum of input values to generate an output. The
work on ANN however died down after a while until some slow progress in
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the 1980s and led to now in which the increase in the amount of data and
computational power motivated its further use.'**

An ANN is composed of interconnected nodes organized into layers, as
illustrated in Fig. 5.1. The input data is fed into the input layer, and the
predictions come out in the output layer. In between these two layers are the
hidden layers where the core calculations take place. A fully connected layer,
also known as a dense layer, consists of neurons or nodes that are linked to
every node in the preceding layer. The input data is passed from a node in
the input layer to a node in the next layer, and each value that the node in the
next layer receives get multiplied to a weight, and these weighted values are

summed up and a bias value is added up.

Q
Ra = (Z wa—lya—l) + baa (55)
q=1

where a corresponds to the current layer, ¢ corresponds to each node a
value is received from and @ is the total number of these nodes. w,_; is the
weight associated with the input data or output from a previous node y,_;, and
b, is the bias term. Each calculated z, is then fed to an activation function T

such that the final value y, that a node in layer a gets is

Yo = T(za)- (56)

The activation function plays a crucial role by determining whether a neu-

ron activates, thereby influencing the propagation of information to subsequent
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layers and introducing nonlinear transformations to the data. Commonly used

activation functions include the logistic function ¢(y,) = 1 .- hyperbolic

T+exp(—ya
tangent function tanh(y,) = 2¢(2y,) — 1 and the rectified linear unit function
ReLU(y,) = max(0, y,). The calculated y, is then passed to the next layer in the
same manner until it eventually reaches the output layer and makes a predic-
tion. The error of the predicted output with respect to the expected output is
then calculated. The next step would be determining how much each weight
and bias in each layer contributed to the error. This is done getting the partial
derivative of the error to each weight and bias by chain rule.

Gradient descent is then applied to see how much the values of the
weights and biases is changed to reduce the error, and is usually determined
by the value of the learning rate. Each iteration containing this forward pass
and backward pass is called an epoch.'¢*

The design of the hidden layers, including the number of layers and
nodes, greatly affects performance. ANNs with more layers are better at han-
dling complex and nonlinear problems, but care must be taken to avoid over-
titting the model to the data. Key settings, called hyperparameters, such as
the number of layers, nodes per layer, activation functions, learning rate, and
optimization algorithm, shape the ANN'’s architecture and impact its ability
to learn complex data patterns. These hyperparameters are set before training
and are crucial for the network’s performance.'® 170
In this study, a conventional ANN with backpropagation was utilized for

the EEDF prediction. The model architecture comprises of four hidden layers
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positioned between the input and output layers. As with the KRFD approach,
the input variable X encompasses the 15 spectral intensities from OES and
the pressure, while the output variable Y comprises a vector of EEDF values
at 1999 different energies. Each layer was constructed by a fully connected
network and the ReLU activation function. About 20% of the total data was
randomly selected for the test set, and the remainder was used as the training
set. By performing the five-fold cross-validation within the training set, the
hyperparameters were selected using Optuna; the parameters to be selected
were the number of neurons for each layer € {16,...,1800}, and the learning
rate € {107%,...,1072}. The number of neurons for each hidden layer and the
learning rate were optimized to be 355 neurons and 3.633z10~*. Each model
was trained using the stochastic gradient descent algorithm. The number of
iterations (epochs) was set to 1000 for both the hyperparameter optimization

and the final model training with the selected hyperparameters.

5.3 Random Forest Regression (RFR)

A decision tree is a versatile algorithm widely used for classification and
regression tasks of single or multioutput data. By aggregating multiple predic-
tors such as decision trees during training and then combines their results, one
can create an ensemble learning algorithm such as Random Forest. To create a
diverse set of trees, one can use different training algorithms for each or use a
different random subset of data in training each tree.'** Their results can then
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be combined by using the most frequent prediction for classification or the av-
erage prediction for regression. Random Forest is particularly useful because
it can handle large datasets with many features while still providing accurate
predictions. It also has built-in methods for selecting important features and
managing missing values. Additionally, it is resistant to noisy data and outliers,
making it suitable for various real-world applications.!”1-17>

When using Random Forest, you can tune several hyperparameters to op-
timize its performance for a specific task. Some of the most important hyperpa-
rameters include: n_estimators or the number of trees in the forest, max_depth
or the maximum depth of each tree in the forest, min_samples_split or the mini-
mum number of samples required to split an internal node, min_samples_leaf
or the minimum number of samples required to be at a leaf node, and the
max_features or the number of features to consider when looking for the best
split. By adjusting these hyperparameters, one can fine-tune the Random For-
est algorithm to achieve optimal performance for their particular dataset and
problem domain.'”+17°

RFR was used to predict a discrete scalar value of n.. Although two RFR
models were created, each attached to the KRFD and ANN, they yielded almost
the same results. Therefore, for the remainder of this paper, only the RFR model
attached to the KRFD was included. By hyperparameter optimization using

Optuna, the best value for the number of trees € {10, ...,500}, and a number

of features in each tree € {3, ...,15} were selected. This optimization resulted
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in 89 trees and 15 features as best hyperparameter values. The branches of the

tree were expanded until each leaf contained less than 2 samples.

5.4 Data Preparation

This study used the intensities of 15 spectral lines as the input vector
to predict the EEDF and n. as the output data. In addition to the OES in-
tensities, the pressure was also included as an input variable, resulting in a
16-dimensional input vector. The functional variable EEDF was discretized on
an equidistant grid having 1,999 points, while n. was given as a discrete scalar
variable. The preparation of the input vectors from calculated and measured

data is outlined in the following.

5.4.1 PIC+CRM simulation data

The simulation dataset used for ML was generated through the PIC+CRM.
Fro the training data, the pressure was varied from 2-100 Pa and the peak-to-
peak voltage from 200 - 500 V. A total of 108 sets of OES intensities and plasma
parameters were generated for the training and testing of the ML models. For
each pair of input and output data, all other parameters are the same except for
the EEDF, n,, the gas temperature 7, and the pressure. The values used for 7,
ranged from 304 K to 348.4 K and were interpolated from experimental tunable
diode laser absorption spectroscopy (TDLAS) measurements done in Ref. [8].
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Out of the 108 data sets that we generated, 80% were randomly selected
for training, and the rest samples were reserved for testing. The logarithm
of the EEDFs was taken and these resulting EEDFs were used as the training
data, as it was observed that predictions in linear scale tend to neglect the
higher energy region. Additionally, to ensure that even zero values could be
transformed into the logarithmic scale, a small constant value of 107° was

added to each data point in the EEDF.

5.4.2 Experimental data

The experimentally measured OES intensities served as a second set of
input test data for the evaluation of the predictive performances of the ML
models. Similar to the treatment applied to calculated intensities, the measured
relative intensities were also normalized using Eq. (6.4). The measured 7, data
were interpolated and employed as input parameters for both the PIC/MCC
simulations and the CRM. On the other hand, the measured 1s; density data

served as reference data for additional validation of the predicted results.
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Chapter 6

Results: Simulation of optical emission spectra and

its experimental validation

In this chapter, the validation results for the PIC+CRM for an Ar RF
CCP are presented. It starts with the discussion of some of the results of the
PIC/MCC simulations that is used in the CRM, specifically the n. and the
EEDF. Following this, we conduct a sensitivity analysis of the CRM in response
to these input parameters. We then compare the measured and simulated
intensities, providing a detailed analysis of potential sources of discrepancies

between the intensities under specific conditions.

