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Abstract

Discrete element method (DEM) has been widely employed for the analysis of granular

materials in various fields for several decades. However, the application of DEM to large-

scale systems is still challenging due to its extremely high computational cost. Coarse-

grain models are often used to speed-up DEM simulation in which the particle size is

artificially increased. This can reduce the number of particles in the system and increase

the time step interval, both of which can lead to a significant reduction of computational

cost. In this study, a novel coarse-grain model is developed and validated, which is named

the scaled-up particle (SUP) model.

In the SUP model, the forces and torques acting on the original particles are first

estimated using the original particle parameters and variables, and then directly scaled.

The scaling laws are derived in such a way that the bulk momentum change can be equiv-

alent. The crucial aspect lies in evaluating the original particle variables, e.g., particle

overlap and separation distance, from those of the coarse-grained particles, which are re-

quired to estimate the inter-particle forces and torques of the original particles. In this

work, it is proposed to evaluate the particle overlap and separation distance using geo-

metric similarity so that the same mass of the original and coarse-grained particles can

be accommodated homogeneously in a fixed space, i.e., control volume. This is different

from most, if not all, of the coarse-grain models in the literature. In this work, the SUP

model is validated by examining the following three aspects: inter-particle force accu-

racy, inter-particle torque accuracy and applicability to various particle size distributions

(PSDs).
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To assess the accuracy of inter-particle forces, the proposed model is applied to sim-

ulate diverse systems where particles experience the contact force, capillary force and

surface adhesion force. It is demonstrated that the proposed model can provide an al-

most identical stress-strain curve of the original particles during uniaxial compression of

a packed particle bed, which is almost solely determined by the contact force. It is also

shown that the proposed model can successfully capture the change of the flow regime

of wet particles in a vertical mixer by increasing the surface tension and decreasing the

liquid volume. Furthermore, the proposed model can reasonably replicate the original

velocity distributions of cohesive particles with the Johnson-Kendall-Roberts surface ad-

hesion forces in the same vertical mixer. These results suggest that the proposed model

can be applied to various types of inter-particle forces. Finally, it is demonstrated from

the periodic boundary box simulation that the critical time step interval above which the

simulation becomes unstable is linearly proportional to the scale factor, i.e., the size ratio

between the coarse-grained and original particles.

The accuracy of the inter-particle torques is discussed by simulating the formation of

particle beds and heaps under gravity, where the coefficient of rolling resistance plays an

important role. Two rolling resistance models are examined: the elastic-plastic spring-

dashpot model and the constant directional torque model. It is found that the proposed

model can reproduce the bulk density and angle of repose of the original particles well

regardless of the rolling resistance models used. This implies the applicability of the

proposed model to various types of inter-particle torques. It is also shown that the results

are less sensitive to the scale factor compared to other models in the literature.

Regarding the applicability to various PSDs, the bulk density of particle beds with

binary and log-normal PSDs have been simulated. It is proven that the proposed model

can well capture the variation of the original bulk density caused by the size distributions.

It is concluded that the SUP model proposed in the present study is valid for a wide

range of static and dynamic behaviours of granular materials.
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Chapter 1

Introduction

1.1 Background

1.1.1 Granular materials

Granular materials are the second most manipulated material in industry after water

[1]. They are ubiquitous in nature and play a crucial role in various industries, including

food, mining, agriculture, as well as pharmaceutical industries [2]. In the chemical indus-

try, it has been estimated that approximately half of the products and three-quarters of

the raw materials are in granular form [3]. They are also fundamental to various phenom-

ena in the fields of civil and geotechnical engineering, such as soil liquefaction [4], erosion

[5, 6], sediment transport [7, 8, 9], landslides [10, 11, 12, 13], and debris flow [14, 15, 16].

Furthermore, the understanding of powders characteristics is crucial for effective con-

trol and optimisation of industrial processes. For instance, in the pharmaceutical industry,

powder technology plays a crucial role that directly impacts drug development, manufac-

turing processes, and final product quality control. The physical and chemical properties

of powders, such as particle size, shape, surface energy, and flowability, significantly affect

the stability, bioavailability, and release characteristics of drugs [17, 18, 19, 20, 21].

Granular materials can exhibit either solid-like or fluid-like behaviour. Similar to

liquids, granular materials can conform to the shape of their container. However, granular

materials also exhibit solid-like characteristics when stacked together. Granular materials

1
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are typically classified by their macroscopic properties, such as flowability, the angle of

repose, and bulk density. These macroscopic properties are generally influenced by various

microscopic characteristics of individual particles, as mentioned, which include particle

size, shape, and surface conditions.

In engineering applications, phenomena can be classified based on their length scales,

which encompass the macroscopic level (centimetres to metres), the microscopic level

(micrometres to centimetres), and the molecular level (1 to 1,000 nanometres) [22]. It

is worth noting that the majority of granular materials commonly used in laboratory

experiments typically range in size from approximately 100 to 3000 µm [23]. The length

scale of particles is also widely recognised as a crucial property of granular materials,

and various classifications based on particle size have been proposed [3]. For example,

Richards [24, 25] proposed a classification for granular materials based on their mean

particle sizes, as shown in Table 1.1. The granular material investigated and discussed in

this study roughly falls within the size range between the granular powder and granular

solid listed in Table 1.1, i.e. 10 to 3000 µm.

Table 1.1: The granular material classifications according to mean particle size [24, 25, 3].
Particle size range Name of material Name of individual component
0.1 µm - 1.0 µm Ultra-fine powder Ultra-fine particle
1.0 µm - 10 µm Superfine powder Superfine particle
10 µm - 100 µm Granular powder Granular particle
0.1 mm - 3.0 mm Granular solid Granule
3.0 mm - 10 mm Broken solid Grain

The flowability of granular materials in fluidisation process is significantly influenced

by the average particle size, making it a good example for studying this phenomenon.

Based on the difference in density between particles and fluid (ρp − ρf), as well as the

mean particle size (dsv), Geldart [26] classified granular solids into four groups, as shown

in Figure 1.1. The difference of fluidisation behaviour across different groups is significant,

which is illustrated in Figure 1.2 [26, 27]. The smallest Group C particles exhibit limited
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fluidisation due to their high cohesion, which is attributed to their small size and makes

them the most difficult to fluidise. The particles in Group A and the larger particles in

Group B exhibit good fluidisation characteristics, although their fluidisation behaviours

are different from each other. Particles in Group A exhibit dense phase expansion after

minimum fluidisation and before the onset of bubbles. Group B particles form bubbles at

the onset of minimum fluidisation. The largest particles, classified as Group D, exhibit a

spouting behaviour rather than achieving complete fluidisation. These Group D particles,

being the largest in size, tend to form stable spouts that are characteristic of spouting

fluidised beds.

Sauter Mean Particle Size, 
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Figure 1.1: The Geldart‘s classification [26] of particle fluidisation (excerpt from [27]).

The flow regime and average particle size in the mentioned fluidisation instances are

highly correlated, which indicate the analysis of bulk particles behaviour is challenging.

Here, the definition of the mentioned term “bulk particles” can be briefly explained as

follows: A bulk solid is composed of numerous individual particles [28, 29], in which the

solid particles can be called bulk particles [28].
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Figure 1.2: The illustration shows the fluidised bed in Groups A, B, C, and D of Geldart’s
classification [26] (excerpt from [27]).



CHAPTER 1. INTRODUCTION 5

The flow of granular material is considered to lack scale separation [30], which makes

it more complex than the flow of conventional fluids, such as liquid and gas. Comparing

the flow of granular materials with that of conventional fluids helps us understand the

concept. A significant difference between granular flow and the flow of conventional fluids

comes from the size difference between granular particles and fluid molecules. For a liquid,

e.g. water, there can be eight, nine or even more orders of magnitude difference between

the flow scale and the size of individual molecules [31]. In contrast, with much smaller size

separations, the temporal and spatial scales of individual granular particles are usually

comparable to the granular bulk flow of particles, where granular particles usually forms

rigid regions under the effect of external stress [32, 33]. Here, the use of “bulk” in term

“bulk flow” emphasises the collective movement of particles as a whole rather than their

individual or random movements [34, 32, 33].

The size of granular particles falls within the range between microscopic and macro-

scopic, which makes the influence of conventional temperature on particle motion negligi-

ble while dynamical effects become more significant [35]. Consequently, the interactions

among particles, such as energy dissipation due to surface friction and inelastic collisions,

assume greater significance and cannot be ignored. The micro properties of particles

govern the interactions between individual particles, which influence the behaviour of

granular material at a macroscopic level. This phenomenon is commonly referred to as

the micro-macro transition in granular particle behaviour [36, 37, 38, 39].

1.1.2 Micro-macro transition of granular materials

The micro-macro transition, which refers to the correlation between particle-level in-

teractions and macroscopic behaviours of granular materials, remains poorly understood

and requires further investigation. Various microscopic factors at the particle level can

influence the macroscopic behaviours of bulk particles. This section introduces three cru-

cial microscopic factors, namely inter-particle forces, rolling resistance, and particle size
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distributions, and explains how they influence the macroscopic behaviour.

1.1.2.1 Inter-particle forces

Various inter-particle forces can influence the motion of individual particles and thereby

macroscopic motion of granular materials, such as contact forces [40, 41], van der Waals

forces [42, 43, 44, 45], electrostatic forces [46, 47, 48, 49], and liquid bridge forces [50, 51,

52, 53]. The mentioned inter-particle forces are briefly introduced as follows:

• Contact forces: Contact forces result from the interactions of electrons on or near

the surfaces of objects [54]. In the length scale of granular materials, contact forces

between particles can be regarded as originating from surface deformations at the

points of contact [55]. Depending on the material of the contact surface, various

theories can be used to evaluate the contact forces between particles. The Hertz

contact theory is a typical example, which is based on the analysis of deformation

in smooth, elastic spheres under frictional contact and predicts both normal and

shear forces [40].

• van der Waals forces: van der Waals force at the atom scale arise from transient

shifts in electron density, resulting in charge imbalances that can attract or repel

neighbouring atoms. The more detailed information of the origin of van der Waals

forces can be found in literature [43, 56]. At the scale that particle diameter is

less than 50 microns, van der Waals forces are regarded as the primary force of

adhesion. These van der Waals forces can be increased as a result of particle and/or

surface deformations, which increase the contact area of particles [57]. The Johnson-

Kendall-Roberts (JKR) contact theory takes it into consideration and describes the

adhesion contact between soft and slightly deformable materials [44, 58, 45].

• Electrostatic forces: In the process of handling granular materials, triboelectri-

fication is a significant surface phenomenon [47, 49]. The relative movement of
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particles and their collisions with surfaces, which creates conditions for the gen-

eration of electrostatic charge. Charged particles set up electrostatic fields which

influence particle trajectories and dynamics [47]. The electrostatic attraction forces

among charged particles can result in the adhesion of granular materials on the

walls of processing equipment and the agglomeration of particles [46, 48, 49].

• Liquid bridge forces: In a humid environment, each particle is regarded as sur-

rounded by a film of liquid. The liquid bridge force arises when a liquid forms a

bridge between two solid surfaces, which is regarded as one kind of important co-

hesion force among wet particles [50, 51, 52, 53]. The total liquid bridge force can

be expressed as the sum of the liquid bridge viscous forces and capillary force. The

presence of a liquid film results in an increased frictional force between the parti-

cles, which is caused by the higher viscosity of the liquid within the contact region

compared to the surrounding gas [59]. The viscous forces of a liquid bridge are par-

ticularly significant when the viscosity of the liquid is high, thus greatly impacting

the flowability of particles [60]. The computation of viscous force of liquid bridge

has been extensively discussed in previous studies by Washino et al. [61, 62]. On

the other hand, the capillary force is a sum of the surface tension along with three-

phase contact line and the force due to the Laplace pressure [63, 64]. The method

for evaluating the capillary force can be found in Section 2.3.2.1, specifically in

Equation (2.31).

It is a typical instance of the micro-macro transition of granular materials that inter-

particle cohesion forces can cause particle lumps and greatly change the flow regime of

particles. Figure 1.3 illustrates the comparison of granular flow with cohesive and non-

cohesive particles. The lumps can be observed in the snapshot of cohesive particles,

whereas they cannot be seen in the case of non-cohesive particles. Understanding such

influences from inter-particle forces to the macroscopic behaviour of granular materials is
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crucial for optimising the handling process of granular materials.

Cohesive

Non-
cohesive

Particle-level interactions Bulk particles behaviour

Figure 1.3: The inter-particle forces (cohesion force) influence the behaviour of bulk
particles. The colours represent particle velocity, with red indicating the higher velocity
and blue indicating the lower velocity.
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1.1.2.2 Rolling resistance

Rolling resistance is a typical mechanism for the dissipation of rotational energy of

granular materials at the particle-level scale, which is also considered as a torque that

impedes the attempt to roll one body on the surface of another body [65]. The rolling

resistance can arise from various sources, including micro-slip and friction on the contact

surface [55, 66, 67], plastic deformation around the contact point [55, 68], viscous hys-

teresis [68, 69, 70, 71, 72, 73, 74, 75, 76], and surface adhesion [77, 78, 65, 79, 80, 81].

The mechanisms of rolling resistance have been well reviewed in the literature [82], and

are briefly introduced as follows:

• Micro-slip: Micro-slip (or creep) at the interface may occur when the rolling bodies

have different elastic constants. The resistance of micro-slip depends on both the

difference between the elastic constants and the sliding friction coefficient. The

micro-slip rolling resistance is typically very small for most material pairs. Micro-

slip can also occur due to differences in curvatures at the contact point, but this is

usually negligible [55].

• Plastic deformation: As shown in Figure 1.4, plastic deformation is a significant

source of energy dissipation during the rolling contact of particles, making it a

crucial factor in rolling resistance. As shown in Figure 1.5, the torque of rolling

resistance primarily arises from the plastic deformation of materials ahead of the

sphere, where the deformed surface supports the front half of the contact circle

with the sphere [68]. Rather than at the interface, the plastic deformation energy

dissipation usually occurs inside the solid material, specifically at the location where

maximum shear stress is generated by contact.

• Viscous hysteresis: Viscous hysteresis is a significant energy dissipation mecha-

nism during rolling contact between viscoelastic particles. Viscoelastic materials,

e.g. rubber, absorb more energy during loading than they release during unloading.
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Figure 1.4: The stress-strain curve for loading and unloading plastic materials. After
unloading, the plastic strain is retained, while the orange-coloured area indicates energy
dissipation.

Surface plastic deformation

Figure 1.5: The plastic deformed surface supports the front half of the contact circle. FSV
indicates the support force in the vertical direction, and FSH is in the horizontal direction.
MS is the torque arising from the support force, which opposes the angular velocity ω at
that moment.
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Figure 1.6 (a) illustrates the load cycle of viscoelastic materials, where the area en-

closed by loading and unloading paths on the stress-strain graph is referred to as the

hysteresis area. The stresses in the loading region are greater than the stresses in

the unloading region for the same strain. As depicted in Figure 1.6 (b), the rotation

induces an asymmetric stress distribution on the contact surfaces of the particle

due to viscous hysteresis, which generates a torque reversing in the direction of the

angular velocity. The energy lost during deformation can be considerable and can

be significantly influenced by temperature and deformation rate [70, 75].

• Surface adhesion: The adhesion rolling resistant torque, as shown in Figure 1.7,

is mainly attributed to the asymmetric contact area of adhesion contact [65].

The rolling resistance of individual particles, as shown in Figure 1.8, can influence the

overall flowability of bulk granular materials significantly. The high rolling resistance may

lead to the formation of lumps or agglomerates within the bulk particles.

1.1.2.3 Particle size distributions

The size of particles is a crucial microscopic characteristic. The real granular materials

are often non-uniform in size and have particle size distributions (PSDs), which can make

particle interactions even more complex. It has been found that the packing density of

a multi-particle system increases when the particle size distribution is extended [83], and

this change in packing state also influences the stress distribution [84, 85].

As shown in Figure 1.9, particles with a wide size distribution typically exhibit higher

bulk density than mono-dispersed particles, as small particles can fill in the spaces between

larger particles. Size segregation [86, 87, 88, 89, 90] may occur for various reasons, such

as the percolation of small particles into the void between large particles [89, 90] and the

different kinetic energy dissipation rates of particles with different sizes [86]. While this
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(a) The energy dissipation of viscous hysteresis.

Loading regionUnloading region

Particle

Asymmetric pressure distribution

Centre

(b) The asymmetric pressure distribution between the loading and unloading regions.

Figure 1.6: The load loop of viscoelastic materials, where the orange area indicates the
dissipated energy of viscous hysteresis. The stress on the loading path is higher than the
unloading path with the same strain (a). It results in the asymmetric pressure distribu-
tions between loading region and unloading region, and generates the torque of rolling
resistance MR (b).
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R
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Top view of 
the contact 
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: contact 
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Figure 1.7: The torque of rolling resistance arises from the asymmetric distribution of
adhesion forces, which explains the mechanism of adhesion rolling resistance. The red
points indicate the centre of the particle, MR represents the torque of rolling resistance,
a is the radius of the adhesion contact area, θα denotes angular motion, and δ = Rθα
represents the distance moved by the contact point. The asymmetric contact in the figure
is an exaggerated illustration. The actual δ is relatively small, and the distribution of the
asymmetric contact area on both sides of the axis will not be discontinued.



14 1.1. BACKGROUND

High rolling 
resistance

Low rolling 
resistance

Particle-level interactions Bulk particles behaviour

Figure 1.8: The behaviour of bulk particles is influenced by particle rolling resistance.
The colours represent particle velocity, with red indicating the higher velocity and blue
indicating the lower velocity.
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phenomenon is undesirable in many applications, it is also actively utilised for particle

separation and recycling. A deeper understanding of the microscopic mechanism of PSDs

can help to improve the processes related to particle segregation, mixing, compression,

and so forth.

Particle size 
distributions

Bulk density
(packing state)

Monodisperse Log-normal PSDs

Low bulk density 
(high porosity)

High bulk density
(low porosity)

The same mass

Figure 1.9: Particle size distributions can influence the packing states with the same mass
of particles. The colours represent particle size, with red indicating the larger particles
and blue indicating the smaller particles.

1.2 Modelling approaches of granular materials

Currently, empirical knowledge of granular materials is frequently employed in prac-

tical applications to improve the design of relevant equipment and process conditions.

However, this often requires a significant number of trial-and-error attempts and incurs

both time and financial costs. To understand the mechanisms of macro-scale phenomena,

such as lumping and the transition of flow patterns in granular materials, it is neces-

sary to investigate micro-level interactions, i.e. particle-level interactions. Nevertheless,
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conducting experiments to study these mechanisms poses challenges due to difficulties in

measuring particle interactions and observing internal behaviour. Computer simulations

can be a powerful alternative for gaining more insight into these processes.

As illustrated in Figure 1.10, granular materials can be modelled either as a continuum,

where the relationship between stresses and strains is determined through a constitutive

model, or as separate particles with resolved interactions at the particle level size.

Modelling approaches of granular materials

1

Continuum approaches Discrete approaches

Pros: relatively low 
computational cost that support 

the larger scale simulations

Cons: cannot provide any 
particle-level information

Granular materials are regarded 
as continuum media

Granular materials are regarded 
as discrete particles

Pros: analyze individual particle 
motion and particle-level 

interactions

Cons: extremely high 
computational cost

Figure 1.10: The classification of approaches for modelling granular materials.

To simulate granular materials using continuum approaches, the bulk discrete par-

ticles are represented as a continuum governed by constitutive laws. These constitutive

laws are typically formulated as differential equations that establish relationships between

mechanical field variables, i.e. stress and strain. In continuum modelling of granular ma-

terials, the granular material is assumed to be distributed continuously throughout its

volume without explicitly considering individual particle contacts, similar to how the Eu-

lerian method in computational fluid dynamics (CFD). In this modelling approach, the
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length scale of the computation domain typically exceeds the size of individual particles,

where one grid is considered to contain multiple particles. Continuum models do not

analyse the motion of individual particles or the interactions between them, which means

they cannot provide any particle-level information. It restricts the application of contin-

uum models in modelling granular materials. A more detailed introduction to continuum

models for modelling granular materials is presented in Section 1.2.1.

According to the discrete nature of granular materials, discrete approaches represent

them as a group of individual particles. It provides more detailed insights at the particle-

level and may be a more suitable approach for investigating the particle-level mechanisms

that influence the behaviour of bulk particles. However, the computational cost of discrete

approaches is extremely high when tracing a large number of particles, which limits the

applications of discrete approaches. More specific introductions to discrete approaches

are presented in Section 1.2.2.

