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Abstract

Urban green spaces are essential for promoting environmental, social, and
economic sustainability in cities. However, existing methods for assessing urban green
spaces often focus on single dimensions, failing to capture the complex nature of these
spaces. The lack of objective and quantitative methods to address the multifunctionality
and heterogeneity of urban green spaces, coupled with the seasonal variations and
diverse plant species, leaves designers and planners relying on their prior knowledge
for design and planning decisions.

This dissertation presents a comprehensive and innovative approach to assessing
and modeling urban green spaces by integrating multi-source data, novel indicators,
and advanced visualization technologies. The research introduces a comprehensive
assessment framework that combines multiple data sources and evaluation metrics,
such as the green view index (GVI) and green coverage ratio (GCR), to assess the
spatial distribution, visibility, and composition of urban green spaces in a multi-
dimensional manner. A case study of Osaka City demonstrates the framework's
potential in revealing variations in green space provision and the influence of
topography on green space distribution.

Furthermore, a multi-temporal urban green space vegetation visualization analysis
framework is proposed, which integrates various data sources and advanced
technologies to capture the temporal changes and seasonal variations in vegetation
characteristics. Within this framework, the Seasonal Species-Specific Plant View Index
(S3PVI) is introduced as a novel indicator to evaluate the visual importance and
attractiveness of different plants in urban landscapes. The application of the multi-
temporal analysis framework and the S3PVTI indicator to the Sanshikisaido area in Suita,
Osaka Prefecture, Japan, reveals the spatiotemporal differentiation patterns of the
visibility characteristics of different plant types. A dataset containing 51 common plant
species in urban environments is created to support the development and validation of
the S3PVI indicator and the multi-temporal analysis framework.

The research also explores the application of advanced visualization technologies,
such as neural radiance fields (NeRF) and Stable Diffusion, to generate dynamic and
immersive 4D urban models that capture the temporal evolution and experiential
qualities of urban green spaces. The integration of low-rank adaptation (LoRA) and
ControlNet, built upon the data foundation laid in the multi-temporal analysis
framework, enhances the visual quality and geometric consistency of the generated
images.

The proposed frameworks and methodologies contribute to the development of
more holistic, nuanced, and actionable approaches to understanding and managing
urban green spaces. The research outcomes have the potential to support the creation of



sustainable and resilient urban environments by providing urban planners and
policymakers with comprehensive insights and tools for evidence-based decision-
making. However, further research and collaboration between diverse stakeholders are
necessary to address the limitations, explore the full potential of the proposed
frameworks, and develop an integrated system for urban green space planning and
management.

Keywords: Urban green spaces; Multi-dimensional assessment; Seasonal
Species-Specific Plant View Inde; Multi-temporal analysis; 4D modeling; Neural
radiance fields; Stable Diffusion
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Chapter 1

Introduction

1.1 Research background and problem statements

Urban green spaces, including parks, gardens, street greenery, and urban forests, play a
vital role in promoting the environmental, social, and economic sustainability of cities (Wolch
et al.,, 2014). They provide numerous ecosystem services, such as improving air quality,
regulating urban temperatures, managing stormwater runoff, and supporting biodiversity
(Elmgvist et al., 2015). Moreover, urban green spaces contribute to the physical and mental
well-being of city dwellers by offering opportunities for recreation, social interaction, and stress
relief (Hartig et al., 2014).

As cities continue to expand and densify, the importance of urban green spaces in creating
livable and resilient urban environments has become increasingly recognized by researchers,
policymakers, and the public alike (Lovell & Taylor, 2013). However, the rapid urbanization
process also poses challenges for the planning, design, and management of urban green spaces
(Haaland & Van Den Bosch, 2015). Urban green spaces are often fragmented, unevenly
distributed, and subject to competing land-use demands (Pauleit et al., 2019).

To ensure that urban green spaces can effectively deliver their intended benefits, it is
crucial to accurately assess and monitor their quantity, quality, and distribution (Xu et al., 2020).
Traditional assessment methods, such as the green view index (GVI) (Aoki et al., 1985), green
coverage ratio (GCR) and the normalized difference vegetation index (NDVI), have been
widely used to quantify the extent and density of urban vegetation (Gupta et al., 2012; A. Hu,
Yabuki, Fukuda, et al., 2023; Weier & Herring, 2000; Zhu et al., 2023). However, these methods
often fail to capture the multidimensional characteristics of urban green spaces, such as their



ecological functions, aesthetic qualities, and social benefits (Cilliers & Cilliers, 2015; Hoyle et
al., 2017).

Furthermore, urban green spaces are dynamic systems that undergo seasonal changes and
long-term evolution (Han et al., 2023; Wellmann et al., 2020). The visual appearance and
ecological functions of urban vegetation vary significantly throughout the year, influenced by
factors such as plant phenology, climate conditions, and management practices. However, most
existing assessment methods rely on static or single-temporal data, failing to account for the
temporal dynamics of urban green spaces (Zhou et al., 2016).

Another challenge in urban green space assessment is the limited integration of
quantitative measures with aesthetic considerations (R. Wang et al., 2016). The visual quality
and aesthetic appeal of urban green spaces play a crucial role in shaping public perception,
preference, and well-being. Aesthetically pleasing urban green spaces not only enhance the
emotional well-being of urban residents but also contribute to the economic value of the
surrounding areas (Xiao et al., 2017). However, current assessment methods often focus on the
overall greenness or vegetation health, neglecting the aesthetic qualities and visual diversity of
individual plant species (A. Hu, Yabuki, & Fukuda, 2023).

Currently, urban planners and designers often rely on subjective knowledge and experience
when selecting and designing urban green spaces, which may lead to suboptimal outcomes
(Riechers et al., 2019). There is a need for objective and quantitative assessment methods and
indicators that can guide evidence-based decision-making in urban green space planning and
design (Noland et al., 2017).

To address these challenges, there is a pressing need for innovative approaches and
methodologies that can provide a more comprehensive, nuanced, and actionable understanding
of urban green spaces. This research aims to fill this gap by developing a multi-dimensional
assessment framework, introducing novel indicators, and exploring advanced visualization
technologies for urban green space assessment and modeling.

1.2 Research objectives
1.21 Main objective

The main objective of this research is to develop a comprehensive and innovative approach
for assessing and modeling urban green spaces, integrating multi-source data, novel indicators,
and advanced visualization technologies to support evidence-based decision-making in urban
planning and management.

This approach aims to provide a multi-dimensional understanding of urban green spaces,
with a primary focus on their visual and spatio-temporal characteristics. It encompasses:



The integration of spatial distribution, visibility, and composition metrics to offer a more
holistic assessment of urban green spaces.

The introduction of novel indicators that capture the seasonal dynamics and visual
importance of different plant species in urban landscapes.

The exploration of advanced visualization technologies to generate dynamic and
immersive representations of urban vegetation over time.

By combining these elements, this study strives to create a relatively comprehensive
framework for analyzing and visualizing the visual aspects and temporal evolution of urban
green spaces. This focus on visual and temporal dimensions is intended to complement existing
research on other crucial aspects of urban green spaces, such as biodiversity, ecosystem services,
and social functions. While these other aspects are undoubtedly important, they are beyond the
scope of this particular study.

The proposed approach aims to bridge the gap between quantitative assessment and
qualitative experience of urban green spaces, providing urban planners and designers with tools
to better understand, communicate, and enhance the visual and temporal qualities of urban
vegetation. Through this focused yet comprehensive approach, this research contributes to the
broader field of urban green space studies while maintaining a specific emphasis on visual and
spatio-temporal aspects.

1.2.2  Specific goals

1) Developing a comprehensive assessment framework: The integration of multi-source
data and evaluation metrics enables the multi-dimensional assessment of spatial
distribution, visibility, and composition of urban green spaces.