6.1 PIC/MCC results relevant to the CRM

For better comparison with the experimental data, the information about
the same spatial region of about 1 cm in the middle of the discharge is extracted
from the PIC/MCC simulation. The essential input data for the CRM are the
EEDF f.(¢) and electron density n.. The electron density and a function related

to the EEDF defined as

fole) =721 (o) 6.1)

are plotted in Fig. 6.1 at various pressures for discharges with a voltage ampli-

tude of 300 V peak-to-peak. The function f; is often called an electron energy
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Figure 6.1: PIC/MCC simulation results for the central (1-cm-wide) region of
13.56 MHz RF-driven Ar CCPs with a sinusoidal voltage waveform with a peak-
to-peak voltage (V},, of 300 V. (a) The electron density (circles), mean electron
energy for the total electron population (¢) (squares), and that for the energetic
electrons above the excitation threshold voltage of 11.55 eV (¢)__ (triangles), as
functions of the Ar gas pressure. (b) The EEPF at different Ar gas pressures.
Because V,,, = 300eV, a sudden drop of the EEPF is seen above 150 eV (i.e.,
about a half of V,,, corresponding to the sheath voltage) at low pressures. It
should be noted that the only ionization and excitation taken into account in

the simulation here are those by electron impact with ground-state Ar atoms.
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probability function (EEPF).!7® Also plotted in Fig. 6.1(a) are the mean energy

of the bulk electrons

o0

6 = [ ehiene (62)

0

and that of the energetic electrons above the threshold energy ¢,

oo

[ efe(e)de
(Eex = o - 6.3)
J fe(e)de
el
Here we set ¢; = 11.55€V, i.e., the excitation threshold energy of the lowest
excited state of Ar atoms, to represent energetic electrons that can excite ground-
state Ar atoms.
It is seen in Fig. 6.1(a) that the mean energy of bulk electrons () increases
and that of energetic electrons (¢).. decreases rather steeply up to about 20
Pa. The decrease of (¢).x causes a corresponding decrease in excitation and
ionization at higher pressures. As discussed earlier, the only ionization and
excitation mechanisms used in the PIC/MCC simulation presented here are
the electron-impact ionization and excitations of ground-state Ar atoms. At
higher pressures, this lower ionization rate balances the decreased particle
losses, and leads to lower energy per ion-electron pair created, thus allowing
higher plasma density to be sustained.
It is seen in Fig. 6.1(b) that, above a certain energy, a slowly decaying
energetic component is present. It reflects the "runaway" secondary electrons

released from the electrodes due to ion bombardment. The density of these
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"runaway" secondary electrons in the middle of the discharge decreases with
an increasing pressure due to a decrease in their mean free path. At 100 Pa, the
energetic tail is completely extinguished by collisions and the electron energy

does not go beyond 20 eV.

6.2 Sensitivity of calculated line intensities to input parame-

ters of the CRM

It is also important to verify to what extent the output of the models, i.e.
the spectral intensities are sensitive to a variation of the input parameters (elec-
tron density and distribution). For that, a sensitivity analysis is carried out to
quantify the effect. Figure 6.2(a) shows the result for the variation of the elec-
tron density used as an input parameter to the CRM at 20 Pa. Three n. values
are used for this comparison, i.e., the n. value calculated from the PIC/MCC
simulation (n. pic = 4.78 X 10"®m™3), its half (0.5n. pic = 2.39 X 10"®m—3), and its
double (2n, pic = 9.56 x 10'm~?). Here, the CRM used the EEDF from the same
PIC/MCC simulation at 20 Pa. In the consequent discussions, the emission line
denoted as 772.4 nm in Fig. 6.2(a)-(b) corresponds to the sum of the intensities
of 772.38 nm and 772.42 nm lines.

The intensities are expected to increase with increasing n. due to the
increase of electron impact excitation rate to the 2p states. This becomes evident
if one considers the balance for the population density of a given 2p state (Eq.
(4.27)). Both the direct and the stepwise excitation processes (left-hand side of

73



CHAPTER 6. RESULTS: SIMULATION OF OPTICAL EMISSION SPECTRA AND ITS
EXPERIMENTAL VALIDATION

@) (b) (I, pic B Maxwellian
25} |
0.4} |
v_“[/) 2- E
< -0.571071:)10 03}
= 1.5 H{Ilnepic I
g [2ne pic 02l
\ [ -
~
0.1

o
826.5 [,
o

WK N®Y Y00 Y Q000 WNNOY YO0 YT ®O0 Y00
O O T N0V O MO ANFTO T~ O + O O FT N0V O — MO ANFTO— O +— ©
DO~ N MU OMN~NOOODO O « OO~ AN OO ON~NOOGDOO~—~—— A
O MNMMNMNMNMNMNIMNMNMNMNMDMNDMNMNIDN O 0O 0 O MNNMNDMNMNMNMNMNDNMNDMNMNDMNMNIDDNO O 0 0 0
A [nm] A [nm]
100 T T
— fp.p1C
- -Maxwellian

1070k
0
e [eV]

Figure 6.2: (a) The emission intensity I defined by Eq. (4.37) and obtained from
the CRM divided by the electron density n. with 3 different electron density
values, i.e., ne = 0.5n¢ pic, Ne pic, and 2n. pic, Where n, pic denotes the electron
density obtained from the PIC/MCC simulation at 20 Pa. (b) The normalized
intensity T, defined in Eq. (6.4), obtained from the CRM with n, = n. pic and
two different EEPFs; one from the PIC/MCC simulation at 20 Pa, denoted by
fp,pic and given by the solid curve in (c), and a Maxwellian distribution, given

by the dotted line in (c).
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the equation) are proportional to the electron density, whereas the losses (the
right-hand side) are usually dominated by the radiative transitions (the second
to the last term on the right-hand side). Consequently, the emission intensity
for transitions from this state varies nearly linearly with the electron density,
with slight deviations due to non-linearities, introduced by the dependence of
the population in the 1s block on n. as well as the contribution of collisions
to the losses of the 2p state. To amplify these more subtle nonlinear effects,
the linear dependence on the plasma density is canceled out by dividing the
intensity values by n.. These 'reduced’ values are shown in Fig. 6.2(a). For
most of the lines, i.e. for most of the 2p states only a weak dependence on the
plasma density of the order of about 10% or less remains. This dependence is
also almost linear, indicating that the contribution of the stepwise and cascade
processes to the population of the 2p states has a linear dependence on n., and
the collisions with electrons have a negligible contribution for the losses.

The sensitivity of the CRM to the EEPF used is also tested and shown
in Fig. 6.2(b). In this figure, the resulting CRM intensities I, (where the index
k represents the individual lines for transition ¢ — p) are normalized with

respect to the total intensity of the spectral lines shown, such that

I=10/)Y I . (6.4)

Here “ f,, pic” denotes the case when the EEPF calculated from the PIC/MCC

simulation is used in the CRM, while the “Maxwellian” labels the case when a
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Maxwellian distribution with a 7, equal to the estimated bulk 7, of the EEPF
from the PIC/MCC simulation is taken as the input for the CRM. Both these
EEPFs are presented in Fig. 6.2(c). The two distribution functions coincide up
to around 11 eV, which is near the excitation threshold energy of the lowest ex-
cited state (¢; = 11.55eV). Beyond 11 eV, the Maxwellian has a higher electron
distribution up to around 40 eV. Since the excitation and ionization processes
from the ground state occur in this energy region, a significantly higher inten-
sity for the 750.4 nm line (2p; — 1s;) is observed when a Maxwellian EEPF is
used. This is due to the large electron impact collision cross section of the 2p;
state from the ground state. This change in the shape of the spectra shows the
importance of the accurate description of a non-Maxwellian EEDF for reliable

intensity values.

6.3 Comparison between measured and calculated intensities

The comparison between measured and calculated intensities is presented
in Fig. 6.3, for pressures of 2 Pa, 20 Pa, and 50 Pa. The data are again normalized
according to Eq. (6.4), for a straightforward comparison.

The general trend of the dominant kinetic mechanisms for these pressure
cases is first discussed. At low pressures, the plasma tends to be in the corona
regime where the dominant processes are electron collision with the ground-
state atoms and subsequent spontaneous emission from the higher excited
states to the lower excited states resulting to a high intensity for the 750.4 nm
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Figure 6.3: Measured and calculated normalized intensities at (a) 2 Pa, (b) 20 Pa,
and (c) 50Pa. As discussed earlier, the intensity line denoted as 772.4 nm

corresponds to the sum of the intensities of 772.38 nm and 772.42 nm lines.
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line at 2 Pa for both measurements and simulations. Similarly, the 811.5nm
line is strong due to the high statistical weight of the 2p, state, which also has
a large cross section from the ground state.

The changes in the spectrum at 20 Pa with respect to the previous case of
2 Pa originate mainly from the decrease of < € >, with the increase in pressure
as shown in Fig. 6.1(a). As a result of this, a lower percentage of the excitation
occurs from the ground state and stepwise excitation from the excited states
becomes important. In this low-pressure non-equilibrium regime,* the inten-
sity of the 750.4nm line therefore decreases relatively strongly as compared
to other lines which are also populated by electron impact from excited states.
The ‘metastable-dependent’ lines i.e., the ones excited by low-energy electrons
from the metastable levels include 763.5 nm (2pg — 1s5), 800.6 nm (2pg — 1s4),
and 811.5nm (2py — 1s5), since the 2ps and the 2py states have a large collision
cross section from the 1s; state.