1.2.1 Continuum approaches

Numerous studies on granular flow relevant to industry have focused on gas-solid

two-phase flows, particularly fluidised beds [91, 92, 93, 94, 95, 96, 97]. The Eulerian–

Eulerian two-fluid model (TFM) is one of the continuum approaches for describing gas-

solid two-phase flows. This model was first applied to gas-particle flow systems in the

1960s [98, 91, 99], where the flow field of the particles is obtained by solving the local-

averaged governing equation and the disperse phase constitutive equation simultaneously.

The complete model of TFM was later proposed by Drew in the early 1980s [100]. The

fundamental concept of the TFM is to consider the gas phase and solid phase as continuous

and fully interpenetrating [93]. Consequently, constitutive models should be formulated

for the solid phase in order to describe its fluid-like properties, such as viscosity, particle

pressure, and temperature. For instance, the kinetic theory of granular flow (KTGF)

[95, 101] has provided constitutive models for TFM. Within the framework of KTGF, the
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granular viscosity is crucial in capturing the viscous behaviour of the dispersed solid phase,

and neglecting the contribution from solid pressure would compromise numerical stability

[102]. The TFM is known for its high computational efficiency, especially compared to

discrete approaches, making it a suitable choice for simulating large-scale gas-solid flows.

While TFM is capable of describing the macroscopic heterogeneities of gas-solid flow,

accurately predicting fine-scale flow structures remains a challenge due to the simplifying

assumptions and competing theories of TFM [103].

On the other hand, the continuum approaches can also be applied to model single-

phase granular flow. The early stage studies of the continuum approaches involve the

shallow flow of particles on sloping surfaces, which is used for modelling phenomena such

as landslides and avalanches. The depth-averaged equations of motion are derived and

developed to describe shallow granular flows on an inclined plane [104, 105, 106]. The

depth-averaged models have several shortcomings and are only applicable to thin flowing

layers compared to the lateral dimension [107]. The derivation of depth-averaged models,

which are based on measurements from steady flow conditions, may make the models

unsuitable for thick and transient granular material flows [108]. Therefore, it can be sug-

gested that depth-averaged models are of limited use for modelling the complex dynamics

of dense, transient granular material flows, such as those in silos. Consequently, some

two-dimensional continuum models [109, 110, 111, 112] are used to simulate the flow be-

haviours of granular materials in plane silos and hoppers, where the transient analysis of

stress fields in silos is conducted and the predicted wall pressures are in good agreement

with that measured in experiments. More recently, three-dimensional continuum model

simulations have also been used to simulate silo discharge [113, 114], including mass and

funnel flow modes, flow rate, and wall pressure. The results generally agree with exper-

imental findings, overcoming limitations of earlier continuum models. The advantage of

continuum models for granular materials is their relatively low computational cost com-

pared to discrete methods, making them widely used in previous simulations of granular
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flows. However, there are some drawbacks that limit their application. The continuum

approach suffers from difficulties in predicting free surfaces and moving boundaries due

to its adoption of the Eulerian description. For instance, continuum models are unable to

accurately model the filling process and packing structure of particles [115, 116], and the

dynamic discharge process of silos [115, 117, 118]. Continuum models also do not allow for

observation and study of individual particle behaviour at a granular scale [116, 117, 118],

which can be modelled by discrete approaches [119].

The constitutive equation of single-phase granular materials in various continuum

models relies on empirical parameters. It is well known that there is no universal con-

stitutive model for continuum modelling that can accurately simulate the behaviour of

granular materials during rapid, transitional, and slow flow [120, 121]. Therefore, dif-

ferent granular flow systems require determining distinct constitutive equations through

experiments. Finally, continuum models of granular materials are difficult to incorporate

the cohesion forces and rolling resistance between particles. Those particle-level interac-

tions play a significant role in various processes that are related to granular materials in

industry. The limitations of continuum models have led to an increasing interest in using

discrete approaches to model the bulk behaviour of granular materials.

1.2.2 Discrete approaches

In the past few decades, the discrete element method (DEM) has been the most estab-

lished discrete approach for modelling granular materials, which was originally developed

by Cundall and Strack in 1979 [122]. DEM is a Lagrangian model that employs mi-

croscopic properties to directly calculate particle interactions and track the motion of

individual particles. In the soft sphere model of DEM, particles can overlap at contact

and the contact forces are determined by a model that relates the overlapping distance

to the force. The motion of particles is determined by Newton’s second law, which states

that the total force on a particle equals its mass times its acceleration. The velocity and
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displacement of the particles are obtained by numerically integrating Newton’s second

law of motion. Therefore, the motion of the particles is governed by interactions among

particles and between particles and surrounding structures.

DEM naturally bridges the gap between particle-level interactions and the macroscopic

properties and behaviours of bulk particles, which serves as an ideal tool for enhancing

our understanding of the micro-macro transitions of granular materials [123, 124, 125, 39,

126]. The macroscopic properties of particles can be significantly influenced by various

microscopic factors. Among these, three factors are particularly noteworthy and can be

effectively captured through DEM simulations:

• Inter-particle forces: Previously, DEM was mostly used to simulate relatively

coarse particles where only contact force [122, 92] and body (external) force [94, 127]

are dominant due to its simplicity, and proven to provide comparable results to

experimental data [128, 129]. Recently, an increasing number of researchers are

trying to incorporate more complex inter-particle forces into DEM, such as capillary

force [96, 130, 53, 131], viscous force [50, 132, 52, 61, 62], surface adhesion force

[44, 133, 134, 135, 136], and electrostatic force [137, 138]. These attraction forces

can cause agglomerates, lumps and/or wall make-ups, that are not observed with

free-flowing particles.

• Rolling resistance: It is widely recognised that the rolling resistance exerts a sig-

nificant influence on the macroscopic properties of powders [139, 140]. It is necessary

for reproducing some physical phenomena such as shear band formation [141, 142]

that may not be observed in freely rolling particles. Physically, rolling resistance

can arise from various sources, e.g., micro-slip and friction on the contact surface,

plastic deformation around the contact, viscous hysteresis and surface adhesion.

Since spherical particles are often used in DEM because of the efficient contact de-

tection and easy implementation, rolling resistance is sometimes employed to take
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into account the particle non-sphericity [143]. Many models have been proposed in

literature to evaluate the rolling resistance [144, 145, 146, 65, 147], some of which

are well reviewed by Ai et al. [82].

• Particle size distributions: The size of particles is a crucial microscopic charac-

teristic [3]. The actual granular materials often exhibit non-uniform sizes, known

as particle size distributions (PSDs), which can introduce complexities in the sim-

ulation of granular materials. Although incorporating PSDs into DEM simulations

may increase computational cost [148], it is conceptually not difficult due to their

discrete nature [84, 86, 149, 150, 87, 151, 88, 152, 85, 153, 16, 154].

1.3 Speed-up methods of DEM

One of the significant challenges in DEM is the extremely high computational cost,

which is typically proportional to the number of particles in the system and inversely

proportional to the time step size. In general, industrial-scale equipment can contain far

more than billions of particles. Despite the rapid advancement of computational power

over the past decades, it remains challenging or practically impossible to complete large-

scale simulations within an acceptable time frame. This makes it difficult to apply DEM

to industrial-scale processes even with the computer power today. Therefore, various

strategies have been implemented to speed-up DEM simulations including computation

on graphics processsing units (GPU computation) [155, 149, 156, 157], domain decompo-

sition [158, 159], particle stiffness reduction [45, 160, 161, 162, 163, 164] and coarse grain

models [139, 165, 166, 167, 168, 169, 170, 171, 172, 154]. Coarse grain models employ

artificially scaled-up particles that replicate bulk behaviour of the original particles，and

DEM simulation with coarse grain model is called coarse-grained DEM in this study.

Consequently, this approach allows for a reduction in the number of particles within the

system and an increase in the time step size. Due to the potential to reduce the com-
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putational cost by many orders of magnitude, the coarse grain models have gained great

popularity.

1.4 Coarse grain models of DEM

In the coarse grain model, it is essential to appropriately scale the forces acting on the

scaled-up particles. Chan and Washino [173] have classified coarse grain models into two

categories: parameter scaling and direct force scaling. The parameter scaling involves the

modification of physical particle properties to maintain kinematic similarity between the

scaled-up and original particle systems [139, 168, 174, 175]. This approach is straight-

forward and does not require additional programming for implementation. However, the

scaling criterion of each parameter is contingent upon the employed models, and may be

complex or difficult to determine. On the other hand, the direct force scaling first evalu-

ates the forces exerted on the original particles by using the original particle parameters

and variables, which are then directly scaled [165, 169, 173]. In general, this approach

tends to give simpler scaling laws than the parameter scaling which attracts increasing

attention.

Several efforts have been made to discuss the scaling laws of forces. l is often used

as the scale factor: the size ratio between the scaled-up and original particles. The

pioneering work of Sakai and Koshizuka [165] proposed l3 scaling for contact, fluid, and

gravitational forces, which means that the forces acting on the scaled-up particle are l3

times greater than those acting on the original particle. This keeps the same equations of

motion between the original and scaled-up particles. Chu et al. [169] proposed a model

that attempts to maintain the same total impulse, which also leads to l3 scaling for fluid

and gravitational forces. However, it is difficult to derive a scaling law for contact force in

their model since it requires the contact duration a priori. Nevertheless, they suggested

l2 scaling based on the assumption that the contact duration is linearly proportional to

the particle size.
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A coarse grain model was proposed by Chan & Washino [173, 176] based on the con-

tinuum assumption of arbitrary particle flow, where the scaling laws are derived in a way

that ensures an equivalent bulk momentum change in the control volume. It assumed a

sufficient number of particles within one CV and ignoring fluctuations in particle veloci-

ties and inter-particle forces. The scaling laws can be widely applied to various types of

forces and torques, as the derivations do not depend on any specific force or torque.

Based on the scaling laws proposed by Chan & Washino, the present study developed

a new coarse grain model, it is named as the scaled-up particle (SUP) model. One of

the most significant differences between the SUP model and conventional coarse grain

models [165, 166, 169, 173, 176] lies in its reasonable estimation of both the overlap and

separation distance between original particles, which are essential for estimating the forces

and torques on these particles. The SUP model can be widely applied to various types of

forces and torques, theoretically resulting in l2 scaling for any inter-particle forces and l3

scaling for any body forces.

1.5 Problems and research objectives

This study focuses on three problems which have not been sufficiently discussed in

past studies on the coarse grain models. They are related to inter-particle forces, torques

and particle size distributions, respectively:

• The first problem is how to evaluate the inter-particle forces acting on the scaled-up

particles. The evaluation of inter-particle forces is related to how to evaluate the

original particle variables. In the coarse grain model of DEM, the original particles

are not explicitly simulated but represented by scaled-up particles. Therefore, par-

ticularly in the direct force scaling, it is important to properly evaluate the original

particle variables related to the force estimation, such as the translational velocity,

angular velocity, particle overlap and separation distance, from the corresponding
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scaled-up particle variables. Sakai and Koshizuka [165] suggested to use the same

translational velocity between the original and scaled-up particles, whilst the an-

gular velocity of the original particle is taken to be l times larger than that of the

scaled-up particle. These relationships are based on the conservation of the total

kinetic energies in both the original and scaled-up particle systems. On the other

hand, they assumed that the overlap of the original particle is the same as that of the

scaled-up particle when estimating the contact force, which is not as well-grounded

in theory. The same assumption is employed by Chan and Washino [173] for the

separation distance to estimate the liquid bridge forces. However, to the best of

the author’s knowledge, there is no proper discussion in the literature regarding the

validity of these assumptions.

• The second problem is the evaluation of inter-particle torques for the scaled-up

particles. It is also important to properly scale the torques acting on particles so

that the phenomena related to the original particle rotation can be replicated. In

previous works of CFD-DEM, the fluid drag is considered as body force, and the

torques of fluid drag force and gravity are usually neglected [158, 160, 8]. In the

present work, however, the fluid drag is not taken into consideration, and only

gravity acts as the body force. Since the spherical particle is employed and the

relatively small size of single particle, the torque from gravity of single particle can

be considered negligible and the torque of contact force is dominant. In many of

the coarse grain models including those by Sakai and Koshizuka [165] and Chu et

al. [169], the torques are computed in the standard procedure for DEM particles.

In other words, the torques are given by using the particle radius and forces which

are both already “scaled-up”. The concept is very different in the SUP model. The

torques on the original particles are first evaluated and then scaled so that the

total change in angular momentum in control volumes remains the same. In this

way, the scaling law of inter-particle torques coincides with that of inter-particle
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forces. However, there is very limited discussion about the scaling laws of torques

in literature.

• The third problem concerns the applicability of the SUP model to particles with

size distributions. In the early stage of the model development [173, 176, 177],

mono-dispersed and spherical particles are employed in the validation simulations

for simplicity, which are also employed in Chapter 4, and 5. However, the theories

used in the SUP model are generic and may be applicable to more complex sys-

tems. Washino et al. [178] have demonstrated that the SUP model can successfully

replicate the original behaviour of a mixture of non-spherical particles. In principle,

it is also expected that the SUP model can be used when there are particle size

distributions as long as the continuum assumption is valid.

The objective of this study is to discuss the validity and applicability of coarse grain

models in DEM for the three aforementioned problems:

• Inter-particle forces evaluation: Firstly, this study attempts to obtain a deeper

understanding of the direct force scaling approach in the coarse grain model of

DEM. Specifically, the focus is on evaluating original particle variables and it is

recommended to use geometric similarity for both particle overlap and separation

distance. Namely, they are scaled by the scale factor l to ensure the same amount

of mass to be accommodated in a fixed space. Simulations of contact dominant

uniaxial compression of a packed particle bed as well as wet and cohesive particle

flows in a vertical mixer are presented to discuss the validity of the proposed method.

• Inter-particle torques evaluation: Another objective of the present work is to

discuss the validity of the scaling law of inter-particle torques in the SUP model.

Simulations of particle bed and heap formation are performed to measure the bulk

density and angle of repose of original and scaled-up particles with rolling resistance.

The influence of the coefficient of rolling resistance on the bulk density of particle
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beds and the repose angle of particle heaps is being investigated. The results of the

SUP model are compared with those obtained from other scaling laws and those of

original simulations, to discuss the validity of torques scaling.

• Particle size distributions: Finally, to validate its capability in simulating par-

ticles with size distributions, the SUP model is employed to simulate particle beds

with various PSDs. The simulation results of the SUP model are compared with

those obtained from other scaling laws. The bulk density and average coordination

number of particle beds with various PSDs are evaluated and compared to discuss

the validity of the SUP model for particles with varying PSDs.

1.6 Thesis Outline

The organisation of this thesis is outlined as follows:

• In Chapter 2, the general concept of the discrete element method (DEM), as well as

the inter-particle force models and inter-particle torque models used in this work,

are introduced. Subsequently, the method for determining an appropriate time step

for DEM simulation is introduced. Finally, the integration scheme employed in this

work, i.e., the velocity Verlet scheme, to solve the motion equation of DEM particles

is introduced.

• In Chapter 3, the general concept of the coarse grain model of DEM is introduced.

Based on the employed scaling criterion, the coarse grain models of DEM can be

classified into two types. The first type is parameter scaling, while the second type,

known as direct force scaling, is employed in the present study. Subsequently, a

novel coarse grain model is introduced, which is known as the scaled-up particle

(SUP) model. The development and validation of the SUP model are the focus of

this work. The concept, validity, and applicability of the SUP model are discussed
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in Chapters 4, 5, and 6. Scaling of the critical time step in coarse grain models of

DEM is introduced.

• The subject of Chapter 4 is to discuss the evaluation of inter-particle forces ex-

erted on scaled-up particles, which is related to the evaluation of original particle

variables: overlap and separation distance. A novel method (i.e. geometric sim-

ilarity method) is proposed to evaluate the variables of original particle in coarse

grain DEM simulation. Scaling laws of inter-particle forces are compared, and con-

ventional method to evaluate the variables of original particles are compared with

geometric similarity method. Finally, the simulations are conducted to validate the

scaling of time step mentioned in Chapter3.

• The subject of Chapter 5 is the evaluation of inter-particle torques on scaled-up

particles, along with a discussion on the influence of rolling resistance. Simulations

are conducted to compare three combinations of scaling methods for inter-particle

torques and forces, as well as to discuss the effect of rolling resistance on the bulk

density of particle beds and repose angle of the particle heaps.

• In Chapter 6, the validation of the SUP model to different particle size distributions

(PSDs) is presented. The bulk density of the particle beds was compared among

various PSDs by simulating the particle bed. The employed PSDs in the validation

simulations included a mixture of large and small particles, as well as log-normal

particle size distributions.

• Chapter 7 is the conclusion chapter, which presents a comprehensive summary of

the main findings of the present work and provides suggestions for future research.



Chapter 2

Discrete element method

2.1 Introduction

The fundamental principle of the discrete element method (DEM) is introduced in

this chapter. In the present work, the inter-particle forces are explicitly modelled, and

the positions and velocities of the particles are determined by solving Newton’s equations

of motion, which is called the soft-sphere model of DEM. The chapter begins with a

thorough introduction to DEM, which is presented in Section 2.2.

The model used to describe the contact between particles is subsequently presented,

along with an explanation of the fundamental principles of the soft-sphere model in Section

2.3, which includes both linear and non-linear spring-dashpot force models. In this study,

the Hertz contact model and the Johnson-Kendall-Roberts (JKR) model are employed

to describe particle contact, which is explained in Section 2.3.1. Inter-particle attraction

force for DEM particles is investigated in the present work, the liquid bridge force and

JKR surface adhesion force models are employed, which is explained in Section 2.3.2. The

rolling resistance for DEM particles is employed in the present work, the models employed

are introduced in Section 2.3.3.

The determination of an appropriate time step is crucial for conducting DEM simula-

tions with stability and accuracy. The critical time step of DEM simulation is introduced

in Section 2.4, while the integration scheme used to solve the equation of motion of par-

28
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ticles is discussed in Section 2.5.

2.2 Discrete element method

Discrete element method has been widely used to simulate the flow, mixing, com-

paction, and other processing behaviours of granular materials. DEM is a promising

numerical method to investigate the relationship between macroscopic properties and mi-

croscopic mechanisms of granular materials. The positions and velocities of individual

particles in DEM are determined by solving Newton’s equations of motion.

In the terms of particles collision checking, both hard-sphere and soft-sphere mod-

els have been employed in DEM. The hard-sphere model, proposed by Alder and Wain-

wright [179], was initially employed to calculate molecular dynamic motion. Subsequently,

Campbell and Brennen [180] utilised this model to simulate two-dimensional flows of in-

elastic particles. Another model is the soft-sphere model, which was proposed by Cundall

and Strack [122] and represents particle collisions as spring-dashpot interactions.

The computation of hard-sphere models is significantly faster than that of soft-sphere

models because the solutions to impact equations are analytic. Pawel Kosinski et al. [181]

classified the hard-sphere models based on the number of input parameters. A typical

hard-sphere model is called one-parameter hard-sphere model, which assumes that parti-

cles are frictionless, rigid and cannot deform when they come into contact with each other.

The only input parameter in the one-parameter hard-sphere model is the coefficient of

restitution, which is typically defined as the ratio between the relative velocity of colliding

particles along the normal to the plane of impact after collision and the same velocity

measured prior to collision. The hard-sphere model shown in Figure 2.1 (a) is a classic

example of a one-parameter hard-sphere model. This model assumes binary collisions that

can partially conserve momentum and includes one parameter, the restitution coefficient,

to adjust the momentum lost in a collision, while the collisions between particles occur

instantaneously.
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The two-parameter hard-sphere models incorporate the coefficients of restitution and

friction, which are determined based on a comprehensive investigation into the collision

dynamics between two bodies of arbitrary shape [182, 183, 184, 185, 186, 187, 188]. If

the hard-sphere models are further extended, the augmentation of input parameters will

correspondingly expand the range of phenomena explicable by the hard-sphere model [189,

190, 191, 181]. The applicability of typical hard-sphere models, however, is limited due to

the challenges they face in considering complex particle-level phenomena. This becomes

particularly evident when dealing with various types of interactions simultaneously, which

may involve adhesion contact forces, capillary forces, and rolling resistance. On the

other hand, the determination of the sequence of a group of binary collisions becomes

complicated for dense particle systems with high collision frequency. Therefore, hard-

sphere models are more suitable for simulating dilute particle systems with low collision

frequency.

In the soft-sphere model, it is assumed that the particles maintain their geometric

rigidity while undergoing deformations during a finite contact duration, as illustrated in

Figure 2.1 (b). The accurate capture of particle contact deformation is crucial for the soft-

sphere model, as it directly influences the calculation of inter-particle forces and torques.