2) A multi-temporal visualization analysis framework: Capturing temporal changes and
seasonal variations in vegetation characteristics, this framework aids in the analysis
of urban green spaces over different time scales.

3) Advanced visualization technology in dynamic and immersive 4D urban models:
Application of these technologies captures the temporal evolution and experiential
qualities of urban green spaces, providing a comprehensive understanding.

4) The interaction between topography and green spaces: Studying this interaction to
better understand the complex relationship between green spaces and the urban
environment.

5) The potential of street-view data: Intelligent classification techniques unlock the
potential of street-view data in evaluating and understanding the multifunctionality
and distribution patterns of urban green spaces.



1.2.3  Practical applications

The outcomes of this research may have valuable practical implications for urban planning,
design, and management. The proposed assessment framework and novel indicators can
provide urban planners and policymakers with a more comprehensive and nuanced
understanding of the spatial distribution, composition, and quality of urban green spaces. This
knowledge can inform evidence-based decision-making processes, such as identifying areas of
green space deficiency, prioritizing green space interventions, and optimizing the allocation of
resources for green space development and maintenance.

Moreover, the multi-temporal vegetation visualization analysis framework and the
seasonal species-specific plant view index (S3PVI) indicator can guide plant selection and
configuration decisions in urban landscape design. By considering the seasonal changes and
visual characteristics of individual plant species, designers can create visually appealing and
engaging urban green spaces that provide year-round aesthetic benefits and enhance the well-
being of urban residents. The quantitative analysis results provided by this research can serve
as objective references for urban planners and designers, complementing their subjective
knowledge and experience in green space planning and design.

The application of advanced visualization technologies, such as neural radiance fields
(NeRF) and Stable Diffusion, in generating dynamic and immersive 4D urban models can
revolutionize the way urban green spaces are planned, designed, and communicated. These
technologies enable stakeholders, including planners, designers, policymakers, and the public,
to visualize and experience the temporal evolution and experiential qualities of urban green
spaces. This can facilitate more effective collaboration, public participation, and consensus-
building in urban planning processes.

124 Theoretical contributions

This research aims to contribute to the fields of urban ecology, landscape assessment, and
computational modeling. The development of the comprehensive assessment framework and
the S3PVI indicator can enhance the understanding of the multidimensional characteristics and
temporal dynamics of urban green spaces. By integrating multi-source data and considering
both quantitative and qualitative aspects of urban vegetation, this research can provide a more
holistic and nuanced perspective on the assessment of urban green spaces.

The exploration of advanced visualization technologies and 4D modeling techniques can
expand the boundaries of traditional urban landscape representation and analysis. The
integration of NeRF and Stable Diffusion in generating dynamic and immersive urban models
can open up new possibilities for studying the temporal evolution and experiential qualities of
urban green spaces. This research can contribute to the development of innovative
computational methods and tools for urban landscape assessment and modeling.

Furthermore, the investigation of the interplay between topography and green spaces can
deepen the understanding of the complex relationship between urban green spaces and the built



environment. By considering the influence of topographical factors on the distribution,
composition, and functionality of urban green spaces, this research may offer valuable insights
into the ecological and social dimensions of urban landscapes.

1.3 Research scopes
1.3.1  Data focus

This research focuses on assessing and modeling urban green spaces, including parks,
gardens, street greenery, and urban forests. The primary data sources used in this research are
multi-source geospatial data, including remote sensing imagery and street-view images.

1.3.2  Data sources

The data used in this research are obtained from various sources, including:

1) Remote sensing imagery: High-resolution satellite imagery (e.g., Sentinel-2) and aerial
photographs are used to assess the spatial distribution and composition of urban green
spaces.

2) Street-view images: Large-scale street-view image datasets, such as Google Street View,
are used to evaluate the visual characteristics and seasonal variations of urban
vegetation from a pedestrian perspective.

3) Geospatial data: Various geospatial datasets, such as land use/land cover maps,
administrative boundaries, and road networks, are used to provide contextual
information and support the analysis of urban green spaces.

1.3.3  Methodology

This research employs a range of advanced methodologies and techniques, including:

1) Geospatial analysis: Geospatial analysis techniques are used to assess the spatial
distribution, composition, and connectivity of urban green spaces.

2) Computer vision: Computer vision techniques, such as semantic segmentation and
image classification, are used to extract and analyze vegetation information from
street-view images and remote sensing imagery.

3) Deep learning: Deep learning models, such as Stable diffusion and NeRF, are used to
generate realistic and dynamic 4D urban models.

4) 3D reconstruction and visualization: 3D reconstruction techniques (Mouragnon et al.,
2006), such as structure from motion (SfM) are used to generate 3D point clouds and
models of urban green spaces.



14 Overview of the dissertation

This dissertation is separated into 6 chapters, with the main concepts of each chapter
illustrated in Figure 1.1.

Introduction Chapter 1
Literature review Chapter 2

}

Developing a comprehensive . .
ot ol Chapter 3 (Related to research objective 184)

urban green spaces

Constructing a multi-temporal

visualization analysis —_— Proposing the S3PVI metric Chapter 4 (RElated to research Objective 2&5)

framework for vegetation

|

Constructing a 4D scene
modeling method

!

Conclusion Chapter 6

Exploring the combination of

—— temporal dynamics with advanced ~ Chapter 5 (Related to research objective 3&5)

imaging technologies

Figure 1.1 Overview of the main concepts in each chapter.

The next chapter reviews the literature related to this dissertation. Subsequently, Chapter
3 develops a comprehensive assessment framework that integrates multi-source data and
evaluation metrics to assess the composition of urban green spaces in a multi-dimensional
manner. This chapter addresses the first and fourth research objectives. In Chapter 4, the
assessment metrics from Chapter 3 are refined to better describe the visual characteristics and
attractiveness of different plants in urban landscapes. Additionally, a multi-temporal
visualization analysis framework for urban green spaces is constructed, relating to the second
and fifth research objectives. Chapter 5 explores the application of advanced visualization
technologies to generate dynamic and immersive 4D urban models, capturing the temporal
evolution and experiential quality of urban green spaces. This chapter is associated with the
third and fifth research objectives. The final chapter, Chapter 6, summarizes the findings from
each chapter and provides recommendations for future research and practical applications. The
detail of each chapter is further explained:

Chapter 1: Introduction

Chapter 1 provides an overview of the research background, problem statements,
objectives, significance, scopes, and framework. It sets the context for the research and
highlights the key challenges and opportunities in urban green space assessment and modeling.

Chapter 2: Literature review



Chapter 2 presents a comprehensive review of the existing literature on urban green space
assessment, landscape visualization, and computational modeling. It identifies the research gaps
and limitations in current approaches and highlights the need for innovative methodologies and
indicators.

Chapter 3: Comprehensive assessment framework for urban green spaces

Chapter 3 introduces the comprehensive assessment framework for urban green spaces,
which integrates multi-source data and evaluation metrics (GVI, GCR) to assess the spatial
distribution, visibility, and composition of urban green spaces in a multi-dimensional manner.
It demonstrates the application of the framework using a case study and discusses the
implications for urban planning and management.

Chapter 4: A multi-temporal evaluation framework for the S3PVI

Chapter 4 focuses on the development and application of the S3PVI as a novel indicator
to evaluate the visual importance and attractiveness of different plants in urban landscapes. It
also presents the multi-temporal urban green space vegetation visualization analysis framework,
which captures the temporal changes and seasonal variations in vegetation characteristics.

