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Abstract

This dissertation describes the developments and results of graph signal sampling under
arbitrary signal priors, based on research papers published within the Graduate School of
Bio-Applications and Systems Engineering, Department of Bio-Functions and Systems Sci-
ence at Tokyo University of Agriculture and Technology, and Graduate School of Engineering,
Division of Electrical, Electronic, and Infocommunications Engineering at Osaka University.
Contributions of this dissertation include proposing a series of graph signal sampling methods
tailored to various signal models, including deterministic, random, and their mixture mod-
els. The effectiveness of these proposed methods is validated via recovery experiments with
synthetic and real-world datasets. The dissertation is organized into six chapters, detailed
as follows.

Chapter 1 serves as the introduction, setting the stage for the dissertation by discussing
the limitations of conventional signal processing and the unique challenges posed by sampling
of graph signals. It outlines the necessity for a flexible sampling framework to address these
issues effectively.

Chapter 2 reviews fundamental concepts in sampling theory, from Shannon’s theorem to
its generalization required for graph signals. This chapter lays the groundwork by defining
graph signals and introducing the concept of generalized sampling theory (GST) which is
adapted for the graph domain.

Chapter 3 addresses the challenges of applying generalized graph sampling theory (GGST)
to random graph signals, which are non-shift-invariant and conform to graph-wide sense
stationarity (GWSS). This chapter extends the concept of wide sense stationarity from time-
domain to graph signals, incorporating a correction transform to improve the accuracy of non-
ideal measurements. The framework supports arbitrary sampling methods and demonstrates
its effectiveness through experiments with synthetic and real datasets.

Chapter 4 presents a sampling set selection (SSS) method that operates under arbitrary
signal priors, moving beyond the conventional bandlimited assumptions. This method utilizes
the direct sum condition between sampling and reconstruction subspaces, ensuring optimal
recovery of graph signals. The effictiveness of this approach is validated through computa-
tional experiments using various graph signal models.

Chapter 5 expands SSS method to address sensor placement problem on graphs (SPPG)



with sensors of diverse specifications. It proposes a solution based on difference-of-convex
(DC) optimization, balancing the maximization of coverage area with the minimization of
sensing budget. Experimental results demonstrate the effectiveness of this approach.

Chapter 6 extends the GGST framework to multi-channel systems, addressing the com-
plexities posed by full-band graph signals. This chapter not only clarifies the relationships
among existing analysis methods but also demonstrates the framework’s effectiveness through
the multi-channel sampling (MCS) of full-band graph signals.

Chapter 7 summarizes the dissertation and offers comprehensive directions for future
research.
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Chapter 1

Introduction

Sampling has played a crucial role in signal processing. Sensors are ubiquitous and capa-
ble of collecting large volumes of diverse information in real-time. This information includes
multimedia (images, audio, and videos), 3D point clouds, and environmental and behavioral
data [1-4], to name a few. Although modern sensors can capture signals with significantly
high temporal/spatial resolutions, most instances are wasted in practice due to storage con-
straints and the limited scale of analysis techniques. Therefore, the data acquisition in sensors
must incorporate a sampling process for the spatial and temporal instances to extract infor-
mative (significant) ones from the sensing environment.

Spatial sampling presents more challenges than temporal sampling because of the irregular
distribution of sensors in space. This irregularity leads to the absence of a unified sampling
paradigm for spatial data. We focus on spatial domain sampling in this dissertation.

Networks are powerful tools for analyzing signals with a spatial structure, where each
node in a network carries an attribute value and edges represent the inter-node relationships.
These signals are mathematically modeled as signals whose domain is given by nodes on the
graph, i.e., graph signals, and are present in various applications, including sensor, social,
infrastructure, neuroscientific, and biological networks [5-7]. Graph signal processing (GSP)
has been developed to provide efficient analysis tools for graph signals [8].

In recent decades, the diversification and globalization of infocommunication have sig-
nificantly increased the demands for high-quality and high-quantity services, industries, and
businesses. This has led to the extensive distribution of GSP applications utilizing versatile
sensors [5,9]. Consequently, several emerging challenges in GSP have arisen beyond conven-
tional signal communication applications [8]. For instance, there is often insufficient domain
knowledge of GSP applications and thus further analysis of real data is required to accu-
rately understand various measuring environments. Additionally, the scale of current GSP
techniques, which are typically applicable to networks of thousands of nodes, has not yet



met the demands of large-scale applications which involve millions of nodes. This disparity
hinders practical applications. Since sampling tackles both the analysis and reduction of
signal components, it addresses these challenges effectively. In this scenario, sampling graph
signals is a key focus within GSP [10-15].

A critical distinction from standard signal processing is that GSP systems are generally
not shift-invariant (SI), due to the irregular connectivity of the nodes. While SI sampling
can be equivalently expressed in time and Fourier domains [16], graph signal sampling does
not generally have a similar relationship between the nodal and graph Fourier domains. This
discrepancy leads to a divergence among various sampling approaches [10-15,17].

Node-wise sampling is a principal approach in graph signal sampling [10-14]. It involves
selecting a subset of nodes, referred to as sampling set selection (SSS). A challenge of SSS
is that the optimal sampling set varies depending on the graph and the sampling criterion;
SSS is considered non-uniform sampling in space, in contrast to the uniform intervals of
SI sampling. The sampling criterion is designed based on the requirements of downstream
applications [18,19].

Sensor networks are a compelling application of SSS. Since monitoring all nodes might
be infeasible due to various constraints, one may need to select sensor positions from the
(large) sensor network, whose nodes and edges represent the candidates for sensor positions
and the inter-node communication of sensors, respectively. Thus, the significance of nodes
can be evaluated based on the estimation error of the unobserved nodes, reconstructed from
the observed ones. In this context, SSS is also considered as a sensor placement problem on
the graph (SPPG) [20-22].

The least squares (LS) criterion is representative for SPPG [23]. It calculates the average
mean squared error (MSE) in sampled signals. However, LS recovery can cause significant
errors in non-sampled signals, since it only focuses on minimizing the estimation error in
sampled signals [24]. To address this limitation, SPPG requires an alternative criterion that
leverages any available information about the non-sampled signals to achieve the best possible
performance.

A prior domain, where the original signal is likely to reside, can be specified by a signal
prior. For instance, the frequency band and historical statistics of objective signals are often
used for identifying these domains [25,26]. There are three widely-studied priors in the liter-
ature [15]: subspace, smoothness, and stochastic priors. In essence, they are categorized as
constraints on a basis function, energy bound, and covariance of the original signal, respec-
tively. By utilizing signal priors, sampling theory can achieve greater flexibility in practice
and higher accuracy.

In summary, the aforementioned challenges in applications boil down to a fundamental
problem: Sampling theory on graphs under arbitrary signal priors, which we abbreviate as
generalized graph sampling theory (GGST).

Accordingly, this dissertation establishes a sampling paradigm for graph signals by ad-



dressing three challenges:

1. We construct a GGST, providing a general framework for sampling that allows for the
best possible recovery under arbitrary graph signal priors.

2. We develop an SPPG based on the GGST framework and then extend it to more
challenging scenarios where sensors have multiple specifications.

3. We expand SSS from a single-channel system to a multi-channel one, broadening the
available signal models beyond those in SPPGs to include a mixture of multiple signal
priors.

We describe the above three contributions from Chapter 3 onwards. The overview of Chapters
is visualized in Fig. 1.1.

While this dissertation focuses on SPPG, it is merely one of the possible applications
of SSS and encompasses several other applications, such as bottleneck detection in traffic
networks [27] and leak detection in water supply networks [28]. Throughout this dissertation,
we use the term SPPG, differentiating it from SSS when addressing specific constraints related
to sensors.

The remainder of this dissertation is organized as follows: Chapter 2 reviews the basics of
sampling theory for both time domain and graph signals. We begin with an overview of the
classical Shannon’s theorem and discuss its limitations due to the bandlimited assumption.
To address these limitations, we introduce the concept of generalized sampling theory (GST),
which aims to ensure the best possible recovery under arbitrary signal priors [16]. This
framework comprises sampling, correction, and reconstruction transforms. A key innovation
of GST is the incorporation of a correction transform into the standard sampling theory.
The correction transform is specifically designed to minimize the worst-case estimation error,
compensating for the non-ideal reconstruction transform. Because GST operates within a
general framework in Hilbert spaces, it accommodates not only SI signals but also graph
signals [15]. Finally, we lay out the mathematical definition of graph signals and adapt GST
to the graph setting to derive GGST.

Chapter 3 considers a GGST framework for random graph signals, which adhere to graph
wide sense stationarity (GWSS) [26,29]. In fact, random graph signals are ill-posed due
to their non-SI nature, compared to the deterministic counterparts. As a result, GGST
for random graph signals is challenging and yet requires further insights and arguments.
We extend the concept of wide sense stationarity (WSS) from time-domain signals to the
graph domain. In this framework, a correction transform is placed between the sampling and
reconstruction transforms to compensate for non-ideal measurements, aiming to minimize
the MSE between the original and reconstructed signals. The proposed framework allows
for arbitrary sampling methods, i.e., sampling in the nodal or graph frequency domain. The
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Figure 1.1: Overview of this dissertation.

effectiveness of the proposed method is validated through recovery experiments with synthetic
and real datasets.

Chapter 4 proposes an SSS method that accommodates arbitrary signal priors, moving
beyond the typical bandlimited assumption [10-12,14]. This method is applicable to arbitrary
linear graph signal models and is founded on a GGST framework, considered in Chapters
2 and 3. Our approach is uniquely built upon the direct sum condition between sampling
and reconstruction subspaces [15], which is crucial for the perfect recovery of sampled signals.
Additionally, we develop a computationally-efficient algorithm for the proposed SSS, utilizing
the Neumann series approximation. The effectiveness of our method has been proven through
experiments with various graph signal models.

Chapter 5 expands the scope of SSS in Chapter 4 by addressing the challenges in the
context of SPPG. It explores an SPPG method with varying specifications on sensors, which
is a key concern in environmental monitoring across networks like water supply, electricity,
and gas pipelines [30]. Unlike most studies that assume uniform sensor specifications, our
approach takes into account sensors with diverse specifications. We propose a solution based
on difference-of-convex (DC) optimization. Sensor placements are selected such that they
simultaneously maximize the overall coverage area and minimize the total sensing budget.
Our experimental results demonstrate the effectiveness of our proposed method.



Chapter 6 develops multi-channel sampling (MCS) for graph signals. Unlike the tradi-
tional focus on bandlimited graph signals, this work addresses full-band graph signals often
encountered in applications [31]. These signals are generally represented by a mixture of
multiple signals following different generation models. This necessitates MCS for effective
analysis, diverging from the existing single-channel sampling practices. We propose an MCS
framework built upon GGST, introduced in Chapters 2 and 3, and design an SSS method
tailored for MCS based on Chapter 4. Experimental results demonstrate the effectiveness of
the proposed method in recovering full-band graph signals.

Chapter 7 provides a summary of the proposed sampling paradigm for graph signals and
concludes the dissertation.



Chapter 2

Sampling theory for time-domain and
graph signals

2.1 Introduction

Sampling theory has profoundly influenced modern signal processing tasks since being es-
tablished by Shannon [32]. Understanding sampling theory is useful for navigating through
classical signal processing literature. Its principle, i.e., extracting an informative subset from
a pool of signals, addresses a crucial challenge in numerous signal processing applications,
such as compressed sensing [33], key-frame detection for videos [34], anomaly detection [35],
and feature extraction in machine learning [36], to name a few.

While the elegance of Shannon’s paradigm attracts many researchers, it assumes that
signals are ideally bandlimited, which can be challenging in practice. This assumption has
motivated numerous studies tailored to several challenging scenarios. Generalized sampling
theory (GST) is one of the promising alternatives [16]. It allows for the best possible recovery
of arbitrary signals from non-ideally sampled signals, given appropriate signal priors. This
framework embraces arbitrary linear signals, thus extending its applications beyond time-
domain signals to include signals in various domains. Graph signals have been an emerging
signal model in signal processing applications [8], whose domain is given by nodes in a
network. This extension motivates us to develop a GST for graph signals.

In this chapter, we start by reviewing fundamental properties of linear shift-invariant (LSI)
systems, Fourier analysis, and random processes. We revisit the Shannon-Nyquist sampling
theorem from a practical perspective. To overcome its limitations, we then introduce the
well-studied GST in Hilbert spaces. Lastly, we derive a GST framework on graphs based on
the preceding framework.



2.2 Classical signal processing tools

In this section, we review the basic signal processing tools. First, we refer to a LSI system to
introduce Fourier transforms of LSI signals. Next, we consider the stationarity of LSI signals.

GSP is not a LSI system, but an analog of LSI is introduced, which plays a fundamental
role in GSP, including spectral analysis, filter designs, sampling, and restoration of graph
signals. Therefore, revisiting an LSI system is beneficial as a good starting point for under-
standing and entering the field of GSP.

Linear shift-invariant system

We quickly review a LSI system, which plays a key role in signal processing. It yields many
desired properties. The classical sampling theory is built on these properties.

Throughout this dissertation, we assume that both of continuous and discrete linear sys-
tems are bounded. That is, they are defined over L, and £, spaces (1 < p < 00), respectively.
For an arbitrary function z(t), the vector space L, satisfies the following condition.

Jetol, = ([ loterar) Y (21)

o0

For an arbitrary sequence z[n], the vector space ¢, satisfies the following condition.

1/p
[z[n]]l, = (Z Iw[n]lp) < 00. (22)

nez

Continuous-time system

We introduce several important terminologies of conventional signal processing;:

Linearity Let x(t) and y(¢) be the input and output of a system T, i.e., y(t) = T{xz(t)}.
Then, T is linear if and only if

T{ax1(t) + bxa(t)} = ayi(t) + by (1), (2.3)

where a,b € R. In particular, if the delay between z(t) and y(t) is invariant, i.e., y(t — 7) =
T{x(t —7)}, T is a linear shift-invariant (LSI) system.



Dirac delta The Dirac delta 6(t) is defined as

/fx@&w:ﬂm, (2.4)

where z(t) is an arbitrary test function that has a compact support and infinitely differen-
tiable. We summarize properties of §(t) as follows:

(/w&ﬂﬁ:L (2.5)

o0

/mx@&ﬁ%@ﬁ:ﬂm) (2.5b)
2(£)8(t) =2(0)8(t) (2.5¢)

We will frequently use the Dirac function to express sampling process.

Convolution The convolution between two functions z(t), y(t) is defined as

x(t) xy(t) = /_OO x(T)y(t — 7)dr. (2.6)

o0

Impulse response The basis property of a LSI system is that it is characterized by the
impulse response h(t). The impulse response h(t) is given by the output of the system when
the input is §(t), i.e., h(t) = T{d(t)}. By using (2.5b), y(t) can be expressed by

mn:Tu@nZT{/mxuw@—ﬂm}

—00

= /_00 x(m)T {6(t — 1)} dr.

[e.9]

Since T is a LSI system, we have 7{6(t — 7)} = h(t — 7). Therefore, the LSI system is
characterized by

T{z(t)} = / h(t — 7)dt = z(t) = h(t). (2.7)

For a bounded input z(t), the system is stable if the output of the LSI system y(t) is
bounded. This is referred to as the bounded-input-bounded-output (BIBO) stability. By
using (2.7), the BIBO condition leads to

y(t)] < / " ot~ 7)lIh(r)ldr < max x(2) / o)\dr. (2.8)

[e.9]

Thus, supposing that z(t) is bounded, the BIBO condition implies that h(t) is absolutely
integrable, i.e., h(t) € L;.



Continuous-time Fourier transform (CTFT)

Here, suppose that all functions that we treat are absolutely integrable!. The CTFT of
x(t) € Ly is defined as

X(w) = /_OO x(t)e ¥ dt. (2.9)

Its inverse (ICTFT) is given by
x(t) = L /00 X (w)e? dw (2.10)
2r ) _o ' '

We describe important properties of CTFT below. We denote the Fourier transform pair
by z(t) <> X(w).
e Convolution and product
The convolution between x(t),y(t) can be expressed by the product between the cor-
responding CTFTs X (w), Y (w) in Fourier domain, i.e.,
x(t) xy(t) < X(w)Y (w). (2.11)

Similarly, the dual relationship is commutable, i.e.,

s(By(t) © %X@J) LY (). (2.12)
e Symmetry

The CTFT of a real function, X (w), is Hermitian symmetric, i.e.,

X(w) = X(—w). (2.13)

e Shift and scaling

The time-shift corresponds to the frequency-modulation in Fourier domain, i.e.,

ot —tg) <> X (w)e 9+, (2.14)

In principle, if a signal f(t) is absolutely integrable, i.e., f(t) € L1, the CTFT of f(t) is defined.
Exceptionally, if f(¢) is square-integrable, i.e., f(t) € Ly , the CTFT of f(t) could be defined. For example,
0(t), 1/t and sinc(t) are all in Lo but not in L;. The existence of a Fourier transform depends on either
f(t) € Ly or f(t) € La, which are not necessarily simultaneously satisfied.
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The dual relationship is commutable, i.e.,

x(t)e? 5 X (w — wp). (2.15)
The time-scaling of x(t) is reciprocal to the frequency-scaling of X (w), i.e.,
1 w
e —X (—) , 2.16
ofat) & 10X (4 (2.16)
where a is a scalar. In particular, considering a = —1, it is clear that z(—t) < X (—w).

This relationship is known as the time-reversal symmetry.

e Correlation
The correlation between real functions x(t),y(t) is defined as

Tay(t) = /_OO z(7)y(t + 7)dr. (2.17)

o0

In terms of the convolution, this can be expressed by 7,,(t) = x(—t) * y(t). Further,
with (2.11) and (2.13), the CTFT of r,,(t), Rxy(w), can be expressed by

ny(w) = X(w)Y(w) (218)

e Energy conservation

According to Parseval’s theorem, we have the following equality:

/_ T Dyt = % /_ Z K@Y (w)dw. (2.19)

(e 9]

Replacing with z(t) = y(t), (2.19) becomes

/Z e (t)|2dt = %/: X () P (2.20)

Therefore, the signal energy is conserved in the CTFT.

Discrete-time system

Basically, a discrete-time system parallels properties of a corresponding continuous-time sys-
tem. The discrete-time system can typically be obtained by sampling of the continuous-
time system. In particular, xz[n] is often assumed to be samples of z(t) at uniform period
t=nT,n € Z.

Suppose that x(t) is a LSI system. For its uniformly-sampled system z[n], the shift
invariance holds at every intervals of 7. That is, when the input delayed m samples, the
output of the system 7 is also delayed m samples, i.e., y[n —m] = T{z[n —m|} in terms of
y[n] = T{x[n]}. Here, we introduce a few terminologies of the discrete-time system.

10



Kronecker delta The Kronecker delta is defined as

1 =0
=4 " (2.21)
0, n#0.
We can rewrite an arbitrary sequence x[n| with the use of J[n| as
x[n] = Z x[m]o[n — m). (2.22)
meZ

Convolution The convolution between two sequences z[n|, y[n] is defined as

x[n] x y[n] = Z x[mlyln —m]. (2.23)

me”Z

Discrete-time impulse response In the same manner as the continuous-time system,
the discrete-time LSI system is also characterized by the impulse response h[n]. The impulse
response h[n] is given by the output of the system when §[n] is the input, i.e., h[n] = T{d[n]}.
By using (2.22), the output 7 results in
T{a[n]} = Y a[m)T{d[n — m]}
meZ
= Z x[mlh[n — m| = x[n] * h{n] (2.24)
meZ
where the second equality is followed by the fact that 7 is a LSI system, i.e., T{d[n —m|} =
hin —ml].
Importantly, if h[n] has a compact support, (2.24) is expressed by the finite-length filter-
ing. Such a filter h[n] is referred to as a finite impulse response (FIR) filter. In the same

manner as the continuous-time system, the stability can be evaluated by impulse response
hin]. The BIBO stability is guaranteed if h[n] is absolutely summable, i.e., h[n] € ¢;.

Discrete-time Fourier transform (DTFT)

The DTFT of x[n] € ¢1, X (e¥), is defined as
X(e*) = Zx[n]e‘j“”. (2.25)

nez

Note that X (e/*) is 2m-periodic. Correspondingly, the inverse DTFT (IDTFT) is given by

xn] = % /_7r X (e™) e duw. (2.26)

11



Since most of properties of DTFT is inherited from those in CTFT, we omit them in this
dissertation for simplicity. We highlight a few important properties below.

e Convolution and product

The convolution between z[n|, y[n] can be expressed by the product between the cor-
responding DTFTs X (e/*), Y (¢?*) in Fourier domain, i.e.,

z[n] x y[n] < X ()Y (e*). (2.27)

e Discrete correlation

The correlation between real sequences z[n], y[n| is defined as

reyln] = Z x[mlyln + m]. (2.28)

meZ

In terms of the convolution, 7,,[n] can be expressed by 7,,[n| = z[n]*y[—n]. In addition,
with their DTFTs X (e/%),Y (e/%), the DTFT of r,,[n], Rxy(e/*), can be expressed by

Rxy(e’*) = X (/)Y (e/v). (2.29)

e Energy conservation

Parseval’s theorem also holds for the discrete-time system as

—_ 1 [T,
Zx[n]y[n] = 2—/ X(e*)Y (') dw. (2.30)
neL TJom
Considering x[n] = y[n], the signal energy is also conserved in the DTFT, i.e.,

2 1 " jw

S el =5= [ 1X(¢)|dw. (2.31)
neZ 2m -

Random process

We review the stationarity of continuous/discrete-time signals. Stationarity is character-
ized by the second order statistics. The second order statistics are widely used in several
applications in signal processing.
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Continuous-time random process
First, we consider a continuous-time signal x(t). Its stationarity is defined as follows:

Definition 1 (Wide sense stationary for continuous-time signals). Let z(t) and 7,(t) be a
stochastic signal in the time domain and its autocovariance function, respectively. The signal
x(t) is a wide sense stationary process if and only if the following two conditions are satisfied:

1. E[z(t)] = p. = const, (2.32)

2 B(x(t) = pa)(2(7) = pa)] = Yalt — 7). (2.33)

In addition, a wide sense stationary (WSS) process is characterized in Fourier domain, stated
by Wiener-Khinchin theorem [37]. If x(t) is a WSS process, the power spectral density (PSD)
function coincides with the CTFT of the autocovariance function of z(t), 7.(t) € Ly, i.e.,

Do(w) = / (B, (2.34)

—00

Discrete-time random process
Next, we consider a discrete-time signal z[n]. Its stationarity is defined as follows:

Definition 2 (Wide sense stationary for discrete-time signals). Let x[n] and ~,[n] be a
stochastic signal in the time domain and its autocovariance function, respectively. The signal
x[n] is a wide sense stationary process if and only if the following two conditions are satisfied:

1. E[z[n]] = p, = const, (2.35)

2. B[(z[n] = po)(2[m] = pa)] = valn —m]. (2.36)

In the same manner as the above, if x[n] is a WSS process, the power spectral density (PSD)
function coincides with the DTFT of the autocovariance function of x[n], v.[n] € ¢4, i.e.,

L) = 3 lnle ™. (237)

We have thus far reviewed several fundamental components of classical signal processing.
Based on them, we will examine classical sampling theory in the next section.