In contrast to the hard-sphere model, which sequentially solves a set of binary collisions,

the soft-sphere model allows for simultaneous particle collisions. The soft-sphere model is

suitable for investigating dense particle systems, where the effects of particle deformation

and the complexity of frictional forces during contact are significant and cannot be ignored.

In this study, the soft-sphere model is employed to describe the complex contact states

among DEM particles, and a series of densely packed particle systems are investigated.

2.3 Soft-sphere model

The translational and rotational motion equations of Particle i interacting with adja-

cent Particle j, in accordance with Newton’s second law of motion, are given by Equations
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Before contact

During contact

Do not check particle deformation
Input parameters to calculate variables

After contact

Before contact

During contact

After contact

Check the particle deformation, and 
evaluate the interparticle forces

(a) Hard-sphere model (b) Soft-sphere model

Figure 2.1: Comparison of the hard-sphere and soft-sphere models of DEM. The hard-
sphere model does not consider particle deformations (overlap) and evaluates particle
variables, such as particle velocities after collision, using input parameters like the coeffi-
cient of restitution. On the other hand, the soft-sphere model considers deformation and
evaluates inter-particle forces (FIi and FIj) based on the deformation.
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(2.1) and (2.2):

miv̇i =
∑
j

FIi,j +mig (2.1)

Iiω̇i =
∑
j

(MIi,j +MRi,j) (2.2)

In Equation (2.1), mi represents the mass of Particle i, vi denotes the translational

velocity of Particle i, FIi,j represents the inter-particle force exerted on Particle i by

Particle j, and g is the gravitational acceleration. The inter-particle force can be written

as:

FIi,j = FCi,j + FAi,j (2.3)

where FC represents the contact force, the contact force model used in the present work is

introduced in Section 2.3.1. FA is the inter-particle attraction force, which is introduced

in Section 2.3.2.

In Equation (2.2), Ii is the moment of inertia, ωi is the angular velocity. MRij is the

torque from rolling resistance, which is defined in Section 2.3.3. MIi,j is the torque due

to inter-particle force exerted on Particle i by Particle j, which is defined as:

MIi,j = rpeni,j × FIi,j (2.4)

where rp is the radius of the particle, eni,j is the unit vector from the centre of Particle i

to Particle j. The solutions to Equations (2.1) and (2.2) are provided by the soft-sphere

model presented in the subsequent section.

The soft-sphere model was initially proposed by Cundall and Strack [122], where the

particle-particle collisions are simulated using springs, dashpots, and a frictional slider,

as illustrated in Figure 2.2. In the normal direction, which refers to the vector connecting

the centers of both particles, the spring represents the repulsion force due to elasticity,

while the dashpot accounts for energy dissipation. In the tangential direction, which

refers to the vector perpendicular to the normal direction, either the spring-dashpot or
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the frictional slider is selectively used, with the former representing static friction and the

latter indicating dynamic friction.

Dashpot

Spring

Particle

Particle

Normal spring-dashpot

Tangential spring-dashpot

Frictional slider

Figure 2.2: The soft-sphere model of DEM is illustrated in the schematic diagram. The
collision forces in both the normal and tangential directions are calculated using springs,
dashpots, and the frictional slider.

The normal force can be defined using either a linear-spring model or a non-linear

spring model. In the pioneering work of the soft-sphere model, Cundall and Strack [122]

employed a linear spring model, where the elastic repulsion force is linearly proportional

to the displacement of the particle. For instance the elastic repulsion force in normal

direction between Particle i and Particle j is given by:

FCni,j = (−knδn − ηnvni,j · eni,j)eni,j (2.5)
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where k denotes the spring stiffness, δn represents the particle overlap, and ηn is the

damping coefficient of the dashpot in the normal direction. vni,j denotes the relative

velocity of Particle i to Particle j in the normal directions respectively.

The simulation time step can be determined simply by considering the eigenfrequency

of a spring-mass system, which is independent of the particle collision velocity [94]. The

precise description of the individual collision forces between spherical particles poses a

challenge to the linear-spring model [192, 193].

In contrast to the linear spring model, a non-linear spring model can be described

by the non-linear stiffness spring coefficient estimated based on material properties such

as Young’s modulus and Poisson’s ratio. The non-linear spring model incorporates the

Hertzian contact theory [194], which states that the elastic repulsion force is proportional

to the particle displacement raised to the power of 3/2 that between particles of isotropic

elastic material with perfectly smooth surfaces. The non-linear spring model can capture

the dynamic behaviour of colliding particles in various systems. In the non-linear spring

model, the normal force and tangential force exerted on Particle i upon contact with

Particle j are given by equations (2.6) and (2.7), respectively.

FCti,j = (−knδ3/2n − ηnvni,j · eni,j)eni,j (2.6)

FCti,j = min[−ktδt − ηt(vti,j · etij),−µs|FCni,j|]eti,j (2.7)

where µs is the sliding friction coefficient. The subscripts ‘n’ and ‘t’ indicate the quantities

for the normal and tangential directions, respectively. The variables k, δ, and η represent

the spring stiffness coefficient, displacement, and damping coefficient correspondingly.

vni,j and vti,j denote the relative velocity of Particle i to Particle j in the normal and

tangential directions respectively. eni,j is the unit vector from the centre of Particle i to

Particle j, and eti,j is the unit vector perpendicular to the unit vector eni,j . The relative

velocity in tangential vti,j can be evaluated based on the sum of the transnational and
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rotational velocities as follows:

vti,j = vni,j − (vni,j · eni,j)eni,j + rp(ωi + ωj)× eni,j (2.8)

where ω is the rotational velocity. The unit vector in the tangential direction is given by:

eti,j =
vti,j

|vti,j|
(2.9)

When Particle i is simultaneously in contact with more than two particles, the total

collision force and torque exerted on Particle i are computed as follows:

∑
j

FCi,j =
∑
j

(FCni,j + FCti,j) (2.10)

∑
j

MCi,j =
∑
j

(rpeni,j × FCti,j) (2.11)

The non-linear spring model, based on the Hertz contact theory [194], is applicable

for small displacements and non-adhesive contacts. The Johnson-Kendall-Roberts (JKR)

contact model [44] was proposed to describe adhesive contact, which is an extension of the

Hertz model that introduces an attractive force component Fadh due to the surface energy

γ of the two materials. The JKR model predicts that the contact area A is larger than

what is predicted by the Hertz model. Additionally, it suggests that there exists a finite

pull-off force, represented as Fpo, when the surfaces separate. In addition to accounting

for attraction forces caused by van der Waals effects, the JKR model is also used to

describe materials where adhesion is due to capillary or liquid-bridge forces [45]. The

present study also involves adhesive contacts, and the JKR model is utilised to describe

these adhesive contacts.
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2.3.1 Contact force

The normal contact force in the JKR theory and Hertz theory can be written as

the same form that evaluating the normal contact force using the contact radius a as

illustrated in Figure 2.3.

Contact radius 

Displacement

Figure 2.3: Schematics of contact between Particle i and Particle j. The contact area A
is represented by the red-marked area.

The contact forces in the normal and tangential directions are given as follows:

FCni,j = −
(
4E∗

3r∗
a3 + ηnvi,j · eni,j

)
eni,j (2.12)

FCti,j = −min(8G∗
√
r∗δnδt + ηtvs, µsFN)eti,j (2.13)

where δ is the particle overlap, i.e. particle deformation, η is the damping coefficient,
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vi,j is the relative velocity between Particle i and Particle j, vs is the magnitude of the

relative tangential velocity at the contact surface, µs is the sliding friction coefficient. FN

represents the normal load during sliding, which is being |Fni,j|. r∗, E∗ and G∗ are defined

as:
1

r∗
=

1

ri
+

1

rj
(2.14)

1

E∗ =
1− ν2i
Ei

+
1− ν2j
Ej

(2.15)

1

G∗ =
2(2− νi)(1 + νi)

Ei

+
2(2− νj)(1 + νj)

Ej

(2.16)

where E is the Young’s modulus and ν is the Poisson’s ratio. In the Hertzian theory, the

contact radius a is calculated as:

a =
√
r∗δn (2.17)

substituting Equation (2.17) into (2.12), the subsequent equation can be derived:

FCni,j = −
(
4

3
E∗√r∗δ3/2n + ηnvi,j · eni,j

)
eni,j (2.18)

when the particle material and particle size are determined, the coefficient before the first

term of right side of Equation (2.18) is a constant, which is the normal spring coefficient

in Equation (2.6):

kn =
4

3
E∗√r∗ (2.19)

The substitution of Equation (2.19) into Equation (2.18) yields Equation (2.6), which

mean the different expressions (calculating by overlap or contact area) can represent the

same theory of contact.

When considering the interaction between two identical smooth spheres with radius

ri and Young’s modulus Ei, the effective radius r∗ and Young’s modulus E∗ are given by:

r∗ =
ri
2

(2.20)
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E∗ =
Ei

2(1− ν2)
(2.21)

substituting Equations (2.20) and (2.21) into Equation (2.19), and then the normal spring

coefficient kn can be rewritten as follows:

kn =

√
2riEi

3(1− ν2)
(2.22)

which is the the spring stiffness in the normal direction proposed in the Hertz model [194].

The JKR theory predicts a larger contact area than Hertz theory, where the contact

radius a is given as the solution of a fourth-order polynomial, which is first given by Deng

el al. [195]. Parteli et al. [196] proposed an analytical solution by employing a fourth-

order expansion of this equation and determining the real root that exceeds the radius of

contact patch in the classical Hertz model, resulting in:

a4 − 2r∗δna
2 − 4πγr∗2

E∗ a+ r∗2δ2n = 0 (2.23)

where γ is the surface energy of the particle. The damping coefficients in the normal and

tangential directions are given as [92]:

ηn = −2

√
5

3
β(m∗E∗)1/2r∗1/4δ1/4n (2.24)

ηt = −4

√
5

3
β(m∗G∗)1/2r∗1/4δ1/4n (2.25)

1

m∗ =
1

mi

+
1

mj

(2.26)

where β is a function of the coefficient of restitution, e, and defined as:

β =
ln(e)√

ln2(e) + π2
(2.27)
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FN is given by the magnitude of the normal contact force when the Hertzian theory is

used. In the JKR theory, it is given by the effective normal force as [197, 198]:

FN =

∣∣∣∣∣4
(
a

a0

)3

−
(
a

a0

)3/2

+ 2

∣∣∣∣∣Fpo (2.28)

where Fpo is the pull-off force and a0 is the contact radius at the equilibrium condition,

which are defined as:

Fpo = 3πγr∗ (2.29)

a0 =

(
9πγr∗2

E∗

)1/3

(2.30)

2.3.2 Attraction force

Various models for attraction force, FA, have been proposed and applied in DEM, such

as capillary force [96, 130, 53, 131], viscous force [50, 132, 52, 61, 62], surface adhesion

force [44, 133, 134, 135, 136], and electrostatic force [137, 138]. In order to validate a

new coarse grain model of DEM proposed in Chapter 3, which is further validated in

Chapters 4 and 5, this work employs capillary force and JKR surface adhesion force to

assess its applicability to different types of inter-particle attraction forces. These forces

are summarised below.

2.3.2.1 Capillary force model

In various powder handling processes, such as wet granulation and coating, the addi-

tion of liquid to a powder flow is commonly employed to enhance particle cohesiveness

and stickiness. During these processes, the state of the liquid may vary depending on

the degree of space saturation between particles, as illustrated in Figure 2.4. When a

small amount of liquid is dispersed into particles, it may form liquid bridges that create

capillary forces between the particles. The liquid bridges are typically assumed to be

symmetrical and pendular in shape.
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(a) Pendular (b) Funicular (3) Capillary

Figure 2.4: Liquid states in particle system with different degree of pore saturation: (a)
pendular state, (b) funicular state and (c) capillary state.

When a static pendular liquid bridge is formed between two particles with an equal

radius as shown in Figure 2.5, the particles are pulled towards each other by the capillary

force. Theoretically the capillary force due to a static pendular bridge depends both on

the shape of the bridge and the surface tension coefficient and is determined as follows

[51]:

Fcap,theory = 2πrpγL sinψ sin(θ + ψ) + πr2p∆p sin2 ψ (2.31)

where rp is the particle radius, γL is the surface tension coefficient, ψ is the half-filling

angle and θ is the contact angle. The first term on the right-hand side of Equation

(2.31) represents the contribution of surface tension along the solid-liquid-gas interface

perimeter. The second term corresponds to the hydrostatic pressure force. The pressure

difference across the liquid-gas interface, denoted as ∆p, which is referred to as the Laplace

pressure, can be mathematically described by the Laplace-Young equation [64] as follows:

∆p = γL

(
1

r′1
− 1

r′2

)
(2.32)

where r′1 and r′2 are the curvature radii of the liquid bridge.

Due to its strong non-linearity in terms of surface curvature and the implicit body

force on the interface, solving the Young-Laplace equation analytically is challenging [199].
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Several approximate solutions of the Young-Laplace equation, which rely on the simplified

shape of the liquid bridge, have been described in the literature [200, 201, 53, 202]. Fisher

[200] proposed a simple approach to estimate the liquid bridge forces, which was based

on a toroidal approximation that treated the meridional profile of the liquid-air interface

as an arc of a circle [51]. Namely, the toroidal approximation approximates the curvature

radii of a liquid bridge as an arc of a circle (Figure 2.6). To obtain a reasonable estimation,

the capillary force is calculated using Lian’s method [51]:

Fcap = 2πr2γL + πr22∆p

= 2πr2γL + πr22γL

(
1

r1
− 1

r2

) (2.33)

where r1 and r2 represent the approximated curvature radii at the neck of the liquid

bridge. The non-dimensional capillary force F̂cap is defined as:

F̂cap =
Fcap

2πγLrp
=
r̂2(r̂1 + r̂2)

2r̂1
(2.34)

where r̂1 = r1/rp and r̂2 = r2/rp.

The dimensionless volume of the liquid bridge, denoted as λ̂L, is defined using the

volume of the liquid bridge λL and the particle volume Vp as follows:

λ̂L =
λL

Vp
(2.35)

The integration of the contour of the liquid bridge yields λ̂L as follows:

λ̂L = 2

{
3

4

∫ x̂0

0

(
r̂2 + r̂1 −

√
r̂21 − x2

)2

dx− 3

4

∫ x̂0

ĥ

{
1− (x− 1− ĥ)2

}
dx
}

=
3

2

[{
(r̂1 + r̂2)

2 + r̂21
}
x̂0 −

1

3
x̂30 − x̂0(r̂1 + r̂2)

√
r̂21 − x̂20 − r̂21(r̂1 + r̂2)ζ

]
−3

2

[
(1 + ĥ)x̂20 − ĥ(ĥ+ 2)x̂0 −

1

3
x̂30 +

1

3
ĥ3 + ĥ2

] (2.36)
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where h represents half of the separation distance between particles, and x0 is the dis-

tance from the centre of the bridge to the three-phase contact line. The non-dimensional

distances are defined as ĥ = h/rp and x̂0 = x0/rp. Refer to Figure 2.6, there are following

geometrical relations among the dimensions of liquid bridge:

x̂0 = r̂1 cos(ψ + θ) (2.37)

ζ =
π

2
− (ψ + θ) (2.38)

r̂1 =
1 + ĥ− cosψ
cos(ψ + θ)

(2.39)

r̂2 =
(1 + ĥ){sin(ψ + θ)− 1}+ cosψ − sin θ

cos(ψ + θ)
(2.40)

The following equation is obtained through the substitution of Equations (2.37) and

(2.38) into Equation (2.36):

λ̂L =
3

2

[ {
(r̂1 + r̂2)

2 + r̂21
}
r̂1 cos(ψ + θ)− (r̂1 + r̂2)r̂

2
1 sin(ψ + θ) cos(ψ + θ)

− r̂21(r̂1 + r̂2)
{π
2
− (ψ + θ)

}
− (1 + ĥ)r̂21 cos2(ψ + θ) + ĥ(ĥ+ 2)r̂1 cos(ψ + θ)

− ĥ2(ĥ+ 3)

3

]
(2.41)

where r̂1 and r̂2 can be determined by solving Equations (2.39), (2.40), and (2.41) simul-

taneously. The adhesion force of a liquid bridge can be obtained from r′1 and r′2 using

Equation (2.35).

Lambert et al. conducted a comparative analysis of two approaches for modeling capil-

lary force [131], namely the energetic approach and the Laplace equation based approach.

They demonstrated the two approaches are equivalent in calculating capillary forces at

equilibrium.

In the literature, many models of liquid bridge force have been proposed [96, 130, 53,
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Figure 2.5: A static liquid bridge formed between two equal particles.

Figure 2.6: Toroidal approximation of a static liquid bridge formed between two equal
particles.
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131, 201]. In the context of this study, the chosen model is the Rabinovich-Lambert model

[53, 131], which is expressed as follows:

Fcap = Ccapeni,j (2.42)

Ccap =
4πr∗γL cos θ

1 + 1/(
√

1 + λL/πr∗S2 − 1)
(2.43)

where λL is the liquid bridge volume, γL is the surface tension, θ is the contact angle and

S is the separation distance. To avoid S from being excessively small or negative during

particle contact, a lower cut-off value of the separation distance Smin is employed. The

upper cut-off value is given by the following rupture distance [51]:

Srup = (1 + 0.5θ)λ
1/3
L (2.44)

A liquid bridge is formed when the particles come into contact, and then breaks when

the separation distance reaches the rupture distance. The pendular liquid bridge force

model used is only valid when the liquid to solid volume ratio is small. Under the specific

conditions employed in this study, the film thickness is a few microns if the thickness

is considered to be uniform, which is much smaller than the size of the original particle

employed in the present work (5000 microns). Considering that this study aims to validate

whether the coarse grain model of DEM can replicate the original DEM, if the same

assumption is adopted to both original and scaled-up particles, the difference in film

thickness at a micro level should not pose a challenge to the coarse grain model of DEM.

Therefore the film thickness is ignored in the approaching stage.

2.3.2.2 JKR surface adhesion force model

Many models have been proposed to explain the surface adhesion force [44, 133, 134]

which commonly make use of the surface energy. One of the most frequently used models
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in DEM is based on the JKR theory [44, 135, 136, 45, 196], which is valid when the

following dimensionless Tabor parameter, λT, is sufficiently large [203]:

λT =

(
4r∗γ2

E∗2D3
min

)1/3

(2.45)

where Dmin is the minimum atomic separation distance between the particles. In the JKR

theory, the normal adhesion force is calculated by:

FJKR = 4
√
πγE∗a3eni,j (2.46)

In the original JKR model, this force can be exerted until the contact breaks during

the separation process with negative overlap. A simplified model used in many studies

[204, 196, 45] is employed in this work where the contact is assumed to be broken as soon

as the normal overlap becomes zero.

2.3.3 Rolling resistance

In literature, both “rolling resistance” and “rolling friction” are employed to refer to

the torques generated at particle contacts that impede particle rotation. Following Ai et

al. [82], this study adopts the term “rolling resistance” that encompasses such torques.

Many rolling resistance models are available and used with DEM [144, 145, 146, 65].

The Elastic-Plastic Spring-Dashpot model (EPSD model) and the Constant Directional

Torque model (CDT model) are employed in this work to represent different types of

inter-particle torques. The two models are used in Chapter 5 to validate whether the

scaling laws of inter-particle torques can be applied to different types of torques or not.
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2.3.3.1 EPSD model

The model used here is referred to as the EPSD2 model in LIGGGHTS that uses

rolling spring to give the torque. The torque is incrementally computed as:

MR(t+∆t) = min(|MR(t) + ∆MR|, µrr
∗FN)er (2.47)

er =
MR(t) + ∆MR

|MR(t) + ∆MR|
(2.48)

∆MR = −kr∆θr (2.49)

kr = 8G∗
√
r∗δnr

∗2 (2.50)

where t is the time, ∆t is the time step, µr is the coefficient of rolling resistance and ∆θr

is the incremental deformation angle vector.

2.3.3.2 CDT model

The CDT model applies a constant torque on a particle which is always against the

relative rotation between the particles [144, 205]. The torque is computed as:

MR = −µrr
∗FN

ωrel

|ωrel|
(2.51)

where ωrel is the relative angular velocity.

2.4 Critical time step for DEM

The stability of numerical integration in DEM simulations with particle-particle inter-

action is significantly influenced by the chosen time step. Generally, a smaller time step

leads to enhanced calculation stability. The computational cost will become excessively

high if the time step is too small, rendering it challenging to accomplish the simulation

within a reasonable time scale. Hence, when selecting the time step for DEM simulation,
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it is crucial to consider both computational stability and the computational cost.

The literature presents two approaches for determining the critical time step in DEM.