Chapter 5: Plant landscape modeling: integrating dynamics and techniques

Chapter 5 explores the application of advanced visualization technologies, in generating
dynamic and immersive 4D urban models to capture the temporal evolution and experiential
qualities of urban green spaces. It demonstrates the potential of these technologies for
enhancing the understanding and communication of urban green space dynamics.

Chapter 6: Conclusion

Chapter 6 summarizes the main findings and contributions of the research, discusses the
implications for urban planning and management, and provides recommendations for future
research and practical applications. It also highlights the limitations of the research and
identifies potential avenues for further investigation.

In summary, this dissertation presents a comprehensive and innovative approach to urban
green space assessment and modeling, integrating multi-source data, novel indicators, and
advanced visualization technologies. By addressing the research gaps and challenges identified
in the literature, this research aims to contribute to the development of more sustainable,
resilient, and livable urban environments.






Chapter 2

Literature review

2.1 Limitations and potential of visual characteristics assessment methods for
urban green spaces

2.1.1  Limitations of traditional assessment methods

A significant limitation of current urban green space assessment methods is their inability
to capture the temporal changes and seasonal variations in vegetation characteristics (Dutta et
al., 2022; Shiraishi & Terada, 2024). Urban vegetation exhibits distinct phenological patterns,
with changes in foliage color, density, and overall appearance throughout the year (Kuper, 2015).
These temporal dynamics play a crucial role in shaping the visual quality and aesthetic appeal
of urban green spaces (Hoyle et al., 2017). However, most existing assessment techniques rely
on static or single-temporal data, failing to account for the dynamic nature of urban vegetation
(Zhou et al., 2016).

Moreover, current urban green space planning and design practices often rely on subjective
experiences and knowledge of planners and designers when selecting and arranging plant
species (Beer et al., 2003). While expert knowledge is valuable, there is a lack of quantitative
tools and evidence-based approaches to guide plant selection and configuration decisions
(Daniels et al., 2018). This gap highlights the need for more objective and data-driven methods
to assess the visual characteristics of individual plant species and their contribution to the
overall aesthetic quality of urban green spaces.



2.1.2  Potential of computer vision and semantic segmentation techniques

With the development of computer vision technology, scholars have explored the use of
big data to assess the visual characteristics of urban green spaces. Seiferling et al. (2017) and
Hu et al. (2023) utilized semantic segmentation and deep learning techniques to analyze street
greening levels and the spatial distribution of trees. Semantic segmentation is a key technique
in computer vision that has been successfully applied to urban scene understanding and
vegetation mapping (Sodjinou et al., 2022). By assigning pixel-level labels to different object
categories, semantic segmentation enables fine-grained analysis of urban landscapes, including
the delineation of individual plant species.

Object-based classification techniques have shown promise in detecting, delineating, and
classifying urban plant species from very high-resolution satellite imagery (Sicard et al., 2023).
By selecting relevant spectral and texture-based features for each plant species, these methods
can achieve high classification accuracies. However, challenges remain due to the complexity
of the urban environment, the diversity of species, and the spatial proximity between trees.

2.2 Relationship between vegetation visual characteristics and human perception
2.2.1  Importance of visual diversity and individual plant species aesthetics

Understanding the relationship between vegetation visual characteristics and human
perception is crucial for guiding the assessment and design of urban green spaces. Recent
studies have highlighted the importance of visual attributes in shaping people's appreciation
and restorative experiences in urban green spaces (Du et al., 2016). Visual diversity, colorful
vegetation, and a mix of evergreen and deciduous plants have been found to enhance aesthetic
preferences and perceived restorative potential.

The aesthetic appeal of individual plant species is an essential factor in creating visually
pleasing and engaging urban environments (Carrus et al., 2015; Ulrich, 1986). Different plant
species possess unique visual characteristics, such as foliage color, texture, and growth habits,
which contribute to the overall aesthetic diversity of urban green spaces (Lindemann-Matthies
& Brieger, 2016). However, most current assessment methods focus on the quantitative aspects
of urban vegetation (Stessens et al., 2020), such as coverage ratio or vegetation health, while
neglecting the aesthetic qualities and visual diversity of individual plant species.

2.2.2  Incorporating aesthetic considerations in urban green space assessment

Incorporating the aesthetic considerations of individual plant species into urban green
space assessment is crucial for several reasons. First, visually attractive and diverse plant
palettes can enhance the economic value of urban areas by increasing property values and
attracting businesses and visitors (X. Wang et al., 2016). Second, engaging with aesthetically
pleasing vegetation has been shown to provide psychological benefits, such as stress reduction

10



and improved well-being (Bielinis et al., 2018). Finally, understanding the aesthetic preferences
of the public can inform plant selection and configuration decisions, ensuring that urban green
spaces are designed to meet the needs and expectations of the community.

Studies have proposed combining visual diversity assessments with quantitative indicators
to assess perceived aesthetic quality. Kuper (2015) used a visual rating approach to score the
plant aesthetics of parks in terms of color, diversity, rhythm, texture, and other aspects. By
integrating qualitative and quantitative measures, these studies underscore the importance of
considering key vegetation characteristics when assessing and designing visually appealing
urban green spaces. The development of vegetation visual characteristic indices that capture the
aesthetic diversity and seasonal dynamics of individual plant species is an emerging area of
research that could contribute to more effective urban planning and management.

2.3 Application and limitations of street view images in urban vegetation analysis

Street view images provide a valuable data source for urban green space vegetation
analysis by capturing urban environments from a pedestrian perspective. Researchers have
utilized street view images to analyze the spatial distribution characteristics of urban green
spaces (Kameoka et al., 2022; Li, 2021). The use of point of interest (POI) data and semantic
segmentation models has further enabled the classification and analysis of urban green spaces
based on street-view data (Chen et al., 2018; X. Zhang et al., 2017).

2.3.1  Current applications and challenges

However, there are limitations in the current application of street view images in urban
vegetation analysis. Most studies use single-temporal images, making it difficult to reflect
seasonal changes in vegetation (Anguelov et al., 2010). Moreover, due to the limitations of
vehicle-mounted equipment, shooting angles and positions are not easily adjustable.
Differences in image quality and resolution from different sources also pose challenges for
image analysis.

2.3.2  Advances in data preprocessing and integration

To address these limitations, Xia et al. (2021) developed a method based on semantic
segmentation processing of street view images to calculate the green view index of urban streets
and proposed the panoramic view green view index for measuring visible street-level greenery.
3D point cloud data integrated with 3D Gaussian splatting significantly enhances the
preprocessing of visual data for urban environmental assessments. Initially developed for
computer graphics, this technique now improves the quality and consistency of urban street
view images, which is crucial for accurate greenery assessments. Recent advances, such as
those by Oh et al. (2024), demonstrate its ability to combine light detection and ranging (LiDAR)
data with visual cues to produce highly accurate urban scene renderings. This method not only
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ensures consistent image properties but also aids urban planning and landscape architecture by
providing detailed, species-specific insights into urban greenery.

24 Spatiotemporal dynamic analysis of visual characteristics of urban green spaces

The visual characteristics of urban green spaces exhibit significant spatiotemporal
heterogeneity. Multi-temporal remote sensing images have been used to analyze the dynamic
changes in urban green spaces (Dutta et al., 2022; Shiraishi & Terada, 2024). However, limited
by the spatial resolution of remote sensing data, these studies have difficulty in refining the
internal vegetation conditions of urban green spaces and their visual characteristics from a
pedestrian perspective.

Recent studies have begun to explore the use of multi-temporal street view images to
analyze the seasonal dynamics of urban green spaces. Song et al. (2018) proposed a dynamic
method to assess urban greenspace exposure with the integration of mobile-phone locating-
request data and high-spatial-resolution remote sensing images. Liang et al. (2023) introduced
an embedding-driven clustering approach that integrates both physical and perceptual attributes
to infer the spatial structure of the visual environment and investigate its spatiotemporal
evolution.