2.3 Classical sampling theory

Although the standard sampling theory has been well-studied, many books omit its detailed
derivation. In this section, we review Shannon-Whittaker sampling theorem and address
several limitations inherent in its formulation.
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Sampling in shift-invariant spaces

Let s(—t) € L; be some sampling filter and let 7" be a sampling interval. A sampled signal
is given by

c[n] = (x(t — nT),s(—t)) = x(t) * s(—t)|=n7- (2.38)

Under presense of noise 7n[n|, the sampled signal can be obtained by y[n] = ¢[n] + n[n]. In
Fourier domain, the sampled signal is obtained by the following theorem:

Theorem 1 (Sampling in Fourier domain). Let x(t) € Ly be a continuous time signal with
the CTFT X (w), c[n] € {1 be the sequence obtained by sampling in (2.38). Then, the DTFT

of ¢[n] is given by
Ce) = 7 ZX ( 2”]{) S (w _T%k). (2.39)

kEZ

Proof. Let x4(t) = x(t) * s(—t) denotes the filtered signal. A sampled signal is given by
c[n] = z4(nT). We can can rewrite ¢[n] in terms of a real number n’ € R instead of n € Z as
follows:

] = 2, (n'T) - Z 5((r — n)T) = {:é‘s(n’T) if n'T is an integer (2.40)

otherwise.

The CTFT of z4(n'T) with respect to n' is given by

Fa,(n'T)} = le (%) , (2.41)

where X, (w) is the CTFT of z4(t). The CTFT of > __, 0((1 —n/)T) with respect to n' is
given by

F{Z&((r—n’m} :2w25<27kT_“). (2.42)

TEL kEZ

Thus, by using the convolution property of Fourier domain, i.e., z(t) - y(t) + =X (w) *

Y (w), (2.40) is equivalent to 7
11 w 27rk w W — 27rk
_ - ZX < %k) S (‘*’ _T%k). (2.43)

keZ

This completes the proof. O]
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Let a(t) be a reconstruction filter. The sampled signal (2.38) can be reconstructed by

T(t) = Zc[n]w(t —nT) = af(t) * (Z cln]o(t — nT)> : (2.44)

nez neL

Let ¢o(t) be the zero-inserted signal with c[n], i.e.,

colt) = Z; efn] - 5(t — nT) = {SW 7] ftfl/e fwl;:“ mteger (2.45)
By the scaling property of DTFT, z[n/T] <+ X (e/T), the CTFT of ¢y(t) results in
Fleo(t)} = C(e™7). (2.46)
Finally, the reconstructed signal is given by
X(w) = C(eT) Aw). (2.47)

Note that C(e/“T) in (2.47) is 27 /T-periodic while C'(e/*) in (2.39) is 2m-periodic.
We now define a feasible signal class given by (2.44). Given the reconstruction process in
(2.44) with the basis {a(t — nT)},ez, it spans the subspace characterized as follows:

Definition 3 (Shift invariant space). A shift invariant (SI) space is the space of signals that
can be expressed as linear combinations of shifts of a given generator, i.e.,

A= { Z d[n]a(t —nT), for some a € 62} (2.48)

nez
where d[n] is an expansion coefficient and a(t) is the generator.

Note that the notion of (SI) subspaces plays a key role in generalized sampling theory.

Bandlimited sampling

We now derive the well-known Shannon-Whittaker theorem. Consider a bandlimited signal
xpL(t), whose CTFT is given by

X(w) |w| < wnax
Xp1(w) = {0 o (2.49)

where wyay is the highest frequency of zpp () and X (w) is the spectrum of the original signal
z(t). The DTFT of the sampled signal is given by

C(e) = %ZXBL (“‘Tm> . (2.50)

kEZ
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Figure 2.1: Aliasing.

Aliasing According to (2.50), the overlap from the spectrum shifted by 27wk distorts itself.
It is the well-known aliasing phenomenon caused by sampling. Its toy example is shown
in Fig. 2.1. In order to maintain the original spectrum for w € [—m, 7| after sampling, the
aliasing component is required to be zero, i.e., X (“iTQW) = 0. Therefore, the following
inequality is required:

+2
B2 e (251)
By solving with respect to T', we have
+ 2
r< £ (2.52)
wmax

Since the inequality holds for all w € [—m, 7], T is also bounded in the case of |w + 27| = T,
ie.,

T |w £ 27|
< .

T < 2.53
B wnlax B wnlax ( )

In terms of fy = 1/T and fiax = Wmax/27, (2.53) is translated as
fs = 2 fmax- (2.54)

This statement is well-known as Shannon-Nyquist sampling theorem. When the equality
holds in (2.53), fs is referred to as the Nyquist rate.
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Ideal low-pass filter We consider recovery for a ideally-sampled signal in (2.54). In terms
of the cutoff frequency 2 fiax < fo < fs, the CTFT of the reconstruction filter can be designed
by

A(w) = Trectory, (w), (2.55)
where

1 |w| <2nf,

(2.56)
0 |w|>2rf..

recto, s, (w) = {

That is, (2.56) is referred to as the ideal low-pass filter. We will mention why it is to be ideal
later.
The reconstruction filter is obtained by

at) = % / Alw)e

27 fe
= E el dw
2T —2nf.

B sin 27 f .t
=217 2m f.t
= 2% sinc(2f.t), (2.57)

where sinc(az) = sin(anz)/(awz). As a result, the bandlimited signal is recovered by

rpL(t) = 255 ) cln]sinc(2f(t — nT)). (2.58)

neL

This formula is stated by the Whittaker sampling theorem.
In the following, we show important properties of the basis {sinc(2f.(t — nT))}nez.

Orthogonality of sinc function For simplicity, we denote 27 f. by b. In Fourier domain,
the inner product of an arbitrary set of the basis function in {sinc(2(t — nT))},ez results in

™

< b , b 1 7% [ — jo(n—m)T
sinc | —(t —nT) | sinc (| =(t —mT) | dt =—— recty(w)e 7™
S T T 2m b J_

2 pb
L
2r b* ),
T b(n—m)T)
Tsine (———=) n#m
=" < i 7 (2.59)
T n=m.
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Figure 2.2: Sinc function.

If T is a multiple of 7/b = 1/(2f.), {sinc(2f.(t — nT)) }nez forms the orthogonal basis, i.e.,

/ ~ sine (Q(t - nT)) sinc (é(t - mT)) dt = %5%, (2.60)

oo s i

where 0, ,, is the Kronecker delta. Similarly, it is also clear that {\/LT sinc(2fe(t — nT))}nez
with T"=1/(2f,) forms the orthonormal basis.

Implementation of the ideal low-pass filter The sinc function {sinc(2f.(t —nT))}nez
is hard to efficiently approximate due to the slow decay, which is proportional to 1/t. We plot
sinc function in Fig. 2.2. Furthermore, it is a typical non-causal infinite-impulse-response
(ITR) filter and thus it causes the difficulty of the implementation?. This is why the sinc
function is referred to as the ideal low-pass filter. The limitation of the Shannon’s paradigm
motivates studies of generalized sampling theory [16,38], which aim recovery from an arbitrary
basis beyond bandlimited signals.

Stability of the ideal low-pass filter Let w(t) = sinc(2f.(t)) be a reconstruction kernel.
The sinc function has a finite energy , i.e., {w(t — nT)},ez € Lo. This implies that the
reconstruction process can be stable in the energy sense. To see this, suppose that sampled
signals c[n] are corrupted by noise, i.e., y[n] = ¢[n] + n[n]. Then, reconsturcted error can be
expressed by n(t) = >, ninJw(t — nT’). The reconstruction process via w(t) is stable in the
energy sense if the following inequality is satisfied [16,39]

w(0)00) = [0t < Y Pl (261

- nel

2The non-causality of a filter becomes a issue for time domain signals. In contrast, the non-causality does
not matter for spatial domain signals like images.
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By utilizing the orthogonality of sinc funciton,

(n(t),n(t)) = <Z nlnjw(t —nT), Y nimw(t - mT)> =17y 7’[n). (2.62)

neL MmEZ nez

Therefore, sinc function is stable by viewing 7% = C.

On the other hand, the sinc function is not integrable, i.e., {w(t —nT")}nez & Li1. In other
words, the reconstruction process cannot be BIBO stable. In order to guarantee the BIBO
stability, one needs to satisfy

Z c[nJw(ty — nT)

ne’

<Y lelnll - > lw(to — nT)| < oo, (2.63)

nez nel

for all instances to. Suppose that c[n] is absolutely summable. The BIBO condition is
necessary to hold

sup Z lw(ty — nT)| < oo. (2.64)
toE[O,T]

nez

Note that the sequence sampled from the sinc function is in general not absolutely summable,
ie., {w(to—nT)} & 4 for ty € [0,7], due to the above reason. Therefore, the reconstruction
process via the sinc function is not BIBO stable.

As observed so far, Shannon’s theorem has several limitations due to the ideal low-pass
filter, which is non-smooth and discontinuous. In the next section, we will redefine sampling
within the context of a general vector space to lay the groundwork for introducing generalized
sampling theory.

2.4 Sampling in general vector spaces

In this section, we generalize sampling in SI spaces to Hilbert spaces. First, we review the
basics of vector spaces. Next, we redefine sampling as a linear transform within this context
and formulate a generalized sampling framework.

Basics of vector space

We introduce the notion of Riesz and biorthogonal bases, which play a significant role in
generalized sampling theory.
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Riesz basis

In this dissertation, the signal x(t) is assumed to be expressed by the linear combination of
vectors with an appropriate basis {a,}, i.e., x = ) d[nla,. Here, to guarantee the unique
decomposition of = of the form « = )" d[n|a,, we consider that x lies in a Hilbert space
H where {a,} forms a well-conditioned basis for #. To this aim, the following condition is
desired.

Definition 4 (Riesz basis condtion). A sequence {a, € H,n € I} forms a Riesz basis for H
if it is complete and there exist constants a > 0 and < oo such that

o ldn]* < > dnla,

nel ne’l

<83 |dlnlP. (2.65)

nel

for all d € 05.
Along with a Riesz basis, we may use the following operator.

Definition 5 (Set transformation). Let {a, : n € Z} be a countable set vectors in a Hilbert
space H. The set transformation A : by — H corresponding to these vectors is defined by
Ad =", s dnla, for any dn] € ls.

Throughout this dissertation, we denote the adjoint of A by A* : H + {5. By definition
of the adjoint, i.e., (Ad,y) = (d, A*y), we have

(Ad,y) = (> d[nlan,y)

nel

=3 ] (an,9) (2:66)

Therefore, we can conclude that A*y = (a,,y).
In terms of the set transformation A, (2.65) is simplified to

o (d,d) < {d, A*Ad) < B(d,d) (2.67)
We summarize the merit of using the Riesz basis below.

Remark 1. If the corresponding set vectors of A form a Riesz basis for H, A*A is bounded,
which implies that A*A is invertible. This property is useful for constructing sampling theory
in Hilbert spaces. We will see this in the following section.

We introduce another important properties of a Riesz basis below.
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SI expression In the SI setting, we have the following expression:

A*Ad =

a(t) * Z d[n]a(t —nT)

neL

t=nT
1 - w— 27k \ |? (2.68)
Jw
—=D(e )gez A (—)

(—>RAA(€jw) . D(ejw),

where <+ denotes the equivalent expression in Fourier domain and
. w— 27k \ |?
Raa(e™) =) |A (T)' . (2.69)

keZ
Therefore, we can recast the Riesz condition in Definition 4 in the SI space.

Theorem 2 (Riesz condition in Fourier domain). The signals {a(t —nT)} form a Riesz basis
for a SI space H if and only if there exists a > 0, 3 < oo such that a < Rs(e?*) < 8 almost
everywhere®, Raa(e?*) is defined by (2.69).

Proof. Applying (2.68) to (2.67), the proof is completed. O

Stability of a Riesz basis The reconstruction process through the Riesz basis is stable
in the energy sense. Here, we also assume SI sampling for simplicity. Let {a(t — nT)},ez
be a Riesz basis for SI spaces H. Let y[n| = c¢[n| + nin| denote the noisy sample. Then,
reconstructed error is given by n(t) = > n[nja(t — nT’). Again, the sample is stable in the
energy sense if

(o)) = [P <3 Pl (2.70)
e nez
By comparing with (2.65), it is clear that (2.70) accords with the upper bound in the Riesz
condition.
Biorthogonal basis

We next introduce a biorthogonal (Riesz) basis in Hilbert spaces. We start by the definition
of biorthogonal basis in the following:

3Roughly speaking, the term almost everywhere means that everywhere except for a discontinuity.
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Definition 6 (Biorthogonal basis). Let {a,,n € I} be a Riesz basis for H. Then, there
exists an unique vector set {a,n € L}, namely, biorthogonal basis, such that

(@, am) = Onm- (2.71)
In terms of the set transformation, we have the following corollary.

Corollary 1. Let A and A be set transformations corresponding to {a,} and {a,}, respec-
tively. Then, Definition 6 can be expressed by

A*A =1, (2.72)
1y, s the identitiy transformation for ls.

In the following, we describe two explicit designs of the biorthogonal basis.

Orthonormal basis Denoting the range space of the set transformation A by A C H, we
would like to seek the biorthogonal basis on A. By the Riesz condition in Definition 4, A*A
and (A*A)~! are bounded. Hence, we can choose the set transformation corresponding to
the biorthogonal basis {a,} as

A= A(A A (2.73)

It is easy to verify that A satisfies (2.72).

We next show the SI counterpart of (2.73). Recall that the Riesz condition is given by
Theorem 2 in the SI setting. For an arbitary Riesz basis {a(t — nT)} with the CTFT A(w),
the biorthogonal basis {a(t — nT)} with the CTFT A(w) can be obtained by

- 1
AW = ————A 2.74

() = o A) 1
where Ra(e?*) is defined by (2.69).

Oblique biorthogonal-basis In general, we may seek the biorthogonal basis for A on
the different subspace B such that AU B = H. Since this problem involves two subspaces,
we exploit the following theorem.

Theorem 3. Let the vectors {a,,n € I} form a Riesz basis for a subspace A of a Hilbert
space H, and let the vectors {b,,n € I} form a Riesz basis for a subspace B of H. Let
A:ly — H and B : by — H denote the set transformations corresponding to the vectors
{a,,n € I} and {b,,n € L}, respectively. Then, B*A is invertible if and only if A® B+ = H.
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The proof can be found in [16,40].
With Theorem 3, we can express an arbitrary obiorthogonal basis as

A= B(A*B)™". (2.75)

It is casily verifiable that A satifies (2.72). We can view (2.72) as the space case of (2.75)
where B = A.
In order to show the SI counterpart of (2.75), we utilize the following corollary.

Corollary 2. Let A, S be SI spaces with bases {a(t —nT)}, {s(t —nT)}. Let A(w),S(w) be
the CTFTs of a(t), s(t), respectively. Then, Ly = A®S* if and only if there exists a constant
a > 0 such that

|Rsa(e?™)| > a, almost everywhere. (2.76)

Supposing that Corollary 2 is satisfied, we can rewrite (2.75) as

~ 1

Alw) = e A, (2.77)

We are now prepared to reformulate sampling within general vector spaces. In the fol-
lowing, we introduce a generalized sampling framework.

Generalized sampling framework

Let s, be an arbitrary Riesz basis and S : {5 — H be its set transformation. Suppose that
{sn} spans a sampling subspace S C ‘H. Using the set transformation notation, the sequence
of sampled signals ¢ € ¢, can be expressed by z = S*z and its element c¢[n] is given by

cln] = (sn, 2), (2.78)

where S* : H — /{5 is the adjoint operator of S, i.e., (S*a,b) = (a,Sb) for arbitrary a € H
and b € 52.

Let w, be an arbitrary Riesz basis and W : ¢ — H be its set transformation. Suppose
that {w,} spans a reconstruction subspace W. Correspondingly, the reconstructed signal is
given by

F=Y w,d=Wd, (2.79)

where d € 05 is the sequence of appropriate expansion coefficients whose element is d[n]. In
general, {s,} and {w, } may differ due to some practical limitations. Therefore, we would like
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Figure 2.3: Generalized sampling framework.

to seek the best d with arbitrary vectors {s,}, {w,}. Here, we insert the following processing
prior to the reconstruction

d= He, (2.80)

where H : {5 — {5 is referred to as a correction transform. As a result, generalized sampling
aims to design H so that 7 is close to x in some sense. We depict the framework in Fig. 2.3.
In the following section, we will describe the optimal design of H in detail.

Indeed, generalized sampling encompasses a wider class of signals. We introduce promis-
ing examples of signal subspaces below.

Sampling in multiple SI-spaces Since the generalized sampling framework does not
specify a single-variable sample, we can naturally extend the standard single-channel sampling
to multi-channel sampling. Let {s;(t —nT")}s—1.._ m nez be a Riesz basis for a sampling space
S, where M is the number of channels. The sample in the ¢th channel is given by

coln] = (s¢(t —nT),x) . (2.81)

In this setting, x is assumed to be composed of a linear combination of multi-generators.
Let {we(t — nT)}o—1, anez be a Riesz basis for a reconstruction space W. Then, the
reconstructed signal is given by

Z[n] = Z Z dg[n]we(t — nT), (2.82)
=1

neL

where d, is an appropriate expansion coefficient.
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Sampling in reproducing kernel Hilbert spaces (RKHSs) Although the generalized
sampling framework, in principle, allows for an arbitrary linear sampling process, we can
possibly extend it to a non-linear sampling process. We consider a signal z € H defined in
an arbitrary RKHS Q C H. Let {¢,,} be a Riesz basis for S C H. The sampled signal is
defined as

c(ty) = (x(t), ¢r,), x € Q. (2.83)

Let k be the reproducing kernel induced by the inner product of {¢y, .}, where {k(-,z,)}
forms Riesz basis for Q. Then, the reconstructed signal is given by [41]

B(t) =Y d(tn)k(t ), (2.84)

neL

where d is an appropriate expansion coefficient.
In (2.84), we did not specify concrete designs for the recovery transform. In the following
section, we summarize representative designs commonly used in practice.

Design of recovery

We describe the setup of recovery and criteria for recovery in detail. We consider two scenarios
in recovery, where reconstruction process is constrained a priori due to practical limitations

[16,38]:

Unconstrained recovery Without consideration of practical limitations, our problem
is to directly recover the sampled signal. In this setting, there are no constraints in the
reconstruction (interpolation) process. Since the recovery process is formulated by & = W He,
we need to optimize W jointly with H based on the appropriate criterion. If the signal
subspace is known, denoted by A, we can perfectly recover the original signals. Even when
A is not known but other priors are available, we can still estimate the reliable signal subspace
and recover the appropriate signal.

Predefined recovery If the unconstrained recovery is difficult to implement, we may
resort to the predefined interpolation method, which is easy to implement. In this setting,
the reconstruction process is constrained by the imposed kernel. Therefore, we only need to
design H to compensate for a non-ideal behavior of S as well as W. The predefined solution
differs from unconstrained one in that the signal subspace is fixed by the predefined kernel,
denoted by W. This implies that we can never achieve perfect recovery. Instead, we seek the
best possible signal on VW with the appropriate criterion.
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In principle, the reconstruction error ||# — z|| should be minimized. However, we can
never directly access to the original signal to minimize it. Therefore, ||z — z|| is replaced by
another appropriate error. In what follows, we introduce two criteria widely-studied in the
literature of signal processing [16].

Least squares (LS) criterion Recalling that the sequence of sampled signals is ¢ = S*z,
the LS criterion seeks the signal that minimizes the error-in-sample, i.e.,

# = argmin || S*z — c||?, (2.85)
TER,
Re{QW}

where Q and WV are the sets of signals under the given prior and reconstruction constraint,
respectively. Because of the relatively simple design, the LS criterion has been widely used
in the inverse problem. However, it is also well-known that the LS solution is sensitive to
noise in samples and leads to a large error. Another drawback of the LS criterion is that it
can only incorporate either Q or W into the solution, as long as Q@ # W. This is because the
freedom in (2.85) is only on x and either Q or W can impose on z. Due to this limitation,
the LS solution in the constrained case may generally lead to poor performance.

Minimax (MX) criterion The MX criterion corresponds to the reconstruction that min-
imizes the worst-case error, i.e.,
T =argmin max |7 —z|> (2.86)
ey TEQ, S*w=c

Since (2.86) handles the reconstruction error ||Z — x||, we expect that the MX recovery results
in superior performance than the LS recovery in many cases. Furthermore, there are two
freedom in (2.86), = and Z. This implies that the MX criterion can incorporate the signal
prior @ jointly with the reconstruction constraint W into the solution. As a result, the MX
solution can find the better compromise than the LS solution in the predefined setting, where
T is close to Q in W.

We have thus far not specified concrete signal priors. In the next section, we introduce
two well-known signal priors and derive optimal recovery transforms tailored to each prior.

2.5 Generalized sampling theory

In this section, we formulate recovery problems based on the aforementioned designs and
provide the optimal correction filter designs. We focus on recovery under two well-known
priors. For simplicity, we omit derivations of all problem herein. Their proofs can be found
in [16]. We will briefly introduce those solutions below.
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Subspace priors

When a signal is known to lie in the subspace A of Hilbert space H, i.e., A C H, it is possible
to recover arbitrary signals in A from their sample, which are not necessarily ideally sampled.
This is achieved by selecting the appropriate criterion, including the LS and MX criteria, in
both cases of the unconstrained and predefined reconstruction. While we focus on recovery
in the SI space to highlight its elegant expression, all results herein hold in arbitrary Hilbert
spaces.

Unconstrained recovery

Technically, the solution in (2.85) is generally not unique and there may be numerous solu-
tions. Alternatively, we seek the minimum norm solution in (2.85) as follows:

T = argmin ||z|*. (2.87)
r€Q,S*r=c

Solving (2.87) with @ = A, the optimal solution is given by
Hyps = (S*A)T, (2.88)

where T denotes the Moore-Penrose inverse and the associated reconstruction operator is
W =A.