The first approach proposed by Cundall and Strack [122] for the linear spring model is

based on the oscillation period of the mass-spring-dashpot system. The second approach

is based on the speed of Rayleigh waves. In the simulation, it is assumed that all energy

is transferred by means of Rayleigh waves [55]. The contact mechanics of non-adhesive

particles in sandpiles were investigated by Li et al. [129] through a comparative numerical-

experimental study. They utilised a non-linear spring model and proposed the expression

for the Rayleigh time step as follows:

∆t ≤ πfrmin

0.8766 + 0.163ν

√
2ρ(1 + ν)

E
(2.52)

where rmin denotes the minimum radius of the employed particles, and f is a safety factor

and typically takes a value between 0.1 and 0.2, ρ is the particle density.

2.5 Integration scheme

After calculating the forces exerted on particles and determining the accelerations

based on Newton’s second law, the velocities and positions of particles can be evaluated

through numerical integration. Various integration schemes have been employed in the

previous works, such as symplectic Euler, position Verlet and velocity Verlet. The deriva-

tion of these schemes is based on the approximation of the Taylor series, which can be

expressed as follows:

f(t+∆t) = f(t) +
f ′(t)

1!
∆t+

f ′′(t)

2!
∆t2 +

f (3)(t)

3!
∆t3 + · · · (2.53)

A first-order Taylor approximation can be employed to derive the first derivative f ′(t),
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which provides the equation of forward difference approximation:

f ′(t) =
f(t+∆t)− f(t)

∆t
(2.54)

The standard Euler method based on the forward difference approximation is utilised

to compute the first derivative for determining the velocities and positions of particles in

the subsequent time step (t+∆t):

v(t+∆t) = v(t) + a(t)∆t (2.55)

The backward difference approximation for the first derivative is derived by writing

the Taylor series for the function at the previous time step, f(t−∆t):

f ′(t) =
f(t)− f(t−∆t)

∆t
(2.56)

The symplectic Euler method differs from the standard Euler method in its calculation

of position, as it employs a backward difference approximation. The new position can be

expressed as follows:

x(t+∆t) = x(t) + v(t)∆t (2.57)

The position Verlet method is based on the central difference approximation. The

first and second derivatives in Equation (2.53) are expressed as the Taylor polynomials of

degree two and three, respectively. The position Verlet scheme is a second-order integrator

and exhibits greater stability compared to the symplectic Euler scheme [206]. In which,

the first derivative can be rewritten by the central difference approximation using Taylor

polynomial of degree two, for the forward and backward directions as follows:

f(t+∆t) = f(t) + f ′(t)∆t+
f ′′(t)

2
∆t2 (2.58)
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f(t−∆t) = f(t)− f ′(t)∆t+
f ′′(t)

2
∆t2 (2.59)

The central difference approximation for the first derivative can be obtained by sub-

tracting Equation (2.59) from Equation (2.58):

f ′(t) =
f(t+∆t)− f(t−∆t)

2∆t
(2.60)

The second derivative can also be obtained by utilising the Taylor polynomial of degree

three for both forward and backward time directions, yielding the subsequent expression:

f(t+∆t) = f(t) + f ′(t)∆t+
f ′′(t)

2
∆t2 +

f (3)(t)

6
∆t3 (2.61)

f(t−∆t) = f(t)− (t)∆t+
f ′′(t)

2
∆t2 − f (3)(t)

6
∆t3 (2.62)

The central difference approximation for the second derivative can be obtained by

summing up Equations (2.61) and (2.62):

f ′′(t) =
f(t+∆t)− 2f(t)− f(t−∆t)

∆t2
(2.63)

The position Verlet method employs Equation (2.63) to compute the position:

x(t+∆t) = 2x(t)− x(t−∆t) + ẍ(t)∆t2 (2.64)

The velocity can be derived based on Equation (2.60):

v(t) =
x(t+∆t)− x(t−∆t)

2∆t
(2.65)

The position Verlet method does not provide a velocity prediction for the next time

step. To improve the position Verlet method, the velocity Verlet scheme is proposed,
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which is a commonly utilised modification of the position Verlet method.

The velocity Verlet scheme [207] is employed in this study to numerically solve the

equations of motion that governing the particles. According to Equation (2.58), the

positions and velocities in the next time step can be determined as follows:

x(t+∆t) = x(t) + v(t)∆t+
1

2
v̇(t)∆t2 (2.66)

v(t+∆t) = v(t) + v̇(t)∆t+
1

2
v̈(t)∆t2 (2.67)

The position vector x(t) and the translational velocity v(t) are defined. The second

derivative of the translational velocity, denoted as v̈(t), which is given by:

v̈(t) =
v̇(t+∆t)− v̇(t)

∆t
(2.68)

Substituting Equation (2.68) into Equation (2.67), the translational velocity at the

next time step is finally determined as follows:

v(t+∆t) = v(t) +
1

2
(v̇(t+∆t) + v̇(t))∆t (2.69)

Subsequently, the function of force evaluation is used to calculate the new acceleration

v̇(t + ∆t), which is then utilised by the corrector to adjust the translational velocity in

accordance with Equation (2.69).

The angular velocity of a particle can be determined using the same methodology as

that for translational velocity, i.e., Equation (2.69). It is given by:

ω(t+∆t) = ω(t) +
1

2
(ω̇(t+∆t) + ω̇(t))∆t (2.70)

The memory storage requirement of the velocity Verlet scheme is comparable to the

position Verlet scheme, while the computation of the new acceleration is based on the
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predicted velocity value rather than the corrected value.

The basic steps in the velocity Verlet algorithm are presented as follows, where the

concept of half-step velocity and how to obtain Equation (2.69) from the half-step velocity

are explained:

1. Initially evaluate the half-step velocity: Calculate an intermediate velocity at

half the time step (t+ 1
2
∆t), using the velocity and acceleration at t:

v

(
t+

1

2
∆t

)
= v(t) +

1

2
v̇(t)∆t (2.71)

2. Update full step position: Update the position using the intermediate velocity

v
(
t+ 1

2
∆t
)
:

x(t+∆t) = x(t) + v

(
t+

1

2
∆t

)
∆t (2.72)

3. Update the acceleration: Compute the acceleration v̇(t + ∆t) from the inter-

action potential using the new position x(t + ∆t), for instance, Equation (2.1) can be

rewritten as follows:

miv̇i(t+∆t) =
∑
j

FIi,j(x(t+∆t)) +mig (2.73)

4. Finish the update of velocity: Complete the velocity update using the new

acceleration:

v(t+∆t) = v

(
t+

1

2
∆t

)
+

1

2
v̇(t+∆t)∆t (2.74)

substituting Equation (2.71) into Equation (2.74) yields:

v(t+∆t) = v(t) +
1

2
v̇(t)∆t+

1

2
v̇(t+∆t)∆t (2.75)

which coincides Equation (2.69).



52 2.6. CLOSURE

2.6 Closure

This chapter presents an overview of the fundamental concepts of discrete element

method (DEM) and the governing equations employed in the simulations, which encom-

pass particle motion description, particle interaction modelling, as well as determination

of simulation time step and integration scheme.

In DEM, the motion of individual particles is traced while the collisions between

particles are described using different methods, namely the hard-sphere models and the

soft-sphere models. The hard-sphere models usually process a group of binary collisions

in a predetermined order, without calculating the inter-particle overlaps or evaluating

forces. In contrast, the soft-sphere models can simultaneously handle multiple collisions

but requires accurate evaluation of inter-particle forces and torques.

The soft-sphere model of DEM is employed in this study due to the presence of a high

concentration of particles in the investigated particulate systems, requiring consideration

of multiple simultaneous collisions. In the soft-sphere model, various models have been

employed to describe inter-particle forces and torques, which are introduced in three

sections: contact force, attraction force, and rolling resistance.

The models employed to evaluate inter-particle forces and torques in this study are

introduced. For describing the contact force between particles, the Hertz contact model

and the JKR contact model are employed in the present work and introduced in Section

2.3.1. The JKR contact model is considered an extension of the Hertz model for describing

adhesive contacts, which predicts a contact area relatively larger than that predicted by

the Hertz model. The liquid-bridge force model and JKR surface adhesion force model,

which are examples of inter-particle attraction forces, are utilised in this study and intro-

duced in Section 2.3.2. The Elastic-Plastic Spring-Dashpot model (EPSD model) and the

Constant Directional Torque model (CDT model) are employed in this study to evaluate

the torque resources from rolling resistance on particles, as introduced in Section 2.3.3.
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Subsequently, the critical time step for DEM simulation is introduced, along with a

discussion on how to decide a reasonable time step for DEM simulations. The time step in

the soft-sphere model of DEM must be carefully selected to avoid employing excessively

large time steps that may lead to inaccurate calculations. On the other hand, DEM

simulation is computationally expensive, especially when the number of particles is large.

Therefore, it is also undesirable to adopt an extremely small time step, which would make

the simulation difficult to complete in a reasonable time scale. Rayleigh time step is

employed in the present work. The time step should be chosen to be smaller than the

Rayleigh time step multiplied by a safety factor, with the typical range for the safety

factor being between 0.1 and 0.2.

Finally, Section 2.5 introduced the velocity Verlet scheme, which is the integration

scheme used in the present work. The velocity Verlet scheme is a method for integrating

Newton’s equations of motion. The basic steps in the velocity Verlet algorithm are as

follows:

1. Calculate an intermediate velocity at half the time step.

2. Update the position using the intermediate velocity.

3. Compute the acceleration using the new position.

4. Complete the velocity update using the new acceleration.



Chapter 3

Coarse grain models of DEM

3.1 Introduction

In this chapter, the coarse grain model of DEM is introduced. Several coarse grain

models of DEM have been proposed in the literature, and the general concept as well

as classifications of these models are introduced in Section 3.2. The coarse grain models

of DEM can be classified into two types [173] based on the employed scaling criterion.

The first type is parameter scaling, which is explained in Section 3.2.1. The second type,

called direct force scaling, is employed in the present study and is explained in Section

3.2.2.

In Section 3.3, a novel coarse grain model is proposed, which is called the scaled-up

particle (SUP) model. The scaling laws employed in the SUP model are proposed in such

a way that the bulk momentum change can be equivalent, which follows the previous

works of Chan & Washino [173, 176]. In the concept of the scaling laws proposed by

Chan & Washino, the number of particles is sufficiently large within single CVs, and the

fluctuations of particle velocities and inter-particle forces can be ignored, which implies the

model ignored some heterogeneous variables of the particles in CV. The previous works on

porous media [208, 209] suggest that if the observer does not distinguish the microscopic

heterogeneities of a porous system, this heterogeneous system can be effectively considered

as homogeneous at macroscopic scale. This concept can also be applied to describe discrete

54
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solid systems. In the present study, for simplicity in description, the author uses the term

“effectively homogeneous assumption” as a name for the basic assumption of scaling laws

proposed by Chan & Washino.

The most novel aspect of the SUP model is the proposed geometric similarity method

for determining the overlap and separation distances between original particles, which is

essential for estimating inter-particle forces and torques. Based on the effectively homo-

geneous assumption of particles in CV, this study derived scaling laws for particles with

particle size distributions (PSDs). To apply the scaling laws to particles with PSD, the

effectively homogeneous assumption cannot be limited only to variables of particles, and

it must be extended to PSDs as well. If the particles in the simulation can be considered

effectively homogeneous, then theoretically, the SUP model can be applied to scale any

type of forces and torques exerted on DEM particles [177, 178, 154].

3.2 Classifications of coarse grain models

The coarse grain model of DEM is a promising approach for reducing the computa-

tional cost of DEM simulations, wherein particle size is artificially increased to effectively

decrease the total number of particles in a given system. Several coarse grain mod-

els of DEM have been proposed in the literature [165, 167, 210, 169, 173]. Chen and

Washino [173] proposed a classification criterion that categorised coarse grain models into

two types, namely parameter scaling and direct force scaling. Figure 3.1 illustrates the

simulation process differences between direct force scaling and parameter scaling.

In parameter scaling, the properties of particles are adjusted to maintain kinematic

consistency between the scaled-up particle system and the original particle system. How-

ever, finding a suitable scale criterion can be challenging, particularly when dealing with

systems involving multiple types of forces.

The direct force scaling first evaluates the force acting on original particles, and di-

rectly scales the forces for the scaled-up particles. The implementation of direct force
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scaling may require additional coding efforts, but it offers the advantage of establishing

a generic criterion applicable to multiple types of forces.

Original  
particle

Direct force scaling Parameter scaling 

2.Scale the force.

Original  
particle 2. Scale the parameters

of original particle.

1. No need to calc. the force 
on original particle at first.

Scale factor: /

1. Calc. the force acting on 
original particles using
the original parameters.

3. Apply the to the 
scaled-up particle.Scaled-up

particle

= /

3. Calc. the force acting on 
scaled-up particles using the 
parameters of the scaled-up 
particles.

Keep the criterion consistent, 
i.e., dimensionless numbers.

Scaled-up
particle

Figure 3.1: The difference in implementation processes between direct force scaling and
parameter scaling is demonstrated, where d represents the diameter of the particle. Sub-
scripts “S” and “O” indicate that the variables belong to scaled-up particles and original
particles, respectively.

3.2.1 Parameter scaling

In order to achieve kinematic similarity between the coarse grained particle system

and the original particle system, the parameter scaling [139, 168, 174, 175] adjusts the

physical properties and other parameters of DEM particles.

Bierwisch et al. [139] proposed a coarse grain model to investigate the rapid granular

flow from a moving container and the formation of repose angle, which is derived from the

concept that the energy density and its evolution between the coarse grain particles and

original particles should be consistent. The coarse grain model successfully reproduced

the volume fractions and coordination numbers observed in particle beds composed of

original particles.

Thakur et al. [168] investigated the compression behaviour of cohesionless and cohesive

particle beds. In the parameter scaling of Thakur et al., both the loading and unloading

stiffness in normal and tangential directions are scaled with particle size. This implies
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that the inter-particle contact force should be proportional to the square of the particle

radius. Following their coarse grain model [139, 168], the inter-particle forces can be

scaled as follows:

|FIS| ∝ r2AveS (3.1)

where |FIS| represents the magnitude of the inter-particle force exerted on the scaled-up

particles, and rAveS denotes the average radius of the scaled-up particles.

Jiang et al. [174] developed a coarse grain model in CFD-DEM simulation to investi-

gate the multi-phase flow in vibrated fluidised bed. In terms of keeping the consistency

between the original and the scaled-up DEM particles, their study employs a set of di-

mensionless numbers, such as the coefficient of restitution and the friction coefficient of

DEM particles, ensuring that these dimensionless parameters are equal between the orig-

inal and coarse-grained CFD-DEM systems. Kosaku et al. [175] proposed a coarse grain

model with a systematic parameter scaling law for adhesion forces, especially liquid bridge

forces, based on the assumption of energy conservation before and after employing the

coarse grain model.

In summary, parameter scaling is simple in terms of implementation, because it does

not require any additional coding. However, the scaling criterion of each parameter de-

pends on the force models used and can be difficult or even impossible to determine for

complex forms of forces. In parameter scaling, the scaling of force is occasionally re-

ferred [168], where the forces exerted on the particles are not considered as the primary

parameter but rather emerge as a consequence of deriving the scaling law.

3.2.2 Direct force scaling

Another approach to conduct coarse-grained DEM simulation is the direct force scaling

[165, 169, 173], where the forces acting on original particles are first estimated using the

original particle properties and variables, and then directly scaled to apply to scaled-up
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particles.

Figure 3.2 illustrates the procedure of conducting a simulation with the direct force

scaling. Initially, as an initial step for simulating direct force scaling, the parameters of

the scaled-up particle are already known. Consequently, the original particle variables

must be evaluated based on the input variables of the scaled-up particles. Subsequently,

the forces acting on the original particles can be computed using the original variables,

following the procedure of the conventional DEM simulation. Finally, the forces exerted

on the original particles are directly scaled, and the scaled forces are employed to solve

the motion of scaled-up particles.

Step2. Evaluate the forces 
acting on original DEM particles

Step3. Scale the 
using the scaling laws 
and obtain the 

C. The force
acting on original 

particles 

D. The force
acting on scaled-

up particles

B. The variables
of original 
particles

A. Input the
variables of scaled-

up particles

ObjectiveInput

Step1. Evaluate the 
variables of original 
DEM particles

DEMDirect
force
scaling

Figure 3.2: The process of evaluating forces on the scaled-up particle using direct force
scaling.

The scale factor l is employed to represent the size ratio between the original particle
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and the scaled-up particle. For the spherical particles the scale factor l can be given by:

l =
dS

dO
(3.2)

where dS is the diameter of the scaled-up particle, and dO is the diameter of the original

particle. For non-spherical particles, the scale factor l can be defined as:

l3 =
mAveS

mAveO
(3.3)

where mAveS and mAveO are the average mass of scaled-up particles and original particles,

respectively.

In the direct force scaling approach, the force and torque applied on the scaled-up

particle are lm times larger than those of the original particle where m is called the scale

power index. As shown in Figure 3.1, the scaling of force is essential in the direct force

scaling, where the force acting on scaled-up particle FS is given by:

FS = lmFO (3.4)

where FO is the force exerted on the original particle, which is evaluated from the prop-

erties and parameters of the original particles. The scale power index m may vary for

different types of forces, which is also crucial in distinguishing the various scaling laws of

direct force scaling.

Several scale power indices have been proposed in the literature. Sakai and Koshizuka

[165] proposed m = 3 for the contact, fluid and gravitational forces to keep the same

equations of motion between the original and scaled-up systems in the particle level. In

other words, the same scale power index is applied to both inter-particle and body forces:

FIS = l3FIO (3.5)
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FBS = l3FBO (3.6)

m = 4 is assigned to the contact torque in their formulation as:

MIS = rSn× FIS = lrOn× l3FIO = l4MIO (3.7)

Sakai et al. [166] inherited the same indices except that m = 2 is used for the van

der Waals force to maintain the same potential energy. Their scale power indices are

summarised in Table 3.1.

Table 3.1: Scale power indices of Sakai and Koshizuka and Sakai et al. [165, 166].
Scale power index Force / torque type Classification

4 Torque Interparticle
3 Gravity Body
3 Fluid force (CFD-DEM) Body
3 Contact force Interparticle
2 van der Waals force Interparticle

Chu et al. [169] proposed a model that attempts to maintain the same total impulse,

which also leads to l3 scaling for fluid and gravitational forces. However, deriving a scaling

law for contact force in their model poses challenges due to the requirement of a priori

knowledge of the contact duration. Nevertheless, they suggested l2 scaling based on the

assumption that the contact duration is linearly proportional to the particle size. Their

scale power indices are summarised in Table 3.2.

Table 3.2: Scale power indices of Chu et al. [169].
Scale power index Force / torque type Classification

3 Torque Interparticle
3 Gravity Body
3 Fluid force (CFD-DEM) Body
2 Contact force Interparticle

The present study developed and validated a coarse grain model called the scaled-up

particle (SUP) model, which will be introduced in the subsequent section.
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3.3 The scaled-up particle (SUP) model

The present section introduces the scaled-up particle (SUP) model, a novel coarse

grain model of DEM that can be applied to various types of inter-particle forces and

torques. The derivation of the SUP model is not specific to any specific type of force.

The scaling laws are derived in such a way that the changes of momentum in control

volumes are equivalent between original and scaled-up particles, which ensure similarity

not at the particle level but within the control volume. The number of particles in CV

should be large enough that the fluctuations of velocity at the particle level can be ignored.

The concept of deriving scaling laws in the SUP model was first proposed by Chan et

al. [173] and subsequently demonstrated to be applicable to arbitrary particle flow by

Washino [176]. The present study extended the scaling laws to particles with PSDs, which

is illustrated in Figure 3.3.

CVFaceCV FaceCV

(a) Particle movement (b) Inter-particle force (c) Body force

ϕO = ϕS nO = l2nS → FS = l2FO NO = l3NS → FS = l3FO
No scaling l2-scaling l3-scaling

Figure 3.3: The momentum change mechanisms in a control volume include: (a) Momen-
tum flux resulting from particle movement, (b) Stress due to inter-particle forces, and
(c) Momentum source due to body forces. ϕ represents the mass flux across the Control
Volume (CV) face, n denotes the number of particles interacting across CV face, and N
signifies the number of particles within CV.

Figures 3.3(a), 3.3(b), and (c) illustrate three mechanisms that contribute to the

momentum on a CV scale, which will be sequentially introduced. The movement of

particles, as shown in Figure 3.3 (a), is related to the mass flux across the CV face,

which should be consistent between the scaled-up particle system and the original system.
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According to this scaling law, the translational velocity of the original particle should be

equal to that of the scaled-up particle. Since the number of original particles inside the

control volume, N , is l3 times larger than that of the scaled-up particles, i.e. NS = NO/l
3,

the derivation of the scaling laws by Chan & Washino does not explicitly mention particle

size distributions, but it can actually be applied to particles with PSDs. The applicability

of the scaling laws to particles with PSDs is conceptualised in this section.