However, there is currently a lack of systematic analysis of the multi-temporal and multi-
perspective dynamics of urban green spaces, and the refined characterization of vegetation
types needs to be strengthened. Integrating remote sensing data with social sensing data has
shown promise in determining urban sprawl and its impact on sustainable urban development
(Shao et al., 2021).

2.5 Innovations in urban green space assessment and modeling

To address the limitations of existing methods, innovative approaches have been proposed
for urban green space assessment and dynamic urban modeling. Comprehensive assessment
frameworks that integrate multiple data sources, including remote sensing imagery, street-level
photographs, and geospatial data, have been developed to provide a holistic evaluation of urban
green spaces (Pulighe et al., 2016).

Advanced visualization technologies have shown potential for generating realistic and
immersive urban models that capture the temporal dynamics and experiential qualities of urban
green spaces (Lu et al., 2023; Yao et al., 2024). These technologies enable the creation of
photorealistic and temporally aware visualizations that support more effective communication
and collaboration in urban planning and management processes.

The integration of urban sensing technologies, such as internet of things (IoT) devices and
mobile crowdsourcing, has enabled the collection of real-time and fine-grained data on urban
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dynamics (Kandt & Batty, 2021). These data sources can be assimilated into urban models using
data fusion and machine learning techniques, enhancing the accuracy and responsiveness of
urban models.

Despite the progress in urban green space assessment, current methods still have notable
limitations. Most approaches focus on the quantitative aspects of urban greenery, such as
coverage ratio or vegetation health, while neglecting the aesthetic qualities and visual diversity
of different plant species (Lindemann-Matthies & Brieger, 2016). The lack of refined
characterization of vegetation species diversity has not been fully addressed. Some scholars
have attempted to identify plant species from street view images using computer vision
techniques (Kotowska et al., 2021) and measure community-level species richness by
combining remote sensing data (Chavan, 2023), but accurate recognition in complex urban
environments remains challenging. Future research should further explore the fusion of multi-
source heterogeneous data and integrate knowledge-driven modeling approaches to better
represent the visual diversity of urban green spaces.

2.6 Summary of research gaps and goals

The existing literature highlights several research gaps and limitations in current urban
green space assessment methods. Traditional evaluation measures, such as the proportion or
volume of green space, tend to oversimplify the evaluation process, neglecting the composite
nature of urban green spaces (Balram & Dragievi, 2005; Grunewald & Bastian, 2015).
Conventional assessments that rely solely on single metrics fail to capture the full range of
functions and services that green spaces offer. For example, the GVI survey, which primarily
relies on street view data (J. Zhang & Hu, 2022) , disregards green spaces that extend beyond
streets, limiting the evaluation to a one-dimensional perspective.

Researchers emphasize the need to transcend the evaluation of isolated indicators and
explore their interplay and mutual influences (Carmen et al., 2020; James et al., 2009).
Capturing, manipulating, and measuring urban green spaces' functions and services present
pressing challenges that require innovative approaches and data integration across disciplines
(Luederitz et al., 2015). Moreover, the complex relationship between green spaces and the urban
environment, influenced by topographical characteristics, requires further exploration.

One of the most significant research gaps identified in the literature is the lack of methods
to capture and characterize the temporal changes and seasonal variations in vegetation
characteristics. Most existing assessment techniques rely on static or single-temporal data,
failing to account for the dynamic nature of urban vegetation. This limitation hinders the ability
to understand and represent the aesthetic qualities and visual diversity of urban green spaces
throughout the year.

Another research gap is the limited integration of quantitative measures with aesthetic
considerations in assessing urban green spaces. Current methods often focus on the overall
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greenness or vegetation health, neglecting the aesthetic qualities and visual diversity of
individual plant. Incorporating the aesthetic aspects of individual plants is crucial for creating
visually appealing and engaging urban environments that provide psychological benefits and
enhance the well-being of urban residents.

Furthermore, there is a lack of advanced visualization technologies and immersive 4D
modeling techniques that can effectively capture the temporal evolution and experiential
qualities of urban green spaces. Developing realistic and dynamic 4D models of urban
vegetation is essential for understanding the multi-temporal and multi-perspective dynamics of
urban green spaces and facilitating effective communication and collaboration in urban
planning and management processes.

Through a systematic review of the limitations in current urban green space assessment
methods, particularly in terms of survey content, data timeliness, and aesthetic perspectives,
this study identifies the research gaps that warrant further exploration, which also form the main
research objectives of this dissertation (as outlined in Chapter 1):

1) A comprehensive assessment framework for urban green spaces that integrates multi-
source data to enable a multi-dimensional characterization and quantitative analysis
of the spatial distribution, visibility, and composition of urban green spaces.

2) A multi-temporal visualization analysis method for urban green space vegetation,
introducing seasonal variation characteristics and visual aesthetic indicators, and a
new vegetation visualization index to reveal the spatiotemporal differentiation
patterns of urban green space landscapes.

3) The application of advanced visualization technologies in urban green space modeling
to generate dynamic and immersive urban green space landscapes, expanding the
expression capabilities of spatiotemporal characteristics and human-centered
experiences of urban green spaces.

4) The influence of natural geographical elements, such as topography, on the spatial
pattern of urban green spaces, and a systematic characterization of the formation
mechanisms and differentiation characteristics of urban green spaces.

5) The application potential of emerging data sources, such as street view imagery, in
urban green space function assessment and pattern characterization, and the
development of data-driven methods for fine-grained urban green space management.

By addressing these research gaps and goals, this research aims to contribute to the
development of more comprehensive, nuanced, and actionable approaches to understanding and
managing urban green spaces. The proposed innovations and methodological advancements are
expected to bridge the gaps between different research domains and stakeholder groups,
fostering a more human-centered understanding of urban greenery and facilitating the
engagement of diverse stakeholders in envisioning and shaping sustainable urban futures.



The Chapter 3 will introduce a comprehensive assessment framework for urban green
spaces that integrates multi-source data and evaluation metrics (GVI, GCR) to assess the spatial
distribution, visibility, and composition of urban green spaces in a multi-dimensional manner.
This framework will provide a foundation for the subsequent chapters, which will focus on the
development of the S3PVTI indicator and the application of advanced visualization technologies
in urban green space assessment and modeling. By integrating quantitative measures with
aesthetic considerations and capturing the temporal dynamics of urban vegetation, this research
aims to provide urban planners and designers with evidence-based tools and insights to guide
plant selection and configuration decisions, ultimately creating visually appealing, engaging,
and sustainable urban green spaces.
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Chapter 3
Comprehensive assessment framework for urban green

spaces

3.1 Overview

Despite the growing recognition of the importance of urban green spaces in promoting
environmental, social, and economic sustainability in cities, current methods for assessing
urban green spaces often focus on single dimensions. While these indicators quantify the state
of urban green spaces from certain perspectives, they fail to fully capture the multifunctionality
and internal heterogeneity of these spaces. To overcome the limitations of existing approaches,
this chapter introduces an innovative comprehensive assessment framework that integrates
multi-source data and advanced technologies to characterize the complex features of urban
green spaces from multiple dimensions, including spatial distribution, visibility, and
composition. This framework cleverly combines GCR, GVI, and image classification
techniques, aiming to provide urban planners and decision-makers with more comprehensive,
detailed, and actionable evidence-based decision support.