In fact, the MX solution in the unconstrained case eventually coincides with (2.88) (see
[16]). Particularly, given W = Q = A, (2.86) is reduced to (2.87).

Suppose that S and A span ‘H and intersect at the origin, called the direct sum (DS)

condition, i.e., H = A® S*. Then, the recovery transform based on the LS and MX criteria
in the unconstrained case is given by

F=A(S*A) e (2.89)

Recall that A(S*A)~! corresponds to the (oblique) biorthogonal basis in A. Therefore, when
the DS condition is satisfied, the sampled signal is perfectly recovered from an arbitrary
sampling operator.

Predefined recovery

In this setting, the reconstruction operator is constrained by W a priori. Solving (2.85) with
Q = W, the optimal solution is given by

Hprg = (S* W), (2.90)

Note that this solution ignores the signal prior A.
Next, solving (2.86) with Q = A, the optimal solution is given by

Henix = (W*W) "W A(S* A). (2.91)
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SI expression All solutions introduced in this section have the same form as follows:

RWQ(ejw) jw
H — { Bww(@)Rsq(e/®) RSQ(G{ ) #0 : (2.92)
0 RSQ(GJ“’) =1

where Ryq(e’?) is defined in (2.69), and W(w) and Q(w) denote filters corresponding to W
and Q = A, respectively.

Smoothness priors

We have shown that an arbitrarily sampled signal can perfectly be recovered under the DS
condition in the previous section. In this section, we tackle with a milder problem, in which
a signal is smooth in a norm sense. In this setting, the signal subspace is explicitly not
confined, but the signal norm weighted by an appropriate measuring operator V', i.e., ||V z||,
is bounded. Typically, V is designed by a sharpning (high-pass) filter. Although perfect
recovery is no longer possible here, we can still achieve the best possible recovery based on
the smoothness prior. Similar to the subspace prior, we utilize the LS and MX criteria in
both of the unconstrained and predefined reconstruction filters. Suppose that V' is bounded.
We consider the following signal class

V=Az[|Va] < p}. (2.93)

Unconstrained recovery

In the same scenario as the subspace prior, (2.85) may have numerous solutions under the
smoothness prior. Alternatively, we seek the smoothest solution in (2.85) by solving

i = argmin |[Vaz|?> (2.94)

T€Q, S*r=c

With @ =V, the optimal solution in (2.94) is given by

Hurs = (S*W) 71, (2.95)

where W = (V*V)~15. The optimal reconstruction operator is W.
Like recovery under the subspace prior, the MX solution under the smoothness prior

coincides with (2.95). Particularly, given W = H and Q =V, (2.86) is reduced to (2.94).
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Predefined recovery

Recall that, in principle, (2.85) cannot simultaneously take into account a signal prior Q and
reconstruction constraint . Nevertheless, the smoothness prior V can be merged with W,
ie.,

Vi={x|zeW,|Vz| < p}. (2.96)

Since V' is the convex set, we can incorporate two priors, namely V', into the LS solution.
Solving (2.85) with @ =), the optimal solution is given by

Hprs = (W*VVIW) LW S(S* W)~ (2.97)

where W = W(W*V*VW)~1W*S.
Solving (2.86) with @ =V, the optimal solution is given by

Hpux = (W*W) "W (S*W) ™, (2.98)

where W = (V*V)~15.

Subspace interpretation The underlying signal subspace is explicitly not given under
the smoothness prior. Nevertheless, the recovered signal with (2.95) lies in the subspace
determined by W = R(W) In other words, W can be viewed as the best possible signal
subspace for V. Similarly, W = R(W) is the best possable 81gnal subspace for V'. In this
sense, for the sampling operator S* W(S*W)* and W(S*W)* are associated by oblique
biorthogonal bases in W and V/\7, respectively.

SI expression Interestingly, all solutions in this section also have the same form as (2.92).
As mentioned the above, W and W can be viewed as optimal subspaces for V and V',
respectively. Let W( ) and W( ) denote filters corresponding to W and W, respectively.
Then, Q(w) in (2.92) is replaced by either W (w) or /W(w) Throughout this dissertation,
Q(w), is called a prior filter, which is replaceable with an arbitrary filter depending on the
signal prior.

In the above regard, we can view (2.92) as a recovery transform tailored to arbitrary signal
priors, specifically within the context of subspace and smoothness priors. Interestingly, we
will see that this perspective plays a key role throughout this dissertation.

We have thoroughly reviewed the groundwork of sampling in SI spaces. In the next
section, we transition to reviewing the graph space, which serves as an analog to time-domain
signals in some aspects but is unique in others.
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2.6 Basics of graph signal processing

In this section, we review the spectral analysis of graph signals, which plays a key role in
GSP. We also introduce the graph counterpart of the SI system, which is advantageous for
developing GSP applications.

Graphs and graph signals

We consider a weighted undirected graph G = (V, £), where V and £ represent sets of nodes
and edges, respectively. The number of nodes is N = |V| unless otherwise specified. The
adjacency matrix of G is denoted by W where its (m, n)-element [W),,,, > 0 is the edge weight
between the mth and nth nodes; [W], = 0 for unconnected nodes. The degree matrix D is
defined as D = diag (do, ds, ...,dn_1), where d,, = > W] is the mth diagonal element.
A graph signal £ € RY is defined as a mapping from the node set to the set of real numbers,
ie, z[n]:V—R

Graph variation operator In this dissertation, we refer to graph Laplacian L :== D — W
as a graph variation operator. In fact, L plays a significant role in GSP to capture the signal
variation on the graph. Here, the Laplacian quadratic form is defined as

e'Le = ) Wina(zn] — x[m])’ (2.99)
(n,m)e€
=Y Na(\)2 (2.100)

Since L is positive semidefinite, "Lz > 0 always holds. If the signal differences |z[n] —x[m]|
are large among some nodes n and m, ' Lz may become large, i.e., graph signals vary greatly.
In contrast, when « "Lz is small, graph signals seem to be smooth on the graph G. Therefore,
L reflects the smoothness on G.

Graph Fourier transform

The graph Fourier transform (GFT) of @ is defined as
T(N\) = (u, @) = u;n|x[n], (2.101)

where u; is the 7th column of a unitary matrix U and it is obtained by the eigendecomposition
of the graph Laplacian L = UAU" with the eigenvalue matrix A = diag (A, A1, ..., Ay_1).
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Correspondingly, the inverse GFT is given by

z[n] = Z &\ [n). (2.102)

Without of loss of generality, we suppose that {\;}i=1,. n are arranged in ascending order,
ie, A< A <o < Ayv_1. Werefer to \; as a graph frequency.

Most of regular properties of Fourier transform, such as convolution, modulation, shift,
and scaling, do not generally hold in the graph setting. In what follows, we introduce a few
properties of GF'T.

Energy conservation Since U is a unitary matrix, the GF'T does not change a signal
energy, i.e.,

S felnll? = 3 B (2,103

Since GSP is generally not SI, there may be fewer beneficial links between vertex and
frequency domains compared to standard signal processing. In the following, we demonstrate
this distinction and present its desirable analog.

Node-localized system

Several favorable properties in SI spaces are absent in the graph setting due to its non-SI
nature. Still, the node-localization invariant (NLI) system, which is a counterpart of the SI
system, is widely-used in GSP [42].

Localization There is no regular shift in GSP due to the irregular incidence of nodes. To
develop a counterpart of shift, we introduce the notion of localization: The signal variation
is characterized by filtering whose response is localized at several nodes. The localization
operator is defined as [42]

N-1
L {x[n]} = T(Ai)ug[n]u;[m]. (2.104)
=0
In the vector form, (2.104) is given by
L, x = Udiag(U"6,,)U"x, (2.105)

where d,, is the Kronecker delta centered at the node m.
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Generalized convolution A convolution (filtering) is a fundamental processing in signal
processing. Similar to the time domain signal, we would like to build the following dual
relationship.

z[n] x y[n] <> 2(A)7(N), (2.106)

where generalized convolution is defined as [42]

zn] x y[n] = Z T(Ae)Y(Ae)ueln) (2.107)
-0

N-1 N—

] > §(A)uelnluem]

=0

I
I
= o
8
~
L

=Y z[n]L.{ym]}. (2.108)

In the vector form, (2.108) is given by

x xy = Udiag(y)U . (2.109)

Node-localization invariance As aforementioned, the significant difference between the
standard signal processing and GSP is that a GSP is generally not SI due to irregularly-
distributed node degrees. Nevertheless, the node localization parallels SI in some respects.
Let y[n| = T{xz[n]} be the output of a system. T is a NLI system if and only if

T o L {z[n]} = L, {y[n]} forallmeV (2.110)

where f o g denotes applying ¢g and following f.

Recall that, in the matrix form, the localization operator is given by £,, = Udiag(U"4,,)UT.
A system T is NLI, i.e., TL,, = L,,7T holds, if L,, and T are simultaneously diagonalizable
by U. In particular, T is a NLI system if 7T is a polynomial of L, i.e., T = Zf:o a (L),
which is a sufficient condition to be diagonalizable by U.
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Impulse response By utilizing (2.108), we can characterize the NLI system with the
impulse response. A NLI system in (2.110) can be rewritten by

ToLp{zn]} =ToL, {z_: x[@]&[n]}

(=

=

2[l]T o Loy {0e[n]}

= N”
|
=}

z[l]T o Ly {dm[n]}

0

o~
Il

=

2[f]Le {hm[n]}

~
o

8

n

* N[, (2.111)

where T{6,,[n|} = hy[n] for all m. The second equality is the linearity. In the third equality,
instances m and ¢ are commutative by definition of £,,. The forth equality is followed by
the NLI condition in (2.110).

Although (2.111) parallels SI properties in (2.24) and (2.7), the significant difference is
that the NLI system generally has N unique impulse responses {h,,[n]}..ey for each centered
nodes. Therefore, we cannot express the NLI system with a single impulse response in
contrast to a SI system.

We often encounter NLI systems in various studies on GSP [25,26,42]. In the next
section, we will introduce one of the widely-studied signal generation models, bandlimited
graph signals, and conventional sampling approaches for this model.”

2.7 Sampling framework of graph signals

While we assume sampling with uniform intervals in SI space, sampling of graph signals
is not unique due to the irregular connectivity of nodes. Therefore, we need to design a
sampling strategy as well as a recovery problem in contrast to the SI setting. In this section,
we introduce conventional sampling approaches for graph signals.

Bandlimited sampling

There are many attempts to build efficient sampling strategies for graph signals [10-12, 14,
20,43]. They mainly differ from deterministic/random approaches and their cost functions.
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On the other hand, most of studies assume that a graph signal is bandlimited. Here, we
assume that a graph signal lies in a following subspace:

Ap, = {az {m = Ugd, for some d € R/P! } , (2.112)
where B € {1,..., K} is a subset of the low-passband with the bandwidth K.
Suppose that sampled signal is given by
c=Iyyx+n, (2.113)

where M C V), Iyy denotes the submatrix that retains rows in & and columns in ) and 7 is
noise. In the following, we introduce two representative conventional sampling approaches.

Deterministic sampling

In the deterministic approach, the sampling problem is generally formulated as follows:
M* = argmax f(V), (2.114)
McVY

where f : )V — R is a cost function. However, since this is a combinatorial optimization,
which is NP-hard. Alternatively, the greedy method is typically utilized by replacing it with

Y= arygej\n/ll?x fMU{y}) — f(IM). (2.115)

To design the cost function f, we need to the quality of the sampling set. Typically,
the quality of sampling depends on the recovery performance. We describe examples of the
design of f below.

Error-covariance based design The norm of reconstruction error leads to

|12 — 2|l = [Us(UjusUns) 0l < 105l (ULsUnin) ' [l2lImll (2.116)

where || - || and || - || are the ¢5 norm and spectral norm, respectively.
Since Ug and e do not depend on the sampling set M, (2.116) is essentially bounded by
the following inequality

0 < a < omn(UlsUms). (2.117)

Note that (2.116) can be arbitrarily large without (2.117). Therefore, o (U} 5Ums) should
be maximized to select a robust sampling set.

In practice, the spectral norm may not be preferred due to the computational intractabil-
ity. Alternatively, other cost functions are widely used in the literature of experimental
designs [20, 44, 45].  0wmin(ULzUrp) is referred to as the E-experimental design. The
D-experimental design is given by det(UTzUnp) = [[P20MHED 6 (UT, sU ). The T-
experimental design is given by tr(U},zUums) = Z?ET(WMBD 0:(ULsUrms). For interested
readers, please see [20] and references therein.
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Random sampling

Let p € RY be a probability distribution on V), i.e., its components satisfy ij:lp[n] =
L, p[0],...,p[N—1] > 0. pis used as a sampling distribution in random sampling approaches
[14,46,47]. Here, we define the following matrix:

P = diag(p). (2.118)

We denote the sampling set by € := {w, ..., wk}, whose elements independently drawn from
V according to p.
Here, we exploit the following theorem:

Theorem 4 (Restricted isometry property (RIP)). Let Q2 be a sampling set independently
drawn from 'V conforming to the probabilistic distribution p. For any 6 € (0,1), Ioy satisfies
a RIP property if and only if

1
(1= 9)llzl® < —TovP™a|* < (1 +0)|||, (2.119)
m

for all x € Agp, and some constant m.

If the RIP condition is satisfied, p is optimal in that @ € Agp, can have a chance to be
perfectly recovered.

Local graph coherence The local graph coherence [14,42] is a widely-accepted quantity
for p under the bandlimited assumption Agy,. Let |[ULd,,|| denotes the local graph coherence
at node m. This quantity represents the importance of of ULd; in rows in UL: ULS; captures
features of € Apy, better as its score is higher. In fact, p; < |[ULd;|| satisfies that the RIP
condition with the sufficient number of samples [14].

While bandlimited graph signals are widely accepted in the literature, in practice, graph
signals may not be ideally bandlimited. To address this issue, we apply generalized sampling
theory, as discussed in Sec. 2.5, to the graph setting below.

2.8 Generalized graph sampling theory

In this section, we briefly review our generalized sampling on graphs. Based on the previous
framework in Hilbert space, we formulate recovery problems for LS/MX criteria under three
priors. First of all, we define a nodal domain sampling operator as follows:

Definition 7 (Nodal domain sampling). Let Iy € {0, 1}%Y be the submatriz of the identity
matriz indexed by M CV (|]M| = K) and V. The sampling operator is defined by

ST =IG, (2.120)
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Sampling Recovery

Figure 2.4: Generalized sampling framework. The dotted left and right boxes are sampling
and recovery phases, respectively.

where G € RY*N s an arbitrary graph filter. A sampled graph signal is thus given by
y=STx.

In the graph setting, the reconstruction operator depends on the chosen sampling operator
ST because Iy is not unique in general.

The sampling and recovery framework based on generalized sampling is illustrated in
Fig. 2.4. The input signal x is sampled by ST, and the sample is corrected by a correction
operator H € RE*K  After correction, the corrected samples are reconstructed by a recon-
struction operator W € RV*K_ We assume that WTW is invertible in the same manner
as the Riesz condition in Definition 4. This framework explains many existing graph signal
sampling, including sampling for bandlimited signals [15].

As a result, the reconstructed graph signal is represented as follows:

& = WHy = WHS . (2.121)

In this scenario, the recovery problem turns out to be seeking the best possible H based on
signal priors.

In the following, we introduce representative signal models and recovery methods corre-
sponding to the models (i.e., designs of H and W).

Subspace prior

Thanks to the aforementioned generalized sampling framework in Hilbert spaces, we can
utilize all results therein. Here, suppose that the generation subspace A spanned by A €
RV*M (M < N) is known, i.e.,

A={zeR": ©=Ad}, (2.122)

where d is an expansion coefficient. We summarize recovery solutions for each strategy below.
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Predefined LS solution:

Recovery with the LS criterion in the predefined case is given by

z=W(STW)ly. (2.123)

Predefined MX solution:

Alternatively, graph signal recovery with the MX criterion in the predefined case results in

T=WWTW)'"WTA(STA)ly. (2.124)

Unconstrained LS/MX solution:

Regardless of LLS and MX, recovery in the unconstrained case is reduced to
& =A(STA)y. (2.125)

Recall that, Q(w) in (2.92), which depending on a signal prior, is called the prior filter in
ST sampling. This also passes down to the graph setting, where Q(w) is replaced with a
matrix Q € RY*M (M < N). The prior operator is given by Q = A. The DS condition is
identical to that of the predefined MX solution. In addition, if the DS condition is satisfied
for RV = A @ St ie., (STA) is invertible, it leads to perfect reconstruction.

Graph signals encompass rich variations of signal subspaces because of the irregular struc-
ture of networks. In the following, we introduce examples of graph signal subspaces.

Graph signal subspaces One of the well-studied generator is the bandlimited model
which can be characterized as

T

x = d[ilu; = Uypd, (2.126)

i

Il
o

where Uy € RV*K is the submatrix of U whose rows are extracted within B = {0,..., K —
1}. In this case, A = Uyg.
Periodic graph spectrum (PGS) model [48] assumes the periodicity of the graph spectrum
as follows:
x =UAAND]  d (2.127)

samp “"»
where A(A) := diag(A(XNg), ..., A(An_1)) is a graph spectral response of the generator and
D/ . is the matrix for the GFT domain upsampling [17].

samp
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Piecewise constant model [49] is a node domain signal model and is defined as follows.

K
T => dily =[1y,...,17]d, (2.128)
=1

where [17],, = 1 when the node n is in the ith cluster 7; and 0 otherwise [49].

Smoothness prior

In the same manner as the subspace prior, all results herein are also directly derived from
the aforementioned Hilbert space sampling. Here, suppose that the signal energy that is
measured by the smoothness measuring function (i.e., high-pass filter) V is bounded by
ceRy, e, V={xeR": |Vz| <o} For simplicity, V is assumed to be invertible. We
summarize recovery solutions for each strategy below.

Predefined LS solution:
The LS solution in the predefined case results in
&= W(STW)'y, (2.129)

where W = W(WTVTVW)~'WTS. Denoting W as the range space of W, the DS condition

can be written by RY = W o ‘S/’i . While this solution is the predefined case, we can also
view the prior operator as Q = W in another perspective.

Predefined MX solution:
The MX solution in the predefined case leads to

& =W(WTW)'"WTW(STW)iy, (2.130)
where W = (VTV)~1S. Denoting the range space of W by W, the DS condition can be

written by RY =W @ S*.

Unconstrained LS/MX solution:
The LS and MX solutions in the unconstrained case coincides with each other, i.e.,
&=W(STW) ly. (2.131)

The prior operator is give by Q = W. The DS condition is identical to that of the predefined
MX solution.

Since V can be viewed as a graph variation operator, namely high-pass filter, its spectral
representation is advantageous to implement itself. We describe the design of V below.
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Smoothness measuring function on a graph There are other several graph variation
operators in the literature [50]. In terms of V, the spectral response of an arbitrary graph
variation operator can generally be expressed by

V(A =) an(M)7, (2.132)

where {ay} is a coefficient and L is the order of a polynomial. It is easy to check that
V = L'2 is a special case.

2.9 Conclusion

This chapter delves into the fundamentals of sampling theory for both time-domain and graph
signals. It starts with a critical look at Shannon’s theorem, highlighting its limitation with
the assumption that signals must be bandlimited. To overcome these constraints, the chapter
introduces generalized sampling theory (GST), designed for optimal recovery of signals under
any signal priors. This framework is built on three core processes: sampling, correction,
and reconstruction. The correction transform aims to reduce worst-case estimation errors,
making the theory applicable to a broader range of signals. The chapter concludes by formally
defining graph signals and extending GST to the graph counterpart, i.e., generalized graph
sampling theory.
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Chapter 3

Graph signal sampling under
stochastic priors

3.1 Introduction

Graph signal processing (GSP) has presented various analysis tools since being developed
[8,51]. Recent interest in GSP is to extend classical signal processing theory to the graph
setting [48,52-55]. One of the main differences between standard signal processing and GSP is
that GSP systems are not shift-invariant (SI) in general. This leads to the challenge that GSP
systems may have different definitions in the node and spectral (graph frequency) domains:
They do not coincide in general. Such examples include sampling [10-12,14,15,17,20,56,57],
translation [29,42,58-60], and filtering [61].

While graph signal sampling has been extensively studied, most works focus on building
parallels of the Shannon-Nyquist theorem [32,62] and its generalizations [16,63] to the graph
setting. Therefore, sampling of bandlimited graph signals has been a main interest of existing
studies [10-12,57]. Other graph signal subspaces are also useful for practical applications:
For example, piecewise smooth graph signals and periodic graph spectrum signals have been
considered [31,49, 64, 65].

Since sampling of deterministic signals has been well studied in the literature of sam-
pling in Hilbert space [16, 40, 63, 66], we can immediately derive its GSP counterpart. In
contrast, sampling of random graph signals has not been considered so far because existing
(generalized) sampling methods for graph signals have mainly focused on deterministic signal
models [10-12,14, 15,20, 48,56,57,67].

In this chapter, we consider a graph signal sampling framework for random graph signals.
Random graph signals are modeled by graph wide sense stationarity (GWSS), which is a
counterpart of wide sense stationarity (WSS) of standard signals. WSS is characterized
by the statistical moments, i.e., mean and covariance, that are invariant to shift. Graph
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signals do not lie in SI spaces in general. Hence, existing definitions of GWSS are based on
the spectral characteristics of signals [26,29, 68], which are extensions of the power spectral
density (PSD) of the standard WSS. However, existing definitions of GWSS require additional
assumptions that are not necessary for WSS. Therefore, we first define GWSS as a natural
extension of WSS based on signal modulation. With this definition, we can appropriately
analyze GWSS signals with their covariance, which conforms to a GWSS process.

Subsequently, we develop a generalized sampling framework for graph signals under
stochastic priors. We assume that the covariance of graph signals is known and satisfies
the GWSS conditions. Our framework parallels generalized sampling of ST signals [69]. Tt
consists of sampling, correction, and reconstruction transforms. The correction transform
is inserted between the sampling and reconstruction transforms to compensate for non-ideal
measurements. We derive the correction transform that minimizes the mean-squared error
(MSE). Our framework can be applied to any sampling method that is linear. In other words,
both node and graph frequency domain sampling methods [10-12, 17,20, 57] are applicable
without changing the framework.