For the 50 Pa case, the 763.5nm and 811.5 nm lines dominate the emission
spectrum. The calculated intensities of these lines are significantly lower than
the measured ones, while the calculated intensity of the 800.6 nm line is signif-
icantly higher than the measured line. Unlike the 800.6 nm line, the 763.5 nm
and 811.5 nm lines are nonlinearly dependent on the population of the 1s; state
through radiation trapping since these lines also decay to the 1s; state. A high
1s; density (nis,) can therefore cause a depletion of the calculated intensities by

radiation trapping.
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Generally, it appears that the model results tend to overestimate at higher
pressures the intensities of lines for which the self-absorption is not significant,
i.e. 706.7 nm, while at lower pressures they are underestimated. Simultane-
ously, lines with relatively high contribution of the radiation trapping, i.e. 763.5
nm, exhibit the opposite trend. This is related to an overestimation of the pop-
ulation of the states in the 1s block with the pressure increase, demonstrated
and discussed later in Section 6.4.1. The effect of this overestimation for the
lines in the first group is higher step-wise excitation than present in the experi-
ment, leading to higher densities of the corresponding 2p states. For the lines
in the second group the radiation trapping effect manifests itself stronger than
actually present experimentally.

These trends are also visible in Fig. 6.4 where we present the ratios of the

measured (OES) and calculated (PIC+CRM) line intensities such that

e = lors(Ak)/Ipic+crv(Ak) - (6.5)

For this comparison, the line intensities have been scaled so that the average
of the r; values is 1.0. In an ideal case, i.e., in the case of a perfect agreement
between the OES measurements and the PIC+CRM results, r, = 1 would be
recovered for each k. The data exhibit, of course, some deviations from this
case, which vary as a function of the gas pressure.

In the 2 Pa case, the lines originating from the 2p, state, namely the

696.5nm, 727.3nm, and 826.5nm lines have higher intensities from the OES
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Figure 6.4: Normalized ratios of the intensities of the spectral lines measured
using OES and calculated from PIC+CRM, at (a) 2 Pa, (b) 20 Pa, and (c) 50 Pa.
As discussed earlier, the intensity line denoted as 772.4 nm corresponds to the

sum of the intensities of 772.38 nm and 772.42 nm lines.
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as compared to the calculated values. The common behavior of these lines
suggests that the PIC+CRM may underestimate the population of the 2p, state.
No such conclusion can be drawn, however, for the densities of the other states
as lines originating from those do not necessarily show deviations in the same
"direction’. The best agreement is observed for p = 20 Pa, where the intensity
ratios deviate less than ~ 20% from the unit value. At 50 Pa, very strong devia-
tions are observable, indicating the breakdown of the modeling approach, as
will be discussed later. In this case, the 763.5nm and 811.5 nm lines exhibit par-
ticularly strong deviations. The lower level of these lines is the 1s; state, which
typically has the highest concentration among the excited states. The situation
at this pressure is further complicated by the fact that radiation trapping from
all the 1s states is expected to become significant. At this pressure, excitation
from all 1s states becomes important in the “medium-pressure non-equilibrium”
regime.*

To quantify these deviations the RMSE of the 7, values is calculated as

N
RMSE = %Z (ri, — 1)%, (6.6)

k=1

where N = 15 is the number of spectral lines. (The case of a perfect agreement

between the OES and the PIC+CRM data would correspond to RMSE = 0.)
For the 2 Pa case, a relatively low RMSE of 0.26 is obtained. The agree-

ment further improves with increasing pressure, up to 20Pa. Beyond that

value, however, the RMSE starts to increase rapidly and shows the inability
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Figure 6.5: RMSE of the standard deviation of the OES/PIC+CRM ratio r;, to

the average ratio of 1

of the PIC+CRM approach to predict line intensities correctly. This failure of
the approach at elevated pressures is suspected to be related to the presence of
the excited states in the discharge, in particular the 1s; state, with significant
concentrations. Therefore, in the next sections we analyse the pressure depen-
dence of the density of this state as obtained experimentally and in the CRM,

and address the influence of this state on the ionization in the plasma.

6.4 Effects of the 1s; metastable state

6.4.1 Density measurement and comparison with the simulation results

The comparison of the measured and computed 1s; density (n5) is given
in Fig. 7.10 as functions of the Ar gas pressure. The laser absorption measure-
ments show that n,,, increases with a pressure up to around 10 Pa and saturates
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Figure 6.6: The densities of the 1s; state Ar atoms measured with TDLAS and
evaluated from the PIC+CRM simulations as functions of the gas pressure. The

inset shows the same data at low pressures.

at around 4 x 10 m~3. Below this pressure, the measured n;s, values agree
closely with the computed ones. However, above this pressure, the simulation
results show a continuous increase of the n,,;. Because the electron-impact
excitation to the 1s; state from the ground state requires a minimum energy of
11.55 eV, Fig. 7.10 indicates that our PIC/MCC simulation either overestimates
the density of the energetic electrons or underestimates the loss processes of

the metastable states in our simulations.

6.4.2 Ionization from the 1s; state

To further check the effect of the 1s; metastable state on ionization, the
contributions of the ground state and the 1s; state to the ionization process

83



CHAPTER 6. RESULTS: SIMULATION OF OPTICAL EMISSION SPECTRA AND ITS
EXPERIMENTAL VALIDATION

1020 L
I(D
7 @ from GS
=R -A-from 1s;
s10°°F
~

1016 ' ' ' '

0 20 40 60 80 100
p [Pa]

Figure 6.7: Rates of ionization from the ground state (denoted by “GS” and
filled circles) and the 1s; metastable state (filled triangles). The ionization
energy from the ground state is 15.8 eV and that from the 1s; metastable state

is4.2eV

were evaluated in the CRM. While the CRM described in Egs. (4.25), (4.26),
and (4.27) does not account for the ionization originating from the ground
state, its rate of ionization is determined using Eq. (4.28), as is done for the
excited states. Figure 6.7 shows a comparison of the number of ions generated
per unit volume and unit time by the ionization from the ground state and
the 1s; metastable state calculated from the PIC+CRM simulation. This figure
shows that, below 20 Pa, the ionization rate from the ground state is higher than
that from the metastable state. This changes as the pressure increases and the
ionization originating from the ground state decreases until it is approximately
three orders of magnitude lower than that from the metastable state at 100 Pa.
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Such a trend is supported by the mean energy results from Fig. 6.1(a),
where the < € > is shown to decrease to energies lower than the ground-state
ionization threshold as the pressure increases. On the other hand, above 20 Pa,
< ¢ > saturates at around 4 eV, at which ionization from the 1s5 metastables be-
comes significant as the ionization energy from the 1s; metastable state is 4.2 eV.
It should be noted that the simulation results presented in Fig. 6.7 used the elec-
tron density and EEDF data obtained from the PIC/MCC simulation that does
not include the ionization from the 1s; state. Therefore it clearly shows an
inconsistency between the premise and the simulation results. Under our dis-
charge conditions, at pressures above 20 Pa, the 1s; state plays a dominant role

in ionization and should not be ignored even in PIC/MCC simulations.

6.4.3 Comparison with a Corona model

The effect of the 1s; state on the excitation dynamics is investigated next.
Within the framework of the corona model expected at the lower pressures,
only the electron impact excitation from the ground state and the spontaneous
emission from the 2p states (with 7,_,; = 1) are included. Then the balance

equation for each of the 2p states in Eq. (4.27) simplifies to

n
nnggs%Qpne = ﬁ (67)

Tgp

In this equation, 2p denotes any of the ten 2p states, and 7, is the lifetime of the
corresponding 2p state defined by 1/, = > *,_, . Ay, where the summation is
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Figure 6.8: Intensity ratios of the 763.5 nm and 750.4 nm lines obtained from the
experimental OES data (squares), calculated with the corona model (circles),

PIC+CRM simulations (triangles), and the atomic constant model (dotted line).

taken over all 1s states. Since n. as well as ny cancel out, the ratio of intensities

of two lines can be expressed as

I Amngy,  AimiQgs oy,
I, Ay Nap Aoy Qgs—>2pj

, (6.8)

The subscript 1 above represents the spontaneous emission 2p;, — 1s, while
2 represents that for 2p; — 1s,. Here s, and s, denote some 1s states. The
rate coefficients Qs op, and Qgs o, (i-€.,Qgs2p,/2p; ) can be expressed as in
Eq. (4.28). Considering that the excitation threshold energies of the 2p states
and their corresponding energies at the largest collision cross-section value,
denoted as oy ;ap, /2p; max, are close to one another, the intensity can be roughly
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approximated in terms of the atomic constants:

00
1/2
AITI f&f / O-gs—>2pifed5 A
0 ~ lTla-gsHZpi,maX

(6.9)

s ~
A 1/2 d AZTZO'gs%2pj ,max
272 fE 0gs—>2pjfe €
0

In the last step it is further assumed that the two cross-sections have nearly iden-
tical shape and deviate only in their amplitudes (maximal values), 0gs_.2p, maxand
Ogs—52p,,max, T€spectively. Equations (6.8) and the right-most hand side of the
(6.9) for the 763.5nm/750.4 nm line ratio are plotted in Fig. 6.8, referred to as
a "corona model" and an "atomic constant model." These data are presented
along with the line ratios calculated from the PIC+CRM simulation and mea-
sured from the OES. As previously discussed in Sec. 6.2 and 6.3, the 763.5 nm
and 750.4 nm lines strongly depend on the n,,, and ny, densities, which led to
the selection of this specific line ratio.