To test the effectiveness and practicality of the proposed assessment framework, Osaka
City, Japan, was selected as a case study. As a densely populated urban center, Osaka boasts
diverse types of green spaces, such as parks, street greenery, and waterfront areas (Osaka
Prefectural Government, 2020), while facing numerous challenges brought about by the
urbanization process, such as insufficient green space and uneven distribution (Haaland & Van
Den Bosch, 2015). Therefore, it serves as an ideal subject for validating the framework.
Through empirical analysis in Osaka, this study aims to unveil the spatial pattern characteristics
and influencing factors of the city's urban green spaces, as well as demonstrate the versatility



and potential of the proposed assessment framework in guiding green space planning and
management in different urban contexts.

Specifically, the main objectives of this chapter include:

1) Proposing a comprehensive assessment framework that integrates GVI, GCR, and
image classification techniques to quantitatively characterize the multidimensional
features of urban green spaces.

2) Applying the framework to Osaka City to systematically analyze the spatial
distribution, visibility, composition, and quality of its urban green spaces.

3) Validating the accuracy and reliability of the assessment results from multiple
perspectives through field surveys and statistical analyses.

4) Based on the assessment results, discussing the implications for urban green space
planning practices in Osaka and other cities, providing new ideas for future urban
green space research and management.

Chapter 3.2 will introduce the construction process of the comprehensive assessment
framework in detail, including indicator selection, data processing, and analysis methods. Then,
the study area and the multi-source data used will be described. In the results section, the
multidimensional assessment results of Osaka's urban green spaces will be presented, focusing
on the relationship between green space distribution and factors such as topography and land
use. Finally, in the discussion section, the limitations of the study will be examined, and ideas
for further improving the assessment framework and expanding its application scenarios in the
future will be proposed.

3.2 Method and materials
3.2.1  Research framework

This study proposes a comprehensive assessment framework that integrates multi-source
data and advanced technologies to evaluate the complex characteristics of urban green spaces.
Figure 3.1 illustrates the overall framework of this research.
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Figure 3.1 Workflow of the urban green space assessment framework.

Firstly, Sentinel-2 satellite remote sensing images are atmospherically corrected and
processed for NDVI calculation using geographic information system (GIS) software. By
comparing with field survey data, the optimal threshold parameters are determined for
extracting green space information and calculating the GCR of each block or administrative
unit. GCR, as an essential indicator of urban green space level, quantitatively reflects the
proportion of green space in the two-dimensional plane.

Next, street view images are collected in bulk through the Google Maps API, and the
PSPNet semantic segmentation model is employed to process these images and extract green
space information for each pixel. PSPNet is a deep learning model based on pyramid scene
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parsing, which achieves fine-grained semantic segmentation of street view images by
combining local and global contextual information. Based on the segmentation results, the GVI




is calculated for each sampling point. GVI reflects the visibility of green spaces from a
pedestrian perspective and is a crucial indicator for evaluating the visual effect of urban green
space landscapes.

After obtaining GCR and GVI data, the EfficientNet image classification model is utilized
to categorize street view images into different green space types, such as park green spaces,
road green spaces, and riverside green spaces. The classification of green space types refers to
national and industry standards.

Finally, by overlaying and analyzing multi-dimensional data such as GCR, GVI, and green
space types, combined with geographical and environmental factors like urban topography and
land use, the spatial pattern of urban green spaces and its influencing factors are systematically
assessed, providing decision-making references for urban green space planning and
management.

Sections 3.2.2 to 3.2.4 will introduce in detail the data sources used in the study and their
preprocessing methods, the calculation process of GCR and GVI, and the classification method
of green space types.

3.2.2 GCR calculation

The GCR was calculated using the Sentinel-2 satellite imagery and the NDVI. The NDVI
is a widely used remote sensing index that measures the greenness of vegetation based on the
reflectance of red and near-infrared light (Carlson & Ripley, 1997). The NDVI ranges from -1
to 1, with higher values indicating denser vegetation cover.

The process of determining the GCR of a designated city involves pre-processing satellite
imagery using the Sen2Cor algorithm for atmospheric correction and generating the NDVI. The
NDVI data is then utilized in conjunction with GIS software to establish accurate measurements.
Random ground-truth points are generated within GIS software to serve as reference locations
for GCR calculations, ensuring representative coverage across the study area.

To accurately differentiate between vegetated and non-vegetated areas, a systematic
adjustment procedure is applied. This involves randomly selecting 200 test points within the
study city using GIS geoprocessing tools and visually inspecting them to iteratively adjust the
NDVI thresholds. The most suitable thresholds are identified based on careful analysis,
considering the specific context of the study and the influence of factors such as city and season
on the vegetation threshold.

Once the appropriate thresholds are determined, the GCR is calculated for each sub-area
in the designated study city using the regional statistics function of the remotely sensed
normalized NDVI data. This calculation is performed through the spatial analysis tool provided
by the GIS software. By adhering to this rigorous method, the GCR values are accurately
determined, providing a quantifiable measure of the degree of green cover in each sub-area of
the study city. The GCR for each administrative unit within the target area is calculated by
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counting pixels classified as vegetated and dividing by the total number of pixels, using the
Equation (1):
Number of vegetated pixels

R = 1009 1
Gt total number of pixels x 100% @

where the number of vegetated pixels is the count of pixels with NDVI values greater than or
equal to the vegetative threshold, and the total number of pixels is the count of all pixels within
the administrative unit.

3.2.3 GVI calculation

The GVI was calculated using Google Street View imagery and a deep learning-based
semantic segmentation model, PSPNet (Zhao et al., 2017). The model was pre-trained on the
Cityscapes dataset (Cordts et al., 2016) and fine-tuned on a custom dataset of street-level
imagery from the target city. After inputting the image, the annotated image can be obtained as
shown on the right side of Figure 3.2. The input image is first passed through an encoder
network to extract features at different scales. Then, the pyramid pooling module (PPM) is
applied to capture context information at multiple scales. The PPM outputs are concatenated
with the encoder features and fed into a decoder network to generate the final pixel-wise
predictions. The PSPNet model can effectively capture both local and global context
information, enabling accurate semantic segmentation of urban green spaces.
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Figure 3.2 Schematic diagram of the PSPNet image segmentation model.

Google Street View images and GVI measurements have become popular in urban
greening studies as they provide a pedestrian's perspective. The OSMnx library in Python is
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used to retrieve coordinate data of intersections within the study city from OSM. The GSV
static API is then used to download street-level imagery by specifying parameters such as size,
location, heading, field of view, pitch, and developer's key. GSV images (size = 640 x 640) are
downloaded and stored for GVI calculations, excluding any inaccessible files due to privacy
restrictions, coverage limitations, or other issues. The downloaded images are then filtered
before being used for research. For a comprehensive assessment, all intersections within the
road network of the target area are selected as sample points. At each intersection, images are
captured from multiple directions (i.e., 0°, 60°, 120°, 180°, 240°, and 300°) to ensure a complete
panoramic view, as shown in Figure 3.3. These multi-angle images provide a comprehensive
view of the urban green space at each location, enabling the calculation of the GVI and other
visual indicators. The PSPNet model analyzes these images to quantify the visible greenery,
calculating the GVI based on the proportion of green pixels to the total number of pixels in the
images.

Panorama

180°

Figure 3.3 GSV images captured at a sample site in the study area from six different
directions (0°, 60°, 120°, 180°, 240°, and 300°).

22



The PSPNet model was then applied to each image to extract the vegetation pixels and
calculate the GVI using the Equation (2):

m

GVI = Ziz1 Aredy, x 100% 2)
inq Areag, ’

where m = 6, Areag; represents the total number of green pixels at the intersection in an image
taken horizontally in the direction i = 1 to 6. In contrast, Area,; represents the total number of
pixels in the image. The number of vegetation pixels is the count of pixels classified as
vegetation by the PSPNet model, and the total number of pixels is the count of all pixels in the
image.

