

Title	Fundamental study on finite-size graphene-based materials with unique electronic structures toward catalyst-assisted microfabrication of semiconductor surfaces
Author(s)	李, 君寰
Citation	大阪大学, 2024, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/98770
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

論文内容の要旨

氏名 (李君寰)	
論文題名	Fundamental study on finite-size graphene-based materials with unique electronic structures toward catalyst-assisted microfabrication of semiconductor surfaces (半導体表面の触媒援用型微細加工に向けた特異な電子状態を持つ有限サイズのグラフェン系材料に関する基礎研究)
論文内容の要旨	
<p>Nanocarbon-assisted chemical etching (NCaCE) utilizes the catalytic activity of graphene-based materials to promote the oxidation and the subsequent removal of semiconductor surfaces in solutions. This method allows for the microfabrication of three-dimensional structures and high-quality crystal surface on semiconductors without using noble metal catalysts. The electronic density distribution and the origin of electronic structures of local defects in graphene-based materials were studied, as well as the potential of these defects to serve as catalytic active sites. Additionally, the impact of adding strong oxidants to the etching solution on NCaCE was explored, providing guidance for the future development of this method.</p> <p>Chapter 1 described the background of this study, the current issues in the microfabrication of photonic devices, and the purpose of this thesis.</p> <p>Chapter 2 introduced common techniques to process semiconductor surfaces and a novel etching method that has gained increasing attention over the past two decades—metal-assisted chemical etching (MaCE). It covered the processing methods, etching mechanisms, and wide applications of MaCE. Following this, I summarized the previous work on MaCE of germanium (Ge) surfaces and discussed the challenges faced by this technology. Finally, I introduced the catalytic properties and preparation of graphene-based materials, advocating the development of NCaCE as a method for the microfabrication of semiconductor surfaces.</p> <p>In Chapter 3, scanning tunneling microscopy (STM) was used to obtain atomic-level images of two types of nanoscale graphene-based materials. Among these, a previously unreported rectangular-like electronic structure repeatedly appeared at small sample bias. The origin of this lattice was thought to be the combined influence of adjacent different defects, leading to overlapping electronic states.</p> <p>In Chapter 4, I successfully reproduced the rectangular-like lattice observed in the experiments through the simulation of STM images of armchair-edged graphene nanoribbons (AGNR). In the analysis of its origin, I explored the effects of the ribbon width and the sample bias used in the calculations on the electronic structure. Additionally, to better replicate the graphene materials used in experimental observations, the influence of wrinkle structures on the electronic and chemical properties of graphene was also investigated.</p> <p>In Chapter 5, the addition of hydrogen peroxide (H_2O_2) to the etching solutions was proposed to enhance the etching rate of NCaCE. The etching morphology of Ge surfaces in H_2O_2 and the difference from etching in oxygen-dissolved water were investigated. Finally, the etching mechanism was studied, and suggestions for future work on the development of NCaCE were provided.</p> <p>This study proposed the use of nanocarbon materials to replace precious metal catalysts, developing NCaCE and applying it to microfabrication on semiconductor surfaces. In the surface observation of nanocarbon (graphene-based nanosheets), atomically clear STM images were obtained, revealing a novel electronic density distribution—a rectangular-like lattice. It was hypothesized that the overlapping of superlattices originating from different linear defects forms the rectangular-like lattice, and this hypothesis was verified through first-principles calculations on AGNRs. The rectangular electronic structure appears between adjacent linear defects at fixed distances and originates from electronic states near the Fermi level.</p> <p>In the NCaCE on Ge using H_2O_2, the etching rate did not increase, but etching phenomena different from those in oxygen-dissolved water were observed. In H_2O_2, etching pits grew and fused under the nanocarbon. Moreover, as etching proceeded, significant lateral etching occurred. Based on the NCaCE results using H_2O_2 in this study, future research is expected to achieve ideal processing traces by controlling the diffusion of holes generated during etching, which can be applied in microfabrication on semiconductor surfaces.</p>	

論文審査の結果の要旨及び担当者

氏名 (李君實)		氏名
論文審査担当者	主査	教授 有馬 健太
	副査	教授 桑原 裕司
	副査	教授 萩 博次
	副査	教授 佐野 泰久
	副査	教授 森川 良忠
	副査	教授 渡部 平司
	副査	教授 山村 和也
	副査	准教授 濱田 幾太郎

論文審査の結果の要旨

貴金属と接触する半導体表面が溶液中で選択的に溶解する『金属アシストエッチング』は、従来のウェットエッチングやドライエッチングに続く、第三のエッチング法として、近年注目されている。本手法は、溶液条件を最適化することによって、垂直異方性を持つ化学エッチングが実現できるという大きな特徴がある。これまでに、主にシリコン(Si)表面を対象として、低反射率や高撥水等の機能を創出するための多孔質構造、太陽電池におけるナノワイヤ構造やX線用光学素子等の作製プロセス、デバイス作製後のSiチップを切り離すためのダイシングプロセスなど、幅広い分野に適用されている。一方で本手法は、触媒に貴金属を用いるため、金属汚染を嫌うデバイスプロセスとの整合性が悪いという致命的な欠点がある。近年、炭素(C)の二次元ネットワーク構造と局所欠陥を併せ持つグラフェン系材料が触媒活性を持ち得るという興味深い研究例が、燃料電池分野で多く報告されている。本研究では、金属元素を含有せず、接触した半導体表面の酸化を促進する能力を持つグラフェン系材料を用いた、新しい概念に基づく触媒援用型の微細加工プロセスを提案している。