The good agreement among all cases up to around 10 Pa shows that, at
these low pressures, the intensity ratio does not depend much on the plasma
conditions but is rather determined by the atomic constants alone. Conse-
quently, this ratio should not be used for diagnostic purposes of discharge at
low pressures (few Pa and less). On the other hand, this provides good oppor-
tunity for checking the quality of the spectral calibration of the detector. At
higher pressures, however, the line ratio becomes more sensitive to the plasma
conditions. This increased sensitivity is mostly brought up by the density of the

1s; state, on which the 763.5 nm line intensity is highly dependent. This shows
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that for a plasma with the given conditions having a pressure higher than 20 Pa,
electron collisions with the metastable states already play an important role in
determining optical emission and, therefore, PIC/MCC simulations is expected
to yield accurate predictions for line intensity ratios only when these processes

are incorporated in the numerical model self-consistently.

20

=@- Corona model
= Atomic constant model
[-4- PIC+CRM

== OES

—_
a1

Ig11/I750
S

0 L
10° 10" 102
p [Pa]

Figure 6.9: Intensity ratio of the 811.5 nm and 750.4 nm lines as measured from
the OES, calculated using the corona model, PIC+CRM, and as estimated based

on atomic data (see text).

Although the corona model well reproduces the line ratio I¢3/ 75 value
obtained from the PIC+CRM simulation for pressures up to 20 Pa, this good
agreement between the two models does not apply to all the intensity ratios.
Figure 6.9 shows the same set of results for another intensity ratio, namely that
of the 811.5nm and 750.4nm lines (Ig;1/I750). For this line ratio, the results
show that the corona model also reproduces well the experimental ratio. How-
ever, the predictions of the full PIC+CRM model show deviations already at
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lower pressures. This is likely due to the behaviour of the 811.5nm line. In-
deed, this is the only line from the 2pg state. Further, its lower level is the 1s;
metastable state so that the line is subject to self-absorption. As demonstrated
in Fig. 7.10, the density of the 1s; state and consequently the self-absorption for
this line are not correctly represented by the PIC+CRM simulation presented
in this study, which causes a poor agreement between the measured and pre-
dicted (relative) intensities for the 811.5nm line. Naturally, other lines whose
lower level is the 1s; state experience the same overestimation of the radiation
trapping. However, all other 2p states have alternative radiative transitions to
other 1s states that generally have a lower population than the 1s; state. Con-
sequently, their populations are less influenced by the overestimation of the
1s5 density. This suggests that the 811.5 nm line can be a sensitive indicator to

assess how well the metastable density is reproduced by the model.

6.5 Conclusions

In this work, 1D PIC/MCC simulations were conducted for symmetrical
capacitively-coupled RF Ar plasma discharges with pressure ranging from 2 Pa
to 100 Pa. The electron density and EEDF calculated from PIC/MCC simulation
were used as input parameters to the CRM in order to model the Ar spectral
line intensities. In the PIC/MCC simulations used in this study, the only ion-
ization and excitation mechanisms taken into account were the electron-impact
ionization and excitation of the ground-state Ar atoms. This is based on the
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fact that at low pressure, the metastable Ar density is typically smaller by a
few orders of magnitude than the ground-state Ar density and, therefore, it is
commonly assumed that the stepwise ionization from excited Ar atoms, includ-
ing metastables, could be neglected in PIC/MCC simulations, which allowed
a significant reduction of computation time. It should be noted that, unlike the
PIC/MCC simulation used here, the CRM of this study includes the stepwise
ionization from all levels of excited Ar atoms included in the model.
Comparison of the simulated intensities to the OES measurements has
shown that this one-way coupling of the results from the PIC/MCC simula-
tions into the CRM simulation (i.e., the PIC+CRM simulation) can model the
spectra reasonably well up to 20 Pa. At pressures above 20 Pa, however, the
calculated 1s; density (n;s,) continued to increase with pressure, in contrast
with the measured n,,, that was found to reach saturation. Investigation of
the effect of the 1s; state to the ionization and excitation dynamics of the dis-
charge has revealed that the neglect of the loss processes of the long-lived 1s;
metastable state in the PIC/MCC simulation can be one of the main sources
for this large n,y, discrepancy in the higher pressure range. It indicates that the
EEDF and the electron density obtained from the PIC/MCC simulation of this
study (without the stepwise ionization), which are used as input parameters
for the CRM, are not consistent with the measured optical emission spectra
in this higher pressure range. The incorporation of Ar metastables (possibly
along with a number of additional excited states) in the PIC/MCC simulation

177-179

code is therefore considered necessary to achieve a better agreement be-
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tween the measured and computed optical emission spectra over a wide range
of pressure.

The full integration of a CRM into the PIC/MCC simulation would re-
quire much longer computational time to simulate plasma dynamics as well as
optical emission spectra. In contrast, the proposed PIC+CRM simulation can
offer a practical solution for the prediction of optical emission spectra as long
as the PIC/MCC simulation provides sufficiently accurate electron density and
EEDF at a reasonable computational cost. The determination of the minimum
number of Ar excited states that need to be included in such PIC/MCC simu-

lations in the pressure range of our interest is deferred to a future study.
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Chapter 7

Results: Machine learning-based prediction of

plasma parameters from the optical emission spectra

In this chapter, the ML predictions of the the EEDF and n, from the inten-
sities are presented. The ML models are trained using data from the PIC+CRM
method discussed in the previous chapters, with the peak-to-oeak voltage var-
ied from 200 - 500 V to increase the dataset. These models are then used to
predict test simulation data. The resulting EEDFs predicted using KRFD and
ANN are presented first, followed by the n. predicted by RFR. These predicted
EEDFs and n, are then used as input parameters for the CRM to yield intensi-
ties, which are compared to the input test intensities.

As an additional test, since experimental intensities measured for the
validation of PIC+CRM are available, the ML models are also used to predict

from these experimental intensities. This is presented in Sec. 7.2.

7.1 Prediction from simulated data

7.1.1 EEDF prediction

Figure 7.1 compares the EEDFs predicted by KRFD and ANN with the test
EEDF data. The KRFD and ANN predictions agree very well with the test data.

The excellent agreement extends over more than six orders of magnitude. The
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Figure 7.1: EEDF predictions at 3 Pa 400 V (a and b) and 95 Pa 300 V (c and

d), presented on the logarithmic scale (a and c) and the linear scale (b and d).

Each subfigure shows the EEDF predicted by KRFD, by ANN, alongside the

test EEDF data from simulations, labeled as "PIC+CRM (sim)’.
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Figure 7.2: Comparison of each predicted data point of the EEDF to its corre-
sponding test data point, as predicted using KRFD (a) and ANN (b). A perfect

prediction would give a diagonal line with an R? of 1.

small deviations observed at low energies (below about 10 eV) are likely due to
the fact that the electrons in this energy range do not participate in excitation
collisions of ground-state atoms. Consequently, the emission intensities are
less sensitive to this region of the EEDF and, naturally, the uncertainty here is
larger. Note, however, that the low-energy electrons still participate in stepwise
excitations and deexcitation collisions. Therefore, the intensities are not entirely
insensitive to this population of electrons and relatively reliable information
about the low-energy part of the EEDF can still be obtained.

To assess the overall performance of the EEDF prediction for all test data,
predicted data points were compared to their corresponding test data values.
The excellent agreement is demonstrated in Fig. 7.2. Here, each predicted point
of the EEDF is plotted against the corresponding test data for both KRFD and
ANN. A good model would produce a data cloud concentrated around the
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x = y line, with an R? value close to 1. The coefficient of determination R? is

calculated by

R2—1_ Z?:_ol(% —y;)?
Z;L:_ol (xi — z)?

(7.1)

wherein z; is a test value, y; is a predicted value, and 7 is the mean of all test
values. In general, both models are shown to predict the EEDF well with high
R? values. Still, the KRFD exhibits a slightly better accuracy. Further, it is ob-
served that the scattering around the diagonal line in Fig. 7.2 is the largest in
the region of low EEDF values (below 107¢ eV) for both methods. This corre-
sponds to the EEDF at high electron energies (typically above the ionization
energy of the argon atoms). There the influence of the noise both in the training
data as well as in the test data used for comparison is the largest, resulting in
the observed larger deviation between predicted and test EEDF. Nevertheless,
it is remarkable that both models are able to achieve good predictions on an

arbitrary function even with a limited dataset for training.