3.2.4  Green space type classification

To classify green space types in the target area, Google Street View imagery and the
EfficientNet image classification model (Tan & Le, 2020) were utilized. EfficientNet is an
advanced convolutional neural network (CNN) known for its high accuracy and efficiency
across various image classification tasks.

The dataset for this classification comprises manually categorized street-level images
reflecting various green space categories such as parks, temples, rivers, and residential greening,
identified based on urban landscape and policy guidelines relevant to the region.

The EfficientNet model, pre-trained on the ImageNet dataset (Deng et al., 2009), was then
fine-tuned on the custom dataset for 50 epochs with a batch size of 32 and a learning rate of
0.0001. The model achieved an overall accuracy of 95% on the testing set.

The fine-tuned EfficientNet model was subsequently applied to classify the green space
types in each administrative unit using the remaining street-level images. The proportion of
each green space type was calculated by comparing the number of images classified as a
specific type to the total number of images within the administrative unit.

3.3 Study area and data sources
3.3.1  Study area

Osaka, a prominent urban center situated in the Kansai region of Honshu, Japan's main
island, presents a unique and compelling case for studying urban greening efforts (Figure 3.4).
The city's rich historical background, diverse population density, and distinctive urban
landscape provide an intriguing context to explore the dynamics of urban greening (Urban Area
of Osaka City, 1955).
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Figure 3.4 Geographical location of the study area.

Osaka's advantageous location along the mouth of the Yodo River has made it a vital port
town and a strategic distribution hub for western Japan. The city has expanded to cover an area
of 223 square kilometers, encompassing 24 administrative and 284 elementary school districts
(List of Distinctive Town Names in Osaka City, 2022).

With a population of 2.7 million residents (Osaka City: 2020 Population Census Results,
2020), Osaka is Japan's third most populous city, with a population density of approximately
12,108 people per square kilometer, making it one of the most densely populated urban areas
globally.

Osaka City's geographical formation primarily consists of an alluvial plain resulting from
sediment accumulation of the Yodo and Yamato Rivers, naturally lacking in significant greenery.
However, urban planning initiatives have been consistently geared towards enhancing both the
quality and quantity of greenery through the establishment of new green spaces (Basic Plan of
Greening in Osaka City, 2013).

Despite the progress made towards these objectives, a considerable discrepancy persists
between the status and the targeted goals set for the mid-21st century. Given the slight but
notable decline in available green space (-1.13%) over time and the escalating importance of
accessible green areas (C. Huang et al., 2017), understanding the distribution and accessibility
of green spaces within Osaka City has emerged as a critical research imperative.
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This study, while underscoring its methodological generalizability, utilizes Osaka as a case
study for practical application. Chosen for its unique geographical, historical, and demographic
attributes alongside data availability, Osaka's insights can enhance broader knowledge and
guide urban greening initiatives in comparable urban settings.

3.3.2  Data sources

To assess the urban green spaces in Osaka City, multiple data sources were employed,
including Google Street View imagery, remote sensing satellite imagery, and geospatial data
from various public sources. Table 3.1 summarizes the main data sources utilized in this study,
detailing the parameters for accessing and downloading the data.

Table 3.1 Data sources used in the study

Data type Source Acquisition year
Multispectral Instrument, Level-2A

Sentinel-2 satellite imagery (Sentinel-2 MSI) 2021
Google Street View imagery Google Web Service API 2019
Geographic data MLIT (Ministry of Land, 2008
information Infrastructure, Transport and Tourism)

School district boundaries Gaccom 2022
OpenStreetMap data OSMnx Python Library 2021

Street-level imagery was accessed through the Google Street View static API, allowing
retrieval of images by specifying parameters such as size, location, heading, field of view, and
pitch. The imagery was downloaded to perform GVI calculations, and the parameters were
tailored to ensure the horizontal view mimics that of a pedestrian.

The use of satellite imagery from Sentinel-2 provided high-resolution data necessary for
remote sensing analysis, captured on October 2, 2021. This imagery helped calculate the GCR
of Osaka City.

For the geographical context, administrative boundaries were derived from MLIT datasets,
and school district information, which delineates the primary unit of analysis, was obtained
from Gaccom, offering a detailed breakdown of urban structure relevant to daily resident
experiences.

The OSM data was crucial for obtaining detailed street layouts and was processed using
the OSMnx library, which facilitates the extraction of comprehensive urban network data and
geospatial analysis.
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This combination of data sources ensures a comprehensive assessment of Osaka City's
green spaces, integrating perspectives from both ground-level and aerial views to provide a
robust framework for urban greenery analysis.

3.4 Results
3.4.1  Data integration results

The calculation of the GCR involved a systematic approach using NDVI data and ArcGIS
map geodata software. The analysis involved a systematic approach to collect data and calculate
the GCR, as depicted in Figure 3.5, which illustrates the NDVI data for Osaka.

Elementary
school lines in
Osaka

High:1

Figure 3.5 Distribution of NDVI in Osaka city.

To determine accurate measurements, a methodical adjustment process, i.e., described in
section 3.2.2 was adopted to determine thresholds that distinguish vegetated and non-vegetated
areas in Osaka City. The data from Osaka City were rigorously visually checked and iteratively
adjusted to determine the NDVI threshold value of 0.274, which is most suitable for the study
environment. Using this threshold, the GCR of each elementary school district in Osaka was

26



calculated using a regional statistical function of remotely sensed normalized NDVI data. The
resulting GCR values accurately quantified the extent of green coverage in each elementary

school district in Osaka.

The GVI calculation involved the collection of GSV images using the Google Street View
image API as described in Section and subsequent image processing as described in Section
3.2.3. A total of 273,462 GSV images of Osaka City were successfully used for the GVI
calculation. These images were semantically segmented using the PSPNet model, which
resulted in the accurate labeling of the images into 19 categories. The labeled images were then
used to calculate the GVI for each location based on the GVI Equation (Equation 2). The
average GVI value for each location was calculated, and the GVI distribution for Osaka was
visualized using geographic data analysis in ArcGIS Map. The GVI was divided into five
classes (<2.5%, 2.5% - 5.0%, 5.0% - 7.5%, 7.5% - 10.0%, and >10%) based on the average

GVI value of 7.46 in Osaka.
To provide a more precise depiction of the GVI distribution, the example of the Sennba
area in Chuo-ku, Osaka City, was chosen, and the average GVI degrees for each road

intersection within this area are illustrated on the right side of Figure 3.6. Sennba refers to a
specific district in Chuo-ku, Osaka City, Osaka Prefecture, known as the central business district

of Osaka City.
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By integrating GCR and GVI data, a comprehensive assessment of urban greening in
Osaka City was conducted. Based on the average GVI and GCR values, 284 elementary schools
were categorized into four different groups, as shown in Figure 3.7. This categorization
highlights the different levels of green space coverage and visibility throughout the city.

- Yodo River

y

e f\\ }’ 4

Osaka Bay

GVI GCR

G17.54-20.17 7.74-39.03
G27.51-13.34 0.49-7.39
G35.38-7.44 7.78-27.26
G4 3.45-7.42 0.44-7.42
River and sea

o i B

Figure 3.7 Comparison of GVI and GCR in Osaka's elementary school districts.

As shown in Figure 3.8, Group 1 includes 69 elementary school districts with superior
green visibility and coverage. The average GVI is 9.67%, reaching up to 20.17%, while the
average GCR stands at 16.14%, with a maximum of 39.03%. Schools such as Tomobuchi and
Nanko showcase high GVI values, whereas Yakino and Taishibashi excel in GCR, indicating a
robust green presence both visually and spatially.
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Figure 3.8 Relationship between GVI and GCR in four groups of elementary schools in
Osaka.