Assuming that the particles have a discrete particle size distribution, the dimensionless

diameter d̃i for each specific particle size that indexed by i is defined as the ratio of its

diameter di to the maximum diameter dNmax in the set:

d̃i =
di

dNmax

=
dO,i

dO,Nmax

=
dS,i

dS,Nmax

(3.8)

For a given set of discrete dimensionless particle sizes indexed by i, where d̃i is the diameter

for each index i. The mass of each original particle mO can be written as a function of

its diameter dO:

mO,i = mO(d̃i, dO,Nmax) (3.9)

The same form for the mass of scaled-up particles can be written as:

mS,i = mS(d̃i, dS,Nmax) (3.10)

The term wO,i represents the proportion of particles with a specific size in relation to the

total number of particles. The sum of all wO,i from i = 1 to i = Nmax equals 1.

Nmax∑
i=1

wO,i = 1 (3.11)

For a given wO,i there is a equal wS,i, i.e. wS,i = wO,i. The conservation of total particle
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mass in a CV for original particles and scaled-up particles is given as follows:

Nmax∑
i=1

NSwS,imS,i =
Nmax∑
i=1

NOwO,imO,i (3.12)

The corresponding relationships of the parameters with different size particle can be find

in Table 3.3.

Index i Dimensionless
particle size d̃i

Particle
mass mi

The weight of particle
number wi

1 d̃1 m1 w1

2 d̃2 m2 w2

3 d̃3 m3 w3

... ... ... ...

n d̃n mn wn

... ... ... ...

Nmax d̃Nmax mNmax wNmax

Table 3.3: Subscript i corresponding to Dimensionless particle sizes d̃i, particle mass mi

and wi the weight of particle number for the specific particle size d̃i

The momentum flux due to the movement of particles can be written as a sum of

different size particles in one CV:

1

VCV

Nmax∑
i=1

NSwS,imS,ivS,i(vS,i · nface) =
1

VCV

Nmax∑
i=1

NOwO,imO,ivO,i(vO,i · nface) (3.13)

Substitute Equation (3.12) into the right side of Equation (3.13), and derive the following

expression:

vS,i(vS,i · nface) = vO,i(vO,i · nface) (3.14)

In equations (3.13), VCV represents the volume of the control volume, and nface indicates
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the unit vector perpendicular to the face. Equations (3.12), (3.13), and (3.14) indicate

that for the same CV, there is no need to scale the momentum flux due to the movement

of particles, and the velocity of scaled-up particles does not need to be scaled either.

A significant advantage of the SUP model is that it provides a set of scaling laws that

can be universally applied to scale different forces, namely l2 scaling for all inter-particle

forces and torques, as well as l3 scaling for any body forces. In Figures 3.3 (b) and (c), the

mechanisms of force scaling are depicted, which are explained in the subsequent Section

3.3.1. The scale power indices of the SUP model are summarised in Table 3.4, where the

scaling law of inter-particle torques is explained in Section 3.3.3.

Table 3.4: Scale power indices of the SUP model [173, 176, 177, 178].
Scale power index Force / torque type Classification

2 Torque Interparticle
3 Gravity Body
3 Fluid drag force (CFD-DEM) Body
2 Contact force Interparticle
2 Attraction force Interparticle

3.3.1 Scaling laws of forces

With respect to the inter-particle force, as illustrated in Figure 3.3 (b), the transla-

tional momentum flux across the control volume (CV) face should be consistent, regardless

of whether scaled-up particles or original particles are employed. In the field of continuum

mechanics, it is well recognised that stresses acting on a surface can be equivalently in-

terpreted as momentum fluxes across that surface, as demonstrated in foundational texts

[22]. The total momentum flux (ϕ) across a control volume (CV) face, resulting from

both inter-particle forces and particle motion, can be described as follows:

ϕ = ϕI-P-Force + ϕmotion (3.15)



CHAPTER 3. COARSE GRAIN MODELS OF DEM 65

where the term ϕmotion represents the momentum flux resources from particle motion,

which has been previously discussed. The ϕI-P-Force represents the momentum flux re-

sources from inter-particle force and will be discussed below.

The scaling laws derivation considers particles with different PSDs as an extension

of the inter-particle forces scaling laws proposed by Chan & Washino [173, 176]. The

momentum exchange of inter-particle force occurs at a given interface between two given

CVs, and the projection area of the particles at the interface should be equal between the

scaled-up particles and the original particles. Especially for compactly arranged particles,

a given interface area cannot accommodate proportionally enlarged particles without re-

ducing the number of particles. According to this rule, the relationship of particles number

on the face can be given by:

Nmax∑
i=1

nSwS,iAS,i =
Nmax∑
i=1

nOwO,iAO,i (3.16)

where nO and nS represent the number of particles on the interface of the original and

scaled-up particles, respectively. AO,i and AS,i represent the projection area for an indi-

vidual original particle and a scaled-up particle, respectively, in a specific dimensionless

diameter d̃i. The implicit assumption here is that the particle size distribution is similar

for particles at the interface as it is within the entire CV, which is an extension require-

ment of applying the effectively homogeneous assumption to particles with PSDs. The

projection area of spherical particles can be written as:

AO,i =
π

4
d2O,i (3.17)

AS,i =
π

4
d2S,i (3.18)

To calculate the scaling ratio of the projected areas, divide the scaled area by the original
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area:
AS,i

AO,i

=
d2S,i
d2O,i

= l2 (3.19)

Rearrange Equation (3.19), and the relationship between AS,i and AO,i can be obtained:

AS,i = l2AO,i (3.20)

Substitute Equation (3.20) into Equation (3.16), the relationship of particle numbers on

the across face between two given CVs can be obtained:

nO = l2nS (3.21)

Considering the particle size distributions, the average stress σ on an interface between

two CVs of original and scaled-up particles is respectively given by:

σO =
1

Aface

Nmax∑
i=1

nOwO,iFIO,i · nface (3.22)

σS =
1

Aface

Nmax∑
i=1

nSwS,iFIS,i · nface (3.23)

To ensure a consistent stress on the CV face, i.e. σO = σS, the relationship between inter-

particle forces in the scaled-up particle system and the original system can be described

as:
nO

Aface

Nmax∑
i=1

wO,iFIO,i · nface =
nS

Aface

Nmax∑
i=1

wS,iFIS,i · nface (3.24)

where Aface represents the area of the CV face. The following equation can be derived by

substituting Equation (3.21) into Equation (3.24):

nS
∑Nmax

i=1 wS,iFIS,i · nface

Aface
=

(l2nS)
∑Nmax

i=1 wO,iFIO,i · nface

Aface
(3.25)
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Rearrangement of this equation yields:

Nmax∑
i=1

wS,iFIS,i · nface = l2
Nmax∑
i=1

wO,iFIO,i · nface (3.26)

Because the weight of particle number is equal between scaled-up and original particles

(wS,i = wO,i), it can be assumed that the force should be uniformly scaled-up for any

single particle size. Following this assumption, the relationship of inter-particle forces can

be simplified to:

FIS,i = l2FIO,i (3.27)

Equation (3.27) suggests that the inter-particle forces should be scaled by l2, i.e. the

l2-scaling. Since the derivation does not involve any specific type of force, it implies that

the l2-scaling can be universally applicable to any inter-particle force.

Regarding the scaling law of body force, as depicted in Figure 3.3 (c), regardless of

whether scaled-up or original particles are employed, the body force exerted on CV should

be consistent, which can be written as:

NO

VCV

Nmax∑
i=1

wO,iFBO,i =
NS

VCV

Nmax∑
i=1

wS,iFBS,i (3.28)

On the other hand, employing scaled-up particles should not change the total mass of

particles within the CV, which can be written as:

NO = l3NS (3.29)

By substituting Equation (3.29) into Equation (3.28), the following equation is obtained:

FBO,i(l
3NS) = FBS,iNS (3.30)
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Rearrangement of this equation yields:

FBS,i = l3FBO,i (3.31)

Equation (3.31) suggests that the body force should be scaled by l3, i.e. the l3-scaling,

and the derived scaling law is applicable for the particles with size distributions. Since

the derivation does not involve any specific type of force, it implies that the l3-scaling is

universally applicable to any body force.

The scaling laws proposed by Chan and Washino [161, 176] are derived in such a

way that the bulk momentum change can be regarded as equivalent between original and

scaled-up particles in a given control volume. When the number of particles (both original

and scaled-up) in a given CV is sufficiently large, at the CV scale, the fluctuations of

velocity and forces at the single particle scale can be ignored. Furthermore, in this study,

it is assumed that the particle size distributions are spatially averaged within the control

volume (CV). As a result, scaling laws for particles with size distributions are derived,

which have the same form as the scaling laws derived from mono-disperse particles.

Firstly, with regard to particle movement, e.g., the translational velocity of particles,

no scaling is applied. For any inter-particle force, such as inter-particle contact force

and attraction force, l2-scaling is employed. In the present work, the liquid-bridge force

and JKR surface adhesion force are employed to investigate the scaling of inter-particle

attraction force.

l3-scaling is employed to scale the body force acting on the CV, in the present work,

the only employed body force is gravity. The derivations of these scaling laws are not

limited to any specific force, indicating they may be theoretically applicable to any type

of force. These three scaling laws should be applied as long as the particles follow the

effectively homogeneous assumption.
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3.3.2 Evaluation of original particle variables

In scaled-up particle simulation, original particles are not explicitly used but repre-

sented by scaled-up particles. Therefore, it is crucial to accurately evaluate the original

particle variables from those of the scaled-up particles to estimate the forces acting on

the original particles. These variables include the particle translational velocity, angular

velocity, particle overlap and separation distance. Sakai and Koshizuka [165] suggested

that the translational velocity of the original particle should be the same as that of the

scaled-up particle from the translational kinetic energy point of view:

vO = vS (3.32)

It is also proven that the same translational velocity maintains the convective momentum

flux across the faces of control volumes by Washino et al. [176]. The angular velocity is

scaled by l to keep the same rotational kinetic energy between the original and scaled-up

systems:

ωO = lωS (3.33)

These relationships for velocities have a solid theoretical basis and seem to be reasonable.

In contrast, the evaluation methods of particle overlap and separation distance are not

well-grounded. Sakai and Koshizuka [165] assumed that the overlap of the original particle

is the same as that of the scaled-up particle, and Chan and Washino [173] employed the

same idea for separation distance, that is:

δO = δS (3.34)

SO = SS (3.35)

Based on geometric similarity concept, a new method is proposed in the present work
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to evaluate the variables of original particles in direct force scaling. Particularly, it focuses

on the evaluation of original particle variables and it is suggested that to use geometric

similarity for both particle overlap and separation distance. In other words, they are

scaled by the scale factor l to ensure the same amount of mass to be accommodated in a

fixed space. By employing the concept of geometric similarity, the overlap and separation

distances should be evaluated as follows:

δO = δS/l (3.36)

SO = SS/l (3.37)

The key to the proposed coarse grain model is to keep the same flows in the control

volume level between the original and scaled-up systems. The present work assumes that

a sufficient number of discrete particles are effectively homogeneous within the control

volume. As shown in Figure 3.4, the relationships given by Equations (3.36) and (3.36)

are required to accommodate the same mass in the control volume, i.e. mOn
3 = mSn

3/l3,

where n is the number of particles aligned in one dimension. The relationships of the

variables between the original and scaled-up particles are summarised in Table 3.5. As

a supplementary explanation, in the direct force scaling, the force acting on the origi-

nal particle is first evaluated using the original particle parameters and variables, which

include the liquid bridge volume, minimum separation distance and rupture distance.

Table 3.5: Relationships of the original and scaled-up variables.
Variable Previous work [165, 166, 173, 176] Present work [177]
Translational velocity vO = vS vO = vS
Rotational velocity ωO = lωS ωO = lωS
Particle overlap δO = δS δO = δS/l
Separation distance SO = SS SO = SS/l
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Number of particles in one dimension:

Number of particles in one dimension:

Scaled-up particle system

S

・・・

O

・・・・・・・

Face of CV

1 2 3 4 5 1

1 2 3

6
Original particle system Face of CV

(a) Particle overlap

Number of particles in one dimension:

Number of particles in one dimension:

Scaled-up particle system

Original particle system

S

・・・

O

・・・・・・・
1 2 3 4 1

Face of CV

Face of CV

1 2

(b) Separation distance

Figure 3.4: Geometric similarity in control volume (1-dimension).
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3.3.3 Scaling law of torques

The comparison of torque scaling concept between the SUP model and conventional

coarse grain model is shown in Figure 3.5. In several previous works of coarse grain

models, including those proposed by Sakai and Koshizuka [165] as well as Chu et al.

[169], the torques are computed using the conventional procedure for discrete element

method (DEM) particles. In other words, the torques are given by using the particle

radius and forces which are both already “scaled-up”. For example, in the previous work

of Chu et al. [169] the scaling laws of inter-particle forces and torques are given by:

FIS = l2FIO (3.38)

rS = lrO (3.39)

where rS and rO are the radii of scaled-up particle and original particle respectively.

|MIO| ∝ |FIO|rO (3.40)

|MIS| ∝ |FIS|rS (3.41)

where |MIS| and |MIO| are the magnitude of inter-particle torques of scaled-up particle

and original particle, respectively. Then, substitute Equations (3.38) and (3.39) into

Equation (3.41) results in:

|MIS| ∝ l3|FIO|rO (3.42)

Substitute Equation (3.40) into Equation (3.42) results in:

|MIS| ∝ l3|MIO| (3.43)

Equation (3.43) implies the l3-scaling is employed to scale the inter-particle torques.
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In the SUP model, the torques on the original particles are first evaluated and then

scaled so that the total change of angular momentum in control volumes is the same

between scaled-up and original particles. This concept is totally different from that of

conventional models. In this way, the scaling law of inter-particle torques coincides with

that of inter-particle forces:

FIS = l2FIO (3.44)

MIS = l2MIO (3.45)

Equation (3.45) is derived in a similar manner to the scaling laws for inter-particle forces

discussed in Section 3.3.1. The exchange of angular momentum between CVs must occur

through particle contact, with particles in contact being located at the interface.

3.3.4 Scaling of time step

In this section, a head-on collision of two particles is considered to discuss the scaling

of the stable time step. When two original particles are in contact, the equation of motion

can be written using the Hertzian contact theory as:

m∗
O
dvrO

dt
= −4

3
E∗r

∗1/2
O δ

3/2
O (3.46)

where the vr is the relative velocity and δ is the normal overlap. Since the time step in

DEM is usually determined based on the contact force alone in the literature [94, 129],

any cohesion force is ignored here for simplicity. Employing the geometric similarity and

l2 scaling law, the equation of motion for two colliding scaled-up particles is given as:

m∗
S
dvrS

dt
= −4

3
E∗r

∗1/2
O

(
δS

l

)3/2

l2 (3.47)
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Scale up

Scale up

(a) The SUP model

Scale up E
valu

ate

Not evaluated

(b) Conventional coarse grain model

Figure 3.5: The different concepts of torques scaling between The SUP model and Con-
ventional coarse grain model of DEM.



CHAPTER 3. COARSE GRAIN MODELS OF DEM 75

Rearranging Equation (3.47) gives:

m∗
S
dvrS

dt
= −4

3
E∗r

∗1/2
S δ

3/2
S (3.48)

Equations (3.46) and (3.47) are written in the same form with different particle size.

Typically, with the Hertzian theory, the time step is using the Rayleigh time as [129],

that is proportional to the particle size:

∆t ∼ πr

0.8766 + 0.163ν

√
2ρ(1 + ν)

E
(3.49)

The relationship of original particle radius and scaled-up particle radius can be given by:

rS = lrO (3.50)

Equations (3.49) and (3.50) suggest that the time step for the scaled-up particle can be l

times larger than that of the original particle.

3.4 Closure

The present chapter offers a comprehensive introduction to the coarse grain model of

DEM. The coarse grain model is one of the most promising approaches to reduce compu-

tational costs in DEM simulations. This is achieved by artificially increasing particle size,

which effectively decreases the total number of particles within a given system. Coarse

grain models can be classified into two types: parameter scaling and direct force scaling.

These two methods are introduced in Sections 3.2.1 and 3.2.2, respectively.

To achieve kinematic similarity between the systems of original and of coarse grain

particles, parameter scaling adjusts the physical properties and other parameters of DEM

particles. Parameter scaling is simple in terms of implementation, because it does not

require any additional coding. However, the scaling criterion for each parameter is de-



76 3.4. CLOSURE

pendent on the force models employed. For complex forms of forces, determining this

criterion can be challenging or even impossible.

The other approach to conduct coarse-grained DEM simulation is the direct force

scaling, where the forces acting on original particles are first estimated using the original

particle properties and variables, and then directly scaled to apply to scaled-up particles.

This work focuses on direct force scaling because this approach holds more promise in

establishing generic scaling laws that are applicable to different interactions.

The scaled-up particle (SUP) model is a novel model of direct force scaling, which is

derived from the equivalence of bulk momentum change in arbitrary particle flow, which

is introduced in Section 3.3.

In Section 3.3.1, three scaling laws of forces in the SUP model are derived based

on the effectively homogeneous assumption of particles in control volume. Firstly, with

regard to particle movement, e.g., the translational velocity of particles, no scaling is

applied. For any inter-particle force, such as inter-particle contact force and attraction

force, l2-scaling is employed. In the present work, the liquid-bridge force and JKR surface

adhesion force are employed to investigate the scaling of inter-particle attraction force.

l3-scaling is employed to scale the body force acting on the CV, in the present work, the

only employed body force is gravity. The derivation of scaling laws of the SUP model is

not depending on the specific type of force, which implies its applicability not limited in

any specific type of force.

Section 3.3.2 introduced the evaluation of the original variables for direct force scaling.

In scaled-up particle simulations employing direct force scaling, original particles are not

explicitly utilised. Instead, they are represented by scaled-up particles. Therefore, it is

crucial to accurately evaluate the original particle variables from those of the scaled-up

particle to estimate the forces acting on the original particles. These variables encom-

pass the particle translational velocity, angular velocity, particle overlap, and separation

distance.
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Section 3.3.3 compared the difference in torque scaling concepts between the SUP

model and conventional coarse grain models of direct force scaling. In the SUP model,

the torques on the original particles are first evaluated and then scaled so that the total

changes of angular momentum in control volumes are the same, which is different from

that of conventional models.

Section 3.3.4 introduced the scaling of the stable time step in coarse grained DEM

simulation, which implies that the time step for the scaled-up particle can be l times

larger than that of the original particle.

The present work validated the SUP model introduced in this section, and compared

it to conventional coarse grain models of DEM. The evaluation of original variables, the

scaling laws of inter-particle forces and the scaling of the stable time step are validated

in Chapter 4. The evaluation of inter-particle torques is validated in Chapter 5. The

applicability of the SUP model to particles with particle size distributions (PSDs) is

validated in Chapter 6.



Chapter 4

Forces scaling for scaled-up particles

4.1 Introduction

In this chapter, several simulations were conducted to discuss the validity of the scale

power index and the evaluation method of original particle variables explained in Section

3.3.1 and 3.3.2. For each system presented in this section, three different methods for

scaled-up particles are tested, as summarised in Table 4.1.

Following Chan and Washino [173], different scale power indices are used for inter-

particle and body forces. Method 1 employs m = 2 for both inter-particle forces and

torques in conjunction with the geometric similarity to evaluate the particle overlap and

separation distance, while m = 3 is used for body forces. This is the method suggested

in the present work. Method 2 employs the same scale power indices as Method 1 but

the original particle overlap and separation distance are assumed to be the same as those

of the scaled-up particle (i.e. the conventional method). Method 3 employs m = 3 for

both inter-particle and body forces (similar to Sakai and Koshizuka’s model) as well as

the corresponding torques with geometric similarity for the evaluation of the original

variables.

Firstly, uniaxial compression simulations of packed particle beds were performed to

investigate the particle system dominated by inter-particle contact forces. The detailed

conditions and results discussion of uniaxial compression simulations can be found in

78
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Table 4.1: Methods used in scaled-up particle simulations.
Method 1 Method 2 Method 3
FIS = l2FIO FIS = l2FIO FIS = l3FIO
MIS = l2MIO MIS = l2MIO MIS = l3MIO
FBS = l3FBO FBS = l3FBO FBS = l3FBO
δO = δS/l δO = δS δO = δS/l
SO = SS/l SO = SS SO = SS/l

Section 4.2.