本論文は、上述の微細加工プロセスを具現化するための基盤を構築することを目指して取り組んだ研究の成果をまとめている。まず、100平方ナノメートルレベルの面積を持つ有限サイズのグラフェン系材料における電子状態を可視化した結果について述べている。そして、線状欠陥に由来する特異な電子分布について、量子力学的なシミュレーションを併用しながら詳細に解析している。次に、平方マイクロメートル前後の面積を持つグラフェン系材料を半導体表面に散布し、異なる酸化剤を含有したエッチング液中での半導体表面のエッチング特性について、電気化学的な観点から考察を行っている。本研究で得られた主な結果は以下の通りである。

- (1) 平坦な支持基板上に散布した単一のヒドラジン還元グラフェンシート(hyd-rGO)を走査型トンネル顕微鏡(Scanning Tunneling Microscopy: STM)により観察した。その結果、グラファイト表面でアームチェア型のエッジ部近傍等で現れることが知られている既知の電子状態に加えて、長方形状の奇妙な輝点配列が存在することを見出した。この起源を明らかにするため、より単純な構造を持つ、グラフェンの剥離シートについて詳細なSTM観察を行った。この場合もやはり、エッジ部に起因するとされる $\sqrt{3} \times \sqrt{3}$ 構造に加えて、hyd-rGOシートの観察時に得られたものと同じ大きさを持つ長方形状の格子(縦: 0.37 nm、横: 0.22 nm)が得られた。そして、この長方形状の格子は、近接した二種類の $\sqrt{3} \times \sqrt{3}$ 構造が重畳することにより形成されるという独自の仮説を打ち立てた。
- (2) (1)で提案した仮説を検証するため、両端にアームチェア型のエッジ部を持つ、無限長さのグラフェンナノリボン(Armchair-edged Graphene NanoRibbon: AGNR)をモデル化した。そして、密度汎関数理論に基づく第一原理計

算により、AGNR の電子状態と STM 像をシミュレーションした。実験と同程度の、絶対値が小さい負のサンプルバイアス条件において STM 像を描いたところ、輝点配列がリボン幅に依存して周期的に変化するという興味深い結果を得た。特に、幅方向における炭素原子列の本数(W)が $W = 3a$ を満たす場合には、STM 実験の場合とよく似た輝点配列が現れることを見出した。さらに、AGNR の電子分布がリボン幅に依存して周期的に変化する理由について、Clar の共鳴理論に基づいて考察した。

続いて、AGNR の STM 像について、サンプルバイアス依存性を計算により明らかにした。そして、 $W = 3a$ の場合に現れる長方形状の輝点配列は、高いエネルギーを持つ価電子により形成されること等を見出した。

(3) (2) で述べた第一原理計算により、STM 実験で得た長方形状格子 ((1) で既出) の起源に関する手掛かりを得た。一方で、STM 実験で用いたグラフェンの剥離シートや、*hyd-rGO* シートは、(2) の計算で用いた AGNR とは構造が異なる。それにも関わらず、実験と計算で類似の長方形状格子が観測される理由として、実験でのグラフェン系材料に存在する、“しわ” 構造に着目した。実験結果を詳しく解析すると、長方形状格子が存在する領域の近傍には、高さ 0.1 nm 以下の “しわ” が存在することが分かった。この “しわ” 構造が AGNR におけるアームチェアエッジと同様の役割を果たすと考え、計算機シミュレーションにより、その妥当性を検証した。さらに、“しわ” 構造での局所的な電子状態 (Partial Density of States: PDOS) を平坦部の PDOS と比較したところ、フェルミレベル近傍の状態密度が顕著に高いことが分かった。これは、“しわ” 構造自体がグラフェン平坦部と比較して化学的に活性であることを示唆しており、グラフェン系材料が持つ触媒的な作用を考える上で参考となる知見である。

(4) 単一シートレベルのグラフェン系材料 (Graphene Oxide: GO) をゲルマニウム (Ge) 単結晶表面上に散布し、エッティング液に浸漬した後の表面構造を原子間力顕微鏡 (Atomic Force Microscopy: AFM) により観察した。エッティング液として、酸素分子 (O_2) が溶存した純水 (溶存酸素水) と、過酸化水素水 (H_2O_2) の二種類を用い、エッティング後の半導体表面の構造を評価した。その結果、いずれのエッティング液の場合も、グラフェン系材料はエッティングを阻害するマスクではなく、エッティングを促進する触媒としての役割を持ち、直下が選択的に溶解するという結果を得た。さらに、得られたエッティング痕の特徴は、二種のエッティング液の場合で異なることが分かり、その起源について、接触するグラフェン系材料から注入される正孔挙動の観点から微視的に考察した。以上に基づき、グラフェン系材料を触媒に用いて、半導体表面上に深孔・深溝構造を形成するために必要な実験条件を提案した。

以上のように、本論文は、有限サイズのグラフェン系材料に関して、電子状態の解析から、半導体表面と接触した場合の溶液中での固液界面反応までを幅広く調査している。電子状態については、理想的なグラフェンとの相違や、線状欠陥により誘起される特異な輝点配列の起源を量子力学に基づく理論計算から明らかにしている。さらに、“しわ” 構造が周辺のグラフェン平坦部の電子状態に与える影響や、“しわ” 構造自体が持つ局所的な電子構造について、新たな知見を得ている。加えて、単一シートレベルのグラフェン系材料と接触した半導体表面が、溶液中で優先的に溶解する現象や、その溶液依存性について調査を行い、本エッティングモードの基礎特性を解明している。得られた成果は、貴金属に頼らない触媒アシストエッティングの発展を促すと共に、半導体表面の新たな微細加工法に繋がる可能性を秘めている。

よって本論文は、博士論文として価値あるものと認める。