

Title	Development of Chitin and Chitosan Monoliths with Hierarchically Porous Morphology for Flow-Based Applications
Author(s)	Hajili, Emil
Citation	大阪大学, 2024, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/98769
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Abstract of Thesis

Name (HAJILI EMIL)

Title

Development of Chitin and Chitosan Monoliths with Hierarchically Porous Morphology for Flow-Based Applications
(階層的多孔構造を有するキチン・キトサンモノリスの開発と通液を基盤とした応用)

Abstract of Thesis

Monoliths are continuous porous materials with three-dimensional structures of interconnected pores. These materials have been developed for several decades and now hold a strong position in highly efficient separation, ion exchange, catalysis, and chromatography applications. Chitin (CT) and chitosan (CS) are natural polymers with excellent biological properties, such as biodegradability, immunological activity, and wound-healing capabilities. These materials have applications in various areas, including drug delivery, biotechnology, food technology, and numerous industrial applications. This thesis focuses on the development of CT and CS monoliths with controllable porous structures for flow-based applications. Through the employment of thermally-induced phase separation (TIPS) technique, the author aimed to develop CT and CS monoliths with controllable morphology and enhanced performance in flow-based systems. The thesis is divided into general introduction, three main chapters, each addressing a specific aspect of this research endeavor, and concluding remarks.

The first chapter describes the preparation of CT monoliths with a continuous porous structure using the TIPS method by utilizing soluble CT derivative, dibutyrylchitin (DBC), as a starting material. The morphology of the porous structures could be tailored by adjusting the phase separation conditions. The resulting DBC monoliths can be subsequently converted into CT by hydrolysis. The integration of CT's unique properties, such as its hierarchical porous structure and functional groups, with the flow-based characteristics opens up new routes for its utilization in various fields. CT monoliths have excellent mechanical properties and thermal stability, and water flow tests demonstrated sufficient permeability for use as a filter or microreactor.

The second chapter presents a practical template-free method for creating a CS monolith with hierarchically porous structures from CT monoliths. This was achieved through high-concentration alkali treatment at high temperature to deacetylate the CT monolith into a CS monolith. This method eliminates the need for scaffolds, allowing the production of functional monoliths. Additionally, epichlorohydrin (ECH) was used as a crosslinking agent for the durability of the CS monoliths against acidic and basic environments. The acquired CS monoliths exhibited a high surface area, and in adsorption experiments, they demonstrated excellent performance in a continuous flow system due to their hierarchical porous morphology. The resulting hierarchically porous CS monoliths were then evaluated for their ability to capture Cu(II) ions in a flow-based system, demonstrating their potential for environmental remediation and water purification applications.

In the final chapter, a novel method for immobilizing α -amylase on a hierarchically porous CS monolith is presented. By controlling the morphology of the CS monolith, the specific pore sizes were optimized to provide an ideal structure for effective enzyme immobilization. This immobilization technique combines physical adsorption and covalent bonding to enhance the stability of α -amylase under different pH levels and temperatures compared to its soluble form. The amino and hydroxy groups in CS facilitate physical binding with the enzyme, while the epoxy groups in the monolith contribute to additional stability through covalent bonding between the stationary phase and the enzyme. The α -amylase immobilized on the CS monolith demonstrated excellent stability, reusability, and increased activity compared to the soluble enzyme, across a range of pH levels and temperatures. Additionally, the high porosity and permeability of CS monolith enable to preserve high reaction rate of the immobilized enzymes.

In this study, CS-based monoliths have shown great potential for various flow-based applications, and the integration of the unique properties of CT and CS with the advantages of monolithic structures opens up new avenues for the utilization of these sustainable and eco-friendly materials.

論文審査の結果の要旨及び担当者

氏名 (HAJILI EMIL)		
論文審査担当者	(職)	氏名
	主査 教授	宇山 浩
	副査 教授	櫻井 英博
	副査 教授	古川 森也
	副査 教授	藤内 謙光
	副査 教授	林 高史
	副査 教授	南方 聖司
	副査 教授	佐伯 昭紀
	副査 教授	中山 健一
	副査 教授	能木 雅也
	副査 教授	古澤 孝弘

論文審査の結果の要旨

本論文は階層的多孔構造を有するキチン・キトサンモノリスの開発と通液を基盤とした応用に関するものであり、序論と本論三章、総括からなる。その内容を要約すると以下のとおりである。

第一章では、熱誘起相分離法を利用したキチン (CT) モノリスの新規作製方法を開発している。有機溶媒に可溶であるジブチリルキチン (DBC) を出発物質として良溶媒にジメチルスルホキシド、貧溶媒に水を用いることでDBCモノリスを作製できることを明らかにしている。本モノリスの相分離条件を調整することで多孔構造を制御している。さらに、DBCモノリスを加水分解することで階層的多孔構造を有するCTモノリスの作製を達成している。CTモノリスは高い力学強度や熱安定性を有し、連通孔に由来する高い通液能を示している。このような優れた特性からCTモノリスはフィルターやマイクロリアクター担体への応用への高い潜在性を有している。

第二章では、階層的多孔構造を有するキトサン (CS) モノリスを開発している。高温アルカリ条件でCTモノリスを脱アセチル化することでCSモノリスを作製している。CSを基盤とした多孔質材料の作製において、熱誘起相分離法を利用した本手法は従来法とは異なり鋳型が不要である点で優れている。さらに、エピクロロヒドリン (ECH) を利用し高分子鎖間を架橋することでCSモノリスの酸および塩基への耐性を向上している。本モノリスは階層的多孔構造に由来する高い比表面積を示し、通液性にも優れている。さらに、通液法による吸着実験においてCSモノリスはそのアミノ基に由来する特性として銅(II)イオンに対する高い吸着能を示している。この結果は本材料が水浄化へ応用可能であることを支持している。

第三章では、CSモノリスを酵素触媒の担体として利用し酵素の安定性向上を達成している。CSモノリスの孔構造を制御し酵素の固定化に適した作製条件を明らかにしている。固定化酵素の触媒活性は、 α -アミラーゼによるデンプンの加水分解をモデル反応として評価している。酵素の固定化にはCSのアミノ基や水酸基に由来する物理的相互作用とエポキシ基による共有結合を組み合わせて利用することで、酵素の耐酸・塩基性および熱的安定性を向上するとともに、溶液中の酵素と比較しても優れた安定性を実現している。また、モノリスの高い空隙率と通液能は固定化酵素の優れた触媒活性および安定性に貢献し、本酵素は繰り返しの使用に対しても耐久性を示している。

以上のように、本論文は熱誘起相分離法によるキチン・キトサンを基盤としたモノリス材料の新たな合成戦略および通液法を利用した応用が示されており、新しい多孔質材料の設計指針を与えるものである。よって本論文は博士論文として価値あるものと認める。