Existing works of (generalized) sampling theory on graphs [48,67] have been studied
only for deterministic signal models. In particular, deterministic models are categorized
into subspace and smoothness priors [15]. Since these priors constrain the basis function
and energy bound of original signals, respectively, sampling under these priors may be weak
in the face of unexpected disturbances and slight changes in the input. In contrast, our
generalized sampling approach is designed for random graph signals, as described in Table
3.1. Our framework, utilizing stochastic priors, is expected to be robust against undesirable
randomness in graph signals. To the best of our knowledge, graph signals can almost always
be identified by one of the three priors as long as they are linear [16]. Therefore, this work
complements the existing body of generalized sampling theory on graphs.

Interestingly, our solution parallels that in the SI setting [69] when sampling is performed
in the graph frequency domain. Moreover, we show that existing signal recovery methods un-
der different priors [48] are special cases of our framework. Experiments for synthetic signals
validate that our proposed recovery is effective for stochastic graph signals with sampling in
both node and spectral domains.

The remainder of this chapter is organized as follows. Section 3.2 reviews generalized
sampling for time-domain signals. For WSS signals, we introduce the standard Wiener filter.
In Section 3.3, a generalized sampling framework for stochastic graph signals is introduced.
In Section 3.4, we define GWSS as an extension of WSS for time domain signals. Section
3.5 derives graph Wiener filters for recovery of a GWSS process based on minimization of
the MSE between the original and reconstructed graph signals. In the special case of graph
frequency domain sampling, the graph frequency response parallels that of sampling in SI
spaces. In Section 3.6, we discuss the relationship between the proposed Wiener filter and
existing generalized graph signal sampling. Signal recovery experiments for synthetic and
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Table 3.1: Comparison of generalized graph signal sampling.

Signal priors || SI spaces | Graph subspaces
Subspace [16] 48,67

Smootheness [16] [48,67]
Stochatic [69] This work

real-world signals are demonstrated in Section 3.7. Section 3.8 concludes the chapter.

For time-domain signals, z(¢) and z[n] denote a continuous-time signal and discrete-time
signal, respectively. The continuous-time Fourier transform (CTFT) of a signal x(t) € Ls is
denoted by X (w) and the discrete-time Fourier transform (DTFT) of a sequence x[n| € /5 is
denoted by X (e/%).

3.2 Generalized sampling in SI spaces

Generalized sampling for stochastic standard signals is reviewed in this section [69]. Detailed
derivations and discussions can be found in [16,69]. The Wiener filter introduced in this
section parallels that in our graph signal sampling framework.

Sampling and recovery framework for time-domain signals

We first review standard generalized sampling for time-domain signals [16]. The framework
is depicted in Fig. 3.1.

Let z(t) be a continuous-time signal and 7n[n| be stationary noise. We consider samples
c[n] at t = nT of a filtered signal of x(t), c(t) = x(t) * s(—t) , where s(—t) denotes a sampling
filker. The DTFT of the samples, C(e’¥), can be written as

o) = ZS*( QWk)X(w—TQWk‘), 1)

kEZ

where S(w) is the CTFT of s(t) € Ly. The measured samples are corrupted by noise and are
given by

yln] = (s(t = nT),z(t)) +nln]. (3.2)

The reconstructed signal is constrained to lie in a SI space W, spanned by the shifts of a
reconstruction kernel w(t) € Lo, i.e.,

= dnjw(t — nT), (3.3)

ne”L
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Figure 3.1: Generalized sampling framework in SI spaces and its counterpart in the Fourier
domain. Dashed-lined and solid-lined areas in the bottom represent input and filtered spectra,
respectively. Colored areas represent spectral responses of each filter.

where d[n] € {5 are unknown expansion coefficients, which yield the best possible recovery
z(t). To obtain an appropriate d[n|, we apply a digital correction filter h[n] to y[n], i.e.,
d[n] = (h*y)[n]. The CTFT of Z(¢) can be expressed as

X (w) = D)W (w), (3.4)

where D(e?*) is the DTFT of d[n] and W (w) is the CTFT of w(t).

In practice, sampling and reconstruction filters, i.e., s(t) and w(t), may be predefined
prior to sampling based on technical requirements. For generalized sampling, instead, we
assume that we can design the correction filter h[n] freely. The best correction filter h[n] is
designed such that the input signal x(¢) and the reconstructed signal Z(t) are close enough
in some metric. This is a widely-accepted sampling framework for time-domain signals and
we follow it here for the graph setting [24,69].

Wiener filter

Next, suppose that z(t) is a zero-mean WSS process with known power spectral density (PSD)

I';(w) and n[n] is a zero-mean WSS noise process with known PSD I, (e?*), independent of
z(t). Detailed definitions of WSS are given in Appendix 3.A.

The optimal correction filter proposed in [69] is obtained by solving the following problem:

min E {|#(t) - Pyx(t)]*} (3.5)

where Py, is an orthogonal projection onto the reconstruction subspace W. Since the re-

covered signal Z(t) is constrained by (3.3) to lie in W, we want it to best approximate the
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orthogonal projection of x(t) onto that same space W [69]. The frequency response of the
solution of (3.5) is given by [69]:

HPRE(ejw)

Drez Lol + ) S(5 + )W
Rip() (SieaTals + 55)S(5 + 5

where Ry (e/%) =3, o, [W (% + ZE)|2

When the reconstruction filter is unconstrained, we can optimize the correction filter
jointly with the reconstruction filter. The optimal filter in the unconstrained setting is a
special case of (3.6), where w(t) is optimally chosen. In order to obtain the unconstrained
solution, we thus solve (3.5) with respect to w(t) by substituting (3.6) for (3.5) [16]. The
resulting optimal correction filter in the unconstrained case is given by

) 1
Huync(e) = 5 —, (3.7)
> orer Lo+ 5F) [S(5 + )| + Ty (e)
with the reconstruction filter W (w) = I',(w)S(w).
In Section 3.3, we introduce a sampling framework for GWSS as a counterpart to what
we described in this section.

, (3.6)

3.3 Sampling of graph signals

We next introduce the sampling and recovery framework used throughout the dissertation.
Then, two representative sampling methods for graph signals are reviewed.

Sampling and recovery framework for graph signals

We begin by reviewing generalized graph signal sampling [48, 70], illustrated in Fig. 3.2.
The main differences among various methods stem from the sampling domain and signal
generation model.

Let ¢ € CE(K < N) be the sampled graph signal. When S* is the sampling transfor-
mation, ¢ = S*x, we would like to recover x from the noisy samples y = ¢ + 1 using a
reconstruction transformation W € CV*X . The recovered signal is then

& = WHy = WH(c+n) = WH(S*z + 1), (3.8)

where H € CK*¥ is some transformation that compensates for non-ideal measurements. It
is an analog of the generalized sampling framework introduced in Section 3.2: We use three
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Figure 3.2: Generalized sampling framework for graph signals.

filters S, H, and W. In the following, we seek the best H so that @ is close to  in some
sense under appropriate signal assumptions [24, 69).

Sampling methods

Here, we introduce representative graph signal sampling operators in the node and graph
frequency domains.

Sampling in the nodal domain

Node domain sampling is expressed as the selection of samples on a node subset. Therefore,
it corresponds to non-uniform sampling in the time domain.
Sampling in the nodal domain is defined as follows:

Definition 8 (Sampling in the nodal domain). Let © € CV be the original graph signal and
G € CV*N be an arbitrary graph filter. In addition, let Ty € {0, 13N be a submatriz of
the identity matriz Iy extracting K = | M| rows corresponding to the sampling set M C V.
The sampled graph signal ¢ € CX is given as follows:

c =I\vyGe. (3.9)

The sampling matrix is then expressed as S* = I,/G. In contrast to time domain signals,
I,y may depend on the graph since the local connectivity of the graph is often irregular.
This implies that there may exist a “best” node set for graph signal sampling described
in [15].

Sampling in the GFT domain

When sampling SI signals, the spectrum folding phenomenon occurs [16]. Graph frequency
domain sampling utilizes the behavior in the graph spectrum.

Formally, graph frequency domain sampling, which is a counterpart of (3.1), is defined as
follows:
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Definition 9 (Sampling in the graph frequency domain [17]). Let & € CV be the original
signal in the graph frequency domain, i.e., € = U*x, and let S(N\;) be an arbitrary sampling
filter defined in the graph frequency domain. For any sampling ratio M € 7', the sampled
graph signal in the graph frequency domain is given by é € CX, where K = N/M, and

M-1

eN) = SNisrt)E(Nipxr)- (3.10)

=0

In matrix form, the sampled graph signal is represented as ¢ = DgampS(A)Z, where Dgapp =

[Ix Ix -] € CE*N. Then, we define the sampling matrix S* as [48]
S* = UreducestampS(A)U*y (311)
where Usequced € CE*¥ is an arbitrary unitary matrix, which may correspond to the GFT for

a reduced-size graph. Theoretically, we can use any unitary matrix for U,equeea. One choice
which has been studied in multiscale transforms for graph signals is graph reduction [71].

Here, we define reconstruction in the graph frequency domain, which is the counterpart
of (3.4), as follows:

[U*&](A\s) = d(Nimoa )W (N), (3.12)

where d € CK is a vector composed of expansion coefficients and W (\;) is the reconstruction
filter kernel defined in the graph frequency domain. Correspondingly, the reconstruction
matrix is represented as

W = UW(A)D:,, U? (3.13)

samp — reduced*

The reconstruction in (3.12) is performed by replicating the original spectrum in the same
manner as standard signal processing [17].

In the following, we propose a definition of GWSS based on the classical WSS, in which
the covariance is invariant to modulation.

3.4 Graph wide sense stationarity

In this section, we consider the stationarity of random graph signals. We begin by defining
GWSS as the invariance of statistical moments with modulation which extends the classi-
cal WSS definition. We then derive the properties of our GWSS. For clarity, the classical
definition of WSS is detailed in Appendix 3.A.

1M is assumed to be a divisor of N for simplicity.

46



Definition of GWSS

Several definitions of GWSS have been proposed [26,29,72]. A definition of GWSS based on
the WSS by shift (see Collorary 3 in Appendix 3.A) is shown in Appendix 3.B.

In this dissertation, we define GWSS based on the WSS by modulation (see Collorary 4
in Appendix 3.A) as follows:

Definition 10 (Graph wide sense stationary by modulation (GWSSy)). Let @ be a graph
signal on a graph® G. Then, x is a graph wide sense stationary process if and only if the
following two conditions are satisfied for all m:

1. E[(x* 6,)m| = pte = const, (3.14)
2. E[(x* 8, — pa1)im(@ * 0k — 1)) = [T (3.15)
The operator - x 0y is defined as follows:
x x 0, = Mdiag(ug[k], ui[k],...) Uz, (3.16)
where M = [e270/N] @2 1/NT ...,

Note that - * d; corresponds to the standard sinusoidal modulation, since (x x dy), =
(Uexp(j2)U*x), where Q = diag(0,27/N,...,2m(N — 1)/N). Therefore, we refer to - x dj
as a modulation operator on a graph.

Properties of GWSS

Next, we study the properties of Definition 10 for GWSS used in our generalized sampling,
as a counterpart of Corollary 4 in Appendix 3.A.
In Definition 10, the condition in (3.14) is identical to

E[x x §,] = Mdiag(ug[n],ui[n],...)UE[x]. (3.17)

Since Mdiag(1,0,...,0) = [10 --- 0], the equality in (3.17) holds if and only if E[z| =
fzg = pe1. Therefore, - x §,, does not change the mean of graph signals. The condition in
(3.15) implies that the covariance T', has to be diagonalizable by U. We show this fact in
the following lemma.

Lemma 1. Let  and T, be a stochastic signal on G and its covariance matriz, respectively,
by Definition 10. Then, 'y is diagonalizable by U.

2We suppose that G is connected for simplicity. Nevertheless, we can extend our definition of GWSS to
the non-connected case.
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Proof. The LHS of (3.15) is expressed as

El(x * 8, — ftz1) (@ * 8y, — f1,1)%]

= [Mdiag(uo[n], uq[n], .. .)fmdiag(ug[k:], uilk], .o )M mm

= &* Mdiag(U*8, )T, diag(U*8;,)M*8,,

= 6 Udiag(M*é,,)T',diag(M*8,,)U* 8,

= [U(T, o M*8,,6° M)U"],...

= [U(T, 0 B)U"us, (3.18)

where T', = E[U* (@ — p,1)( — 41,1)*U] and [Bliy = [M*0,,0;,M];, = exp(—j2n(i — [)/N).
Since [B];; = 1 for ¢ = [ and [E];; # 1 otherwise, the condition satisfying (3.18), i.e.,
f‘x = f‘m o E, holds if and only if fx is diagonal. Therefore, I'; is diagonalizable by U, which
completes the proof. O

One of the important properties of Definition 10 is that I'; is diagonalizable by U, as
stated in Lemma 1. We refer to I';(A) = U*T',U as the graph PSD. This property is
preferred in GSP since it parallels the Wiener-Khinchin relation in the time domain [73] and
it is advantageous for exploiting spectral tools in GSP.

Recall that the autocovariance function is invariant to shift in the standard WSS [73].
Since a graph operator is often used as a shift operator in the graph setting, the invariance
with shift for GWSS can be translated to

I,L=LI,. (3.19)

This property is also used in [74,75]. Note that I'; is diagonalizable by U if and only if (3.19)
is satisfied [76]. In fact, the alternative definitions of GWSS require additional assumptions
to satisfy (3.19). For example, [29] requires that all eigenvalues of L are distinct. However,
we sometimes encounter graphs whose graph operator has an eigenvalue with multiplicity
greater than one [26]. Moreover, [26, 72] require that the covariance T', is expressed by a
polynomial in L, while this assumption may not be true in general, including the multiple
eigenvalue case. On the other hand, our GWSS definition does not require such assumptions,
but it still satisfies (3.19). As a result, Definition 10 can be regarded as a more natural
extension of the classical WSS than existing GWSSs. The relationship among the GWSS
definitions is discussed in detail in Appendix 3.B. Note that our generalized sampling is
applicable under different definitions of GWSS with slight modifications.

We develop a Wiener filter for our generalized sampling framework. We consider two
scenarios of reconstruction design: predefined and unconstrained reconstruction. We demon-
strate the similarity of the resulting filters to the classical ones.
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3.5 Graph Wiener filter: Recovery for stochastic graph
signals

We now consider the design of the correction filter. It is optimized such that the reconstructed
graph signal is close to the original one in MSE. We show that the resulting Wiener filter
parallels that in the SI setting when graph spectral sampling (Definition 9) is performed.

Graph Wiener filter

Suppose that x is a zero-mean GWSS process with a known covariance I', and 7 is a zero-
mean GWSS noise process with a known covariance I',, independent of each other. For
simplicity, we suppose that columns of W and S satisfy the Riesz condition [16], i.e., W*W
and S*S are invertible.

We now formulate the design the correction filter. Unlike the formulation (3.5) in the
time domain, we can directly minimize the expectation of the normed error in the graph
setting because the subspace of graph signals is finite-dimensional.

We consider minimizing the MSE between the original and reconstructed graph signals
by solving

m}iln E[||Z — «|?]. (3.20)

The optimal correction filter is obtained in the following Theorem.

Theorem 5. Suppose that the input signal  and noise w are zero-mean GWSS processes
with covariances ', and T',,, respectively, which are uncorrelated with each other. Then, the
solution of (3.20) is given by
Hpgp = (W*W) '"W*T,S(S*T,S+T,)"". (3.21)
Proof. The MSE eysg = E|||@ — x||?] is given by
ense =E[tr (WHS zaz*SH*W™)]
+ Eftr (—zx"SH*"W* — xx"WHS" + zz")|
+ Eltr ( WHnn"H"W* — zn*"H*"W")]
+ E[tr (~“WHnz* + nn*)]
=tr ( WHS'T,SH*"W* — ' ,SH*W™)
+tr (-T,WHS" +T,)
+tr (WHI,H"'W* 4+ T,)
=tr (S'T,.SH*W*WH - 2S'T,WH +T,)
+tr (O, HW*WH+T,), (3.22)
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where the second equality holds since expectation and trace are interchangeable and the third
equality follows by the cyclic property of trace.
The infinitesimal perturbation of e\isg with respect to H results in

dgMSE =1tr (2S*F$SH*W*WdH)

+tr (—=2S'T,WdH + 2I', H*W*WdH) . (3.23)
Here, deysg is defined by
devse = n; {8314{% o dH} - ((agﬁE)* dH) . (3.24)
As a result, the derivative of ey in (3.22) with respect to H results in
agﬁE — W*WH(S'T,S +T,) — W'T,S. (3.25)
Setting (3.25) to zero, we obtain the optimal H of (3.21). O

In Theorem 5, we consider the predefined case. Next, we move on to the unconstrained
case: The reconstruction filter W can also be freely chosen along with H. The optimal
solution is obtained by solving

. S 2
minE [ - x|?]. (3.26)

The optimal correction filter is given in the following Theorem.

Theorem 6. Suppose that the input signal x and noise w are zero-mean GWSS processes
with covariances I'y and I',), respectively, which are uncorrelated with each other. Then, the
solution of (3.26) is given by

Huyne = (S'T.S+1T,)"", Wync =T,S. (3.27)
Proof. Since (3.21) is optimal for an arbitrary W, we plug it into (3.22) and have
emse = tr(PWwZS*I',SZ*Pyy — 2I',SZ*Pyy + T',)
+tr(PywZT,Z Py + T,), (3.28)

where Py = W(W*W)'W* and Z =I',S(S*T',S + I';)) . In the same manner as (3.25),
the derivative of eysg with respect to W is derived from (3.28) as

Oenisk

oW

=2P,ZS'T,SZ*W(W*W) !

— 2T, SZ*W(W*W) !
+ 2PWZI,Z*W (W*W) 1. (3.29)
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By setting (3.29) to zero, we have
(PwI.S —T,S)Z*W(W*W)™ ! = 0. (3.30)

Therefore, Pyy is necessary to be the identity mapping over R(I',S), leading to W = R(T',.S)
where R(+) is the range space of a matrix. Graph signal recovery with (3.21) can be expressed
as

WH = P, I,S(S*T,S+T,)". (3.31)

Since W = R(T',S), we can choose W = I',S and obtain H = (S*I',S + I',)~*. This
completes the proof. O

We note that graph signal restoration based on Bayesian estimation in [57, Proposition
1] coincides with the proposed recovery transformation in Theorem 2. This implies that the
proposed recovery transformation in the unconstrained case can also be viewed as a Bayesian
estimation. The recovery transformation in Theorem 1 covers both of the unconstrained and
predefined cases: This situation is not studied in [57].

Additionally, the Wiener filter presented in [74, Theorem 5| appears similar to the one
presented in Theorem 2, however, it requires the bandlimited assumption. In contrast, our
Wiener filter can be applied to full-band graph signals.

So far, we considered a general solution for stochastic recovery. By choosing graph fre-
quency domain sampling, we can show that the resulting recovery parallels that in SI space,
studied in [16,69].

Special cases for GFT domain sampling

Suppose that the graph signal and noise conform to zero-mean GWSS processes with PSD
I';(A) and I';()), respectively. We assume that S* and W are defined in the graph frequency
domain by (3.11) and (3.13), respectively. In this setting, (3.21) is diagonalizable by U equced;
i.e., it has a graph frequency response

Homs (M) = > Fm(iz‘+Kl)W*(/\i+K1)5(/\i+KAl) (3.32)
7 RO (S Tais k) IS Qi) 2 + Ty (M)

where

M—-1

R (M) =Y W Niex) W (Aisrr)- (3.33)
=0



Similarly, the graph spectral responses of (3.27) are given by

1
Yo TaNir k) [SNig k) |2 + Ty(N)

with reconstruction filter W (A;) = I'z(X;)S(\;). The correction filters (3.32) and (3.34) inherit
frequency responses of the Wiener filter in standard sampling (3.6) and (3.7), respectively.

In the following, we discuss the relationship among the proposed graph Wiener filter and
existing generalized graph signal sampling.

Hync(Ni) = (3.34)

3.6 Relationship to other priors

In this section, we consider the relationship between the proposed graph Wiener filter and
graph signal recovery under subspace and smoothness priors [48]. For simplicity, we only
consider the predefined case. The unconstrained case can be derived in a similar fashion.

Subspace prior
Under the subspace prior, we assume the following graph signal model [48].
x = Ad, (3.35)

where A € CV*K is a known generator and d € C¥ is expansion coefficients. Suppose that
d is a random vector and 3; = E[dd*| is the covariance of d. The covariance of x is then
written as

3, =E[Add*A*] = AE[dd*]A* = AS,A". (3.36)
By substituting (3.36) to (3.21), we have the following correction filter:
Hyxsus = (W*W) "W AS,A*S(S'AS,A*S + T,) L. (3.37)
For a subspace prior, if S*A is invertible and there is no noise, (3.37) reduces to

Hyx sup =(W*W) '"W*AS,A*S(S*AX,A*S) !
(W'W)'W*AS,A*S(A*S) 'S 1 (S*A)
(W*W)"W*A(S*A) ™,

(3.38)

where we assume that X, is invertible. As observed, Hyx sup does not depend on 3.
Interestingly, the solution in (3.38) coincides with the minimax solution for signal recovery
under subspace prior [48]. As a result, we can view the minimax recovery under the subspace
prior (3.38) as a special case of (3.21) with random expansion coefficients and known A.
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Smoothness prior

Next, we consider a smoothness prior [48]:
IVal? < 7, (3.39)

where V. = UV (A)U* is a smoothness measuring function, i.e., graph high-pass filter, and
p > 0 is a constant. We assume that V is bounded below on /5, i.e., V*V is invertible.

To derive the solution of (3.20) subject to the constraint in (3.39), the problem may be
written as minimization of the Lagrangian

L(H,§) = E[l|z — 2] + ¢(E[|[Va|] — p*), (3.40)
where ¢ is a constant. The optimal solution of (3.40) satisfies the following identity [23]:
ME[|Ve[] - p*) = E(IVE V[ — p*) = 0. (3.41)

The second equality of (3.41) is satisfied with either £ = 0 or ||[VE,V|% = p?. Therefore,
the nontrivial solution of (3.40) is obtained with ||[VX, V|4 = p?. Since ||[V(V*V)"IV*||% =
|II||2 = N, X, can be written as
P’ 1
s, = Zovevy L 3.42
2 (vY) (3.42
Since the derivative of L(H, ) with respect to H coincides with (3.22), we immediately obtain
the following solution:
Hyx smo =(W*W)'W*(V*V)1S(S*(V*V)71S) (3.43)

where we also assume the noiseless case (I';, = 0 in (3.22)) as in the subspace prior.

In fact, (3.43) coincides with the minimax solution under the smoothness prior [48].
Similar to (3.38), we may view minimax recovery under the smoothness prior (3.43) as a
special case of (3.21).