Subsequently, simulations of particle flow in a vertical mixer were performed to inves-

tigate the particle system dominated by inter-particle attraction forces. The liquid bridge

force and the JKR surface adhesion force are employed as instances of inter-particle at-

traction forces, which have been introduced in Section 2.3.2. The detailed conditions and

results discussions of simulations can be found in Section 4.3.

In addition, the simulations of particles in a periodic box are conducted to investigate

the scaling law of the time step. The scaling law of critical time step has been introduced

in Section 2.4. The detailed conditions and results discussions of simulations can be found

in Section 4.4.

4.2 Uniaxial compression of packed particle bed

The first validation test is uniaxial compression of packed particles as shown in Figure

4.1. The original particle properties used in the simulation are listed in Table 4.2. The

original particle diameter is 0.5 mm and density is 2500 kg/m3. Particles with diameters

of 1 and 2 mm are employed as scaled-up particles, i.e. the scale factors of 2 and 4,

respectively.

The initial particle beds are prepared using the following steps. Particles with small

sliding friction (µs = 0.01) are randomly generated and allowed to fall into the simulation

domain with dimensions of 14 × 14 × 200 mm3 by gravity. A plane wall is placed at

the bottom and periodic boundaries are used in the lateral directions. The low friction
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0.5 mm 1 mm 2 mm

Figure 4.1: Uniaxial compression of packed particle bed using the proposed method. Pe-
riodic boundaries are used in the lateral directions. Colour indicates the particle velocity
magnitude between 0 mm/s (blue) and 5 mm/s (red).
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Table 4.2: Original particle properties for uniaxial compression of packed particle bed.
Property Value
Particle diameter [mm] 0.5
Particle density [kg/m3] 2500
Initial bed height [mm] 100
Young’s modulus [MPa] 5
Poisson’s ratio [-] 0.3
Restitution coefficient [-] 0.9
Sliding friction coefficient [-] 0.3

particles are used to make the initial particle beds compact. Then the particles above 100

mm from the bottom are removed and an upper wall is placed at the bed surface.

During the compression process, the sliding friction coefficient is reset to 0.3. The

upper wall is moved downwards with a constant speed of 5 mm/s while the bottom wall

is fixed in space. The bed is compressed until the upper wall moves 10 mm, i.e. strain

of 0.1. The stress on the upper wall is monitored during the compression. No attraction

force is considered and the contact force is calculated using the Hertzian theory. Although

gravitational force is exerted on the particles, it only has a negligible impact on the stress

obtained.

Figure 4.2 shows the stress-strain relationship obtained from the simulations. It can be

seen in Figure 4.2(a) that the results of the original and scaled-up particles with Method

1 almost fall into the same curve. On the other hand, in Figure 4.2(b) and (c), the scaled-

up particles significantly overestimate the compression stress, and this tendency is more

pronounced as the scale factor increases. It is concluded from these simulations that the l2

scaling with the geometric similarity for particle overlap is the most appropriate method

for a contact force dominant system.
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Figure 4.2: Stress-strain relationship during uniaxial compression of packed particle bed.
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4.3 Particle flow in a vertical mixer

The second validation test is a dynamic system of particle flow in a vertical mixer where

attraction forces are exerted on the particles. The mixer used is a scaled-down version of

the 10L Roto Junior high shear granulator (Zanchetta Lucca). The inner diameter of the

mixer is 84 mm and a 3-bladed impeller shown in Figure 4.3 is mounted at the bottom.

The common properties of the original particles used in all cases are listed in Table 4.3.

The original particle diameter is 0.5 mm, density is 1000 kg/m3, and the total mass is

0.0458 kg as used by Chan and Washino [173]. The impeller rotates with 300 rpm until

the flow reaches steady state. Particles with diameters of 1 and 2 mm are employed as

scaled-up particles, i.e. scale factors of 2 and 4, respectively. Although it is possible to

further increase the particle size, the mixer to particle diameter ratio, D/d, should not

be too small in order to minimise boundary effects [211, 212]. The range of D/d in this

study is from 42 to 168 which is in accordance with the recommendation of D/d ≥ 40 in

the literature [211, 212]. Simulations have been conducted to validate the limitation of

D/d in the present work, which provides the same conclusion as the literature [211, 212].

The detailed results and discussions refer to Appendix.

Figure 4.3: Snapshot of the impeller of vertical mixer.

Two sets of simulations are carried out and presented in Sections 4.3.1 and 4.3.2,
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Table 4.3: Common properties of original particles for vertical mixer.
Property Value
Particle diameter [mm] 0.5
Particle density [kg/m3] 1000
Total mass [kg] 0.0458
Young’s modulus [MPa] 100
Poisson’s ratio [-] 0.3
Restitution coefficient [-] 0.1
Sliding friction coefficient [-] 0.3

respectively, with different combinations of contact and attraction force models. The first

is the Hertzian contact with the capillary force model explained in Section 2.3.2.1, and the

second is the JKR adhesive contact model explained in Section 2.3.2.2. The attraction

forces between the particles and mixer walls are deactivated so that the particles do not

adhere to the casing wall and impeller, which may reduce the amount of bulk moving

particles available for velocity analyses.

4.3.1 Wet particles with capillary force

The particles are assumed to be uniformly wet with liquid. The liquid to solid volume

ratio is 0.05 and does not change with time, which is denoted by a1. 8.3% of the liquid

on the particle surface is used for the formation of the bridge between each particle pair

so that the entire liquid is used in the case of maximum packing, which is denoted as

b1. Based on previous work [173], the liquid bridge volume for the original particle is

evaluated as:

λLO = λLS/l
3 (4.1)

where the liquid bridge volume is calculated as:

λLS = a1b1(VpSi + VpSj) (4.2)
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where Vp is the particle volume. The rupture distance for the original particle, SrupO, is

calculated using λLO, and if the separation distance, SO = SS/l, is larger than SrupO, the

liquid bridge force is not calculated. Four different values of surface tension coefficient

are tested, i.e. 0.05, 0.1, 0.2 and 0.4 N/m. The contact angle is set to 0 deg and viscous

force is not taken into account. The minimum separation distance for the original particle

is set to 1 µm. If SO is smaller than 1 µm, the minimum separation distance is used to

calculate the liquid bridge force.

Figure 4.4 shows snapshots of the original particle flow with different values of surface

tension. It is a typical flow of cohesive particles that particles are bonded together and

form lumps. The size of the lumps increases as the surface tension increases. Especially

with γL = 0.4 N/m, the entire particles are lumped together. The overall particle velocity

increases as the surface tension increases. This is because the relative velocity of the large

lumps to the impeller is smaller than that of the small lumps.

Figures 4.5 and 4.6 show snapshots of the scaled-up particle flow using Method 1 with

scale factors of 2 and 4, respectively. Although the boundaries of the lumps become less

clear as the scale factor increases (especially with γL = 0.1 and 0.2 N/m), the overall flow

structure and velocity field of the original particles are well captured. Figures 4.7 and

4.8 show snapshots of the scaled-up particles using Method 2 with scale factors of 2 and

4, respectively. The overall flow structure is similar to that of the original particles to

a certain extent. However, the boundaries of the lumps are even less clear compared to

Method 1. In addition, comparing with Figure 4.4, the powder velocity in Figures 4.7

and 4.8 is smaller. It indicates that Method 2 cannot provide sufficiently large capillary

force. Figures 4.9 and 4.10 show particle snapshots using Method 3 with scale factors of

2 and 4, respectively. It can be clearly seen that the particles become more cohesive than

the original particles, which indicates that Method 3 largely overestimates the capillary

force.

Figures 4.11, 4.12 and 4.13 show the probability density distribution of the particle
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(a) γL = 0.05 N/m (b) γL = 0.1 N/m

(c) γL = 0.2 N/m (d) γL = 0.4 N/m

Figure 4.4: Snapshots of the original particles in vertical mixer with capillary force. Colour
indicates the particle velocity magnitude between 0 m/s (blue) and 1.4 m/s (red).
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(a) γL = 0.05 N/m (b) γL = 0.1 N/m

(c) γL = 0.2 N/m (d) γL = 0.4 N/m

Figure 4.5: Snapshots of the scaled-up particles in vertical mixer with capillary force
(scale factor = 2, Method 1). Colour indicates the particle velocity magnitude between 0
m/s (blue) and 1.4 m/s (red).
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(a) γL = 0.05 N/m (b) γL = 0.1 N/m

(c) γL = 0.2 N/m (d) γL = 0.4 N/m

Figure 4.6: Snapshots of the scaled-up particles in vertical mixer with capillary force
(scale factor = 4, Method 1). Colour indicates the particle velocity magnitude between 0
m/s (blue) and 1.4 m/s (red).
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(a) γL = 0.05 N/m (b) γL = 0.1 N/m

(c) γL = 0.2 N/m (d) γL = 0.4 N/m

Figure 4.7: Snapshots of the scaled-up particles in vertical mixer with capillary force
(scale factor = 2, Method 2). Colour indicates the particle velocity magnitude between 0
m/s (blue) and 1.4 m/s (red).
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(a) γL = 0.05 N/m (b) γL = 0.1 N/m

(c) γL = 0.2 N/m (d) γL = 0.4 N/m

Figure 4.8: Snapshots of the scaled-up particles in vertical mixer with capillary force
(scale factor = 4, Method 2). Colour indicates the particle velocity magnitude between 0
m/s (blue) and 1.4 m/s (red).
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(a) γL = 0.05 N/m (b) γL = 0.1 N/m

(c) γL = 0.2 N/m (d) γL = 0.4 N/m

Figure 4.9: Snapshots of the scaled-up particles in vertical mixer with capillary force
(scale factor = 2, Method 3). Colour indicates the particle velocity magnitude between 0
m/s (blue) and 1.4 m/s (red).
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(a) γL = 0.05 N/m (b) γL = 0.1 N/m

(c) γL = 0.2 N/m (d) γL = 0.4 N/m

Figure 4.10: Snapshots of the scaled-up particles in vertical mixer with capillary force
(scale factor = 4, Method 3). Colour indicates the particle velocity magnitude between 0
m/s (blue) and 1.4 m/s (red).



CHAPTER 4. FORCES SCALING FOR SCALED-UP PARTICLES 93

velocity magnitude at steady state with Methods 1, 2 and 3, respectively. The distribution

without attraction force (i.e. γL = 0 N/m) is also included to indicate that the capillary

force has a large impact on the particle velocity even with the smallest surface tension

coefficient tested. First, the discussion focuses on how different surface tension values

influence the results of the original particles. When γL = 0.05 N/m, the distribution of

the original particle velocity is narrow with a large peak value at around 0.75 m/s. The

distribution becomes broader as the surface tension coefficient increases while the peak

velocity is shifted rightward. When γL = 0.4 N/m, the probability increases linearly with

the particle velocity, which indicates that almost the entire particles move together with

the impeller since a large lump is formed as can be seen in Figure 4.4(d).

The focus now shifts to the comparison of simulation results between the original and

scaled-up particles. In Figure 4.11, it can be seen that the scaled-up particles can reason-

ably reproduce the original particle velocity distribution. However, a slight discrepancy

is observed when γL = 0.1 and 0.2 N/m due to the formation of the medium size lumps

of the original particles, which cannot be “resolved” with the large scaled-up particles. In

Figure 4.12, the peak velocities of the scaled-up particles are shifted leftwards from those

of the original particles. This is because the capillary force is underestimated with the

conventional evaluation of the separation distance. Finally, in Figure 4.13, the results

obtained from the scaled-up particles are significantly different from the original particle

results and the peak velocities are shifted rightwards. This is because the capillary force

is largely overestimated with the l3 scaling. In Figure 4.13(d), one may find the velocity

distributions similar between the original and scaled-up systems. However, this is simply

because all the particles form a single lump due to the strong capillary force above which

the velocity distribution does not change any more. Note that the results of the scaled-

up particles in Figure 4.13(c) and (d) are almost the same. It is concluded from these

simulations that the l2 scaling with geometric similarity is the most appropriate method

to replicate the original particle behaviour in a capillary force dominant system.
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Figure 4.11: Probability density distribution of particle velocity magnitude in vertical
mixer with capillary force (Method 1).
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Figure 4.12: Probability density distribution of particle velocity magnitude in vertical
mixer with capillary force (Method 2).
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Figure 4.13: Probability density distribution of particle velocity magnitude in vertical
mixer with capillary force (Method 3).
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In the present work, the liquid volume on a particle is defined by the volume ratio

of liquid to solid, so solid volume is exactly the particle volume, and the volume ratio

directly controls the liquid volume on the particle. Consequently, the liquid volume of

particles directly influences the liquid volume of liquid bridge λL, which controls the liquid

bridge force.

Equation (2.43) reveals that the magnitude of the liquid bridge force is governed by λL.

The magnitude of the liquid bridge force decreases as the volume of the liquid decreases.

Equation (2.44) indicates that λL controls the rupture distance of liquid bridge. As the

liquid volume decreases, the rupture distance of the liquid bridge also reduces, thereby

increasing the likelihood of its rupture.

For validating the influence of liquid volume variation, simulations were conducted

using the proposed model with γL = 0.05 N/m and liquid to solid volume ratio being

0.005, which is 1/10 of the chosen value (0.05) of other wet particle flow simulations.

Other conditions are exactly the same as other wet particle simulations. Figure 4.14

shows the results of original particles and scaled-up particles with l = 4. It is clear that

the probability distribution is sensitive to the liquid volume variation, and the distribution

shifted leftward with decreasing liquid volume, i.e., the average velocity of particles are

decreased since the decrease of λL. The proposed model can capture this deviation and

provide good agreements between original and scaled-up results with different volumes of

liquid.
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Original (0.5 mm, Volume ratio = 0.05)
Scaled-up (2 mm, Volume ratio = 0.05)
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Figure 4.14: Probability density distribution of particle velocity magnitude in vertical
mixer with capillary force using different volume ratios of liquid to solid. (Method 1,
γL = 0.05 N/m).
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4.3.2 Particles with JKR surface adhesion force

It is considered that the surface adhesion force calculated from the simplified JKR

model is exerted on the particles. Four different values of surface energy are tested, i.e.

0.1, 0.2, 0.4 and 0.8 J/m2. Since the original particle size is relatively large (0.5 mm),

artificially large surface energy values are used so that noticeable impacts on the particle

velocity can be seen. Note that the purpose of these tests is to discuss the validity of the

SUP model.

Figures 4.15, 4.16 and 4.17 show the probability density distribution of the particle

velocity magnitude at steady state with Methods 1, 2 and 3, respectively. Similar to the

capillary force cases discussed in the discussions of wet particle simulations, it can be

seen that Method 1 provides the best prediction of the original particle velocity whilst

Methods 2 and 3 give much larger differences. This proves that the l2 scaling with the

geometric similarity for particle overlap is valid for a system where surface adhesion force

is dominant. The results presented in Sections 4.2 and 4.3 implies that the proposed

method is versatile and universally applicable for any type of inter-particle force.
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Figure 4.15: Probability density distribution of particle velocity magnitude in vertical
mixer with JKR surface adhesion force (Method 1).
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Figure 4.16: Probability density distribution of particle velocity magnitude in vertical
mixer with JKR surface adhesion force (Method 2).
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Figure 4.17: Probability density distribution of particle velocity magnitude in vertical
mixer with JKR surface adhesion force (Method 3).
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4.4 Periodic boundary box with no energy dissipation

Periodic boundary box simulations were conducted to verify the scaling of time step,

which is presented in Section 3.3.4. The properties of original particles are shown in

Table 4.4, where particles are set with no dissipation of energy when they collide with

each other. In original simulations, the particle diameter is 0.5mm, and the box size is

20 × 20 × 20 mm3. The particles of 1 and 2 mm diameter are employed as scaled-up

particles, while the box size is scaled-up as well. Between original and scaled-up systems,

the total amounts of particles, the initial particle velocities and relative positions are

artificially set at the same. When ∆t is small enough and simulations run stable, it is

expected that the total energy of particles fluctuates around a fixed value. Gradually

increasing the ∆t and it over a critical value, the collisions will not be resolved properly,

and total energy will increase unphysically. Figure 4.18 shows the total kinetic energy

change of original particle simulation with ∆t equals to 0.2, 0.5, 0.8 and 1 µs. When ∆t

is 0.2 or 0.5 µs, simulations run stably. The total kinetic energy increased unphysically

when ∆t = 0.8 or 1 µs, which indicates 0.8 µs is larger than critical ∆t. To find out

the critical ∆t for particles with different scale factors, a series of ∆t are employed for

original particles, from 0.2 µs to 1.8 µs with an interval of 0.1 µs. Figure 4.19 is obtained

by the slope of plots in Figure 4.18, which shows the plots of energy increase rate with

scale factors equal 1, 2 and 4. When the energy increase rate fluctuates around zero, the

simulation is stable. For l = 1, 2 and 4, the critical ∆t is approximately 0.6 µs, 1.2 µs and

2.4 µs respectively. These three ∆t are proportional to the scale factor, which supports

the proposed scaling rule of time step.
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Table 4.4: Original particle properties of periodic boundary box simulation.
Property Value
Particle diameter [mm] 0.5
Particle density [kg/m3] 1000
Particles amounts [-] 36644
Young’s modulus [MPa] 100
Poisson’s ratio [-] 0.3
Restitution coefficient [-] 1
Sliding friction coefficient [-] 0
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Figure 4.18: The total kinetic energy of periodic boundary box simulation (original par-
ticles).
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Figure 4.19: The total kinetic energy increase rate of periodic boundary box simulations.



106 4.5. CLOSURE

4.5 Closure

In this chapter, several factors are compared and discussed that are related to the

evaluation of inter-particle forces in coarse-grained DEM simulation. The SUP model is

validated for inter-particle force scaling, and the scaling law of time step is also validated.

The accurate evaluation of inter-particle forces for the scaled-up particles requires two

essential factors:

• It is crucial to establish appropriate scaling laws for inter-particle forces, which have

been introduced in Section 3.3.1 of Chapter 3, and validated in this chapter.

• In order to properly evaluate inter-particle forces, the direct force scaling method

requires accurate estimation of the original particle variables, particularly the over-

lap and separation distance between original particles, which have been introduced

in Section 3.3.2, and validated in this chapter.

The evaluation of inter-particle contact forces is validated in Section 4.2 through the

simulations of particle bed compression, where inter-particle attraction forces are ex-

cluded. Three methods are employed and compared, the results are summarised as fol-

lows:

• Method 1: By employing the l2-scaling, i.e. FIS = l2FIO, approach for inter-particle

forces and employing the concept of geometric similarity, i.e. δO = δS/l, to evalu-

ate original particle variables, the simulation results demonstrate a good agreement

between scaled-up particles and their corresponding original particle simulation re-

sults. The scaled-up particle simulation can provide an almost identical stress-strain

curve with that of the original system.

• Method 2: The compression stress is overestimated when employing the l2-scaling

for inter-particle forces, but applying the conventional method, i.e. δO = δS, to

evaluate original particle variables.
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• Method 3: The compression stress is overestimated when employing the l3-scaling

for inter-particle forces and the geometric similarity concept to evaluate original

particle variables.

The evaluation of inter-particle attraction forces is validated in Section 4.3 through

the simulations of particle flow in vertical mixer, where liquid bridge force and the JKR

surface adhesion force are employed as the instances of attraction forces. Three methods

are employed and compared, the results are summarised as follows:

• Method 1: By employing the l2-scaling approach for inter-particle forces and em-

ploying the concept of geometric similarity (i.e. SO = SS/l) to evaluate original

particle variables, the scaled-up particle simulation can reasonably reproduce the

overall flow structure and velocity distributions of the original particles in a dynamic

system. Slight discrepancies are observed when the attraction forces are relatively

large, which may be because of the formation of medium size lumps which cannot

be resolved with large scaled-up particles.

• Method 2: The particle average velocity is underestimated when employing the l2-

scaling for inter-particle forces, but applying the conventional method, i.e. SO = SS,

to evaluate original particle variables.

• Method 3: The particle average velocity is overestimated when employing the l3-

scaling for inter-particle forces and the geometric similarity concept to evaluate

original particle variables.

The scaling law of the critical time step for the SUP model introduced in Section 2.4

is further validated through the simulation of particles in a periodic boundary box with

no energy dissipation, as discussed in Section 4.4. The results suggest that the time step

for the scaled-up particle can be l times larger than that of the original particle.

The results indicate that both the concept of geometric similarity in evaluating original

particle variables and the l2-scaling for inter-particle forces are necessary to evaluate inter-
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particle forces on the scaled-up particles. The SUP model, i.e. Method 1, theoretically

can be applied to any type of inter-particle force, which is partially validated by the

simulation results in this chapter.