7.1.2 Electron density prediction

In addition to the EEDF, ML is also used to predict n.. Figure 7.3a shows
the results from an RFR model. Here, the predicted n. values are compared
against the entire simulated n, dataset used for training and testing. Overall,
the predictions from the RFR model agree well with the test data, with minor
deviations from the corresponding trend lines. Figure 7.3b quantifies how well
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Figure 7.3: (a) The electron density n, predicted by the RFR for each test case,
plotted alongside the entire n, training dataset. (b) Comparison of each pre-
dicted n. value to its corresponding test data point. A perfect prediction would

give a diagonal line with R? of 1.

these n, predictions agree with the test data by getting the R? of the predicted

ne as a function of the test n,, as is done for the EEDF.

7.1.3 Calculating spectral intensities from predicted plasma parameters
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Figure 7.4: Normalized spectral line intensities at 3 Pa 400 V (a) and 95 Pa 300
V (b) calculated from the predictions of KRFD and ANN, alongside the test

input spectral data from simulations, labeled as "PIC+CRM (sim)’.
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Figure 7.5: Root Mean Square Error (RMSE) of the standard deviation of the
line ratios rj (Eq. (7.2)) from the average ratio of 1 for the intensities calculated
using the EEDF and n. predicted by (a) KRFD and (b) ANN at different V,,

and pressures.

One test for easy assessment of the effectiveness of the ML model in ac-
curately inverting the CRM involves feeding the predicted values of the EEDF
and n, back into the CRM and checking if the model reproduces the same in-
tensities used for predicting these input EEDF and n.. Figure 7.4 shows such a
comparison between the input spectra and the spectra generated by the CRM
using the predicted EEDF and n, from both the KRFD and ANN at example
conditions (3 Pa 400 V and 95 Pa 300 V). It is seen from the figure that both the
KRFD and the ANN models effectively predict plasma parameters that repro-
duce the test spectral data. This strong agreement highlights the models’ ability
to successfully invert the CRM and accurately predict the plasma parameters
for test data within the training scope.

To evaluate the agreement of the predicted line intensities with the test
input data, their discrepancy is quantified similar to what was done in Ref. [8].
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This is achieved by taking the ratio of the experimental relative intensities /ops
to the intensities calculated from simulations /cry for the wavelength values

A, given in Appendix B, such that

e = lors (M) /Torm(Ak)- (7.2)

The line ratios 7, are then scaled such that the average of all r;, values in a given
spectrum is unity. The root mean square error (RMSE) of the corresponding

intensities to the experimental one is then calculated by:

N
RMSE = %Z (rs — 1)?, (7.3)

k=1

where N = 15 is the number of spectral lines. A lower value of the RMSE
shows better agreement and an RMSE of 0 means perfect agreement between
the experimental and calculated intensities. Figure 7.5 shows the calculated
RMSE of the predicted intensities with respect to the input test data. Relatively
low RMSE values are calculated for both KRFD and ANN, with the average for

KRFD generally slightly lower than that of ANN.

7.2 Prediction from experimental data

The previous section shows the predictions of the ML models when ap-
plied to test data belonging to a similar simulation dataset. In this section,
the prediction results are presented for the experimentally measured intensi-
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ties using the same ML models trained with the simulation data. However,
as reported in Ref. [8], it is known that the simulation data deviate from the

experimental data, particularly at pressures higher than 20 Pa.

7.2.1 EEDF predictions
10° ' 10°F " [—KRFD
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Figure 7.6: Prediction results from experimentally measured input data: pre-
dicted EEDFs using KRFD and ANN at 10 and 50 Pa, plotted alongside the
EEDF from PIC+CRM simulations and from simulations by Donko, et al.
('Ref. [7]) at (a) 10Pa, 300 V and (b) 50 Pa, 300 V. (c) n. predicted using RF,
along with the corresponding n. from PIC+CRM simulations and from simula-

tions by Donko, et al. ('Ref. [7]") at 300 V.
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Similar to the simulation data, the EEDF and n. are predicted from the
experimentally measured spectra. Figures 7.6(a) and (b) present the EEDFs pre-
dicted from experimental spectra at 10 Pa and 50 Pa, alongside the EEDF from
PIC+CRM simulations for the same experimental conditions. The comparison
is made for data at a peak-to-peak voltage of 300 V since experimental spectra
are available only at this condition. For reference, the EEDFs under the same
conditions and calculated from the PIC/MCC+DRR simulations taken from
Donko, et al.,” (hereby denoted as 'Ref. [7]’), are also added. Compared to the
PIC/MCC simulations, the PIC/MCC+DRR model in Ref. [7] couples a basic
PIC/MCC code with a diffusion-reaction-radiation (DRR) model to take into
account all the processes involving the excited states. This approach demon-
strates a good agreement of the calculated intensities with the experimentally
measured ones.

The ANN predictions closely replicate the EEDFs from the PIC+CRM
simulation (Figures 7.6(a) and (b)). Even at 50Pa (Figure 7.6(b)), where the
simulated intensities do not agree well with the experimentally measured ones,
the ANN reproduces the EEDF from the corresponding simulation well. It is
possible that the ANN has learned to place a higher weight on the pressure
during its training. At 10 Pa, the EEDF calculated from Ref. [7] agrees closely
with that from PIC+CRM simulations and therefore with the ANN predictions.
On the other hand, the EEDFs predicted by KRFD do not agree well with the
simulation data it is trained with. At 10 Pa, the KRFD predicted an EEDF that

deviates from both simulation results. Moreover, the EEDFs appear “bumpy”
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in contrast to the ANN predictions. This is likely an artefact of the chosen
kernel function (Eq. (5.1)). At 50Pa, however, the KRFD predictions agree
closer to that from Ref. [7] than that from PIC+CRM simulations. This is an
interesting effect, considering that the training of the KRFD involved EEDFs
with a rather different shape at these conditions (see the PIC+CRM curve in

Fig. 7.6(b)).

7.2.2 Electron density predictions

Similar to the simulation data, an RFR model was used to predict n. from
experimentally measured spectra. Fig. 7.6(c) shows n. values predicted by
RFE, along with the training data and n. obtained in Ref. [7]. In this case, we
do not observe the same pressure dependence of the predicted n. as seen in
the PIC+CRM or that from Ref. [7]. Instead, the predicted n. values seem to
fall into two distinct regions: low pressure (below 20Pa) and high pressure
(above 20 Pa). In each region, n. values remain nearly constant. It was already
demonstrated that the developed ML models provide a good inverse of the
CRM. The unexpected behaviour of n. predicted from experimental spectra
likely hints towards the fact that the CRM itself might not provide a good
description of the actual processes in the experiment and would require an
extension. However, this goes beyond the scope of the current work.
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Figure 7.7: Normalized intensities at 10 Pa and 300 V peak-to-peak voltage
calculated from the predictions of KRFD and ANN obtained by feeding the ex-
perimental spectra. For comparison, the underlying experimentally measured
intensities denoted as "OES (expt)’ together with the spectrum from simula-
tions 'PIC+CRM (sim)” with the same conditions are also presented. The latter

data were also part of the training dataset.

7.2.3 Calculating spectral intensities from predicted plasma parameters

The prediction for the EEDF and n. from the experimental intensities are
fed back into the CRM to calculate the corresponding intensities. This is done
to investigate to what extent the inversion of the CRM by the ANN and the
KRFD works with experimental spectra. An example of these results is shown
in Fig. 7.7, that is for the 10 Pa case. As is the case for the predicted EEDF, the
intensities from the ANN predictions yield intensities that closely agree with
the PIC+CRM simulations. Given that the simulations show better agreement

102



CHAPTER 7. RESULTS: MACHINE LEARNING-BASED PREDICTION OF PLASMA
PARAMETERS FROM THE OPTICAL EMISSION SPECTRA

with experiments at low pressures, the ANN is also able to yield good results
at low pressures.

The close agreement between the ANN predictions and the simulation
spectra might seem surprising at first, given that for pressures below 20Pa
there is a factor of about 2 discrepancy between the electron densities used
for generating these spectral data (Fig. 7.6(c)). However, as demonstrated in
Ref. [8], the emission intensities calculated by this CRM have a strong linear
dependence on n. and a much weaker non-linear contribution. Then using
a normalization of the emission intensities to their sum removes the strong
linear dependence on n., leaving only the much weaker non-linear contribution
which makes for the slight differences in the intensities by ANN and PIC+CRM
seen in Fig. 7.7.

