

Title	Easily Disassemblable Joining of Dissimilar Materials of SPCC and CFRP Based on Metal Surface Structuring Technology
Author(s)	王, 泰
Citation	大阪大学, 2024, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/98781
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Abstract of Thesis

Name (王 泰)	
Title	Easily Disassemblable Joining of Dissimilar Materials of SPCC and CFRP Based on Metal Surface Structuring Technology (金属表面構造化技術に基づく冷間圧延鋼板と炭素繊維強化樹脂の易解体性異種材料接合)
<p>Abstract of Thesis</p> <p>This study proposes an "easily disassemblable joining" concept for metals and carbon fiber reinforced plastics (CFRP) for the first time. It aims to achieve high-strength joints while simplifying end-of-life vehicle disassembly and recycling. Inspired by the biomimetic design, the rose thorns pattern was established for metal surface structuring. Advanced manufacturing techniques such as Fused Deposition Modeling (FDM) and Selective Laser Melting (SLM) were used to fabricate biomimetic rose thorn structures on the metal surface. Subsequently, the structured metal was joined with CFRP, and the joint morphology, performance, and disassembly process were evaluated. The study revealed that SLM-fabricated biomimetic micro-protrusions, due to their precision and mechanical strength, significantly enhance joining strength and ease of disassembly, providing new insights into lightweight and environmentally friendly manufacturing.</p> <p>Chapter 1 introduces the research background, the necessity of vehicle lightweight, and the requirements for end-of-life vehicle recycling. It reviews existing metal and CFRP joining technologies, including mechanical fastening, adhesive bonding, and welding. The chapter concludes with the research objectives and the importance of developing easy disassembly joining techniques.</p> <p>Chapter 2 investigates the direct joining of metals and CFRP using traditional ultrasonic welding methods, exploring factors affecting joint morphology and mechanical performance.</p> <p>Chapter 3 details the specific shape design methods for the biomimetic rose thorn structures, abstracted into a mathematical geometric model. Numerical simulations analyze stress concentrations under various loads, determining the shape of the biomimetic structure for joining applications.</p> <p>Chapter 4 focuses on manufacturing the biomimetic micro-protrusions identified in Chapter 3. These structures are fabricated on SPCC surfaces using FDM technology, including modeling, degreasing, and sintering. This chapter provides insights into the thermal treatment process.</p> <p>Chapter 5 characterizes and evaluates the joints of surface-structured SPCC (fabricated via FDM) and CFRP, including joint interface morphology, mechanical properties, and disassembly. It discovered that FDM is inaccurate when manufacturing millimeter-level products, particularly at the tip of the rose thorn biomimetic micro-protrusion, causing damage to CFRP. FDM-manufactured micro-protrusions exhibit deficiencies in mechanical performance, resulting in lower joint strength.</p> <p>Chapter 6 explores key parameters and influencing factors in the SLM process for fabricating biomimetic rose thorn structures on metal surfaces. Given the low-power laser system (30W max) used, the interaction mechanism and influencing factors between the laser and SUS 316L particles are investigated.</p> <p>Chapter 7 further analyzes joints' mechanical properties and disassembly process with SLM-fabricated biomimetic rose thorn structures. Experiments show SLM-manufactured joints exhibit excellent tensile strength, with fractures occurring in the CFRP substrate rather than at the joint interface. Disassembly tests demonstrate this structure allows complete separation of metal and CFRP with no significant defects post-disassembly.</p> <p>This study proposes and validates the easily disassemblable joining method through innovative biomimetic design and advanced manufacturing techniques, providing new insights and pathways for metal-CFRP joining. The results improve joint strength and disassembly efficiency, contributing to the recycling of end-of-life vehicles and promoting environmentally friendly manufacturing. Future research will further optimize design and processes, explore broader applications, and drive the application of this technology in lightweight and sustainable manufacturing.</p>	

論文審査の結果の要旨及び担当者

氏名 (王 泰)	
	(職)
論文審査担当者	主査 教授 西川 宏
	副査 教授 近藤 勝義
	副査 講師 安田 清和

論文審査の結果の要旨

本論文は、容易に解体が可能な冷間圧延鋼と炭素繊維強化プラスチック (CFRP) 間の異種材料接合技術に関する研究成果をまとめたものである。高強度部材が多用される先進車両等のリサイクルを容易にし得る異種材料接合の設計と開発を目的としている。生体模倣設計を採用し、バラの棘をモチーフにした微小突起を金属表面に形成する表面構造化による易解体性接合を提案している。表面構造化には熱溶解積層法 (FDM) および選択的レーザー溶融法 (SLM) などの先進的製造技術を採用し、製作を試みている。CFRP と表面構造化した冷間圧延鋼の異種材料接合性と分解方法が探究され、実験と解析を通じて、微小突起構造の設計と製造工程の最適化アプローチを提案している。CFRP および金属材料の特性、応用、および自動車の軽量化と持続可能な開発における役割が詳述され、容易に分解可能な接合継手の実現に向けた微小突起構造設計の基本原理と設計戦略、特に生体模倣設計の概念とその接合強度最適化への適用に焦点を当てている。

CFRP と冷間圧延鋼の異種材料接合において金属の表面構造化が与える利害得失を評価している。特に FDM 製造技術に関しては生体模倣微小突起形成時の寸法精度と層間段差が接合性能ならびに接合強度に与える影響を指摘している。一方、SLM 製造技術は、金属表面に生体模倣微小突起を形成する際に、高い寸法精度と表面平滑性が得られるため、CFRP への損傷リスクを軽減し、接合強度と接合信頼性が著しく向上する点を明確化している。実験結果は、SLM 製造による微小突起が接合部の力学的性能において優れた成績を示されている。強度試験における破断クラックの進展は接合界面ではなく、CFRP 母材内で発生することが示され、易解体性とともに良好な接合強度が検証された。

異なる製造技術により形成された微小突起の力学的性能の詳細な分析を行い、特に FDM および SLM 製造の微小突起形態と継手性能の差異に焦点を当てている。さらに、SLM 製造による生体模倣微小突起を付与した接合継手の力学的性能と分解プロセスを詳細に評価した結果、提案された設計による接合継手の接合強度が著しく向上すること、分解プロセスにおいても優れた結果を示すこと、さらには、完全な分離を実現し、CFRP 板に明確な損傷を与えないことを明確化している。

本論文の最後に、生体模倣設計の最適化、製造技術の比較、ならびに将来の研究方向と応用展望を含む、当研究の主要成果が示されている。すなわち、生体模倣設計と FDM や SLM 等の先進製造技術の採用が異種材料継手の接合強度と信頼性を効果的に向上させ、易解体性を有する高強度接合部の実現可能性を示し、車両等の効率的なリサイクル利用を推進するのに有用であることが示されている。

以上の様に、本論文は環境負荷低減や持続可能社会に資する易解体性異種材料接合の設計と製造の両面で、従来にない斬新な戦略を提案し、産業応用に向けた工学的有用性を示すとともに、重要な理論的かつ実践的な指針を提供している。よって本論文は博士論文として価値あるものと認める。