Chapter 5

Torques scaling for scaled-up

particles

5.1 Introduction

In this chapter, a series of simulations were conducted to investigate the validity of

scaling laws for inter-particle torques as explained in Section 3.3.3. The torques arising

from rolling resistance have been incorporated into the simulations presented in this chap-

ter, which were not considered in Chapter 4. In the SUP model, the rolling resistance

torque follows the same scaling law as the inter-particle contact torque, which is validated

in the present chapter as well. Three different combinations of scaling laws, as presented

in Table 5.1, are employed.

Table 5.1: Methods used in validation simulations.
Method 1 Method 2 Method 3
FIS = l2FIO FIS = l2FIO FIS = l3FIO
MIS = l2MIO MIS = l3MIO MIS = l3MIO
FBS = l3FBO FBS = l3FBO FBS = l3FBO

In all three employed methods, l3-scaling is used for the body force, i.e. gravitational

force, since it has been derived in Chapter 3 for the SUP model (Method 1). Furthermore,

different scaling laws of the body force will significantly influence the bulk density of

particle beds, shifting the focus of comparison to the body force scaling. Considering

109
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that almost all coarse grain models of DEM in literature utilise l3-scaling for body force

[165, 166, 169, 173, 176], it would not be meaningful to employ a hypothetical body force

scaling law for validation purposes. Method 1 uses l2 for both inter-particle forces and

torques. These are the scaling laws derived from the SUP model. In Method 2, l2 is used

for inter-particle forces but l3 for inter-particle torques, which coincides with the work by

Chu et al. [169]. As mentioned in Section 3.3.3, Methods 1 and 2 are derived from the

two different concepts illustrated in Figure 3.1 (bottom and top, respectively). Method 3

uses l3 for both inter-particle forces and torques for reference.

Two types of particle systems are employed to compare the scaling laws of inter-particle

torques:

• Bulk density is an important macroscopic property of powders and often measured

to assess flowability and compactability. In Section 5.2, the bulk density of cohesive

particles beds is evaluated to investigate the influence of different scaling methods

on the bulk density of scaled-up particle beds.

• Angle of repose is another major macroscopic property commonly used to evaluate

powder flowability. In Section 5.3, heap formation of cohesive particles is simulated

to investigate the applicability of the coarse grain model to measure the angle of

repose.
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5.2 Bulk density evaluation of particle bed

The first simulation is a static particle bed of cohesive mono-dispersed particles. The

original particle is 0.5 mm in diameter with a density of 1000 kg/m3, and other particle

properties used are listed in Table 5.2. The coefficient of rolling resistance, µr, is varied

from 0 to 0.8 for the EPSD model and from 0 to 0.16 for the CDT model. Particles with

diameters of 1 and 2 mm are employed as scaled-up particles, i.e. the scale factors are 2

and 4, respectively.

Table 5.2: Particle properties for bulk density evaluation.
Property Value
Particle density [kg/m3] 1000
Young’s modulus [MPa] 10
Poisson’s ratio [-] 0.3
Restitution coefficient [-] 0.1
Sliding friction coefficient [-] 0.3
Surface energy [J/m2] 0.2

Particles are randomly generated in an insertion region with dimensions of 20×20×90

mm3 whose centre is located at 285 mm from the bottom. The size of the simulation

domain in the horizontal directions is 21×21 mm2, where the periodic boundary condition

is applied. A plane wall is positioned at the bottom. The particles are inserted with a

mass flow rate of 1.68 g/s and initial velocity of (0, 0,−0.2) m/s for 10 seconds. The

particles are settled under the influence of gravity, and the bulk density is measured after

relaxation. The particles below 20 mm and above 60 mm from the bottom are excluded in

the bulk density measurement to eliminate the effect of the bottom wall and bed surface.

The results obtained from the simulation using the EPSD model are first discussed.

Snapshots of the original particle beds with different coefficients of rolling resistance are

shown in Figure 5.1. It can be observed that the height of the particle bed increases

and the coordination number decreases as µr increases. This indicates that the rolling

resistance impedes the formation of packed structures.
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(a) µr = 0 (b) µr = 0.2 (c) µr = 0.4 (d) µr = 0.8

Figure 5.1: Static beds of original mono-dispersed particles with different coefficients of
rolling resistance using the EPSD model. The colour indicates the coordination number.

Figure 5.2 shows snapshots of the particle beds with different scaling methods when

l = 4 and µr = 0. The bed height obtained from Method 3 is significantly higher than

that of the original particles. This is mainly because of the overestimation of the cohesion

force as discussed in the previous work [177] and Chapter 4. The bed heights obtained

from the original particles, Method 1 and Method 2 are by and large similar. However,

a subtle difference can be seen between Figure 5.2b and 5.2c: the bed height is slightly

lower in Method 2. Since µr is 0, the only difference between them is the scaling law of

the contact torque, which in Method 2 is evaluated by using Equation (3.43). Method 2

gives a larger torque during contact and hence more particle rotation than Method 1, as

evidenced by the higher rotational energy observed in Figure 5.3, which can enhance the

rearrangement of the particles to make a more compact bed.

Snapshots of the particle beds with different scale factors are shown in Figure 5.4 where

Method 1 is used for the scaling laws. It can be said that Method 1 can qualitatively

capture the effect of rolling resistance regardless of the scale factors tested.

The bulk density of the particle beds as a function of µr is plotted in Figure 5.5.

It can be seen that the bulk density of the original particles gradually decreases with
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(a) Original (b) Method 1 (c) Method 2 (d) Method 3

Figure 5.2: Static particle beds with different scaling laws when l = 4 and µr = 0 using
the EPSD model for rolling resistance. The colour indicates the coordination number.
The dashed line indicates the height of the original bed.

Original
Method 1
Method 2
Method 3

0

5x10-7

1x10-6

1.5x10-6

2x10-6

2.5x10-6

3x10-6

0 2 4 6 8 10 12 14 16

R
ot

at
io

na
l e

ne
rg

y 
[J

]

Time [s]

Figure 5.3: Total rotational energy of mono-dispersed particles with different scaling laws
when l = 4 and µr = 0 using the EPSD model for rolling resistance.
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(a) Original (b) l = 2 (c) l = 4

Figure 5.4: Static beds of mono-dispersed particles with different scale factors; (left)
µr = 0 and (right) µr = 0.8. The EPSD model is used for the rolling resistance and
Method 1 is used for the scaling laws. The colour indicates the coordination number.
The dashed line indicates the height of the original bed.

increasing µr. The bulk density is approximately 541 kg/m3 when µr = 0 and 484 kg/m3

when µr = 0.8, i.e., more than 10% difference between them. In Method 1, the bulk

density of the original system is well replicated, and the results of l = 2 and 4 are almost

identical, which is preferable as a coarse grain model. The results obtained from Method

2 are also close to the original results. However, the deviation from the original results is

comparatively larger than that of Method 1, and it is more pronounced as the scale factor

increases. This implies that l3 scaling could not represent the inter-particle torques and

the resultant rotation of the original particles. In Method 3, the inter-particle forces are

largely overestimated as discussed above, and the bed becomes significantly more porous.

The deviation from the original bulk density is plotted in Figure 5.6. It can be seen that

the deviation of Method 1 is in general small and below 0.6%. The deviation of Method

2 from the original results is slightly and yet noticeably larger than that of Method 1. On

the other hand, as discussed above, the deviation of Method 3 is the largest amongst the

methods tested. Therefore, it is concluded that Method 1, i.e., the SUP model, reproduces

the particle behaviour of the original particles most accurately in these simulations.
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Figure 5.5: Bulk density of mono-dispersed particle beds as a function of µr using the
EPSD model.
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Figure 5.6: Deviation from original bulk density of mono-dispersed particles. The EPSD
model is used for rolling resistance and the scale factor used is 4.
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The subsequent discussion will focus on the results obtained from the simulations

that utilised the CDT model. Figure 5.7 shows the bulk density of the particle beds as a

function of µr.

The employed range of the rolling resistance coefficient is 0 ≤ µr ≤ 0.16 as the

difference between Methods 1 and 2 is most notable for small µr in Figures 5.5 and 5.6.

The bulk density of the original particles gradually decreases as µr increases as previously.

It is approximately 502 kg/m3 when µr = 0.16, which is slightly more than 7% decrease

from the case with no rolling resistance, i.e. µr = 0. The changes in the original bulk

density are well captured by Method 1 in general, while Method 2 tends to slightly

overestimate the bulk density. Method 3 underestimates the bulk density significantly.
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Figure 5.7: Bulk density of mono-dispersed particle beds as a function of µr using the
CDT model.

The deviation from the original bulk density is plotted in Figure 5.8. The deviation

of Method 1 is very small and less than 0.6% within the coefficient of rolling resistance

tested. The deviation of Method 2 ranges between 1.9 and 2.6%, which is larger than
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that of Method 1.
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Figure 5.8: Deviation from original bulk density of mono-dispersed particles. The CDT
model is used for rolling resistance and the scale factor used is 4.

In conclusion, for both the EPSD and CDT models, Method 1 demonstrates the best

agreement with the bulk density of the original particles among the three scaling methods.

These results support the fact that the scaling laws derived in the SUP model are generic

and can be used for any forces and torques.
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5.3 Angle of repose evaluation

In this section, heap formation of cohesive particles is simulated to investigate the

applicability of the coarse grain model to measure the angle of repose. The original

particle diameter is 1 mm and other particle properties are listed in Table 5.3. The EPSD

model is used for rolling resistance and µr is varied from 0 to 0.8. Particles with diameter

of 2 mm are used as scaled-up particles, i.e. a scale factor of 2.

Table 5.3: Particle properties for angle of repose evaluation.
Property Value
Particle density [kg/m3] 1000
Young’s modulus [MPa] 10
Poisson’s ratio [-] 0.3
Restitution coefficient [-] 0.1
Sliding friction coefficient [-] 0.3
Surface energy [J/m2] 0.05

Particles are randomly generated in an insertion region with a mass flow rate of 3.35

g/s and an initial downward velocity of 0.2 m/s for 10 seconds. The dimension of the

insertion region is 14 × 14 × 260 mm3 which is located at 230 mm from the bottom. A

square plate with a side length of 56 mm is located at the bottom as illustrated in Figure

5.9, and particles falling out of the plate are removed. The particles are settled by gravity

and the projected images of the resultant heap in the x and y directions are analysed after

relaxation. The angle of repose, θrep, is defined as the angle of area-equivalent triangle

(Figure 5.10) as:

θrep = tan−1(2h/lb) (5.1)

h = 2Ap/lb (5.2)

where lb is the base length of the heap, which is defined as the side length of the plate

plus the diameter of particles used in the simulation, and Ap denotes the projected area

of the heap.
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14 mm

Bottom plate side length 

Particle insertion region

Projection 
direction in x

14 mm 56 mm

56 mm

Projection 
direction in y

Figure 5.9: Simulation of heap formation (top view) and the direction of projection image.

Figure 5.10: Definition of angle of repose.
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Figure 5.11 shows snapshots of the particle heaps with the original particles, Method

1, Method 2 and Method 3 when µr = 0.2. A tall heap is formed and the angle of

repose of the original particles is above 50◦, which is classified as “cohesive” in the Carr

classification of flowability [213] as shown in Table 5.4. Typically, dry particles in the order

of millimetres in size are free-flowing and one may find these simulation results counter-

intuitive. This is because the Young’s modulus used in the simulation is 10 MPa, which is

very low as compared to typical solid materials (in the order of GPa). Consequently, the

particles become cohesive due to the excessive energy dissipation during contact, which

is extensively discussed in the authors’ previous work [160, 161]. Nevertheless, the use of

low Young’s modulus is not a problem for the assessment of coarse grain models as long

as the same value is used between the original and scaled-up particles. The height of the

heap obtained from Method 1 is in good agreement with that of the original system. On

the other hand, the heap is shorter in Method 2 due to the enhanced particle rotation

caused by l3 scaling. The shape of the heap is completely different in Method 3.

The angle of repose as a function of µr is plotted in Figure 5.12. In the original system,

the angle of repose increases with µr and varies from “fair to passable flow” to “very

cohesive (non-flowing)” in Table 5.4. Both Methods 1 and 2 can qualitatively capture

the transition of the original flowability albeit the slight but persistent underestimation

in Method 2. The angle of repose obtained from Method 3 is largely overestimated.

Table 5.4: Carr classification of powder flowability based on angle of repose.
Description Angle of repose
Very free flowing < 30◦

Free flowing 30-38◦
Fair to passable flow 38-45◦
Cohesive 45-55◦
Very cohesive (non-flowing) > 55◦
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(a) Original (b) Method 1 (c) Method 2 (d) Method 3

Figure 5.11: Heap formation for angle of repose measurement with different scaling laws
when µr = 0.2. The dashed line indicates the height of the original heap.
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Figure 5.12: Angle of repose as a function of µr.
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Finally, the deviation from the original angle of repose is plotted in Figure 5.13. In

both Methods 1 and 2, the deviation is most notable when µr = 0. This may be because

the particles can easily fall out of the plate especially at the beginning of the simulations

if the rolling resistance is not activated. This changes the time taken to form a stable

first layer on the plate between the original and scaled-up particles. Note that the same

parameters are used for particle-particle and particle-wall contacts in these simulations.

When µr ≥ 0.2, the deviation of Method 1 is less than 1% whilst Method 2 underestimates

the angle of repose by 2-5%. It can be said that Method 1 can predict the original angle

of repose most accurately among the methods tested.

Method 1
Method 2
Method 3

Figure 5.13: Deviation from original angle of repose.



CHAPTER 5. TORQUES SCALING FOR SCALED-UP PARTICLES 123

5.4 Closure

In this chapter, the validity of the scaling law of inter-particle torques in the SUP model

[173, 176, 177, 178] is investigated, which has not been properly discussed in previous work.

Three groups of scaling laws are employed in coarse grained DEM simulations, which

are presented in Table 5.1. As introduced in Section 3.3.3, in the SUP model, the original

inter-particle torques are first computed and then scaled-up. On the other hand, in

conventional coarse grain models, the inter-particle torques are computed in the standard

procedure for DEM particles using the scaled-up particle radius and forces [165, 169].

The former and latter are tested as Method 1 and Method 2, respectively, in this work.

Method 3 uses l3 for both inter-particle forces and torques for reference. A variety of

simulations of particle beds and heaps were performed to measure the bulk density and

angle of repose.

Bulk density is an important macroscopic property of powders and is often measured

to assess their flowability and compactability. The bulk density of cohesive particle beds

was evaluated in Section 5.2 to investigate the impact of different scaling methods on the

bulk density of scaled-up particle beds. Both the EPSD model and CDT model of rolling

resistance, which are explained in Section 2.3.3, are employed. The bulk density and

bed height of particle beds are sensitive to the coefficient of rolling resistance, whereby

an increase in the rolling resistance coefficient leads to a decrease in bulk density and

an increase in bed height. Increased rolling resistance indicates a restriction in the flow

of particles. The simulation results obtained from three different scaling methods are

presented below:

• Method 1: By employing the SUP model, i.e. l2-scaling to inter-particle forces and

torques, the scaled-up particle simulation can accurately capture variations in bulk

density as the rolling resistance coefficient changes.

• Method 2: Employing l2-scaling to inter-particle forces and l3-scaling to inter-
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particle torques, the scaled-up particle simulation can generally capture variations

in bulk density as the rolling resistance coefficient changes. However, the deviation

from the original results is comparatively larger than that of Method 1, and it is

more pronounced as the scale factor increases.

• Method 3: Employing l3-scaling to inter-particle forces and torques, which results in

significant overestimation of the inter-particle forces as discussed above, and making

the scaled-up particle bed much more porous than the original particle bed.

Angle of repose is another important macroscopic property commonly used for eval-

uating powder flowability. The repose angle of cohesive particle heaps was evaluated in

Section 5.3 to investigate the impact of different scaling methods on the repose angle of

scaled-up particle heaps. The EPSD model of rolling resistance is employed. The repose

angle of particle heaps is sensitive to the coefficient of rolling resistance, whereby an in-

crease in the rolling resistance coefficient leads to a higher value of repose angle. Increased

rolling resistance indicates a restriction in the flow of particles. The simulation results

obtained from three different scaling methods are presented below:

• Method 1: By employing the SUP model, which involves scaling inter-particle forces

and torques using l2-scaling, the scaled-up particle simulation can generally capture

variations in the repose angle as the rolling resistance coefficient changes. When

considering rolling resistance, the deviation from original repose angles to those of

scaled-up particles is found to be less than 1%.

• Method 2: Employing l2-scaling to inter-particle forces and l3-scaling to inter-

particle torques, the scaled-up particle simulations underestimated the repose angle

by 2-5%.

• Method 3: Employing l3-scaling to inter-particle forces and torques, which results

in significant overestimation of the repose angle.
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The conclusions of this chapter are outlined below:

• The SUP model, i.e. Method 1, can successfully replicate the original bulk density

using both the EPSD and CDT models for rolling resistance, which supports the

fact that the scaling laws derived in the SUP model are generic and applicable to

any forces and torques. On the other hand, as the scale factor increases, there is an

increasing deviation observed in the conventional method, namely Method 2.

• The original angle of repose can be accurately captured using the SUP model from

“fair to passable” to “very cohesive” particles in the Carr classification.



Chapter 6

The SUP model with PSDs

6.1 Introduction

This chapter includes various DEM simulations, which were conducted to validate the

SUP model for DEM particles with particle size distributions (PSDs).

• Bulk density is sensitive to the change of PSDs, the bulk density of particle bed

with bi-dispersed particles and particles with log-normal PSDs is evaluated, and

compared the bulk density of particle beds obtained from coarse grained DEM

simulation to those of the original.

• In Section 6.2, to validate the SUP model in terms of scaling inter-particle torques

for particles with PSDs, three scaling laws are employed in the simulations of bi-

dispersed particles, which are the same as the scaling laws employed in Chapter 5

and shown in Table 6.1.

• In Section 6.3, log-normal PSDs are employed to validate the SUP model with

particles with the continuous variation of PSD from the relatively narrow PSD to

the wider PSD. The impact of changes in PSDs on the bulk density of the particle

bed is discussed.

126
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Table 6.1: Methods used in the bi-dispersed particles simulations.
Method 1 Method 2 Method 3
FIS = l2FIO FIS = l2FIO FIS = l3FIO
MIS = l2MIO MIS = l3MIO MIS = l3MIO
FBS = l3FBO FBS = l3FBO FBS = l3FBO

6.2 Particle beds formation of bi-dispersed particles

As mentioned in Section 6.1, the theories used in the SUP model are generic and may

be applicable to poly-dispersed systems with a particle size distribution. In this section,

simulations of bi-dispersed particle beds are conducted to evaluate the bulk density. The

simulation procedure is largely the same as that explained in Section 5.2. The original

particle diameters are 0.5 mm and 1 mm for small and large particles, respectively. The

particle density is 1000 kg/m3, and other simulation parameters are listed in Table 5.2.

The rolling resistance is given by the EPSD model, and scale factors of 2 and 4 are

employed for the coarse grained simulations.

Particles are randomly generated in an insertion region with dimensions of 26×26×280

mm3 whose centre is located at 380 mm from the bottom. The size of the simulation

domain in the horizontal directions is 28×28 mm2, where the periodic boundary condition

is applied. A plane wall is positioned at the bottom. The particles are inserted with a

mass flow rate of 5.96 g/s and initial velocity of (0, 0,−0.2) m/s for 10 seconds. The small

and large particles are uniformly distributed when inserted with a mass ratio of 1:1. The

particles are settled under the influence of gravity, and the bulk density is measured after

relaxation. The particles below 50 mm and above 100 mm from the bottom are excluded

from the bulk density measurement.

Snapshots of the particle beds obtained from the original particles, Method 1 and

Method 2 when l = 4 and µr = 0 are presented in Figure 6.1. No noticeable segregation

occurs and the small and large particles are uniformly distributed in the final beds. The

bed height of Method 2 is slightly lower than those of the original and Method 1, as
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previously observed in Figure 5.2 for mono-dispersed particles. This implies that the

scaled-up particles using Method 2 can rotate more, which results in a reduced volume of

the particle beds.

(a) Original (b) Method 1 (c) Method 2 Method 3

Figure 6.1: Static particle beds of bi-dispersed particles with different scaling laws when
l = 4 and µr = 0. The colour indicates the particle size; (blue) small and (red) large. The
dashed line indicates the height of the original bed.

Figure 6.2 shows snapshots of particle beds with different scale factors using Method 1.

Qualitatively, the bed heights obtained from the scaled-up particles are in good agreement

with those of the original bed regardless of the scale factors tested.