The intensities obtained from the KRFD predictions at 10 Pa significantly
deviate from the experimental values (Fig. 7.6(a)). This is likely due to the non-
negligible differences in the EEDF predicted by KRFD from the actual EEDF
(Fig. 7.6(a)). Particularly the deviations in the region of electron energies close
to the excitation thresholds for Ar (11-15eV) are probably the main cause for
the discrepancies observed in the spectral intensities.

In the pressure range above 20 Pa, it is known?® that the intensities calcu-
lated by PIC+CRM deviate from the experimental measurements. It is thus of
relevance to investigate how the intensities calculated from the CRM with the
EEDF and n. predicted by the ANN and KRFD from the experimental inten-

sities compare to the actual experimental spectra, i.e. to what extent the ANN
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Figure 7.8: Normalized intensities at 50 Pa and 300 V peak-to-peak voltage
calculated from the predictions of KRFD and ANN obtained by feeding the ex-
perimental spectra. For comparison, the underlying experimentally measured
intensities denoted as "OES (expt)’ together with the spectrum from simula-
tions 'PIC+CRM (sim)” with the same conditions are also presented. The latter

data were also part of the training dataset.

and the KRFD can invert the CRM for spectra from the experiment. Such a com-
parison is plotted in Fig. 7.8 for the 50 Pa case. Here, similar observations can be
made about ANN as before: it replicates the PIC+CRM results. Notably, it does
so even with the larger difference in n. in this pressure range (Figure 7.6(c)).
This is again likely an artefact of the normalization of the intensities. However,
since at higher pressures the PIC+CRM data deviate from the experimental
data, the resulting intensities from ANN do not agree with the experimental
one at 50 Pa. Surprisingly, the KRFD predictions result in intensities that are in
better agreement with the experimental intensities. This is likely related to the
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better agreement of the KRFD prediction for the EEDF with the more realistic

simulations of Ref. [7].
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PIC+CRM (sim) //‘.
o
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Figure 7.9: Root Mean Square Error (RMSE) of the ratios r, of the intensities
from 'PIC+CRM’ and from KRFD and ANN predictions, to the the experimen-

tally measured intensities at a peak-to-peak voltage of 300 V.

The differences in the calculated spectra from the experimentally mea-
sured ones is quantified through the RMSE (Eq. (7.3)). The resulting RMSE for
KRFD, ANN and the PIC+CRM case are shown in Fig. 7.9. As expected, the
ANN results closely follow the trend of PIC+CRM while KRFD shows a differ-
ent behavior. It shows poorer agreement (a higher RMSE) at low pressures and
better consistency (a relatively lower RMSE) with the experimental spectra at
higher pressures (above about 20 Pa). At the lowest pressure (2 Pa), the EEDF
predicted by KRFD did not allow the CRM code to converge and a data point
is thus missing for this case.
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Figure 7.10: The Ar 1s; metastable density as measured by TDLAS,® simulated
using PIC+CRM,? and calculated from the predictions from KRFD and ANN
via the CRM at a peak-to-peak voltage of 300 V.

In addition to the intensities, the density of the lowest excited state of
argon, 1s;, is also calculated from the CRM. In Ref. [8], 1s; density from the PIC
+ CRM simulations and the TDLAS experiments are compared. Figure 7.10
shows the same TDLAS data, which is given along with the resulting 1s; den-
sity obtained from PIC+CRM simulations and those predicted using plasma
parameters from ML. Unsurprisingly, the ANN and the PIC+CRM values are
very close. At low pressures, they also follow the TDLAS data. However, at
high pressures (above 20 Pa), the predicted 1s; density from ANN continuously
increases and deviates from the experimental measurements. Conversely, the
KRFD predictions show poor agreement with the experiment at low pressures
but surprisingly good agreement at high pressures.
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7.3 Conclusions

In this study, ML models were developed to predict the normalized EEDF
and n. of Ar plasma from its relative (i.e., normalized) optical emission line
intensities at various gas pressures. The models were trained on 86 sets of
numerical simulation data obtained from the 1D PIC/MCC simulation code
coupled with a CRM code described in Ref. [8] for Ar CCPs under various
discharge conditions. Two different types of models, i.e., KRFD and an ANN
were used to predict the normalized EEDF and the RFR was used to predict n..
The input data for the ML models are the gas pressure and the relative emission
line intensities. When the simulated OES data were used for the input data, the
ML models predicted the corresponding EEDF and n. with high accuracy. In
other words, the ML models developed in this study performed well for what
they were trained for.

The simulation data of Ref. [8] are known to agree well with experimental
data at a gas pressure of up to about 20 Pa. However, even under these condi-
tions, some discrepancy always exists between the simulated and experimen-
tally measured OES data. The discrepancy stems from various reasons, ranging
from the inaccuracy of the CRM to the profile effects of the three-dimensional
actual plasma. If the developed ML models are robust enough, they may also
work for the experimentally measured OES data used as their input data for a
gas pressure of up to about 20 Pa. The robustness of the ML models developed
in this study was then tested. It was found that the ANN-based ML model was
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able to predict the normalized EEDF reasonably well at a pressure of 20 Pa or
lower for the experimentally obtained relative line intensities and the gas pres-
sure. However, under the same conditions, the predictions by the KRFD-based
ML model exhibited relatively large errors. The RFR model for n. was not able
to show the pressure dependence under the same conditions and therefore not
satisfactory. The results show that, in general, the ML models, which were
trained only with the simulation data and performed well with simulated OES
data, were not robust enough to handle the discrepancy between the simulated
and experimental OES data.

Therefore the future direction of this study includes the improvement of
the robustness of the ML models. However, a fundamental question remains
as to whether the relative emission line intensities contain sufficient informa-
tion on the electron density and its energy distribution. Although the optical
emission’s relative line intensity spectrum may depend on n., the dependence
may be too subtle to be detected if other effects modify the spectrum shape.
Furthermore, the emission spectra are likely to be affected more sensitively
by a particular energy range of the EEDF than the others. Therefore, different
EEDFs can give rise to similar OES spectra. These issues will also be addressed
in future work.

The recent study of Ref. [7] performed 1D PIC/MCC simulations with
stepwise excitation and ionization and a self-consistent CRM, which produced
OES line intensity data in good agreement with the experimental data for Ar

CCPs at a gas pressure up to 100 Pa. Training of the ML models presented here
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with large-scale simulation data generated by the simulation code of Ref. [7]
can make these models valid in all pressure ranges.

Using the EEDF presented in Ref. [7], we also tested the current ML mod-
els of this study at a high pressure of up to 100 Pa with experimentally obtained
relative optical emission line intensities. As discussed earlier, the current ML
models were not trained for the actual plasma at a pressure higher than 20 Pa
(where the training simulation data do not agree well with the experimental
data) Therefore, it is not surprising that most predictions failed under these
conditions. However, the KRFD-based ML model predicted the EEDF and
other plasma properties similar to those data obtained from the latest numer-
ical simulations given in Ref. [7] at a pressure above 20 Pa. The KRFD-based
ML model was not trained for such discharges and therefore these predictions
should not be trusted. Nevertheless, the KRFD-based ML model’s seemingly
good performance at high pressure reflects some nature of optical emission

spectra of Ar discharges and its discussion is deferred to a future study.
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Chapter 8

Results: Optical emission analysis of carbon

impurity ion parameters in fusion plasmas

In this study, the potential of using the SHS for CXS in order to achieve
a higher optical transmission-to-spectral resolution ratio is investigated. The
SHS is used to measure the toroidal flow velocity V; and carbon impurity ion
temperature Te+ in the LHD by CXS. The results are compared to that from a
DS, which is typically used in CXS in the LHD.

To characterize the spectral resolution, the IW of both the DS and SHS
are first compared. The characteristics of the LHD shot in which this study is
conducted are then presented. This is followed by the analysis and transfor-
mation of the interferogram measured by the SHS. Lastly, the resulting V; and

Tes+ from both spectrometer types are compared.

8.1 Comparison of instrumental width of DS and SHS

The spectral resolution of a spectrometer can be characterized by a param-
eter called the IW. IW is defined to be the full width at half maximum (FWHM)
of the instrumental line profile (ILP).

In this study, the FWHM of the ILP is measured for both the SHS and the
DS by adjusting the spectrum line width of the light from the TLS at 529 nm. A

single optical fiber is used to transfer the light from the TLS to the SHS and DS.
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Figure 8.1: FWHM measured with the SHS and the DS along with the IW

values

The IW is extrapolated to be the value of the FWHM when the spectrum line
width is zero, and is given in Fig. 8.1 for both spectrometers.