Group 2 consists of 49 districts where green visibility outstrips coverage. It has an average
GVI of 8.95% and a maximum of 7.51%, coupled with a relatively low GCR average of 4.63%

and a maximum of 7.49%. This disparity suggests a visually green environment that lacks
substantial physical greenery.

Group 3 encompasses 24 districts characterized by adequate green coverage but lesser
visibility. Here, the average GVI is lower at 6.87%, with a maximum of 7.44%, whereas the
GCR is more favorable, averaging 14.10% with a peak at 7.78%. This configuration implies a
scenario where green spaces are prevalent but perhaps not as prominently visible.

Group 4, the largest group with 142 districts, shows deficiencies in both green visibility
and coverage. The average GVI is only 5.97%, dipping to a low of 3.45%, and the GCR
averages at a meager 3.12%, with the minimum at 0.44%. This indicates areas with sparse green
spaces, both in terms of visibility and actual coverage.
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3.4.2  Image classification results

A dataset of 1,970 street-level photos in Osaka was classified using the EfficientNet-b7
model, which achieved a high accuracy rate. The photos were classified into 10 types of green
spaces based on the guidelines of the Ministry of Land, Infrastructure, Transport and Tourism
(Ministry of Land, Infrastructure, Transport and Tourism, 2008), including photos of parks
(n=205), temples and shrines (n=202), rivers (n=201), agricultural land (n=109), vacant land
(n=201), street greenery (n=230), residential greenery (n=287), commercial greenery (n=205),
industrial greenery (n=130), and other (n=200).

This classification was instrumental in analyzing the distribution and types of green spaces
in the 273,462 GSV images collected for this study. 70% of the training dataset was used for
training, 15% for validation, and 15% for testing, resulting in a final accuracy of 0.941 after
training EfficientNet-b7. The results, shown in Figure 3.9, provide a detailed overview of the
spatial distribution and types of green spaces in Osaka City, highlighting the critical role of
diverse green spaces in urban sustainability. This detailed and accurate analysis provides a
comprehensive overview of the spatial distribution, visibility, and type of green spaces in Osaka
City, facilitating targeted urban green space planning and management strategies.
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Figure 3.9 Classification of green space types in Osaka based on GVI.
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3.4.3  Correlation between topography and green space

Analyzing the relationship between topography and green space is crucial because
topography significantly influences the distribution and characteristics of green spaces in urban
environments. Topographic features such as elevation, slope, and proximity to water bodies can
dramatically affect the availability and suitability of land for green spaces. This analysis aims
to understand how natural and man-made landscape features collectively determine the spatial
patterns of green spaces in urban settings.

As depicted in Figure 3.10, Osaka City is intersected by the Yodo River to the north and
the Yamato River running east-west in the south. The city's central region is marked by the
medium and low terraces of the Uemachi Plateau, extending north-south. The landscape west
of the Uemachi Plateau to the bay area predominantly consists of reclaimed land, including
deltaic lowlands, natural levees, sandbars, and dunes. Conversely, the area east of the Uemachi
Plateau features fan lowlands, natural levees, sandbars, dunes, and delta lowlands, with natural
levees, sandbars, and dunes dominating the north of the Plateau.
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Figure 3.10 Classification of elementary school districts based on terrain distribution.
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Cross-analysis of these topographic classifications with the groups of elementary school
districts reveals certain patterns. Group 4, characterized by low green visibility and cover,
predominantly occupies the deltaic lowlands west and east of the Uemachi Plateau and in the
northern part of the Plateau, mainly on natural levees, sandbars, and dunes. In contrast, Group
1, which exhibits high green visibility and cover, is primarily located on reclaimed land and
deltaic lowlands in the bay area to the west and on the terraces of the Uemachi Plateau. This
group is also distributed along the Yodo and Yamato Rivers, in the deltaic lowlands in the east,
and in the fan-shaped lowlands in the southeast. Group 2, with high green cover but low
visibility, is scattered across the Uemachi Plateau, the deltaic lowlands in the northeastern and
northern city regions, and natural levees, sandbars, and dunes. Lastly, Group 3, marked by high
green visibility but low cover, is predominantly situated along the Yodo and Yamato Rivers.

3.4.4  Data on green space in four groups of elementary schools

This study analyzed the GVI values of different types of green spaces in Osaka City to
investigate the distribution of green spaces.

Figure 3.11 shows the average GVI values for each type of green space. Parks have the
highest average GVI at 39.62%, followed by temples and shrines with an average GVI of
21.97%. The average GVI values for road greening, vacant land, and residential greening are
19.35%, 17.65%, and 17.50%, respectively. Rivers have an average GVI of 14.86%, while
industrial greening, commercial greening, and farmland have average GVI values of 12.55%,
9.69%, and 7.90%, respectively.
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Figure 3.11 Average GVI values for different green space types in Osaka.
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Figure 3.12, based on GSV images, comprehensively illustrates the proportion of green
spaces in the four groups of elementary schools in Osaka City. By analyzing the proportions of
each type of green space in Osaka City as a whole (SUM), the results are: "other" green spaces
have the highest proportion at 54.99%, followed by residential greening (17.86%), commercial
greening (9.45%), road greening (8.06%), industrial greening (3.12%), parks (2.22%), vacant
land (1.83%), temples and shrines (0.92%), farmland (0.88%), and rivers (0.69%).

GSV of green spaces in Osaka City's elementary school districts
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Figure 3.12 Proportion of different green space types in Osaka's elementary school districts
based on GSV image analysis.

All groups have a high percentage of "other" green spaces. Compared to the entire city
(SUM), Group 1 has higher proportions of green spaces in categories such as residential
greening, road greening, parks, temples, and shrines. Group 2 also has higher proportions of
green spaces in residential greening, commercial greening, road greening, parks, temples, and
shrines compared to the city average.

35 Discussion
3.5.1  Distribution and characteristics of green space types

This study conducted a comparative analysis of green space data in Osaka, revealing the
distribution and characteristics of various types of green spaces. By using GVI as a quantitative
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measure, the study provides an in-depth evaluation of the urban contributions of these green
spaces. The results indicate that parks play a critical role in Osaka's green spaces, offering not
only visual accessibility but also serving as important community gathering points and urban
oases. Additionally, temples and shrines with high GVI values significantly enhance the city's
green landscape, providing visual appeal and tranquility, while also contributing to cultural
heritage preservation.

Road greening, vacant land, and residential greening constitute significant components of
the city's green environment. Initiatives such as road greening enhance the visual quality of
urban road networks and their ecological value. Vacant land presents opportunities for new
green spaces, contributing to the city's overall greenery. Residential greening improves micro-
scale greenery and elevates living conditions.

Although industrial and commercial greening, as well as farmland, have lower GVI values,
their contributions to the city's overall greenery are significant, offering the potential for
harmonious integration of green spaces within urban functions. Understanding the dispersion
and characteristics of various green spaces enables policymakers and urban planners to identify
areas needing enhancement. By improving the visual quality and accessibility of lower GVI
green spaces, such as industrial and commercial areas, more visually pleasing and inclusive
urban environments can be created. Simultaneously, preserving and expanding high-GVI green
spaces, such as parks and temples, ensures the continuity of visually attractive and socially
significant green areas.

3.5.2  Topographical factors influencing urban greening

Additionally, the study analyzed the geographical distribution and topographical factors
influencing urban greening. The results indicate a correlation between topography and green
space in Osaka City. Higher green visibility and coverage are primarily found in reclaimed land,
deltaic lowlands, terraces of the Uemachi Plateau, and along rivers such as the Yodo and Yamato
Rivers. These areas have a greater concentration of green spaces due to their historical
significance and long-standing tradition of incorporating greenery. The proximity to water
bodies also enhances the availability of green spaces in these regions.