The bulk density of the particle beds as a function of µr is plotted in Figure 6.3. The

bulk density of the original particles is approximately 568 kg/m3 when µr is 0. The bulk

density is slightly higher than that of the mono-dispersed particles in Figure 5.5 (541

kg/m3) because of (i) the large particles that are comparatively less cohesive than the

small particles and (ii) small particles can fill the space between large particles. When

µr is increased to 0.8, the original bulk density is reduced to approximately 511 kg/m3,

i.e., more than 10% drop. In general, both Methods 1 and 2 can qualitatively replicate
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(a) Original (b) l = 2 (c) l = 4

Figure 6.2: Static beds of bi-dispersed particles with different scale factors when µr = 0.
Method 1 is used for the scaling laws. The colour indicates the particle size; (blue) small
and (red) large. The dashed line indicates the height of the original bed.

the original bulk density. However, with a closer look, one may notice that the deviation

increases progressively as the scale factor increases in Method 2. The results are less

sensitive to the scale factor in Method 1, and the deviation is in general small.

Figure 6.4 shows the deviation from the original bulk density when l = 4. The

deviation of Method 1 is less than 2%, whilst that of Method 2 consistently exceeds 3%

and reaches up to 4.2% when µr = 0.8. From these results, it is inferred that the SUP

model can be used for predicting the bulk density of a particle mixture with different

sizes.
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Figure 6.3: Bulk density of bi-dispersed particle beds as a function of µr.
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Figure 6.4: Deviation from original bulk density of bi-dispersed particles. The scale factor
used is 4.
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6.3 Particle beds formation with Log-normal PSDs

The bulk density, as a macroscopic property of granular materials, is closely associated

with particle size distributions (PSDs). Simulations of particle beds with log-normal PSDs

are conducted in this section to discuss the applicability of the SUP model in various PSDs.

The log-normal distribution is a continuous probability distribution of a random vari-

able, where the natural logarithm of the variable follows a normal distribution. In other

words, if the random variable X is log-normally distributed, then Y = ln(X) has a normal

distribution. The focus of a log-normal distribution lies in the behaviour of the natu-

ral logarithm ln(X) of the random variable X within a normal distribution. This means

that while X itself does not follow a normal distribution, ln(X) follows a normal distribu-

tion with a mean of µ and a standard deviation of σd. The log-normal PSDs of particle

diameters are given by:

f(xd|µ, σd) =
1

xdσd
√
2π

exp
(
−(lnxd − µ)2

2σ2
d

)
(6.1)

where xd represents the actual value of the diameter. In a log-normal distribution, x

must be a positive number (x > 0), as the domain of the logarithm function is positive

real numbers. µ is the mean of the underlying normal distribution. σd is the standard

deviation of the underlying normal distribution. The parameters µ and σd can be given

by:

µ = ln
(

m2
d√

s2d +m2
d

)
(6.2)

σd =

√
ln
(
s2d
m2

d
+ 1

)
(6.3)

where md and sd are the mean value and the standard deviation of particle diameters. In

the present work, the mean value of original particle diameter mdO is set to 1 mm with a

density of 1000 kg/m3, and other particle properties used are listed in Table 6.2.
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Table 6.2: Particle properties for bulk density evaluation with log-normal PSDs.
Property Value
Particle density [kg/m3] 1000
Young’s modulus [MPa] 10
Poisson’s ratio [-] 0.3
Restitution coefficient [-] 0.1
Sliding friction coefficient [-] 0.3
Surface energy [J/m2] 0.2 and 0.02

The ratio of standard deviation to the mean value of particle diameter sdO/mdO is

employed to control the PSDs. The employed log-normal PSDs with different sdO/mdO

are presented in Figure 6.5, which are used for the simulations in this section. sd/md is

varied from 0 to 80%, where sd/md being 0 indicates mono-dispersed particles, while a

higher value indicates wider PSDs.
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Figure 6.5: The log-normal PSDs employed in the original particle simulations.

Original particles are randomly generated in an insertion region with dimensions of

52 × 52 × 990 mm3, centred at a distance of 520 mm from the bottom. The size of the

original simulation domain in the horizontal directions is 56×56 mm2, where the periodic

boundary condition is applied. A plane wall is positioned at the bottom. In the coarse

grained simulations, the scale factors l = 2 and l = 4 are employed. The simulation

domain and insertion region are extended in the horizontal directions, i.e., the insertion

region with dimensions of 52l×52l×990 mm3 and the simulation domain with dimensions
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Figure 6.6: Static beds of original particles with different PSDs. The colour indicates the
radius of particle (surface energy = 0.2).

of 56l × 56l mm2 are employed.

The particles are inserted at the start of the simulation with a velocity of (0, 0,−0.2)

m/s. The total mass of the inserted particles is 0.18g for simulations of original particles,

while it amounts to 0.72g and 2.88g for the scaled-up particle simulations with scale

factors of 2 and 4 respectively. The particles are settled under the influence of gravity,

and the bulk density is measured after relaxation. The particles below 20 mm and above

60 mm from the bottom are excluded from the bulk density measurement to eliminate

the effect of the bottom wall and bed surface.

In particle beds with PSDs, there are regions of particles that do not exert any strong

force, and the non-affine movements of small particles are observed, which partially fill

the void space between larger particles [84]. In this simulation, the compression strain

of the particle bed under gravity is relatively small, such non-affine movement is mainly

from the percolation of small particles. Namely, the movement of small particles in the

void space between large particles is larger than the compression of the particle bed under

gravity. As depicted in Figure 6.5, an increase in the ratio of sd/md leads to the wider

PSDs and the higher particle number ratio of small particles. The increase of amounts

of small particles results in more percolation of small particles, which contributes to the

formation of densely packed structures.

In the original particle simulations, it is evident that the bed height exhibits sensitivity
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to the PSDs. Snapshots of the original particle beds with different PSDs are shown in

Figure 6.6. It can be observed that the height of the particle bed decreases as sd/md

increases. It suggests that particles with PSDs are able to form more densely packed

structures than mono-dispersed particles.

Figure 6.7 shows the bulk density of original particle beds with log-normal PSDs as a

function of sd/md. Surface energy γ = 0.02 and 0.2J/m2 are employed to investigate the

influence of cohesion force. Obviously, a higher surface energy corresponds to a lower bulk

density because stronger adhesion prevents small particles from gravity-driven movement

into the gaps between large particles.

Figure 6.8 shows the average coordination number of original particle beds with log-

normal PSDs as a function of sd/md. Surface energy γ = 0.02 and 0.2J/m2 are employed to

investigate the influence of cohesion force. Obviously, a higher surface energy corresponds

to a lower average coordination number due to the stronger cohesion force resulting in

more porous structures of particle beds and average coordination number decreases.
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Figure 6.7: The bulk density of original particle beds with log-normal PSDs, as a function
of sd/md.

The bulk density of the particle beds as a function of sd/md is plotted in Figure 6.9.

It can be seen that the bulk density of the original particles gradually increases with
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Figure 6.8: The average coordination number of original particle beds with log-normal
PSDs, as a function of sd/md.

increasing sd/md. The bulk density is approximately 573 kg/m3 when sd/md = 0 and

625 kg/m3 when sd/md = 80%, i.e., more than 9% difference between them. In Method

1, the bulk density of the original system is well replicated, and the results of l = 2 and

4 are almost identical.

The average coordination number of the particle beds as a function of sd/md is plotted

in Figure 6.10. It can be seen that the average coordination number of the original

particles gradually decreases with increasing sd/md. The average coordination number

is approximately 4.82 when sd/md = 0 and 4.38 when sd/md = 80%, i.e., more than

9% difference between them. The SUP model can well replicate the average coordination

number of the original particles, and the results of l = 2 and 4 are almost identical.

It is concluded that, when γ = 0.2, the SUP model can reproduce the bulk density

and average coordination number of the original particles precisely.

It is also important to discuss the impact of cohesion force magnitude on the bulk

density of particle beds with PSDs. A series of simulations are conducted with the surface

energy γ = 0.02 J/m2. The bulk density of the particle beds as a function of sd/md is
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Figure 6.9: Bulk density of particle beds with log-normal PSDs as a function of sd/md (γ
= 0.2 J/m2).
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Figure 6.10: Average coordination number of particle beds with log-normal PSDs as a
function of sd/md (γ = 0.2 J/m2).
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plotted in Figure 6.11. The bulk density of the original particles shows a gradual increase

with the increasing ratio of sd/md. The bulk density increases from approximately 606

kg/m3 at sd/md = 0 to 658 kg/m3 at sd/md = 80%, which provides a significant difference

over 8%. When employing surface energy γ = 0.02 J/m2, the bulk density of particle beds

is higher than that of particle beds where the surface energy is 0.2 J/m2. The overall

deviation from the original bulk density to that of a scale factor of 4 is less than 0.5%,

which implies that the SUP model can accurately replicate the bulk density of the original

system, with nearly identical results for l = 2 and l = 4.

The average coordination number of the particle beds as a function of sd/md is plot-

ted in Figure 6.12. It can be seen that the average coordination number of the original

particles gradually decreases with increasing sd/md. The average coordination number

is approximately 4.99 when sd/md = 0 and 4.72 when sd/md = 80%, i.e., more than

5% difference between them, which is lower than the difference of average coordination

number when adopt γ = 0.2 J/m2. It is observed that there is a slight deviation from

original average coordination number to that of scaled-up particles when sd/md = 80%.

The deviation in coordination number from the original to scale factors 2 and 4 is approx-

imately 0.04 and 0.12, respectively. The SUP model can generally replicate the average

coordination number of the original particles when adopting a relatively lower surface

energy, although it may not be exactly the same.

In conclusion, Method 1, i.e. the SUP model, accurately reproduces the bulk density of

particle beds in these simulations. In general, reducing surface energy does not influence

the accuracy of Method 1 to reproduce the bulk density. For average coordination number,

the results from the SUP model are not exactly the same as those of original, but the

deviation is still considerable small. The combination of the results from this section and

those in Section 6.2 supports the idea that the scaling laws derived in the SUP model are

applicable universally across various PSDs.
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Figure 6.11: Bulk density of particle beds with log-normal PSDs as a function of sd/md
(γ = 0.02 J/m2).
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Figure 6.12: Average coordination number of particle beds with log-normal PSDs as a
function of sd/md (γ = 0.02 J/m2).
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6.4 Closure

In this chapter, the applicability of the SUP model is validated in various particle

size distributions (PSDs). Bulk density of particle beds is sensitive to the variation of

PSDs, which is therefore employed to investigate the validity of the SUP model to various

PSDs. The simulation employs the evaluation of cohesive particle beds using bi-dispersed

particles to represent one type of discrete particle size distribution, while particles with

log-normal PSDs are used to represent a continuous change in particle size distribution.

In this chapter, three scaling laws are employed, and the SUP model, i.e. Method 1,

has demonstrated its potential as a promising approach capable of reproducing the bulk

density of original particles across various PSDs.

In Section 6.2, the simulations of bi-dispersed particles, as an extended validation of

the torque scaling laws validated in Chapter 5, the focus is more on comparing torque

scaling:

• Method 1: By employing the SUP model, i.e. l2-scaling to inter-particle forces and

torques, the scaled-up particle simulation can accurately capture variations in bulk

density as the rolling resistance coefficient changes.

• Method 2: Employing l2-scaling to inter-particle forces and l3-scaling to inter-

particle torques, the scaled-up particle simulation can generally capture variations

in bulk density as the rolling resistance coefficient changes. However, the deviation

from the original results is comparatively larger than that of Method 1, and it is

more pronounced as the scale factor increases.

• Method 3: Employing l3-scaling to inter-particle forces and torques results in sig-

nificant overestimation of the inter-particle forces, as discussed above, which makes

the scaled-up particle bed much more porous than the original particle bed.

In Section 6.3, the simulations of particles with log-normal PSDs are conducted as a
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validation of various PSDs. The focus is to validate whether the SUP model can accurately

capture the continuous variation of PSDs. By employing the SUP model, i.e. l2-scaling to

inter-particle forces and torques, the scaled-up particle simulation can accurately capture

variations in bulk density as the PSDs change.

The SUP model, i.e. Method 1, successfully replicated the original bulk density of bi-

dispersed particles and particles with log-normal PSDs, which indicates the SUP model

can be used for predicting the bulk density of a particle mixture with different sizes and

theoretically applicable to any type of PSDs.
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Closure

7.1 Summary

In previous works of coarse grain models of DEM, the scaling laws are usually derived

for specific types of forces [165, 166, 169], which presents a challenge when applying

coarse grain models of DEM to simulate granular materials with various types of forces

and torques. The present study develops a novel coarse grain model of DEM that can be

universally applied to scale various types of forces and torques. Furthermore, it is proven

applicable to particles with various PSDs. The proposed model is called the scaled-up

particle (SUP) model.

The SUP model can significantly reduce the computational cost of DEM simulation.

One of the greatest advantages of the developed model is that it is derived in a way

that is not relevant to any specific type of inter-particle forces and torques. Although

the validation simulations do not cover all types of inter-particle forces and torques, the

theory and basic assumptions of the SUP model do not limit its capability to scale any

type of inter-particle forces and torques.

In the SUP model, the particle overlap and separation distance of original particles

are evaluated based on geometric similarity using the corresponding scaled-up particle

variables, which differs from the conventional method in the literature [165, 173]. The

translational and rotational velocities are determined in such a way that the same kinetic

141
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energies can be achieved between the original and scaled-up particles as suggested by

Sakai and Koshizuka [165]. In chapters 4, 5, and 6, the SUP model is validated for

its applicability to particle systems involving various inter-particle forces, torques, and

particle size distributions respectively.

The comparisons of simulation results with different methods presented in sections

4.2 and 4.3 in Chapter 4 provide several insights for evaluating inter-particle forces in

coarse-grained DEM simulation, as summarised below:

• The results demonstrate that the proposed method, the SUP model, can provide an

almost identical stress-strain curve to that of the original system during the uniaxial

compression of a packed particle bed, where particle contact forces are dominant.

• Furthermore, the same method can accurately reproduce the overall flow structure

and velocity distributions of the original particles in a dynamic system, such as a

vertical mixer, where capillary and Johnson-Kendall-Roberts (JKR) surface adhe-

sion forces, i.e. inter-particle attraction forces, are dominant.

• Slight discrepancies are observed when the attraction forces are relatively large.

This could potentially be attributed to the formation of medium-sized lumps that

cannot be resolved with larger scaled-up particles.

• The comparisons in the simulations of particle bed compression and particle flow

in a vertical mixer suggest that accurately evaluating inter-particle overlap and

separation distance is crucial in coarse-grained DEM simulation.

• Among the three investigated methods, the SUP model, i.e. Method 1, demon-

strated the best agreement with the results of original particles. In principle, it can

be applied to any type of inter-particle force.

The concept of inter-particle torques scaling in the SUP model, as introduced in Sec-

tion 3.3.3, differs from that of conventional coarse grain models. This difference in concept
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provides different scaling laws of inter-particle torques. The comparisons of simulation

results presented in sections 5.2 and 5.3 provide several insights for inter-particle torques

evaluation in coarse-grained DEM simulation, as summarised below:

• By applying l2-scaling to inter-particle torques and forces, the SUP model can suc-

cessfully reproduce the original bulk density for both the EPSD and CDT models of

rolling resistance. This supports the fact that the scaling laws derived in the SUP

model are generic and can be used for any forces and torques.

• Method 2 employs l2-scaling for inter-particle forces but l3-scaling for torques. The

deviation of the conventional coarse grain model in bulk density is generally higher

than that of the SUP model, and it increases as the scale factor increases. The bulk

density obtained by Method 2 is slightly higher than that of the original particles,

which implies that Method 2 overestimated the inter-particle torques, resulting in

excess particle rearrangement and leading to the formation of more densely com-

pacted structures than those of the original particles.

• In the simulations for evaluating the angle of repose, the SUP model accurately

captures the original angle of repose for particles classified as “fair to passable”

to “very cohesive” according to Carr’s classification. The overestimated torques of

Method 2 yield the underestimation of repose angle.

• The comparisons in the simulations evaluating bulk density and repose angle of

cohesive particles suggest that accurately estimating inter-particle torques is crucial

in coarse-grained DEM simulation.

• Among the three investigated methods, the SUP model, i.e. Method 1, showed

the best agreement with the results of original particles, and in principle, it can be

applied to any type of inter-particle torque.

In the previous works of the SUP model, mono-dispersed particles are employed for
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simplicity [173, 176, 177], which includes the simulations in chapters 4 and 5. However,

the theories employed in the SUP model are generic and have potential applicability to

more complex systems. The comparisons of simulation results presented in Sections 6.2

and 6.3 provide several insights of particle size distributions (PSDs) in coarse-grained

DEM simulation, as summarised below:

• In Section 6.2, the bulk density of particle beds is evaluated and compared, the bi-

dispersed particles are employed. The l2-scaling of inter-particle torques, which was

validated in Chapter 5 for mono-dispersed particles, is also applicable to bi-dispersed

particles.

• In Section 6.3, the bulk density of particle beds are evaluated and compared, the

particles with log-normal PSDs are employed. The l2-scaling of inter-particle torques

is validated, that it is also applicable to particles with various PSDs.

• In the aforementioned simulations, the SUP model successfully replicated the origi-

nal bulk density of bi-dispersed particles and particles with log-normal PSDs. This

indicates that the SUP model can be utilised to predict the bulk density of a particle

mixture with various particle size distributions. In principle, the SUP model can

be applied to particle systems with any type of particle size distribution.

In addition, the scaling law of the critical time step for the SUP model that was

introduced in Section 2.4 is further validated through the simulation of particles in a

periodic boundary box with no energy dissipation, as discussed in Section 4.4. The results

suggest that the time step for the scaled-up particle can be l times larger than that of the

original particle.

7.2 Future directions

The suggestions for future work are listed as follows:
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• Slight discrepancies between the velocity distribution of scaled-up particles and

original particles are observed in Section 4.3 of Chapter 4, particularly when the

attraction forces are relatively large. This may be attributed to the formation of

medium-sized lumps that cannot be resolved with larger scaled-up particles. There-

fore, gaining a deeper understanding of the causes for the observed deviations and,

if feasible, expanding the applicable scope of the SUP model would be valuable.

• The SUP model has been validated for various types of PSDs in static particle

beds, as discussed in Chapter 6. Given that particle beds with different PSDs

have been simulated, it is easy to consider compressing particle beds with varying

PSDs and validating whether the SUP model can replicate the stress-strain curve of

the original particles with various PSDs. In addition, its applicability to dynamic

particle systems with different PSDs has not yet been validated. Therefore, it would

be valuable to deeply investigate the applicability of the SUP model in dynamic

particle systems, such as particle flow in mixers and fluidised beds.

• Since this study focuses on discussing the validity of the proposed coarse grain model

for various types of forces and torques, a maximum scale factor of 4 is employed.

However, theoretically, as long as the particles follow the effectively homogeneous

assumption, the SUP model does not impose any limitations on the scale factor.

Namely, the limitation of scale factor is primarily determined by the specific particle

system rather than the SUP model. It would be valuable to apply larger scale factors

for validation simulations involving more particle systems.

• In the derivation of the SUP model, the mentioned three mechanisms leading to the

change in momentum are assumed to be equivalent at control volume scale for the

original and scaled-up particles. However, the model does not discuss the energy

dissipation of particles in the control volume, which is different for particles of the

same mass after the particle size enlargement. This is a promising direction to
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improve the existing coarse grain model of DEM.

• The clear applicable size range of the effectively homogeneous assumption still re-

quires further investigation. It would be valuable to explore the minimum and

maximum particle sizes that can be captured by the SUP model.



Appendix A

Simulations of particle flow in a

vertical mixer with D/d ≥ 40

The proposed model has provided good agreements between original and scaled-up

results while D/d > 40. As mentioned in Section 4.3, the D/d is recommended to be

larger than 40, which limits the range of scale factor selection. This is a kind of limitation

from geometry, as larger particles have the risk of enhancing the influence of boundary

effects.

The mixer simulations of the larger scale factor have been conducted to test the

influences of boundary effects. The simulation conditions were the same as those used for

the mixer simulations of wet particles in Section 4.3.1 with λL = 0.05 N/m. Employed

the larger particles are 4 and 8 mm in diameters, while l = 8 and 16, D/d = 21 and 10.5

respectively. Figure A.1 shows the results of probability distribution of particles velocity.

It is clear that the distribution peak is shifted leftward while gradually increasing the

scale factor. The deviation from the original results is remarkable, especially for the cases

where D/d < 40. These results provide a reference for the particle size limitation of model

applications and support the opinion in the literature [211, 212] that D/d should be set

larger than 40.
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Figure 1: Probability density distribution of particle velocity magnitude in vertical mixer
with capillary force including the larger scale factor results (Method 1, λL = 0.05 N/m).
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