3.7 Signal recovery experiments

In this section, we validate the effectiveness of the proposed method via signal recovery
experiments. We demonstrate that the approach described in Section 3.5 reduces the recon-
struction error in comparison with existing recovery techniques under the stochastic setting.

Synthetic graph signals

In this subsection, we perform signal recovery experiments for synthetic graph signals.
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Sampling and recovery setting

We perform signal recovery experiments of synthetic graph signals. The recovery framework
is illustrated in Fig. 3.2.
Here, we consider the following three graphs with N = 256:

e Random sensor graph?;
e Erdés-Rényi (ER) graph with edge connection probability p = 0.3; and
e 2D grid graph.

We use the following functions throughout the experiments.

e PSD function:

T.(\) = exp (- {%}2> . (3.44)

Sampling function #1 (for full-band sampling):

S(\) = ! Amax [ Ai < 2 (3.45)
2 —2)\;/(Amax) otherwise.

Sampling function #2 (for bandlimited sampling):

S(Ai):{1 i€ [0, K — 1], (3.46)

0 otherwise.

Reconstruction function (for constrained recovery):

™ /\z
Wi(N) = — . . 3.47
) (2 A) (3.47)

Smoothness function (for recovery with smoothness prior by [48]):

where we set to € = 0.1.

3Random sensor graphs are implemented by k nearest neighbor graphs, whose nodes are randomly dis-
tributed in 2-D space [0, 1] x [0,1] [77].
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Their spectral responses are shown in Fig. 3.3.

A stochastic graph signal is generated by & ~ N(0,T,), where T', satisfies the GWSS
conditions described in Section 3.4, i.e., T, = UFZ(A)U*. As mentioned in Appendix 3.B,
existing definitions of GWSS coincide when T, is diagonalizable by U. Therefore, this setting
simultaneously satisfies Definition 10 and the other existing definitions of GWSS [26,29, 72].

Under the presence of noise, we suppose that noise conforms to i.i.d. zero-mean Gaussian
distribution with o2 = 0.3, i.e., n ~ N(0,0.3) and thus T';(A\;) = 0.3 for all . Graph signals
are sampled with sampling ratio N/K = 4.

We perform experiments for two cases. 1) The sampling function S(J;) is full-band as
in (3.45). 2) S(\;) is bandlimited as in (3.46). In addition, two sampling domains, i.e.,
samplings in node and graph frequency domains, are considered. For node domain sampling,
sampled nodes are selected randomly. For the predefined recovery, we use the given kernel
W(\;) in (3.47).

We calculate the average MSE in 20 independent runs and compare with existing graph
signal interpolation methods, MKVV [78], MKVD [79], NLPD [10], GSOD [80] and NLPT [81],
and recovery methods under smoothness priors proposed in [48]. Smoothness is measured
by the energy of high frequency graph spectra with the measuring function V' (\;) in (3.48).
We also show the result of the bandlimited reconstruction [17], i.e., reconstruction with the
sampling filter #2 without correction.

Since there has been no prior work on graph signal sampling with stochastic prior, we
also compare with graph signal recovery with smoothness prior [48] as a benchmark.

Results

Table 3.2 summarizes the average MSEs with the standard deviations (in decibels). Examples
of recovered signals via full-band sampling are visualized in Fig. 3.4.

From Table 3.2, it is observed that the proposed methods present the best MSEs in most
cases regardless of the sampling domain. Sometimes, the MSEs for bandlimited sampling are
close to the proposed method, especially for the ER graph. This is because of the eigenvalue
distribution: The ER graph may produce eigenvalues sparsely distributed in low graph fre-
quencies, i.e., A < Apax/2 where we consider L as a graph operator, and many eigenvalues
exist in high graph frequencies (A > Ayax/2). This implies that the cutoff frequency at the
Kth eigenvalue can be relatively high, resulting in wide bandwidth. This also results in the
fact that the bandlimited sampling filter in (3.46) may pass the spectra in the middle graph
frequencies (A € [Amax/4, 3Amax/4]); This behavior improves the reconstruction MSEs. Note
that the proposed method presents stable recovery performances for all the graph and signal
models considered.

The recovery with smoothness prior increases MSEs especially for node domain sampling
because the PSD function I',();) does not represent smooth signals in this setting. For the

95



- - - - - - 66'TF801- 66'TF6'0T- 66 TF90°9-| 66 TF0'TT- 00°2FEPI-(SS |
Z8TF6 6~ TT0F6'8T € 8IFEST 906FET9 ST IFEL'S- - VEIFE 11" PETFE 1T LETFCPO-| PR TFETI- 62 TFOPI=|SA|" |
- - - - - 66'TF8F'8-|66'TF6E'8- 66 TFCT'8- 66'IF 198~ 66'TF6E'8- 66 TFTG"8~|SS|
LTUTFTE 8- TT0FL ST 29 TFIF'9- 80 TF8E'9- 9T TFEG 8| LT TFEE 8| T LIFGTL FOIF09E € LIF0TL | 8T TFEE'S" ST TFIG8-|SA T
- - - - - - 66'TFP0T- 66'TF9°01- 66'TF4L'G-| 66'TFL0T- 66 TFLET~|SS| o .
88 TFPE G- 01'0F6'8T F'8IFIST L'8IFEG99 ST TFTL'S- - GUIFE 0L OUIFGOL CETFRE'G-| ATTFY0I- STTFPEI=ISAI™ | ¢
- - - - - 66'TF L9"L-|66'TFG8'L~ 86 TFET'9- 66'IFLS'L~| 66'TFVE'8" 66 TFIE8|SS| |
PTTFI6°C- 60°0F68T GE€GFeel T LTFE8G ST TFLOS ST TFITS| I'SIFOIE 8 CIFH0G  T'SIFIIE | 9T TFFE'8 91 TFSE 8- |SA
- - - - - - 00'ZF 102~ 00ZF 102 00CF1'2e-| 00TFT 08~ T0TFE'8E~|SS | o
PCIFLLI- GE0FO08T TCIFIFL G 0CFrFI 97 IFSFI- - LO'TFR'RT- T9'TFR'RI- £9'IF661-| IO TFRRT- 16TFEGLSA " | o
- - - - - 00'GF4'9%-|66'TFL'8T- 00°TF6 €1~ 00'CFL 92~ 66'TFL'ST- 00TFL 9| SS|, 1
9P TF691- £8°0FS LT L'GIFLET 8'TCFS6 T~ 97 TFSFI-|LF TFLI-| 6°SIFIEY OFIFI99  6'STFHEY | IS TFG LI $9 TFL 9Z-|SA -
- - - - - - 66'1FG 61~ 66'TFS 61~ 66'TFE 1| 00TFS 61~ 002F6'92~|SS | -
CYIFS 91~ 1€ 0FI8T S TIFLYL THIFIES 9V IFSTI- - EPIFTPI- €V TFITI- 0GTFEPI-| 9P IFE LT ECTFRBIISAIT | (-
- - - - - 66'1F¢ 81766 TF9'21- 66 TFEPE~ 66 TFZ 1| 66'TFC 81~ 66'TFCTZ~|SS| 10
0P TFG9T- G&'0F0'8T GTIFEhT 8TGFI 08 9V IF8FI-|€F TFELI-| '61F60%  SSTFS6L T 61F60G | P IF9 91~ 07 TF9 8T-|SA
- - - - - - 66'TF0T1- 66'TFI'TT- 66 TF1S'G-| 66 TFC TT- 66 TFLPI-|SS| -
ETTFIOP- TT°0FS8T T'LIFGST 9 LEFILL L 6IFGEL - €2 1TV 11~ €TV 11~ BETFY9'0| €2 TFGTI- GETTFGETISAI" |
- - - - - 66'TF86'8-|66'IFG6'8 66 TF88'8- 66'1F66'8~| 66'IFG6'8- 66 TF66°8~|SS| 0
61 TF16'8- 60°0FL 8T g 1FH6'9- 60 TFE6'S- F'06F0 L6 |61 TF06'8-| 9°CIFSEL  ¥6'8Fo Ty GGIFITL | 61 TF06'8- 06 TF66°8~|SA R
- - - - - - 66'TF901- 66'TFR 0L 66 TFS0'G~| 66 1F601- 66 TFI'PI~(SS |
GG TFOLG T1°0F6'8T 8 LIFEIT  L'GeFE0T  8SIFEVT - 121656~ 16 TFE8'6- PP IFEL Y| STTFLOL- STTFOTIISAIT ] oo
- - - - - 66'TF61'8-|66 TFE9'8~ 86 TF66'9~ 66 TFET'S-|66'1T8'8~ 66'1F88'8~|SS| |
ST'TF6L9- 0T'0F6'8T 9'EGF6IT T'08F6'89 6'65FIET |91 TF69'8-| ¥ PIFehy G TIF806  PHIFERY | 61 TFIS'S- ST TFLE'8~|SA
(18] [08] [01] (6] 8] (21] XN d4d ST d4d DONO qyd DN | UOLLILL) /1suodey
IIN  dOSD  ddIN  AAMIN  AAMIN 1d [87] sseutoowg OYSEIROIG w011

‘A[pA110adsal “eLI9)LId XewIUIW pue serenbs-jses| ‘paugopaid ‘paureijsuooun aj0usp XN Pue ST ‘4Yd ‘ONN
‘AJpAryoadsor ‘Surdures urewop [eigoads pue Jurdures urewiop spou ‘pueq-[nj ‘payrwurpueq ‘ydeis 1Augy-sopiyg

ue 9j0uep §S pue GA ‘g ‘19 ‘U SHSIN oYl UMM SUO[e SUOIJRIAOD PIRPURIS o) MOUS OS[R dA\ "(S[OqI0p
ur) suorjezifeal juopuadopul ()7 UO ®IRP OIJOYIUAS I0] S[RUSIS PIJONIISU0IDI 1) JO SHSIN 98RIOAY :g'¢ 9[qR],

o6



<
L

0.8

~——PSD function
=4 Sampling function (FB)
Sampling function (BL)
«p-Reconstruction function
<= Smoothness function

Response
°
o

°
S
I

N
0.2 ", N 7

Figure 3.3: Graph frequency responses of several functions used for experiments.

noiseless cases, the proposed methods demonstrate MSE improvements by 3—5 dB on average
compared to the noisy case. The unconstrained solution of the proposed stochastic recovery
results in the best performance for almost all cases.

Real-world data

We also perform signal recovery experiments on real-world data.

Sampling and recovery setting

We use the global sea surface temperature dataset [82]. It records snapshots of sea surface
temperatures for every month from 2004 to 2021. They are spatially sampled at intersec-
tions of 1-degree latitude-longitude grids. For the experiment, we used data for 24 months
from 2018 to 2020. For this dataset, we randomly sample N = 291 intersections and they
are regarded as nodes. We then construct a 5-nearest neighbor graph based on Euclidean
distance. Edge weights are set to be unweighted. We then remove the edges crossing land
areas. The number of samples is set to K = 73.

For each time instance, we estimate the covariance from the data in the previous year.
We use the method proposed in [26]. The estimated covariance is used for the proposed
graph Wiener filter. We calculate the average MSEs of 24 months for samplings in node and
graph frequency domains, and compare with the existing methods in the previous subsection.
For node domain sampling, we perform the experiments on 20 random sampling patterns of
nodes for calculating the average MSE.

o7



Results

Table 3.3 summarizes the average MSEs with the standard deviations (in decibels). Recovered
graph signals are visualized in Fig. 3.5. From Table 3.3, we observe that the proposed method
outperforms existing methods for almost all cases. This is also validated in Fig. 3.5.

Table 3.3 occasionally reveals a significant disparity in recovery performance between the
proposed method and other methods. This discrepancy stems from the extensive dynamic
range of global sea surface temperatures (approximately 0 to 30 degrees Celsius), which is
considerably larger than that observed in typical signal communication applications. In Table
3.3, we would like to highlight that our method demonstrates relatively superior performance
compared to the alternatives.
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Original UNC ST (FB samp.): MSE =-10.90 dB PRE ST (FB samp.): MSE =-9.94 dB UNC SM (FB samp.): MSE =-3.40 dB
2

(a) Original (b) Proposed: UNC ST. (c) Proposed.: PRE ST. (d) UNC SM [48].

PRE SM LS (FB samp.): MSE =-9.30 dB PRE SM MX (FB samp.): MSE =-9.00 dB BL samp.+recon.: MSE =-7.77 dB MKWV (FB samp.): MSE =98.79 dB

(e) PRE SM LS [48].  (f) PRE SM MX [48]. (g) BL [17]. (h) MKVV [78].

MKVD (FB samp.): MSE =11.96 dB NLPD (FB samp.): MSE =46.58 dB GSOD (FB samp.): MSE =19.01 dB NLPI (FB samp.): MSE =3.16 dB

(i) MKVD [79]. (j) NLPD [10]. (k) GSOD [80]. (1) NLPI [81].

Figure 3.4: Signal recovery experiments for noisy graph signals on a random sensor graph
with V = 256. Sampling is performed by (3.45) in the node domain. UNC and PRE denote
the unconstrained and predefined solutions. SM and ST denote recovery with smoothness
and stochastic priors. LS and MX denote least-squares and minimax criteria.
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(b) Proposed: UNC ST.
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Figure 3.5: Signal recovery experiments for the sea surface temperature data on a 5-nearest
neighbor graph. Sampling is performed by (3.45) in the node domain. Abbreviations are the

same as those in Fig. 3.4.
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3.8 Conclusion

Generalized graph signal sampling with stochastic priors is proposed in this chapter. We
define the stationarity of random graph signals based on classical WSS. We then derive the
graph Wiener filter for unconstrained and predefined reconstruction, based on the minimiza-
tion of the expectation of the squared norm error between the original and reconstructed
graph signals. We show that, when sampling is performed in the graph frequency domain,
spectral responses of the graph Wiener filter parallel those in generalized sampling for WSS
signals. We also reveal a theoretical relationship between the proposed graph Wiener filter
and existing signal recovery under different priors. In the recovery experiments, we vali-
date the MSE improvement of the proposed methods for various graphs and two sampling
domains.

In this chapter, we focus on a GWSS process, where the covariance of graph signals
remains invariant with sinusoidal modulation over time. Generally, however, graph signals
could be non-stationary and they require more insights and provide more challenges. Fur-
thermore, while we have not specified the specific designs of probabilistic density functions,
the covariance matrix should have some properties depending on them. We leave these open
questions as future work.

Appendix 3.A Wide sense stationarity

Stationarity of time-domain signals is reviewed here since this is useful to understand the
connection between WSS and GWSS.

We consider a continuous-time signal z(t). Its stationarity is defined as follows:

Definition 11 (Wide sense stationary for time-domain signals). Let x(t) and ~.(t) be a
stochastic signal in the time domain and its autocovariance function, respectively. The signal
x(t) is a wide sense stationary process if and only if the following two conditions are satisfied:

1. E[z(t)] = p, = const, (3.49)
2. B(x(t) = pa)(2(7) = )] = 7t = 7). (3.50)

A WSS process can be characterized in the Fourier domain by the Wiener-Khinchin theorem
[37]. If z(t) is a WSS process, then its power spectral density (PSD) function coincides with
the CTFT of the autocovariance function of x(t), v,(t) € Ly, i.e.,

[ (w) = /00 Yo (t)e 7t dw. (3.51)

—00
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Table 3.4: Comparison among WSS and GWSSs. OPE and COV denote operator and

covariance, respectively.

WSS WSS
Shift Modulation Shift Modulation
opE | Tule®} = a(t —to) 2) %0 =2 | ppoan |ELie®}] = iz |E[elto) 0] = fs
GWSS GWSS
GWSSt GWSSum GWSSt GWSSym
Tgx = Uexp(jII)U*x | x x §,, = Mdiag(U*,)U*x E[(Tgx)n] = e |E[(@* 6p)m] = ta
WSS WSS
Shift Modulation Shift |  Modulation
E [Ti {2 ()} T2, {Z(7)}*] | E[(Z(t0) * 6¢)(Z(to) * 6-)7] T, (w) F 7 1= (t)e ™ dw
covl  =nlt-r) — (t—7) PSD always
GWSS GWSS
GWSSt GWSSy GWSSt GWSSy
El(T62)a(Ta)i] | El@*0n)m(®@ * 0n)5) F.(A)= UT,U | TL(A) = U'T,U
= [T]nk = [Tzlnk if A is distinct always

We denote by 0; = 6(tg — t), Z(t) = z(t) — piz, € = & — 1, and IT = 71/ A /pg.

Not surprisingly, WSS has several equivalent expressions because of the correspondence
between time-shift and frequency-modulation, i.e., z(t — 7) <> e 77X (w). Here, we present
another two expressions of WSS to show the connection with GWSSs.

Corollary 3 (WSS by shift). Let T, {-} be the shift operator that delays the signal by to, i.e.,
Ti{z(t)} = z(t — to). Definition 11 can be written as follows:

1. E[T;,{z(t)}] = p. = const, (3.52)
2. E [(Tto {l'(t)} - Nx)(T;fo {33(7')} - :ux)*] = P)/x(t - T)' (353)

The equivalence of conditions (3.52) and (3.49) is easy to verify. Since the autocovariance
only depends on the time difference, (3.53) is identical to (3.50).
Noting that

x(r) = x(t) * §(t — 1), (3.54)
leads to the following corollary.

Corollary 4 (WSS by modulation). Definition 11 can be expressed equivalently by using §(t)
as follows:

1. Efz(to) * 6(to — 7)] = pe = const, (3.55)
2. E(x(to) x0(to — t) — pa)(x(to) * 0(to — 7) — pa)*] = 7t — 7). (3.56)
In the chapter, we utilize these expressions of WSS for formally defining GWSS.
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Appendix 3.B Graph wide sense stationarity

In this appendix, we describe and compare some definitions of GWSS, including ours. These
definitions differ in whether Corollary 3 or 4 in Appendix 3.A is used for the baseline. They
coincide for time-domain signals, but this is not the case for graph signals, leading to slightly
different definitions of GWSS. The definitions are mainly divided according to whether the
covariance is diagonalizable by the GFT basis U. These differences are summarized in Table
3.4.

GWSS followed by Corollary 3

First, we show the definition of GWSS [29] as a counterpart of Corollary 3. In the literature
of GSP, the graph Laplacian L is often referred to as a counterpart of the time-shift operator
(translation operator) [56,72]. However, L changes the signal energy, i.e., ||Lz|| # |||, while
time shift does not, i.e., [|T-{x[n]}|| = [|z[n]|.

The definition of GWSS introduced here is based on a graph-translation operator which
preserves the signal energy.

Definition 12 (Graph wide sense stationary by translation (GWSSt) [83]). Let  be a graph
signal on a graph G. Suppose that a graph-translation operator Tg is defined by

Tg = exp (jﬂ\/g> : (3.57)

— — N-1
where pg = maxyey \/2d(dy + Q) Ty = Z28220 4nd pg > N [84]. Then, @ is a
graph wide sense stationary process by translation, if and only if it the following two conditions
are satisfied,

1. E[(Tgx),] = . = const, (3.58)
2. E[(Tgz — pz1)n(Tox — po1)i] = [Talng- (3.59)

The condition (3.58) implies that E[x] is also constant. To see this, note that (3.58) can be
expressed as

TgE[x] = Uexp(jm\/A/pg) U E[x]. (3.60)

Since \g = 0 and ug = 1 are always satisfied, i.e., L1 = 0- 1, (3.60) holds if and only if
Elx] = pyuo = p, 1. It also implies that Tgl = 1.
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Table 3.5: Diagonalizability of the covariance for GWSS definitions. If all eigenvalues in A
are distinct, they coincide with each other.

I', is not necessarily
diagonalizable by U GWSSr [29]
T, is diagonalizable by U | GWSSy

I'; is a polynomial in L 26, 72]

When {\; }i—o.. y—1 are distinct, the condition (3.59) implies that I, is diagonalizable by
U because (3.59) can be expressed as

I, = TgE[(x — p1.1)(x — le)*]Tg

= Uexp(jm\/A/pg)U T, Uexp(—jm\/A/pg)U"
— U(T, 0 O)U", (3.61)

where T';, = U*T',U and [©];; = exp{jm(\/Ni/pc — V/Ni/pg)}. The third equality follows
by the relationship diag(a)Xdiag(b*) = X o ab*. Since [®];; =1 for \; = )\, and [®];; # 1

otherwise, the equality holds if and only if [I';];; = 0 for A\; # X If the eigenvalues are
distinct, then this condition is equivalent that I', is diagonalizable by U.

Relationship among GWSS definitions

We now discuss the relationship among some representative definitions of GWSS from the
viewpoint of the PSD. These results are summarized in Table 3.5.

Existing definitions of GWSS are defined as counterparts of the classical WSS definitions
in Corollaries 3 and 4. In terms of diagonalizability, GWSSy; (the counterpart of Corollary
3) is stricter than GWSSy (the counterpart of Corollary 4). This is because the covariance
is always diagonalizable by U in GWSSy, while that is not the case with GWSSt in general.

Next, we compare © in (3.61) with = in (3.18). In (3.18), off-diagonal entries in = are
not equal to 1. In contrast, those in © can take the value 1 in the case \; = \; for ¢ # [,
Le., eigenvalues with multiplicity greater than 1. Therefore, GWSSt allows the existence
of non-zero off-diagonal elements of I'; for some graphs having repeated eigenvalues, while
GWSS, always yields the diagonal ', regardless of graphs. In fact, GWSSy and GWSSt
coincide with each other if all eigenvalues of L are distinct (cf. Lemma 1). Therefore, GWSSt
effectively assumes distinct eigenvalues of L in [29].

It is often assumed that T, is a polynomial in L [26,72]*. This is sufficient for the
diagonalizability of I',. It is noteworthy that the polynomial assumption is equivalent to

4Tn this dissertation, we use L as a counterpart of time-shift for simplicity. Nevertheless, we can easily
extend the proposed GWSS for other graph variation operators, including A and £ :==1—D~1/2AD~1/2,
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fx()\l) = fm()\l) for all A; = A, [26]. This is a special case of GWSSy;, since GWSSy allows
for T'y(N;) # Tp(N) for any A; = Ao As a result, GWSSy is a good compromise between

applicability and a rigorous relationship to the WSS definition. Therefore, we use GWSSy;
as our GWSS definition.
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Chapter 4

Sampling set selection for graph
signals under arbitrary signal priors

4.1 Introduction

Sampling of graph signals is one of the key topics in graph signal processing (GSP) [10-
12,14, 15,20, 56]. Many studies of graph signal sampling only focus on bandlimited graph
signal models [10-12,14,20,46,56,56]. However, the bandlimited setting is one of the possible
subspaces of deterministic graph signals. Many other full-band graph signal models are also
useful for applications. For example, we often encounter piecewise constant/smooth graph
signals [49] that are full-band in graph Fourier domain. Other full-band graph signal sub-
spaces are also under consideration like periodic graph spectrum signals [48]. Unfortunately,
sampling for arbitrary signal subspaces has not been studied without a few exceptions [48,67].

