

Title	SURFACE REACTION MECHANISMS OF PLASMA-ENHANCED ATOMIC LAYER ETCHING FOR SILICON NITRIDE
Author(s)	Tercero, Jomar Unico
Citation	大阪大学, 2024, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/98782
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Abstract of Thesis

Name (TERCERO JOMAR UNICO)

Title

SURFACE REACTION MECHANISMS OF PLASMA-ENHANCED ATOMIC LAYER ETCHING FOR SILICON NITRIDE
(窒化ケイ素に対するプラズマ支援原子層エッチングの表面反応機構)

Abstract of Thesis

As semiconductor devices continue to become smaller and incorporate more complex 3D structures, the demand for highly precise nano-scale fabrication has significantly increased. This growing need has led to a strong interest in advanced etching techniques. Atomic layer etching (ALE) has emerged as a key method for achieving atomic-scale precision. This level of control is particularly useful in addressing the challenges of modern semiconductor manufacturing.

In this study, molecular dynamics (MD) simulations were performed to explore the etching mechanisms during plasma-enhanced atomic layer etching (PE-ALE) of silicon nitride (SiN) surfaces. Recent experiments have shown that the PE-ALE process, involving hydrofluorocarbon (HFC) adsorption followed by argon ion (Ar^+) irradiation, can lead to an etch-stop phenomenon. The simulations revealed that carbon (C) remnants at the end of a PE-ALE cycle can result in further C accumulation in subsequent cycles. Under typical Ar^+ ion irradiation conditions, nitrogen (N) atoms are preferentially removed over silicon (Si) atoms. This selective removal increases the Si-richness of the SiN surface, thereby promoting C accumulation through the formation of Si-C bonds. Additionally, fluorine (F) atoms facilitate Si removal, whereas hydrogen (H) and C atoms contribute to N removal from the SiN surface.

Additionally, the influence of introducing oxygen (O) ion irradiation at the end of each cycle of the SiN PE-ALE process was examined to address etch-stop caused by excessive HFC polymer accumulation. This thick polymer layer blocks and obstructs ion impact during the desorption step. To prevent etch-stop, an oxygen (O_2) plasma irradiation step was added after the desorption step of the conventional two-step SiN PE-ALE process. Differences between the conventional two-step and the modified three-step PE-ALE processes, which include the O_2 plasma irradiation, were discussed. In the simulations, low-energy CH_2F radicals were deposited on the SiN surface during the adsorption step. The modified surface was then irradiated with energetic Ar^+ ions and subsequently etched in the desorption step. In the additional O_2 plasma irradiation step, the resulting surface was irradiated with low-energy O species, which removed excess C atoms by promoting the formation of volatile CO molecules. This O irradiation step was found to effectively prevent C layer accumulation on the surface.

Further simulations were performed to examine the interactions between the SiN surface and various inert gas ion irradiations, including Ar^+ , krypton (Kr^+), and xenon (Xe^+). Changes in surface height, penetration depths of HFC species, and thickness of the damaged layer over several PE-ALE cycles were observed. The results showed that Ar^+ ions etched the SiN surface more efficiently than Kr^+ or Xe^+ ions under the same conditions. The slower etching rates observed with Kr^+ or Xe^+ ion irradiation were attributed to the accumulation of HFC species. Despite these differences in etching efficiency, the thickness of the damaged layers showed no significant differences when Ar^+ , Kr^+ , and Xe^+ ions were used in the desorption step.

論文審査の結果の要旨及び担当者

氏名 (TERCERO JOMAR UNICO)	
論文審査担当者	(職) 氏名
主査 教授	浜口 智志
副査 教授	神原 淳
副査 准教授	荻野 陽輔

論文審査の結果の要旨

本論文は、窒化シリコン（以下、Si と N の組成や不純物の存在かわらず、一般の窒化シリコンを SiN と略記する）に対するプラズマ支援原子層エッチング（PE-ALE）の表面反応過程を、分子動力学（MD）シミュレーションを用いて解析したものである。SiN の PE-ALE は、実験的にすでに進められているが、原子レベルのシミュレーションを用いた、その表面反応解析は、かつて行われておらず、本シミュレーション結果は、実験結果の解釈と理解に大きく貢献するものである。

SiN の PE-ALE は、SiN の反応性イオンエッチング（RIE）との類推から、PE-ALE の 1 サイクル中、表面改質ステップ（半サイクル）で、SiN の表面に水素化フッ化炭素（HFC）プラズマへの暴露により、HFC 薄膜（通常 2nm 程度の膜厚）を堆積し、その後の脱離ステップ（半サイクル）で、Ar プラズマに負バイアスをかけて、Ar イオンを照射して、堆積した HFC 膜と SiN 膜の間で化学反応を誘起し、数原子層の SiN を 1 サイクルでエッチングするものである。これまでの研究から、このような SiN の PE-ALE では、Ar イオンの照射エネルギーが、SiN の Ar イオン照射による物理的スパッタリング閾値より、はるかに高いエネルギーが必要なこと、入射エネルギーが低いと、エッチストップが起こりやすこと、また、エッチング終了時に、表面にダメージが残ることが実験的に知られている。また、エッチストップを回避するには、短い酸素プラズマ照射ステップを各サイクルの最後に追加することが有効なことが知られている。

本論文は、大きく分けて、3 つの研究テーマからなる。第一の研究で、SiN の PE-ALE におけるエッチストップ発生機構を明らかにし、第二の研究で、酸素プラズマの短時間照射により、表面の炭素除去が効率的に進むことを示し、第三の研究で、脱離ステップにおける表面ダメージ形成において、Ar, Kr, Xe のイオン照射によるダメージ形成の違いを明らかにしている。

特に、第一の研究では、HFC 堆積膜中の炭素原子が、SiN の脱離反応に直接寄与しないため、表面反応中に Si-C 結合を形成し、低エネルギーイオン照射ではその除去が困難であり、そのため、PE-ALE プロセスのサイクルを重ねるごとに C-C 結合が増加し、最終的に、エッチストップが起こることを示している。第二の研究では、この堆積した C を酸素照射により CO 等を形成して、過剰な C 原子を表面から除去できることを、原子レベルで明らかにしている。また、第三の研究では、質量の大きなイオン程、同じ入射エネルギーでの固体中の侵入長が短いので、表面ダメージ形成も少ないと予想されていたが、その分、1 サイクルあたりの SiN のエッチング深さ（EPC）が小さくなること、および、イオン衝撃により、C や F の軽元素のノックオン効果が存在することにより、ダメージ層の形成は、むしろやや大きくなることを明らかにしている。

以上のように、本論文は、SiN の PE-ALE プロセスにおけるエッチストップの原因を、原子レベルで明らかにし、また、エッチストップを回避するための酸素プラズマ照射ステップにおける表面反応を原子レベルで明らかにしている。更に、PE-ALE の脱離プロセスで用いられる不活性イオン照射による表面ダメージの形成を原子レベルで解析し、同じ条件下では、Ar より質量の大きな Kr や Xe イオン照射が、表面ダメージを必ずしも Ar イオン照射に比べて軽減しないばかりか、Kr や Xe イオン照射においては、SiN のエッチング効率（すなわち、EPC）が下がることを明らかにしている。これらの知見は、これまでに提案されていた SiN の ALE プロセスの表面反応機構の理解を深めるのみならず、今後、多様な材料に対する PE-ALE プロセスの開発に必要な指針を与えるという意味で、最先端半導体プロセスの発展に大きく寄与するものである。

よって本論文は博士論文として価値あるものと認める。