In Fig. 8.1, the FWHM measured using the DS and the SHS are plotted
along with its line of best fit. The almost linear behavior of the fitted line shows
a good agreement between the FWHM measured from both spectrometers.
Therefore, the SHS has the ability to measure the FWHM correctly as well as a
DS does. The IW of the SHS was extrapolated to be 0.09 nm, which is almost
half of that of the DS (IW = 0.17 nm). Comparing the optical transmission of
the two optical systems, the aperture size of the SHS and the DS are calculated
to be 16.77 mm? and 2.6 mm? respectively. Another way to express the optical
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transmission is through a parameter called etendue (G) which is calculated by

s

where S is the aperture size, o is the solid angle, and F is the F-number. The
F-number of the SHS and the DS are 2.1 and 2.8 respectively. The values of the
etendue of the SHS and the DS are therefore calculated to be 2.9867 mm?sr and
0.2605 mm?sr respectively. These significant differences in the etendue and
the instrumental width presents the SHS as a suitable instrument for measure-

ments requiring high spectral resolution and high optical transmission.

8.2 Discharge characteristics

SHS and DS measurements were done using Shot # 164208 of the LHD.
Fig. 8.2 shows the discharge characteristics of this shot. The first subfigure
shows the beam power of the neutral beams. Here, 'NB#1-3’ is the sum of the
power from neutral beams 1-3. NB#4, NB#5, and ECH represent the power
from NB#4, NB#5, and the electron cyclotron heating (ECH) respectively. It
can be seen that during beam modulation, NB#4 and NB#5 were turned on
for a longer duration than they were turned off. This allowed for more time-
resolved data of the ion parameters. The second subfigure shows the power of
the NB#5 plotted alongside the time-dependent intensity derived from the SHS
interferogram after FFT. The intensity values were calculated by integrating
the spectra from 528.5 nm to 529.7 nm. This shows how the intensity is directly
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Figure 8.2: Parameters of LHD Shot # 164208
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proportional to the NB#5 power. The third and fourth subfigures show the
Tee+, the electron temperature (7,) and the electron density (n.). Here, the T,
and the n, were measured by Thomson scattering while the 7(-s+ was measured

using the DS. The T, and T+ are observed to increase and decrease following

the ECH modulation.

8.3 Interferogram and corresponding spectra measured using

SHS

Fig. 8.3 shows the resulting SHS interferogram and spectra from Shot
# 164208. Measurements were taken at t = 3.4 s (Fig. 8.3(a)) and t = 4.0
s (Fig. 8.3(b)). The first subfigures show the raw interferograms directly
measured from the SHS. The second subfigures show the intensity derived
after FFT("Background+NBCXS’), along with the background emission ("Back-
ground’). The background emission is calculated by interpolating the neigh-
boring time frames when the NB#5 was turned off. This background emission
is then subtracted from the raw intensity to get the CXS intensity induced by
NB#5 ('NBCXS Intensity”) shown in the third subfigures. The resulting spectra
are then fitted to a Gaussian curve.

The Gaussian fit of a spectrum is represented by the equation

(>‘ — )‘p)z

w

F()\) = Iexp[— |+ A, (8.2)
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Figure 8.3: SHS signal and spectra at (a) t =3.4 s (Ipe+ =2.76 keV) and (b) t =
40s (TCG+ =4.38 keV)
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where [ is the height of the spectrum peak, A is the corresponding wavelength,
Ap is the peak position, w is the width of the Gaussian curve, and A is the
vertical offset from 0. Non-linear least square fitting was done in order to fit
the values of I, \,, w, and A into Eq. 8.2. The V; and the T¢e+ can then be
calculated from the resulting A\, and w values. The distance of the )\, from the
standard charge exchange line peak (\.) at 529.05 nm yields the Doppler shift.
From this value, V; can be calculated using the equation

|)‘p_>‘0|

VfZC )\C

(8.3)

where c is the speed of light.
Similarly, w gives the width of the spectrum after Doppler broadening.

From this width value, the Tr6+ is calculated using the equation

Amy[(w? — wRys) P/l

Teoer = 5

(8.4)

where A is the atomic mass of carbon, m, is the proton mass, and wgyg is the
Gaussian width induced by instrumental broadening. wgps is directly related
to the IW calculated in Sec. 8.1. However, in the case of the wggg, instead of
using the FWHM, the half-width at the height of ¢! is used. wgp is therefore

calculated from the IW using the equation

W
w = .
S Sin2

(8.5)
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In Fig. 8.3, the measurements from t = 3.4 s and t = 4.0 s were taken
because the calculated T+ is observed to be lowest at t = 3.4 s and highest at t
= 4.0 s. Actually, if the figure is looked into closer, one can see that the relative
level of the Ts+ can already be observed even from the interferogram given on
the first subfigure of Fig. 8.3(a) and Fig. 8.3(b). Higher sine wave modulation
(given at the peak of the interferogram) is present when a lower Doppler width
is measured (t = 3.4 s), while a lower sine wave modulation is present at a
higher Doppler width (t = 4.0 s). The Doppler width is then observed more
clearly after FFT, shown by the width of the spectral line in the second and
third subfigures. This observation allows for a relative guess of the 76+ even
just from the measured interferograms.

Wavelength values for the derived spectrum are then calculated using the

equation

1 —17 __ MO'D
M) = g = (Stan, fnog) (dn /)

4 09) x 107 (8.6)

where M is the magnification of the telecentric lens, o is the spatial frequency
of the waveform (in mm™!), oy is the Littrow wavenumber corresponding to
the Littrow wavelength Ay, n is the refractive index of the grating at A, f; is
the angle of incidence, and dn/dA\ is the rate of change of the refractive index
at \. The resulting SHS spectrum is shown in Fig. 8.4(a), and is plotted along
with that of the DS. Here, the SHS and the DS spectra are both passive and

were taken at a pulse around t = 4.0 s from another LHD shot (Shot # 163968).
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Figure 8.4: SHS and DS spectra (a) before adjustment (A = 530.8 nm) and (b)

after adjustment (\; = 530.66 nm)
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From this figure, it can be seen that the peaks of the SHS and DS spectra do not
match. The Littrow wavelength used in Eq. 8.6 is therefore adjusted in such a
way that the SHS peaks matched those of the DS, resulting in the figure given
in Fig. 8.4(b). Here, the Littrow wavelength of 530.8 nm measured from the
calibration is adjusted to 530.66 nm to match the peaks. The Littrow angle for
Eq. 8.6 is then calculated from this new Littrow wavelength value using the

equation

N

_ il
0 = sin™( 5

); (8.7)

where N is the grating groove density. This discrepancy in the peak position is
attributed to the changes in the Littrow wavelength caused by environmental
temperature and pressure changes.

Wavelength adjustment was chosen to be done in such a manner due to
the sensitivity of the SHS to environmental conditions. Although the SHS and
the DS are measuring the toroidal flow from opposite directions, the position
of the DS peak shows that the Doppler shift due to the cold component is <
0.01 nm, which is small compared to the 0.14 nm adjustment applied on SHS

spectra.

8.4 Comparison of flow velocity and ion temperature measured
using DS and SHS
Fig. 8.5 shows the resulting time-dependent V; and 76+ values, along

with the values measured from the DS. The V; and T¢s+ values from the SHS
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Figure 8.5: (a) Toroidal flow velocity (V;) and (b) carbon impurity ion tempera-

ture (Tie+)
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are averaged for every 20 ms interval. It can be observed that the resulting
Tee+ measured from the SHS has the same trend and is in good agreement with
that measured using the DS. Both T+ measurements show the alternating
high-low temperature that went with the ECH modulation. In the case of V,
values measured from the SHS and DS are observed to be scattered, but the
two measurements are found to be in the same range and same general trend.
This good agreement shows how the SHS can be used for CXS measurements
with the advantage of having a higher resolution at higher optical transmission

than a traditional DS.

8.5 Conclusion

In this study, charge exchange spectroscopy (CXS) in the Large Helical
Device (LHD) is performed using a spatial heterodyne spectrometer (SHS) in
order to achieve higher spectral resolution even at higher optical transmission.
To characterize the spectral resolution, the IW of the SHS is measured and com-
pared to that of a traditional dispersive spectrometer (DS). The instrumental
width of the SHS (IW = 0.09 nm) is extrapolated to be almost half of that of the
DS (IW = 0.17 nm) even though the SHS (aperture size = 16.77 mm?, etendue =
2.9867 mm?sr) has a higher optical transmission than the DS (aperture size = 2.6
mm?, etendue = 0.2605 mm?sr). Additionally, the SHS was used to measure the
toroidal flow velocity (V}) and the ion temperature (Tis+) of the C%F impurity
present in the LHD. The interferogram measured from the SHS is transformed
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into spectra using Fourier transform. V; and 76+ are then calculated from the
Doppler shift and Doppler width of the Gaussian fitting of the spectra derived.