In this chapter, we propose a sampling set selection (SSS) algorithm for graph signals un-
der arbitrary graph signal models. Tt is known that graph signal sampling (and recovery) with
arbitrary signal models is well represented by a generalized sampling framework [15,16,63].
In generalized sampling, a correction operator is placed between sampling and reconstruction
operators to compensate signal subspaces. An important condition to design the optimal cor-
rection operator is called the direct sum (DS) condition. This can be represented with two
subspaces: The sampled signal subspace and the reconstruction subspace. Roughly speaking,
we seek the optimal sampling set such that the two subspaces are maximally close to each
other in the proposed SSS method.

The proposed SSS algorithm is deterministic and selects nodes with a greedy algorithm.
For fast implementation, we also develop the sampling set search along with the Neumann
series approximation for the matrix inversion in the objective function. In the recovery
experiments, we demonstrate that the proposed SSS exhibits the lower MSE than existing
SSS algorithms for various signal models.
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Figure 4.1: Generalized sampling framework. The dotted left and right boxes are sampling
and recovery phases, respectively.

4.2 Generalized sampling of graph signals

In this section, we briefly review generalized graph signal sampling [48, 70] because the pro-
posed SSS algorithm is designed based on this framework.

Framework of graph signal sampling
First of all, we define a nodal domain sampling operator as follows:

Definition 13 (Nodal domain sampling). Let Iy € {0, 1}5*N be the submatriz of the
identity matriz indexed by M CV (|IM| = K) and V. The sampling operator is defined by

ST =IG, (4.1)

where G € RY*N s an arbitrary graph filter. A sampled graph signal is thus given by
y=STx.

Note that (4.1) is a natural extension of the sampling operator for the standard time domain
sampling to the graph setting. In the graph setting, the reconstruction operator depends on
the chosen sampling operator ST because I,y is not unique in general.

The sampling and recovery framework based on generalized sampling is illustrated in
Fig. 4.1. The input signal x is sampled by ST, and the sample is corrected by a correction
operator h(Q) : RV*E s REXK  Note that Q plays the key role of this chapter, which is
derived from signal priors. Hereafter, we refer to Q as a prior operator. After correction,
the corrected samples are reconstructed by a reconstruction operator W € RY*K 1 This
framework explains many existing graph signal sampling, including sampling for bandlimited
signals [15].

As a result, the reconstructed graph signal is represented as follows:

T =Wh(Q)y = Wh(Q)S'x. (4.2)

1For simplicity, we suppose that WTW is invertible.
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In this scenario, the recovery problem turns out to be seeking the best possible 2(Q) based
on signal priors.

In the following, we introduce representative signal models and recovery methods corre-
sponding to the models (i.e., designs of h(Q) and W).

Graph signal models and signal recovery

In this chapter, we consider three representative signal priors:

Subspace prior [48]: The generation subspace A spanned by A is known. It is formally
defined as A = {zc ERN: = Ad}, where d is an expansion coefficient. The well-known
bandlimited setting is categorized into this prior.

Smoothnes prior [48]: The signal energy that is measured by the smoothness measuring
function (i.e., high-pass filter) V is bounded by 0 € Ry, ie., V= {x € RV : |[Vz| <o}

Stochastic prior [70]: The covariances of graph signals and noise, I', and I',, are known.

We will describe the recovery problem for each prior.
Suppose that ST is given. The correction operator h(Q) is often designed based on three
well-known criteria as follows.

Least squares (LS) criterion: The LS criterion seeks the signal that minimizes the error-
in-sample, i.e.,

& = argmin ||STx — y|. (4.3)

xzeT

where 7T is the set of signals under consideration.

Minimax (MX) criterion: The MX criterion corresponds to the reconstruction that mini-
mizes the worst-case error, i.e.,

Z =argmin  max |& — x| (4.4)
x iET,STiZy

The LS and MX criteria are used for signals under subspace and smoothness priors.

Minimum MSE (MMSE) criterion: When « is a random process under the stochastic
prior, LS and MX may be ill-posed. Instead, the MMSE criterion seeks the signal that
minimizes the MSE, i.e.,

z = argmin E[||z — z||?]. (4.5)
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Table 4.1: Filter designs for generalized graph signal sampling. The following definitions are
used: P= (WTW)"'WTQ, W =W(W'VIVW)"'WTS W = (VTV)"!Sand W =T,S.

LS and MX solutions coincide with each other for the unconstrained case.

Prior Criteria Predefined Unconstrained

Q hQ) Q hQ) A
TO) -1

Subspace LS |\W (5°Q) Al (STQ1 |A
MX |A| PETQ)!

W TO)-1 N __

Smoothness LS YY (5°Q) w| (STQ)! |wW
MX |W| P(STQ)!

Stochastic | MMSE |W |P(STQ +T,)! |W|(STQ+T,) ' |W

Along with the design of h(Q), we may consider the following two cases for W: 1) W
is determined before sampling and recovery (predefined case), or 2) W is optimally chosen
(unconstrained case). Table 4.1 summarizes Q, h(Q), and W (for the unconstrained case)
for the three priors. Their detailed derivations are omitted and can be found in [15,16,85].

In the following, we describe the important condition for the best possible recovery, i.e.,
requirements for ~A(Q). In fact, all the recovery conditions in Table 4.1 are explained by the
characteristics of S and Q.

Direct sum condition

In any priors and recovery criteria mentioned above, h(Q) contains matrix inversion (see
Table 4.1). Hence, for the best possible recovery, we need to consider whether the corre-
sponding matrix including Q is invertible. This condition is represented as the following DS
condition?:

Definition 14 (Direct sum condition [16]). Let S and Q be the range spaces of S and Q,
respectively. When St (the orthogonal complement of S) and Q span the entire Euclidean
spaces RN and intersect only at the origin, the direct sum condition is satisfied, i.e., RN =
QB S*. If so, STQ is invertible. This condition is equivalent that any singular value of STQ
is nonzero, i.e., 0;(STQ) # 0 for all i.

In the next section, we formulate an optimization problem for SSS based on the DS condi-
tion in Definition 14. Note that our problem does not depend on the choice of Q. Therefore,
the proposed SSS is applicable for arbitrary signal priors as long as Q is appropriately chosen.

2When the DS condition is not satisfied, the inverse in h(Q) can be replaced by the Moore-Penrose pseudo
inverse, which corresponds to least squares or minimal norm solutions.
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4.3 Proposed sampling set selection

In this section, we introduce the proposed SSS algorithm for arbitrary graph signal priors.
As mentioned in the previous section, the recovery performance essentially depends on the
correction filter h(Q), and it is based on the DS condition. Therefore, we consider select-
ing nodes so that the node subset maximally satisfies the DS condition. Interestingly, our
approach provides an intuitive geometric interpretation of the node selection, which is rel-
evant to the DS condition. We also investigate the theoretical convergence of the proposed
algorithm.

Problem formulation

First, we define the “goodness” of sampling sets through the DS condition. Suppose that
the prior operator Q (Table 4.1) is given. Since the DS condition is satisfied if all singular
values of STQ are nonzero, it is natural to consider maximizing | det(STQ)| as a criterion of
the sampling set because | det(STQ)| = [[~, o:(STQ) [86].

Recalling that ST = Iy G in (4.1), let us define Z as follows.

Z=G'QQ'G. (4.6)
With Z, we consider the following problem as a sampling set selection:

M* = argmax det(Z ). (4.7)
Mcy

Since det(Zy) = det(STQQTS) = |det(STQ)|?, (4.7) considers the DS condition directly.

It is different from the other approaches based on the bandlimited assumption [10,11]. Note

that this cost function is applicable for any signal model (including the bandlimited one).
The direct maximization of (4.7) is combinatorial and is practically intractable. Therefore,

we use a greedy algorithm like those used in the previous SSS methods. The greedy selection
is formulated as follows.

y* = argmax det(Z vy} )- (4.8)
yeMe

That is, we select a node y* one by one.
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Figure 4.2: Geometric interpretation of the proposed SSS. We denote the subspaces of sam-
pled graph signals at the n-th and (n + 1)-th selections by Sn and Sn + 1, respectively.

Geometric interpretation

Here, we consider the geometric relationship between our objective function and the DS
condition. The principal angle between S and Q is defined by [87]3

) _ det(STQQTS)
cos’(S, Q) = 4et(S7S) det(QTQ)” (4.9)

The DS condition in Definition 14 can be expressed by cos?(S+, Q) # 1. Since cos?(S*, Q) =
1—cos?(S, Q), the DS condition is satisfied if S is close to Q. In other words, the maximization
of det(Z ) implies the maximum separation between S+ and Q.

The geometric interpretation of two subspace angles is depicted in Fig. 4.2. We can
observe that selecting one node is equivalent to an increment in cos’;(S, Q). Generally
speaking, cos?,(S, Q) measures the discrepancy between Q and S*. If cos? (S, Q) is large,
Q and S* are far apart from each other. Therefore, maximizing cos?;(S*, Q) promotes
satisfaction of the DS condition as defined in Definition 14.

Proposed algorithm

The determinant term in (4.8) requires O(|]M|!) computational complexity in the worst case
if we perform to compute it straightforwardly [86]. Therefore, we rewrite (4.8) into a more
efficient form.

Suppose that rank(Z) > K and det(Zp) > 0. By applying the Schur determinant

3For simplicity, we suppose that STS and QT Q are invertible.
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formula [88] to (4.8), it can be rewritten as

y* =arg max det(ZMU{y})

yeMe?

= arg ﬁax det(Zp) - (Zy,y — Zy’M(ZM)_IZMVy)
yeMe

= argimax Zy,y — Zy’M<ZM)_IZM7y, (410)
yeMe

where we omit the multiplication with det(Z ) in the third equivalence because it does not
depend on y*. For the first selection, i.e., M = (), the node y maximizing Z,, is chosen
because it immediately follows (4.8).

Still, (4.10) is computationally expensive due to the matrix inversion, which typically
requires O(|M|?) computational complexity. To alleviate this, we utilize the Neumann series
for (Zp)7t, e,

=a) (I-aZpm)", (4.11)
k=0

where « is chosen such that ||I — aZy|| < 1. Let us define &, := (Zy) 'Zr, in (4.10).
Then, substitution of (4.11) into g, leads to

e,=a Y I1—aZp)*Zpy,=0a) (I—aZm)Zmé,, (4.12)
k=0 k=0
where d, is the Kronecker delta centered at the node y.

In this chapter, we truncate (4.12) until the mth term. We can update (4.12) by the
following rule [16]:

m+1
eyt =a ) (1-aZm)'Zud,
k=0
=&y + (I - aZp)e), (4.13)

where &) = aZyd,. Since €)° = €, = (Zy) Zpmy, the error €) — aZye]" converges to
zZero.

For fast convergence, we need to select an optimal «v in (4.13) in each update. In particular,
we seek the best step size at the (m + 1)th iteration as follows:

0y = argmin g™ — ey

:argmmH(I—aZM)s;”HQ. (4.14)

o
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The solution of (4.14) results in

N CH R AV
it = e E (4.15)
In the initial step, af is arbitrarily set such that |I — ajZa|| < 1. While « is tuned in the
adaptive manner, (4.13) converges to (Z) ' Z, [16].

We present the proposed sampling set selection method in Algorithm 1. When Z is
diagonalizable by U, we can approximate Z by the Chebyshev polynomial approximation
(CPA) without directly calculating U [89]. This could result in a further speed-up of the
algorithm.

Algorithm 1: Greedy SSS for arbitrary signal prior
Input: Z M =0,K,m =0
while (M| < K do
Compute &) = afZ 9,
while |[e) — o}, Z e} || > B for some >0 do
(ey)* Zpmey
. 1Zpey |12
eyt e) + (I — a1 Zp)e)
m < m+1
y* — argmax,e e Lyy — Ly mEY'
| M+~ MU{y}
Output: M

*
Qi1 <

Convergence analysis

In this section, we analyze the error convergence of Algorithm 1. We consider the error
between €)' and €)', ie., [l€) — g, 1 Zyme] . First of all, we have the following trans-

y
formation.
€) — kot Z(e) + (I — kZp)e)))

( ) 2—1€ZM(I—I€ZM)€ZL
(I— kaj,Zu)(e)
( )((

* 0
I - ray, Zm)(k(e,

I—ka' Zy)e
m =M (4.16)

* m
— K, ZipmeE,")

— apZuey) + (1= K)ey),

74



"
Xn41
*
am

where K11 =

and kg = 1. Then, we can bound above (4.16) as

ey — o1 Zamey | < Omax( = Kimas, Zoa) (sl — 0n Zacey' || + (1 = i) ley )

m l
:HESH Z(l - ﬁm*l) (H "'imkarlUmaX(I - Hmk+1a;n—k+1ZM)>
=0 k=1
l

S”ESH Z(l - ’im—l) (H Rm—k41 (1 + /{m—k+1a;_k+10max(ZM))> .
=0

k=1

(4.17)
In the first inequality in (4.17), we use the fact that ||a + b|| > |la|| + ||b||, where @ and b
are arbitrary vectors. In the second inequality in (4.17), we use the fact that o (I —Z) <
1 + Omax(Z), where Z is an arbitrary matrix. Since (4.17) is a polynomial in opax(Za), we

can express it as
m

le) — a1 Zaaey T =lES) D Fi0max(Zan)"
=0

SCHESH Z(pamaX(ZM))la

=0

(4.18)

where &; = (1 — Kpmy) ka:l (T) Fm—ka10m—k+1 18 coefficients of the polynomial. By definition
of Ky, there exists some constants C' and p < 1 such that & < Cpl. As a result, (4.18) is
convergent as m — oo at a rate proportional to o (Za)™.

One of resonable choices of the stopping criterion £ in Algorithm 1 is utilizing the upper
bound in (4.18).

B = Cuseruegu Z(pamaX(ZM))la (4.19)

=0

where Cger is the user-defined convergent ratio. With (4.19), we can select an appropriate (3
tailored to the maximum iteration number m and the spectral norm of Z .

4.4 Recovery experiments

In this section, we demonstrate the effectiveness of the proposed method by sampling graph
signals with several graph signal models. We perform recovery experiments on a random
sensor graph with N = 256 for six graph signal models:

Subspace prior

e Bandlimited (BL) graph signals with the bandwidth B = {1,..., K/4} [12].
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Table 4.2: Average reconstruction MSEs (in decibels) for 100 independent runs.

Subspace Smoothness Stochastic

Signal
Model | BL PGS PWC |GMRF PWL GMR.F BP.
w/ noise w/ noise

Proposed |-733.9 -632.3 -684.5|-22.88 -18.12| -18.74 -25.43
MPV [11]| -718.0 -12.57 -7.29 | -18.13 -16.68| -17.64 -24.01
AVM [43]| -724.3 -12.88 -9.33 | -18.66 -17.70| -18.49 -23.10
SP [12] | -718.9 -11.65 -6.88|-17.19 -14.81| -15.51 -21.45
FSSS [20]| -703.3 -14.26 -19.46 | -21.98 -14.81| -13.89 -14.25

e Periodic graph spectrum (PGS) signals with the generator response A(\) = exp(—1.5A/Amax)
[48].
e Piecewise constant (PWC) signals with five pieces [49].

Smoothness prior

e Gaussian Markov random field (GMRF') signals with the power spectrum I', () o< 1/(A+¢€)
[50].
e Piecewise linear (PWL) signals with the density p = K/N [18].

Stochastic prior

¢ GMRF with I,(\) oc 1/(A + e).
e Bandpass (BP) graph signals with power spectrum ', () o< exp({(2A — Amax)/ (VA + €)}2).

For the subspace priors, we set to d ~ N(1,1). The sampling ratio is set to K = N/8.
Further, the spectral response of the sampling filter G is defined by

N b A< 1
G = {2 =20/ (Amax +€) A> 1. (4.20)

Under the stochastic prior, noise conforms to n ~ N(0,0.2). We set € = 0.1.

The proposed method is compared with four existing methods [11,12,20,43]. Table 4.2
summarizes averaged MSEs in decibels for 100 runs. Although we only show the results in the
unconstrained case due to the limitation of space, the predefined case also presents the same
tendency. It is observed that the proposed method outperforms the alternative methods for all
signal models. In particular, the reconstructed signals with the subspace priors are perfect
recovery in machine precision. While the existing approaches based on the bandlimited
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Figure 4.3: Examples of recovery for PWC graph signals on sensor graphs. Black circles
represent selected nodes. Colors on nodes represent magnitudes of signal values.

model show perfect recovery for bandlimited signals, they do not perfectly recover full-band
signals like PGS and PWC signals. For the other priors, the proposed method also presents
consistently lower reconstruction errors than the other methods. The numerical experiments
are conducted in MATLAB environments using 64-bit machine precision (42.23 x 1073% to
+1.80 x 103%).

While most existing methods rely on bandlimited models, this chapter first presents
perfect recovery with node domain sampling beyond the bandlimited signal model. Examples
of recovered signals are visualized in Fig. 4.3 along with the selected sampling sets.

4.5 Conclusion
In this chapter, an SSS algorithm for arbitrary graph signal models is proposed. In contrast

to existing approaches, we directly focus on the DS condition for signal recovery based on
the generalized sampling framework. We seek the optimal sampling set such that the DS
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condition is maximally satisfied. The proposed greedy SSS algorithm utilizes the Neumann
series approximation for fast implementation. The recovery experiments demonstrate that
the proposed method is effective for various graph signal models.

Although we assume that the signal subspace or alternative priors are exactly given, they
are usually obtained by some estimation algorithms, e.g., dictionary learning and bandwidth
estimation. Therefore, they generally involve an estimation error and it may cause a large
error in recovered graph signals. This requires a more robust criterion of SSS. It remains as
future work.
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Chapter 5

Sensor placement problem for sensors
with multiple specifications

5.1 Introduction

Environmental monitoring is crucial for urban infrastructures to maintain the safety and
quality of our lives. Sensors may be placed at junctions/intersections of sensor networks
[3,90]. Many infrastructures can be considered as sensor networks, such as water supply [91],
gas pipeline [92], and IP networks [93]. Meanwhile, monitoring all nodes at the same time is
impractical due to the cost of sensors and the size of networks. Therefore, we need to select
an optimal set of sensor locations from the available candidates to effectively monitor the
entire network with a minimal number of sensors. This is called sensor placement problem
on graphs (SPPG) [94,95].1

SPPG seeks the optimal subset of nodes based on some criteria. One of the important
criteria in the literature is the least-squares estimation error which plays a key role in existing
approaches [96]. However, the least-squares criterion can only be applied to limited signal
models. In particular, it needs to assume the subspace of original signals is very close to that
of measured signals [16,48].

We can achieve the best possible recovery beyond the least-squares with the minimax
criterion. It has been studied in the context of generalized sampling theory [16,48,97]. Its
framework is formulated so that the worst case estimation error is minimized, in contrast to
the average case estimation of the least-squares. The SPPG with the minimax criterion has
been studied in [15,98].

We face another challenge in applications of SPPG: The existence of sensors having differ-

I This can also viewed as an SSS, as mentioned in preceding chapters. In this dissertation, we use the term
SPPG, differentiating it from SSS when addressing specific constraints related to sensors.
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ent specifications. In practice, we may have a set of sensors with two or more specifications
while most SPPGs only assume the single specification. SPPG becomes challenging if multi-
ple sensor types must be considered simultaneously since the deployment costs and sensing
area coverage can vary depending on the sensors.

In this chapter, we propose the SPPG using a set of sensors having two or more speci-
fications, ensuring the best possible recovery for arbitrary signal models. We select sensor
placements such that they simultaneously maximize the overall coverage area and minimize
the total sensing budget. We formulate the SPPG as a difference-of-convex (DC) optimiza-
tion on the basis of generalized sampling theory. It is efficiently solved by the primal-dual
splitting (PDS) algorithm [99]. We demonstrate the effectiveness of our approach through
recovery experiments.

Notation: We let A € RV*M he a generator matrix of . Throughout this chapter, we
define a signal subspace as follows [48]:

A= {z |z = Ad for some d € RM} (5.1)

where d is some expansion coefficient.

5.2 Related work

In this section, we introduce the classical formulation for SPPG and its relaxation as a convex
optimization problem.
First of all, we define a sampling operator in the nodal domain as follows [15]:

Definition 15 (Sampling in the nodal domain). Let Iry € {0, 1}*N be the submatriz of
the identity matriz indexed by M CV (I]M| = K) and V. The sampling operator is defined

by

ST :=IwG, (5.2)
where G € RVN*N s an arbitrary graph filter. A sampled graph signal is thus given by
y=STx.

Note that (5.2) is a natural extension of the sampling operator for the standard time domain
sampling to the graph setting. We refer to the subspace S spanned by S as sampling subspace.
Let us consider the following measurements:

y=S"z+mn, (5.3)

where n is additive white Gaussian noise. The least-squares reconstruction is obtained by
solving the following problem [48]:

& = argmin ||STx — y||* = S(STS)'y, (5.4)
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where T denotes the Moore-Penrose pseudo inverse.
Sensor placement problem is generally formulated as

M* = argmax f(M), (5.5)

where f : M — R is a properly-designed cost function. There are several designs of f in
the literature. Optimal experimental designs are one of the major choices, including A-, E-,
and D-optimal designs (see [100]). In this chapter, we introduce the A-optimal one, which is
naturally derived from the error analysis.