The calculated V; and 76+ are shown to be in good agreement with the values

measured using the DS.
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Chapter 9

Conclusions

In this work, we addressed specific challenges related to the determi-
nation of plasma parameters by optical spectroscopy. First, the accuracy of
existing models in simulating spectral intensities given a set of plasma param-
eters was initially validated by comparing the normalized spectral intensities
to measured ones. A PIC/MCC simulation code was utilized to calculate elec-
tron density n. and electron energy distribution function, which were then
used as input parameters for the CRM. Comparing the simulated intensities to
OES measurements demonstrated that this one-way coupling of results from
PIC/MCC simulations and CRM simulation works reasonably well up to 20
Pa. However, at pressures exceeding 20 Pa, the loss processes of metastable
states (which are neglected in basic PIC/MCC simulations) become significant.
Subsequent research revealed that accounting for the loss processes of these
excited states in a 1D PIC/MCC-DRR simulation resulted in intensities that
could model the spectra effectively.

After establishing the relationship between plasma parameters and spec-
tral line intensities using simulation models, these models were utilized to
generate additional data required for training a supervised ML model capable
of predicting plasma parameters using spectral lines. ML models demonstrated

high accuracy in predicting the normalized EEDF and n. when simulated OES
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data were employed as input data. When experimentally obtained OES data
were used as input, the ANN reasonably predicted the normalized EEDF under
plasma conditions where simulation data align well with experimental obser-
vations. Although the ML models performed well for the data similar to what
they were trained on (simulation data), further development and increase in
training data in order to build a more robust model that can extend to a more
diverse dataset (i.e., experimental data).

Subsequently, we tackled the challenge of employing spectroscopic tech-
niques to measure plasma parameters amidst fluctuations and instabilities oc-
curring in magnetically confined plasmas over short periods (approximately
100us). An SHS was utilized in the measurement of the toroidal flow velocity
and temperature of the C%" impurity ion by charge exchange spectroscopy.
This was done to achieve higher spectral resolution, even at higher optical
transmission rates. To characterize the spectral resolution, the instrumental
width of the SHS was measured and compared to that of a traditional Disper-
sive Spectrometer (DS). The instrumental width of the SHS (IW = 0.09 nm) was
measured to be half of the DS (IW = 0.17 nm), despite having a much larger
aperture size. Comparison of the toroidal flow V; and ion velocity T¢s+ of the
C%" ion between the two spectrometers showed a good agreement.

Our contributions propel us closer to achieving more precise real-time
monitoring of plasma in both low-temperature and fusion environments. Es-
pecially in low-temperature plasma, where non-invasive monitoring and feed-
back are crucial for virtual metrology, our advancements improve production
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yield and reduce product loss. We see this work as a significant stride towards
this objective. While there is still much to accomplish, we aspire for our efforts

to encourage further exploration in this critical research direction.
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Appendix A

Radiative Properties of Transitions

Table 1.1: Overview of the radiative transitions included in the CRM. The
values in the table are the vacuum wavelengths of the transitions given in units

of nm. The transitions marked with boldface are also examined experimentally.

A [nm] J i | A5 g | g

104.822 | 1sy | gs | 5.10x10% | 3 | 1
106.666 | 1sy | gs | 1.19x10® | 3 | 1
667.728 | 2p; | 1s, | 2.36x10° | 1 | 3
696.543 | 2p, | Iss | 6.39x10% | 3 | 5
706. 722 | 2ps | 1ss | 3.80x10% | 5 | 5
714.704 | 2py | 1ss | 6.25x10° | 3 | 5
727294 | 2p, | 1s, | 1.83x10° | 3 | 3
738.398 | 2ps | 1s, | 8.47x10° | 5 | 5
747.117 | 2py | 1sq | 2.20x10* | 3 | 3
750.387 | 2p; | Isy | 4.45x107 | 1 | 3
751.465 | 2ps | 1s; | 4.02x107 | 1 | 3
763.511 | 2ps | 1ss | 2.45x107 | 5 | 5
772376 | 2p; | 1ss | 5.18x10° | 3 | 5

772421 | 2py | 1s3 | 1.17x107 | 3 | 1

794.818 2py | Isz | 1.86x107 | 3 | 1
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800.616 | 2ps | sy | 4.90x10% | 5
801.479 | 2ps | 1ss | 9.28x10° | 5
810.369 | 2p; | 1sy | 2.50x107 | 3
811.531 | 2py | 1ss | 3.31x107 | 7
826.452 | 2p, | 1sp | 1.53x107 | 3
840.821 | 2ps | 1sy | 2.23x107 | 5
842465 | 2ps | 1s, | 2.15x107 | 5
852.144 | 2ps | 1sp | 1.39x107 | 3
866.794 | 2p; | 1sy | 2.43x10° | 3
912297 | 2pio | 1ss | 1.89x107 | 3

92245 | 2pe | 1sp | 5.03x10% | 5
935422 | 2p; | 1sy | 1.06x10° | 3
965.779 | 2pio | 1s, | 5.43x10° | 3

97845 | 2ps | 1sp | 1.47x10% | 5
1047.005 | 2p1o | 1s3 | 9.80x10° | 3

1148.811 | 2pyp | 1sy | 1.90x10° | 3
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Appendix B

List of Excited Levels

Table 2.1: List of Excited Levels considered in the CRM

. Total An-
Principal
. Quantum gular  Mo- _— :
Excited State Number mentum Energy (eV) | Statistical Weight (g)
Quantum
(n) Number (.J)
1s5 4 2 11.55 5
1s4 4 1 11.62 3
1s3 4 0 11.72 1
1s9 4 1 11.82 3
2p1o 4 1 12.91 3
2pg 1 3 13.08 7
s 4 2 13.10 5
2p7 4 1 13.15 3
2pg 4 2 13.17 5
2ps 4 0 13.27 1
2py4 4 1 13.28 3
2p3 4 2 13.30 5
2o 4 1 13.33 3
2p1 4 0 13.48 1




Appendix C

Reactions included in the PIC/MCC simulations

Table 3.1: List of reactions included in the PIC /MCC simulations, as taken from

Ref. 3 and Ref. 4

Reaction Type of Reaction
e +Ar > e + Ar Elastic
e+ Ar — e + Ar(lss) Excitation
e+ Ar — e + Ar(lsy) Excitation
e+ Ar — e + Ar(lss) Excitation
e+ Ar — e + Ar(lss) Excitation
e+ Ar — e + Ar(2p1o) Excitation
e+ Ar — e + Ar(2po) Excitation
e+ Ar — e + Ar(2ps) Excitation
e+ Ar — e + Ar(2pr) Excitation
e+ Ar — e + Ar(2ps) Excitation
e+ Ar — e + Ar(2ps) Excitation
e+ Ar — e + Ar(2p4) Excitation
e” +Ar — e + Ar(2p;) Excitation
e” +Ar — e + Ar(2ps) Excitation
e +Ar —» e + Ar(2p) Excitation
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e+ Ar — e~ + Ar(3dy2) + 3di1) Excitation
e+ Ar — e~ + Ar(3dyo) Excitation
e” +Ar — e + Ar(3dy) Excitation

e” + Ar — e~ + Ar(3dg) Excitation

e” + Ar — e + Ar(3d; + 2s5) Excitation
e+ Ar — e + Ar(3ds + 2s4) Excitation
e+ Ar — e + Ar(3ds) Excitation
e+ Ar — e + Ar(3dy) Excitation
e~ + Ar — e~ + Ar(3dsor3dy + 2s301r2s5) Excitation
e+ Ar — e + Ar(3dy) Excitation
e+ Ar — e + Ar(3po) Excitation
e+ Ar — e + Ar(3po) Excitation
e+ Ar — e + Ar(3ps) Excitation
e+ Ar — e + Ar(3pr) Excitation
e+ Ar — e + Ar(3ps) Excitation
e+ Ar — e + Ar(3ps) Excitation
e+ Ar — e + Ar(3p4) Excitation
e+ Ar — e + Ar(3ps) Excitation
e+ Ar — e + Ar(3p2) Excitation
e+ Ar — e + Ar(3p1) Excitation
e+ Ar — e + Ar(2d) Excitation
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e+ Ar — e + Ar(3s) Excitation
e+ Ar — e + Ar(2d) Excitation
e +Ar e +e + Art Ionization
Ar+ Art — Ar + Art Isotropic
Ar+ Art — Ar + Art Backscattering
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