Suppose that the signal subspace in (5.1) is identical with the sampling subspace, i.e.,
A = S. Then, the expected value of the least-squares error can be expressed by

Efl|lz — «[*] =E[|S(S"S)"n|’]
=tr(S(S"S)'T,(STS)'ST)
=tr(T,
<tr(T',

(5.6)

where T',, is the covariance matrix of 7, i.e., I';, = E[nn']. Therefore, the least-squares error
is bounded by tr((STS)").
Accordingly, we can design the SPPG such that the error is minimized, i.e.,

M* =argmintr((STS)")
Mcy

=argmaxtr(S'S) (5.7)
McV

=argmax tr(G ' blkdiag(Iy, O)G),
MCVY

where blkdiag(Bi, Bo,...) is the block diagonal matrix composed of {By},—; ., and O is an
all-zero matrix. By introducing m : ¥V — {0, 1} as an indicator vector corresponding to M,
we can rewrite (5.7) as

m* = argmax tr(G ' diag(m)G) st. 1'm = K, (5.8)
me{0,1}V

where 1 is an all-one vector. Since (5.8) is combinatorial, which is NP hard, it is impractical to
solve it in practice. Therefore, SPPG usually resorts to alternative relaxation/approximation
approaches. Many alternatives have been studied in the literature, including convex relax-
ation [96,101], greedy algorithm [10], and quadratic programming [102], to name a few.
This chapter utilizes a convex relaxation of (5.8), which is advantageous to formulate
the optimization with multiple constraints. In the relaxation, we use s € [0, 1]" instead of
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m € {0,1}", i.e., the relaxation of binary labeling to continuous labeling of sensor locations.
With this modification, (5.8) is cast into the convex counterpart as

s* = argmin — tr(G ' diag(s)G) s.t. 1's =K. (5.9)

sel0, 1]V

In fact, sensor placement problem in (5.9) is widely accepted in the literature, which has
been first considered in the seminal work in [96].

Note that all of the above-mentioned methods implicitly assume all available sensors have
one single specification: In the next section, we formulate an SPPG for a set of sensors having
multiple specifications.

5.3 Proposed SPPG

In this section, we propose SPPG for a set of sensors with multiple specifications. First,
we formulate SPPG based on the minimax criterion, which is naturally derived from the
generalized sampling framework of graph signals. Next, we incorporate the constraints on
sensor specifications into the problem.

SPPG based on minimax recovery

In general, the signal subspace differs from the sampling subspace. In this case, SPPG based
on the least-squares mentioned in Sec. 5.2 may not provide the best possible recovery [16].
Herein, we suppose that A # S.

To achieve the best possible recovery, we consider the following minimax recovery problem
[48]:

& = argmin max || — z|* = A(STA)'y, (5.10)
zeAd STz=y

where y is defined in (5.3). Here, we suppose that STAATS is invertible for simplicity?.
Recall that the original signal is defined as @ = Ad in (5.1). Then, the error of the minimax
recovery is given by

E[||# - «||’]
=tr(zz’ —Exz E) +tr(A(STA)TT,(ATS)'AT)
< tr(Zg) tr(ATA) tr(I - ATS(STAATS)!STA) (5.11)

+tr(T,) tr(ATA) tr((STAATS) ™)
= tr(T,) tr(ATA) tr((STAATS) ™),

2The same formulation may also be derived in the non-invertible case.
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where E = A(STA)'ST and ¥; = dd". In the third equality in (5.11), we use the fact that
the first term becomes zero, i.e.,

tr(I — ATS(STAATS)!STA))
TAATQ\-1QTAAT (5.12)
=trI—-(S'AA'S)"' S'AA'S)) =0.
If we assume the noise-free case, i.e., I, = 0 in (5.11) and (5.12), x is perfectly recovered,
ie., E[||z —z|* = 0.
Accordingly, we can formulate the SPPG that minimizes (5.11) as follows:

M* =argmintr((STAATS)™)
McCY
=argmaxtr(S'TAA'S) (5.13)
MCVY

=argmax tr(A TG blkdiag(I, O)GA).
MCVY

We can rewrite (5.13) as follows with the same fashion as (5.8):

m* = argmax tr(A'G' diag(m)GA) st. 1'm = K. (5.14)

me{0,1}N
As a result, the convex relaxation of (5.14) results in

s* = argmax tr(A'G' diag(s)GA) s.t. 1's =K. (5.15)

s€l0,1]V

(5.15) is the generalization of (5.9) to an arbitrary signal model since we do not assume any
specific A. In the following, we further extend (5.15) into SPPG for a set of sensors with
multiple specifications.

SPPG for sensors having multiple specifications

Suppose that sensors have different deployment costs and area coverage. We formulate SPPG
with the assumption based on a DC function and then derive the PDS algorithm to solve it.

For simplicity, we focus on SPPG for a set of sensors with two different specifications. We
can easily extend it to any number of specifications straightforwardly. Let S| = Iy, G and
S) = Ir,yGo be the sampling operators corresponding to the two sensor placements with
Specifications 1 and 2 (see Definition 15). Similar to (5.10), the minimax recovery results in

~ i STA]' {y}
: 2 1 1
r =argmin max ||z —x||°=|A A , 5.16
agceA ST =y | | [ ] {S;A} Y2 ( )
Sy x=y>
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where y; = S|z + 1 and y, = S, & + 1 are measured graph signals for each sensor.

Here, we also consider the convex formulation of the SPPG as presented in (5.15). Let
s1 € [0,1]Y and s, € [0,1]" be the sensor positions of sensors with Specifications 1 and 2,
respectively (see (5.15)). In the same manner as (5.15), we easily obtain the SPPG for two
sensors as follows:

5] = ain -u(AT[G] 6] ding(ors) |G| 4), (5.17)
S5 Gy

s1,82€[0,1]V

By comparing (5.15) and (5.17), s and G in (5.15) can viewed as s = [s] s;r]T and

G = [G‘rlT GHT, respectively.

Note that (5.17) is still an incomplete formulation since it does not take into account the
difference in the sensors’ specifications. In addition, sensors having different specifications
are possible to be placed at the same position as this formulation. Below, we design the
constraints for their deployment costs, coverage areas, and sensor positions.

Deployment costs

While the deployment cost of sensors has been assumed to be uniform so far, we now assume
that there are two different deployment costs of sensors. Let ¢; > 0 and ¢y > 0 be the costs
of sensors with Specifications 1 and 2, and suppose ¢; < ¢y without loss of generality. The
budget constraint is characterized by

(1) el)] [2] <K. (5.18)

Note that K can be viewed as the total budget of sensors herein, while K is used as the
number of sensors in (5.9).

Coverage area

Recall that Iy in (5.2) specifies the sensor positions on G. A graph filter G can be viewed
as a coverage area of the sensors: For example, we consider

N-1 P
Z Z ap NP [lu; [k [ (Z apAp> UT] : (5.19)
i=0 p=0 L,k

where {a,} are arbitrary polynomial filter coefficients. In graph signal processing, (5.19) is
referred to as a P-hop localized filter [42], whose nonzero response is limited within P-hop
neighbors of the target node. This implies that the coverage area of all sensors is limited to
P-hop.
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In a practical scenario, G would be designed to aggregate the data from P-hop neighbors.
For example, in TCP/IP networks, master (hub) nodes usually aggregate TCP/IP packets
around neighbor slave nodes [93]. An aggregating filter can be implemented by [56]

G = Wdiag(u;[0], u[1],...)UT, (5.20)

where [lI’]k,l = )\f
Here, we let Gy be graph filters with the Py-hop localization for the sensor with Speci-
fication k. In practice, there should be a trade-off between the cost and coverage: A more

costly sensor will have a wider coverage area. Since we assume ¢; < ¢y in (5.18), we set to
P < P;.

Orthogonality of selection

Since s; and sy should not be overlapped in practice, we can assume they are distinct, i.e.,
s1 L sy. However, it is difficult to directly force the orthogonality condition in a convex
optimization we consider. To this aim, we exploit the alternative constraint based on a DC
function in the following theorem:

Theorem 7. Let s, 85 € Rf be arbitrary vectors. Then, the following inequality holds
E(Sl, 32) = ||81 + 82||1 — ||81 — 82”1 Z O, (521)
where the equality holds if and only if s1 L ss.

We omit the proof due to the limitation of space. Therefore, the minimization of L(s;, S2)
facilitates s; L s,.

SPPG with PDS

We now incorporate the structure of the different specification sensors, presented in Sec. 5.3,
to (5.17). We can rewrite (5.17) as

{84 = argmin —tr(ATéTdiag('Sl,32)(N;A>+N£<31a32)’
82 31,326[0,1}]\7

(5.22)
s.t. e’ [31] <K,

where G = [GIT G;}T, c= [cllT CQ].T]T, and p is used for encouraging the orthogonal
constraint (see Thereom 7). Note that (5.22) is no longer convex but DC, which stems from
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L (see Theorem 7). While DC optimizations are usually challenging to solve, we derive an
efficient algorithm based on PDS.
We transform (5.22) into the applicable form to PDS [99]. We omit the preliminary of

the PDS algorithm for brevity (see [99] and references therein). We let § be § = [s] sﬂT,
and let T be

2

2IN—1
T = efv GTeQN QNT ® eﬁvefvTATéTeiN, (5.23)
7=0

I
=)

i

where {€P} is the canonical bases of R”. We use T to express the first term in (5.22) as
the equivalent linear transform: 1" T8 = tr(ATG "diag(§)ATG"). In addition, let ¢ be the
indicator function over a convex set C, i.e.,

Lc(g):{g if§eC (5.24)

+00 otherwise.

By introducing the dual variables r; = s; + 89, r9 = 81 — S9, and r3 = §, we can rewrite
(5.22) as follows:

§* =argmin—1'T35 + w(llralls = l|r2ll) + te, (8) + tey(73)

I I
" T i s ) (5.25)
st. |ro| = 10| | s = Rs,
T3 O I

where C; = [0,1]*Y and C, = {8 | ¢"8 < K}.
In the PDS algorithm, we use the proximal operators of from the second to five terms in
(5.25). Formally, the proximal operator of a convex function g is defined as [23]

) 1
prox,,,(v) = arggmln h(€) + ZH& — 3. (5.26)

We can easily compute the proximal operators in (5.25) and summarize their analytical
solutions in Table 5.1. Consequently, we describe the proposed method in Algorithm 2.

PDS is usually used for convex optimization and there exist several DC solvers, such
as [103]. These DC algorithms are guaranteed to converge to a critical point, however, they
would require an inner loop in every iteration to solve subproblems. As a result, the standard
DC algorithms may be relatively computationally costly. To alleviate this, we approximately
but efficiently solve (5.22) based on PDS.
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Table 5.1: Proximal operators used in the proposed method.

prox,, ([ S]¢) = max(min([$],, 1),0)
proxe ), ([7]e) = sen([rle) max([[rle] F /1,0)

max(c! r3—K,0)
prox, . (r (r3) =13 — — o1

Algorithm 2: SPPG algorithm for solving (5.25)
Input: 39,730 € R*N, 719,790 € RY, and 7 €0, +00]
forn=20,1,... do

U, =8, —7(=TT1+ RT[rIn r;n r;n]T)

Uiy =T+ T[LI]S1,

u27n = ’I"Q’n + T[I — I]§2,n

U3 n = T3n +T7 blkdlag(I, I)'§2,n

P = ProxXy, o (tn)

Pin = W1y — T(Prox, /., (U10/T))

P2 = Uz p — T(Prox_u/T”-Hl(U2,n/7'))

Py — g — 7(10%, | (tg0)7

@ =p,—7(-T'1+R[p], P, P3,]")

qQin = P1n+ 7[L]p,

q2.n = P2n + T[I - I]pn

Q3. = Psn + 7 blkdiag(I, I)p,

B (§n+1; ri,n+1> = (gn, ri,n) — (’U,m uz’,n) + (qn, qi,n) (Z = 1, e ,3)

Output: s,

5.4 Discussion toward practical implementation

In this section, we discuss the practical designs of parameters indicating sensor specifications
in our method: Sensing budget and coverage area (hop counts).

Wireless sensor networks are a compelling application of SPPG, where their edges indicate
the communication among sensors [1,4,90]. In this context, selected and non-selected nodes
are referred to as sink and source sensors, respectively.

Sensor prices

Usually, the deployment cost of sensors is designed depending on the market price of sensors.
Many factors of sensors vary the price, including communication ability /performance and
types of measurements [104].
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Suppose that the objective measurement types are uniform in the sensor network. The
communication ability is typically designed by the communicating distance on the graph [104].
For example, in sensor networks, all source nodes must be capable of communicating with at
least one nearest sink node while some source nodes may be located near multiple sink nodes
(i.e., intermediate sensors) and able to communicate with them. Since the number of adjacent
sink nodes of the source sensors depends on the number of interfaces, the intermediate sensors
are more costly than normal ones.

Hop counts

Sink sensors are desired to collect the measurements from all source sensors efficiently. If the
shortest distance (i.e., hop count) that sink sensors can communicate is large, its coverage
region becomes large while its communication cost should be expensive. Therefore, the hop
count is usually determined depending on the trade-off.

The energy consumption model is widely used as a metric of communication cost in the
literature [105]. Let us consider one-bit data communication from the source and sink nodes,
which are R meters away from each other. Denoting a hop count by P € N it is defined as
follows [105]:

k[ B + Fr (%)2} +(k—1)Bae  if & < Dy

Eo al(P) =
tot k | Eclec + Emp (%)4} + (k — 1)Baec  if £ > Dy,

(5.27)

where Felee, Fts, Emp, and Dy are the energy cost to transmit or receive to one-bit signal,
amplification coefficient for the free space model, that for the multipath fading model, and is
a threshold value. Following from (5.27), the energy consumption is a convex function. By
minimizing (5.27), we have the optimal hop count with

j [Diﬂ | (5.28)

where [-] is the ceiling function.
In summary, we would practically implement SPPG with a sensor having multiple speci-
fications in three steps:

1. We list up J available sensors and calculate their optimal hop count {Pj*}jzl,m, 7 in
(5.28).

2. We design analysis filters {G;};=1, s so that their polynomial orders accord with the
number of interfaces of the J sensors.

3. We perform SPPG by Algorithm 2.
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5.5 Experiments

In this section, we perform a signal recovery experiment for synthetic graph signals. We
construct a K-nearest neighbor graph from randomly distributed points in 2-D space [0, 1] x
[0,1]. The number of nodes is set to N = 256. We consider the bandlimited graph signal
model, i.e., = Uygd, where d ~ N (1,1), the bandwidth is B = 32, and Uy is the first B
eigen-vectors of L.

In the same fashion as the previous section, we assume two sensors with different spec-
ifications. We suppose that the total sensing budget is K = 32 for the proposed method,
and the deployment costs of sensors are ¢; = 1 and ¢, = 2, respectively. Both of the graph
spectral responses of Gy and Gg are given by Gy(A) = exp(—pA), where p is empirically
set to p = 8.52. Then, we derive its two different Py-hop-localized graph filters with the
Chebyshev polynomial approximation [89], whose orders are P, = 5 and P, = 7, respectively
(see (5.19)). For brevity, we call Gy the cheap sensor and Go the costly sensor. Additive
noise 1 conforms to 7 ~ AN(0,1073). Since the resulting sensor position of the proposed
method, §* in (5.25), is not binary, we transform §* into the binary with thresholding: We
select the greatest values in §* such that it stays within K.

We calculate the average MSE of reconstruction errors for 10 independent runs. Since
there are no prior works on SPPG for multi-type sensors, we use the SPPG for a single-type
sensor introduced in (5.9) as a baseline, and compare the average MSE with each case of G4
and Gs. Furthermore, we consider two standards of comparison below:

Budget consensus: The budgets of all methods are commonly set to 32.
Cardinarity consensus: The numbers of sensors of all the methods are set to 19.

The parameters of Algorithm 2 are tuned by grid search.

We summarize the results in decibels in Table 5.2. We also visualize a recovered graph
signal in Fig. 5.1. For the noise-free case, the proposed method exhibits lower MSE than
other methods in both consensuses. It also shows the same tendency for the noisy case. This
indicates that the proposed approach can adapt the tradeoff between the deployment cost
and coverage of sensors.
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Table 5.2: Average MSEs (in decibels) for 10 independent runs.

Budget Cardinarity
consensus consensus
Method | Proposed Baseline Baseline
Cheap Costly | Cheap Costly
Clean -24.54 -21.70 -16.63 | -19.52 -17.54
Noisy -22.14 -18.72  -13.48 | -17.80 -13.96
Original Proposed: MSE = 0.044
A o s ’ !? g o ‘,  Cﬁo !..s
oK T B a0 O 0 e B

s 0s L P ‘e oﬁ
S N £00 0o 03’ g. .

& 3

&
(a) Orginal (b) Recovered: Proposed

Baseline (cheap): MSE = 0.058 Baseline (costly): MSE = 0.126

B “oi "W tb o a l

(c) Recovered: Baseline (cheap) (d) Recovered: Baseline (costly)

Figure 5.1: Examples of recovered graph signals. Red- and blue-circled nodes denote the

cheap and costly sensors, respectively.

5.6 Conclusion

This chapter presents an SPPG method under the constraints of sensors having multiple
specifications. We generalize the classical SPPG so that it guarantees the best possible
recovery under an arbitrary signal model. We devise the constraints for incorporating the
structure of multiple sensor specifications into the SPPG. We derive the corresponding PDS
algorithm for solving the problem. In the experiments, we demonstrate that the proposed
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method can outperform existing methods. Future work includes experiments with real sensor
networks.
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Chapter 6

Multi-channel sampling on graphs

6.1 Introduction

Sampling of graph signals is one of the central research topics in GSP [15]. Most studies on
sampling theory for graph signals, hereafter, we call it graph sampling theory, focus on the
bandlimited graph signal model as an analog of the classical sampling theory for time-domain
signals [10-12,56]. However, we often encounter full-band graph signals in many applications.
For example, piecewise smooth graph signals and multi-band graph signals are classified into
full-band signals. While some works study graph signal sampling beyond the bandlimited
model [48,97,106], they consider signals under one signal model: Signals with the mixture
of two or more signal models cannot be recovered properly.

Generally, full-band signals can be represented by a mixture of multiple signals conforming
to different generation models. For recovering such signals, we need to consider multiple
sampling systems, i.e., multi-channel sampling (MCS), where its single-channel sampling
and recovery correspond to one signal model.

For standard time-domain signals, MCS has been studied as the Papoulis’ sampling the-
orem [107]: The ideally-bandlimited signal can be recovered from samples obtained by MCS
with arbitrary M sampling methods, e.g., non-uniform sampling and bandpass sampling.
Later, it was extended into the full-band case [108-110]. This can be viewed as a special
case of generalized sampling [16]. It is composed of sampling, correction, and reconstruction
transforms. Sampling and reconstruction transforms can be arbitrarily chosen while the cor-
rection transform compensates for their non-ideal behaviors, ensuring that the reconstructed
signal is in some sense close to the original signal. From a generalized sampling perspective,
MCS can be viewed as one of the possible sampling transforms. While numerous works have
been presented for time-domain MCS [108-112], there has been no approach to MCS in the
graph setting in spite of having various full-band graph signals in many applications.

In this chapter, we consider MCS for GSP to recover full-band graph signals. The pro-
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Figure 6.1: The framework of single-channel sampling.

posed MCS is derived from the above-mentioned generalized sampling by extending the
sampling transform for the graph setting [16]. We also design the sampling transform for
MCS on graphs. It requires the selection of a subset of nodes, i.e., sampling set selection
(SSS). We select the sampling set such that graph signals are best recovered.

One can notice that MCS is related to filter banks. In fact, sampling of full-band graph
signals has been studied in a different line of research: Graph filter bank (GFB) designs
[54,113-122]. GFBs are composed of multiple (typically low- and high-pass) graph filters
and down- and up-sampling operators, which are also components in MCS. Typically, perfect
reconstruction (PR) GFBs are designed based on the properties of the given graph operator
(e.g., adjacency matrix or graph Laplacian).

Bipartite graph filter banks (BGFB) are one of the PR GFBs and they are designed
so that graph signals on bipartite graphs are perfectly recovered [54,114,117-120]. While
BGFBs can satisfy several desirable properties of GFB, they have two major limitations:
1) their PR property is limited to signals on the bipartite graph, and 2) BGFBs as well as
many GFBs require the eigendecomposition of the graph operator to implement analysis and
synthesis filters [54,117-120]!, which is computationally expensive for large graphs.

The proposed method overcomes the limitations of BGFBs by viewing GFBs as a special
case of MCS for graph signals: MCS can guarantee PR for arbitrary graph signals independent
of the graph operator. Therefore, it does not require the graph simplification (typically
bipartition). Furthermore, MCS allows for the use of arbitrary graph filters and down-
and up- sampling operators. Our MCS can be implemented without eigendecomposition
by utilizing polynomial filters for both analysis and synthesis, while many existing methods
require eigendecomposition for achieving PR. Recovery experiments demonstrate that the
proposed method outperforms exiting GFBs.

!There are few exceptions like methods in [114,121], but they typically need careful filter designs.
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6.2 Sampling framework for graph signals

In this section, we briefly review preliminary works on single-channel graph signal sampling
[106]. First, we introduce a generalized sampling framework on graphs [15]. Second, we
introduce the SSS under subspace priors.

Sampling under subspace priors
Suppose that graph signals are characterized by the following linear model:
x = Ad, (6.1)

where A € RV*E (K < N) is a known generator matrix and d € R are expansion coeffi-
cients. The generator matrix A specifies the signal subspace A.
Let ST € REXN be a sampling operator. Then, sampled graph signals are given by

c=S"z. (6.2)

Regardless of the choice of ST (and A), the best possible recovery is always given by [16,48,97]

Z=AHc=A(STA)'STx, (6.3)
where § is the Moore-Penrose inverse. The framework is illustrated in Fig. 6.1. The sampling
matrix ST specifies the sampling subspace S. The correction matrix is therefore represented
as H = (STA)". If A and S together span RY and only intersect at the origin, perfect
recovery, i.e., € = x, is obtained with (STA)~!. We refer to this condition as the direct sum
(DS) condition [15].

While this chapter focuses on the case that the signal subspace is known, we can recover
signals without the exact knowledge of A with appropriate priors such as smoothness and
stochastic priors [16,48,67,97].

Sampling set selection for full-band graph signals

We introduce nodal domain sampling in the single-channel setting. Since there is no regular
sampling in the graph setting, it requires the selection of a subset of nodes, which is hereafter
referred to as sampling set selection (SSS). nodal domain sampling operator is defined as
follows:

Definition 16 (Nodal domain sampling). Let Iny € {0, 1}5*N be the submatriz of the
identity matriz indexed by M CV (|IM| = K) and V. The sampling operator is defined by

ST =IG, (6.4)
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where G € RY*N s an arbitrary graph filter. A sampled graph signal is thus given by
y=STx.

There exist several approaches of SSS, i.e., the design of I, however, most methods as-
sume the bandlimited graph signals. In this chapter, we consider sampling of full-band graph
signals since the analysis of graph signals beyond the bandlimited assumption is generally
necessary in a multi-channel setting. To this aim, we introduce the quality of sampling based
on the DS condition: We consider the following problem as a sampling set selection:

M* = argmaxdet(Zp), (6.5)
Mcy

where Z = GAATGT. Since det(Zy) = det(STAATS) = |det(STA)|?, (6.5) encourages
that the DS condition is satisfied. The cost function in (6.5) is designed based on the D-
optimal design, ensuring that the direct sum condition is satisfied. Unlike other SSS methods,
(6.5) is applicable to a wide range of signal models beyond the bandlimited assumption.
Further details can be found in [106].

The direct maximization of (6.5) is combinatorial and is practically intractable. Therefore,
we apply a greedy method to (6.5). Suppose that rank(Z) > K. By applying the Schur
determinant formula [88] to (6.5), it results in

y* =argmax det(Zypugy)

yeMe

=argmaxdet(Z) - (Zyy — Zym(Zrg) " Zipsy)
yeMe

=argmax Zy, , — Zy m(Zp) " Zipty, (6.6)
yeMe

where we omit the multiplication with det(Z ) in the third equivalence because it does not
depend on y*.

Still, (6.6) is computationally expensive due to the matrix inversion, which typically
requires O(]M|?) computational complexity. To alleviate this, we utilize the Neumann series
for (Za) ™. We omit the detail due to the limitation of the space. Please refer to [106]. As
a result, the SSS algorithm is described by Algorithm 3.

In the following, we extend the single-channel sampling to the multi-channel sampling.
The MCS parallels most of the formulation of the single-channel one.

6.3 Proposed multi-channel sampling on graphs

In this section, we build a MCS framework by extending the single channel sampling intro-
duced in the previous section. The framework is illustrated in Fig. 6.2. In addition, we

95



Algorithm 3: Single-channel SSS
Input: ZZ M =0, K,m =0
Set af such that [|[I — afZmll2 <1
while |[M| < K do
Compute &) = aZ 0y
while |[e) — a3, Zpe}}|| > B for some >0 do
(M) Z pey
Z ey |I?
eyt el + (I—aj 1 Zyey)
m<+—m+1
y* — arg max, ¢ e Lyy — Ly M€Y’
L M= MU{y;
Output: M

SOT Ay
r — MY, ‘}9% &
ST A,

Figure 6.2: The framework of MCS in the case of J = 2.

*
Ckerl <

convert the MCS into an equivalent subband-wise expression. This allows for an efficient
computation of the recovery transform. Based on the framework, we develop the SSS for our
MCS such that full-band graph signals are best recovered.

Framework of multi-channel sampling

Suppose that the number of the sampling set in the ¢th channel is K,. We now assume that
graph signals are generated with J generators, i.e.,

J—-1
r — Z Agd@, (67)
=0

where A, € RV*Ee and d, € R¥¢ are the /th generator and expansion coefficients, respec-
tively.

We often encounter the graph signal model in (6.7) for many applications. For example, in
multiscale analysis of graph signals [55], piecewise-smooth graph signals are often considered.
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These signals are composed of a combination of piecewise constant and globally smooth signal
models. This situation includes sensor network data [27].
The sampling operator ST € RFo++Ks-1)xN jg oiven by

S;]r i Go
ST=| : | = : , (6.8)
S}—l IMJ,lvGJ—l

where M, is the ¢th sampling set and G, € RY¥*Y is an arbitrary graph filter for the fth
subband.
According to (6.3), the recovered graph signals are given by [16, pp. 226-235]

ST
0
E=[Ay - A ML, | ¢ |= (6.9)
ST
J—-1
where
STAy -+ STA,,
Mg 4 = : : (6.10)
Si1Ae - SjiA L

This implies recovery performance essentially depends on the invertibility of Mg 4.

Hereafter, we focus on the two-channel sampling, i.e., J = 2, for simplicity. To extend
the following MCS for J > 2, we may cascade the two-channel MCS [116], and perform the
proposed sampling scheme recursively.

Subband-wise representation of MCS

Since the MCS requires the matrix inversion of (6.10), it could be computationally consum-
ing, especially for large graphs. To reduce its computational cost, we rewrite (6.10) as a
computationally-efficient form.

For simplicity, this chapter focuses on the critically-sampled case, i.e., M; = M§ (please
refer to the notation in Sec.6.2), but any sampling ratio can be applied to our MCS including
over- and under-sampled cases. Suppose that SJAy and S]A; are invertible. Under this
condition, ML 4ST can be rewritten [88] as
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Figure 6.3: The framework of the subband-wise MCS.

Mg,AST
_ [SLAO 0 T
0 STA,
X{ o —SOTAl(SIAl)—l} [Sﬂ
—STA(STA,) I ST
STA, o0 ]'[sT
- [%0 s [5t] (6-11)

where

Sh =Sy —SJAI(S]A;)'S]

B (6.12)
SE =S| — STA((S]Ay)'S,.
By viewing S’ and ST as new sampling operators, (6.9) can be expressed by
) . [ST]
B
where
Mg, = S48 O (6.14)
SAT1 0 SLAC '

In comparison with (6.9), we notice that (6.13) can be viewed as the subband-wise MCS.
The modified framework is illustrated in Fig. 6.3. Obviously, the inverse of (6.14) requires
the lower computational complexity than that of (6.10).

In contrast to the single channel setting, we need to simultaneously consider the best M,
and M in the multi-channel case. In the following, we extend the SSS to that for MCS.
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SSS for MCS

Based on (6.13), we design the SSS for the graph MCS. Recall that we assume that SJ Ag
and SJA; in (6.12) are invertible. To satisfy this condition, we maximize the product of

det(Sg AgAlSo) and det(S{A;ATS;) (see (6.5)). We consider the following problem:

M* =arg max det([Zo|am) det([Za] pme), (6.15)
Mcy

where Zy = GoA¢A]G] and Z; = G1A;A]G]. By maximizing det([Zo]y) det([Zi]ame),
the inverses of ST Ay and S]A; become stable. The cost function in (6.15) is designed such
that the graph signal is maximally separated into two subbands based on the expression in
(6.13). While the PR condition is not structurally guaranteed, it is known that PR can be
practically realized in many cases [10].

By applying the Schur determinant formula [88] to (6.15), the greedy SSS algorithm of
the proposed graph MCS selects a node y* one-by-one that maximizes the following equation:

y* =arg /\thlax det([Zo] mugyy) det([Za]angyy)
yeMe

= arg max det([Zo|r) det([Z1]m)
yeMe

. ([ZO]MJ - [ZO]%M(
(

v (6.16)

w |
=arg max
yeMe [Zl]y,y - [Zl

where M = V\(M U {y}). We omit the multiplication with det([Zo]r¢) det([Z;]r¢) in the
third equivalence because it does not depend on y*.
We apply the Neumann series approximation to the invereses of [Zo]s,am and [Zy ]y 57 in
(6.16) (see Algorithm 3). As a result, the proposed algorithm is described by Algorithm 4.
In the following, we clarify relationship between the above MCS and existing BFBs.

6.4 Relationship between MCS and BGFB

In this section, we reveal that existing BGFBs are a special case of our MCS in (6.9). We
depict the framework of PR BGFBs in Fig. 6.4.

Let Guopt = Vi, Vi, E) be a bipartite graph, where V;, and Vy are two disjoint sets of
nodes such that every edge is connected between a node in V;, and that in Vgy. In other
words, no edges exist within V; and Vy. We denote the normalized Laplacian matrix for
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Algorithm 4: Two-channel SSS
Input: Zy,Z,, M =0, K,m =0
Set af such that [|[I — afZmll2 <1
Set 5 such that ||I — B{Zxl2 <1
while |[M| < K do
Compute &) = ag[Zo] pm,
Compute &) = (5[Z1] 5 0y
while |le) — o7, [Zo]me} || > v A9 — B, [Z1] 59y || > v for some v > 0 do
(7)) [Zo]mey!
||[ZOT]M€’y”H2
* (O 21597
B = Tzggoy P
€Zl+11 — 6‘20—}- (I — g, 1[Zo]m)ey
Oy =0y + (= 654 [Z]xg) 9
L m<+<m+1

*
am—i—l A

[ZO]yy*[ZO}y,MEZL
[Zl]yy_[zl]yﬁﬂﬁg

Y* — argmax, ¢ yqe
| M+~ MUy}
Output: M

Gupt by Lipe. Its eigendecomposition is given by Ly, = VAbptVT7 where

V — |:ULL UL ] .

6.17
U —Uns (6.17)

Let S;rnaj and Sgy, be the fth analysis and synthesis transforms, respectively. Following
Theorem 2 in [116], analysis and synthesis transforms in a BGFB can be expressed by

Slna,e =IyyH, =Uprp [IN/Q JN/Q] ﬁgVT
for ¢ =1,2, (6.18)

~ | I
Ssyn,[ ::GgITMCV = VG@ |:_3V]<72/2:| UIL

where H, = Hy(Ayp), G, = Go(Appt), and J is the counter-identity matrix. Note that the
PR condition in GFBs can be expressed by [54,114]

SSyDVOSaTna,O +SquiSta1 =1L (6.19)

ana,

In graph filter bank designs, H, and Gy in (6.18) are designed so that (6.19) is satisfied.
From a perspective of generalized sampling [16] (cf. Fig. 6.3), we can view that S, o =
ST, ST, = ST, Sumo = Ao(STAg) !, and Syns = A;(STA;) L. Consequently, the PR
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condition of GFBs in (6.19) is rewritten as a MCS as follows:
AST +ASL =1, (6.20)

where Ag = Ag(STAg)™ and A; = A;(SLA;)™. While the GFB form (6.19) and the MCS
form (6.20) are not identical in general, they coincide each other with bipartite graphs. This
can be stated in the following theorem.

Theorem 8. Let S] € R¥*N and ST € RWV=KIXN be two sampling operators, and let
Ay € RVXK gnd A; € REXWN=K) be generation operators such that SE)'—AO and SIAl are

invertible. If sampling and reconstruction are performed on the bipartite graph defined by
(6.18), it follows that

AyS) + AiST = SqnoSma0 + SeniSiar = L (6.21)

ana,l —

That s, the PR condition for the graph MCS is reduced to that of the conventional BGFBs
as long as the graph is bipartite and the normalized Laplacian is used as the graph operator.

Proof. By definition in (6.12), we need to show AoSTA;ST + A;STAST = 0. This can be
verified by

VT(ASJAST + A1STAS]V

=2(Go [I J]H,G, [T —J]H,)

— 2(GoH,G H, + GoH,G,H,

— GoH,G H) — GoH,G H,)

= 2(GoH,G H, — GoH,G H})

= 2GoG, (HyH, — HyH))

= 2G,G, (HoJH, — HyJH,) = 0, (6.22)
where H' = JH = HJ. This completes the proof. O]
Note that (6.21) can be expressed as

wnif ] B

0 SLA,| |ST
B STA, 0 ] '[sT
Sy 1
— Ss N Ss N ana,0
[ yno Y 71:| |iS;_na,1
~L (6.23)
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Figure 6.4: Framework of two-channel PR GFBs.

Recovered: Proposed MSE = -663.936 Recovered: Channel 1 MSE = -23.217

N > VAN 3 Zas @ VAN
Ay 7 = PR 1 i1 7 —
£ <\ y 4 1 O T\

(d) Recon. w/ ch. 2 (e) GraphQMF (f) GraphBior

Figure 6.5: Examples of recovery for PWS graph signals on sensor graphs.

For the second equality, we replace the notations with S;,rna,O =S¢, S;'—na’l = ST, Sqno =

Ao(SJAy) ™, and S.pa1 = A1 (STA) ™! [66]. According to Theorem 1 and (6.23), we directly
obtain S} = SJ and S} = ST if sampling and reconstruction are performed on the bipartite
graph. This statement also follows for graph spectral sampling [116].
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Figure 6.6: Examples of recovery for UBP graph signals on sensor graphs.

Table 6.1: Average MSEs of 30 independent runs. RS is the random sensor graph and SR is
the Swiss roll graph.

Recon. Recon.

Methods|Proposed ) " o/ eh. 2

GraphQMF GraphBior

RS PWS|-619.04 -18.81 194.68  -168.25 -230.60
UBP|-465.98 -18.89 24.04 -186.39 -249.12
SR PWS|-654.56 -19.93 174.18 -172.95 -231.03
UBP|-382.10 -17.00 -9.40 -189.39 -248.31

6.5 Recovery experiments

In this section, we validate performances of the proposed SSS for the graph MCS. We perform
graph signal recovery experiments with synthetic and real-world graphs.

103



Synthetic graphs
Setup

The experiments are performed on random sensor and Swiss roll graphs with N = 256. The
sampling ratio is set to K = |M,| = N/2. For both graphs, we generate two synthetic graph
signals:

Piecewise smooth (PWS) graph signals [31]: It is composed of piecewise constant com-
ponents and smooth components:

£r = [].7‘1 cee 1TP]d1 + UBdQ, (624)
where the number of clusters is set to P = 4 and the bandwidth is set to |B| = K/4.

Union of band-pass (UBP) graph signals: It is composed of several band-pass compo-
nents:

z=U> G\, (6.25)
/=1

where generation (synthesis) filters Gy(A) are implemented by Meyer wavelet kernel [77].

In both cases, analysis filters are given by Mexican hat wavelet kernel [77].

We calculate the average MSE of reconstructed graph signals for 30 independent runs.
We compare the result to the well-known BGFBs, graphQMF [54] and graphBior [114].
GraphQMF is an orthogonal graph filter bank, which requires eigendecomposition to achieve
exact PR. This is because the polynomial approximation of filters results in reconstruction
errors. In contrast, GraphBior is a PR graph filter bank that utilizes polynomial graph filters
and can be implemented without requiring eigen-decomposition of the graph operator.

We apply the Harary’s decomposition algorithm [123] to those BGFBs for the graph
bipartition. We also perform reconstruction with the single channel sampling as a benchmark.
For all methods, we implement analysis and synthesis graph filters with the 50th order
polynomial approximation [89]. The numerical experiments are conducted in MATLAB
environments using 64-bit machine precision (£2.23 x 1073% to +1.80 x 103%%).

Results

The reconstruction MSEs in decibels are summarized in Table 6.1 and examples of the recon-
structed graph signals are visualized in Figs. 6.5-6.8. As observed in Table 6.1, the proposed
MCS best recovers graph signals for both signal models and both graphs. The single-channel
sampling failed to recover. That is, the conventional single-channel sampling does not work
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Figure 6.7: Examples of recovery for PWS graph signals on swiss roll graphs.

well for a mixture of multiple graph signal models. GraphQMF presents the low MSE but it
involves slight errors caused by polynomial approximations of graph filters. GraphBior and
the proposed method can be regarded as PR in machine precision but our method presents
the lowest MSE for all methods regardless of the graphs. Although GraphQMF and Graph-
Bior exhibit sufficient performance, with MSE values that can also be considered nearly zero
in practice, the significant performance gap in favor of our method is theoretically important.
This gap suggests that selecting the optimal sampling set based on our method contributes
to improvements in rigorous recovery performance compared to other methods.

Note that our MCS can achieve PR with a user-specified graph operator, while the other
methods require to the use of the normalized graph Laplacian or graph simplification prior
to sampling.

Real-world graph

We then perform a sampling experiment for a real-world graph.

105



(a) Original (b) Proposed (¢) Recon. w/ ch. 1

Recovered: Channel 2 MSE = -9.396 Recovered: GraphQMF MSE = -189.392 Recovered: GraphBior MSE = -248.310

(d) Recon. w/ ch. 2 (e) GraphQMF (f) GraphBior

Figure 6.8: Examples of recovery for UBP graph signals on swiss roll graphs.

Setup

We utilize a traffic network dataset from the Caltrans Performance Measurement System?.
Nodes represent stations of 17 highways in Alameda county, CA, where N = 593. Edges
connect the nodes if the stations are adjacent on the same highway or if there is a junction
close to the stations on different highways. Hereafter, we refer to this graph as Alameda
graph.

We consider a synthetic signal on Alameda graph to objectively measure the reconstruc-
tion quality since there is no ground-truth available®. In this experiment, we generate PWS
graph signals according to (6.24) where we divide Alameda graph into three clusters with
spectral clustering [125]. The sampling ratio is set to K = | M| = 297. Analysis filters are
the same as the previous experiment.

We calculate the average MSE of reconstructed graph signals for 30 independent runs,
and compare it with the existing methods from the previous experiment.

2This dataset is publicly available http://pems.dot.ca.gov.
3Note that estimating generator functions (both for single- and multi-channel cases) is an open problem
while some recent studies are undergoing [97,124].
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Figure 6.9: Examples of recovery for PWS graph signals on Alameda graph.

Table 6.2: Average MSEs of 30 independent runs for recovery on Alameda graph.

Recon.  Recon. )
Proposed w/ch 1 w/ ch. 2 GraphQMF  GraphBior
-633.29  -20.73 196.12 -172.59 -234.86

Results

The MSEs in decibels are summarized in Table 6.2 and reconstructed graph signals are
visualized in Fig. 6.9. Similar to the previous experiment, we observe that the proposed
MCS exhibits the lowest MSEs among all the methods. This suggests that our MCS can be

applied to real-world datasets, regardless of the topology of graphs.

6.6 Conclusion

In this chapter, we develop the first multi-channle sampling (MCS) framework for graph
signals, by extending the single-channel graph signal sampling to the multi-channel setting.
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We present an SSS method for our MCS such that graph signals are best recovered. We
reveal that existing BGFBs are a special case of the proposed MCS. We demonstrate the
effectiveness of the proposed method by showing that our MCS outperforms the existing
BGFBs and the single-channel sampling.

In this chapter, we assume that the number of generators of graph signals accords with
the number of channels used in the analysis step. In general, they may differ, since the exact
number of generators may be unknown. This requires error analysis and a more flexible
framework in such challenging scenarios. We leave them as future work.

108



Chapter 7

Conclusion

This dissertation has systematically addressed the challenges associated with sampling for
graph signals. We establish a unified graph signal sampling paradigm from the perspective of
the generalized sampling theory framework. Through the three inter-connected projects, we
have not only advanced theoretical foundations but also demonstrated practical applications
in diverse settings.

Chapter 2 lays the groundwork by developing the generalized graph sampling theory
(GGST), which offers a flexible framework for sampling under arbitrary signal priors. This
framework enhances the adaptability of graph signal processing to handle various graph struc-
tures and signal characteristics, ensuring the best possible recovery and robust performance
in real-world scenarios.

Chapter 3 extends classical sampling theory to the graph setting, focusing on developing a
GGST for random graph signals characterized by graph wide sense stationarity (GWSS). This
framework, which consists of sampling, correction, and reconstruction transforms, is designed
to minimize mean-squared error (MSE). The proposed approach is applicable to any linear
sampling method and complements existing deterministic GGSTs by introducing stochastic
priors. Experiments with synthetic signals validate the effectiveness and robustness.

Chapter 4 proposes an SSS method that operates beyond the traditional bandlimited
framework. Leveraging the GGST, the proposed method is designed to accommodate arbi-
trary linear graph signal models and utilize the Neumann series approximation for compu-
tational efficiency. Experiments validates the effectiveness of our approach, highlighting its
robustness across different graph signal models.

Chapter 5 expands the scope of SSS by tackling a sensor placement problem on graphs
(SPPG) with diverse sensor specifications, crucial for applications like environmental monitor-
ing. Our approach, based on difference-of-convex programming, optimizes sensor placements
to maximize the overall coverage and minimize the sensing budget. Results from various
network scenarios underscored the versatility and efficiency of our proposed methodology.
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Chapter 6 develops a multi-channel sampling (MCS) framework for full-band graph sig-
nals, which generally consist of mixtures of multiple signal generation models. Building on
GGST, we design an SSS method tailored for MCS, where SSS is performed independently
for each channel. Additionally, we reveal the theoretical relationship to alternative multi-
channel systems: Existing graph filter banks are categorized as a special case of our MCS
framework. Experimental validations demonstrate that our framework can effectively recover
full-band graph signals beyond single-channel sampling.

Ubiquitous sensors have significantly transformed our lives, services, and businesses. This
has led to a paradigm shift in signal processing, from using sensor data for convenience to
enhancing the quality of social and living conditions through extensive sensor data. Despite
the exploding popularity of signal processing, the scale of analysis techniques has not suf-
ficiently adapted to many applications. As a result, many researchers employ distributed
processing, approximation, and heuristics to alleviate the enormous computational burden
without considering the reduction of input data. Sampling can directly address this “ob-
stacle” of modern signal processing with theoretical support. Therefore, our work has the
potential to be a solid foundation for signal processing, machine learning, and data science,
contributing to a highly sophisticated society.

This dissertation primarily focused on expanding applicable signal models towards sam-
pling paradigms for graph signals, starting from deterministic, random, and their composite
models. We began by laying the fundamentals of sampling in general vector spaces. We grad-
ually shifted to addressing several challenges caused by the irregular distribution of nodes:
the unambiguity of GWSS (Chapter 3), the non-uniqueness of SSS (Chapter 4), and the
rich variety of graph signals (Chapter 6). In the context of SPPG, in Chapter 5, we also
considered SSS in a more practical scenario where sensors have heterogeneous specifications.
Numerical results demonstrated the theoretical consistency of the proposed methods.

Since GSP has rapidly developed in recent years, its analysis techniques, including sam-
pling, are said to be approaching their maturity. The advancement of GSP has resulted from
numerous studies adhering to the conventions of modern signal processing techniques. How-
ever, we have demonstrated indications of overcoming these limitations by recasting sampling
within general vector spaces. I believe that mathematics is powerful and versatile across dis-
ciplines. Demonstrating the impact of non-conventional mathematical techniques is one of
the themes of this dissertation.

This dissertation unified existing sampling techniques and developed them into a general-
ized framework that accommodates several signal models within the context of GSP. While
this dissertation laid a substantial theoretical foundation, enhancing the accuracy of GSP
applications, we also encountered the following three challenges from different perspectives
of sampling.

Accuracy of prior information: Our approaches are valid if appropriate signal priors are
available. Two open questions remain: how to obtain exact prior information in practical
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applications and how to address cases where signal priors involve errors.

Graph construction: Our approaches are always optimal for a given graph and its associ-
ated signal models. However, we do not consider which graph is the best for sampling.

Constraints on practice and applications: This dissertation mainly focused on applica-
tions to sensor networks. Nevertheless, there are many applications, each with unique chal-
lenges.

In future work, I aim to tackle these challenges to achieve my ultimate goal: developing
an interdisciplinary seminal work that people, including non-researchers, youth, and elders,
unconsciously use in their lives, similar to Shannon’s sampling theorem. Therefore, my
research interests extend to several disciplines, including the analysis and measurement of
sensors, machine learning, fundamental mathematics, and beyond signal processing.
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