3.5.3  Green space distribution among elementary school groups

The evaluation of green space data among different elementary school groups provides
crucial insights into the distribution and quality of Osaka's urban greenery. The analysis reveals
that "other" green spaces (areas with little greenery) dominate across all school groups,
highlighting the need for city-wide green space augmentation. Group 1 outperforms other
groups in overall green space quantity, driven by residential and road greening and high-GVI
spaces such as parks, temples, shrines, and vacant lands. In contrast, Group 2 has a significant
proportion of residential, commercial, and road greening, indicating these sectors' substantial
role in shaping Osaka's green landscape.
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3.5.4  Limitations and future research directions

Despite the integrated evaluation framework proposed in this chapter contributes
significantly to the field, certain limitations remain when utilizing automatically downloaded
street view images. As illustrated in Figure 3.3, the perspectives of the currently downloaded
street view images differ from those of pedestrians in the real world. While using these data
directly for analysis enables horizontal comparisons, it cannot be directly compared with photo
data taken from a pedestrian's viewpoint. This discrepancy underscores the necessity for
appropriate preprocessing and standardization of the data when employing street view images
for urban green space assessment.

Furthermore, strict and consistent data collection protocols are imperative when
calculating indicators such as the GVI. Parameters such as the aspect ratio and shooting distance
of photos significantly influence the calculation results of these indicators. To ensure the
reliability and comparability of assessment outcomes, future research should focus on refining
data collection and processing procedures and establishing standardized data collection
protocols.

This study also does not fully account for the differentiation of vegetation types and their
spatiotemporal dynamics, lacking detailed characterization of vegetation type diversity and
dynamic changes.

Furthermore, the research findings, primarily based on Osaka City, may not be universally
applicable to urban environments with different geographic, socioeconomic, and ecological
characteristics. The validity and reliability of results depend on the quality, resolution, and
coverage of the data sources used. Cities with different urban morphologies, climate conditions,
or cultural attitudes towards green spaces may exhibit significantly different patterns of green
space distribution and usage. While the study focuses on the relationship between topography
and green space, it may overlook other factors influencing urban greening, such as historical
development patterns, local planning policies, or community initiatives. Additionally, the
research provides a static snapshot at a specific point in time, potentially failing to account for
future changes in urban green spaces. This limitation is particularly significant given the
dynamic nature of urban environments and the increasing impacts of climate change on urban
vegetation.

Expanding the research scope to consider a broader range of factors influencing urban
greening, including socioeconomic variables, land use patterns, and local policies, would
provide a more comprehensive understanding. For instance, examining the relationship
between green space distribution and factors such as income levels, population density, or
zoning regulations could reveal important insights into urban equity and environmental justice
issues. Adopting dynamic research methods to reflect changes in urban green spaces over time
is crucial, as these spaces are subject to transformation due to construction, redevelopment, and
climate change. Long-term studies that track changes in green space over years or decades could
provide valuable information on urban ecological trends and the effectiveness of green space
policies.
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These enhancements would contribute to a more holistic, adaptable, and accurate study of
urban green spaces. By addressing the current limitations, future research can offer more
valuable insights for urban planners and policymakers, facilitating optimized green space
planning and management. This approach would not only unveil the multi-dimensional features
of urban green spaces but also provide a more nuanced understanding of their roles and
dynamics within diverse urban environments. Moreover, it could lead to the development of
more sophisticated models for predicting the impacts of urban development on green spaces
and guide the creation of more resilient and sustainable urban ecosystems.

3.6 Summary of this chapter

This chapter presents a comprehensive assessment framework that integrates multi-source
data, including satellite imagery and street view images, with advanced technologies such as
deep learning and GIS, to evaluate the spatial distribution, visibility, and composition of urban
green spaces. The framework introduces a multi-dimensional approach to characterize urban
green spaces, combining GCR, GVI, and image classification techniques.

The case study of Osaka City demonstrates the effectiveness of the proposed framework
in revealing the heterogeneous distribution of green spaces and the influence of topographical
factors on green space patterns. The analysis uncovers the distinct contributions of various
green space types to the city's overall greenery and highlights the need for targeted strategies to
enhance the visual quality and accessibility of lower GVI areas.

The research findings offer valuable insights for urban planners and policymakers to
optimize green space planning and management. By identifying areas with limited green space
provision or lower visual quality, the proposed framework can guide evidence-based decision-
making and support the development of more equitable and sustainable urban environments.

However, the current study has certain limitations, such as the reliance on automatically
downloaded street view images that may not fully represent pedestrian perspectives and the
lack of detailed characterization of vegetation type diversity and temporal dynamics. These
limitations underscore the need for future research to refine data collection protocols, explore
the integration of multi-temporal data, and develop novel indicators to capture the
spatiotemporal patterns of urban green space vegetation.

Chapter 4 will build upon the foundation laid in this chapter by introducing a multi-
temporal visualization analysis framework and a new vegetation type scale visualization index,
S3PVI. These advancements aim to provide a more dynamic and nuanced understanding of
urban green space vegetation patterns, enabling refined green space planning and management.

In conclusion, the comprehensive assessment framework presented in this chapter
contributes to the development of urban green space assessment and dynamic modeling
techniques. The integration of multi-source data and advanced technologies opens up new
possibilities for evaluating the multi-dimensional characteristics of urban green spaces.
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Continued research and collaboration across disciplines are essential to address the limitations,
enhance the robustness and applicability of the proposed methods, and ultimately support the
creation of sustainable and resilient cities.
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Chapter 4

A multi-temporal evaluation framework for the S3PVI

4.1 Overview

Chapter 3 proposes an integrated evaluation framework for urban green spaces that
combines multi-source data and employs indicators such as GCR and GVI for a
multidimensional assessment of urban green spaces. However, it does not yet address the
analysis of vegetation types and their spatiotemporal differentiation characteristics. It lacks a
detailed depiction of the diversity of vegetation types and their spatiotemporal dynamics,
making it difficult to provide refined and dynamic references for green space planning and
management.

To overcome the limitations of existing research that focuses only on greenness
characteristics, this chapter constructs a multi-temporal visualization analysis framework for
urban green space vegetation based on street view images. A new visualization index on the
scale of vegetation types S3PVI is proposed to quantitatively describe the dynamic changes in
the visibility of different plant types over time. Based on deep learning technology, an
automated calculation method for the S3PVI index was developed, enabling large-scale,
efficient extraction and analysis of vegetation information.

The framework proposed in this chapter is a decision support tool for urban planners, park
designers, and street/road planners, rather than a simple planning or design evaluation tool. The
framework employs 3D reconstruction technology to describe urban vegetation characteristics
from multiple angles and at different times. Compared to traditional single-view assessments,
this approach offers a more comprehensive and consistent evaluation method. By utilizing
advanced deep learning models to extract and analyze vegetation information from modified
street view imagery, it enhances both the efficiency and scalability of the analysis.
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However, it should be noted that the current method has some limitations. Due to the small
plant dataset and technical constraints, it is difficult to identify plants in non-ornamental seasons,
such as cherry trees when not in bloom. This results in the statistics only identifying plants in
their ornamental state. Nevertheless, even green plants that are not in their ornamental period
are beneficial to humans, such as the year-round greening effect provided by evergreen plants
and the warmth brought by deciduous plants not blocking sunlight in winter.

This chapter applies the proposed analysis framework to the Sanshikisaido area in Suita,
Osaka Prefecture, Japan, revealing the spatiotemporal differentiation patterns of the visibility
characteristics of different plant types in the study area. The visual contribution of landscape
plants such as cherry blossoms and maple trees shows significant dynamic changes during the
flowering season in spring and the foliage color change period in autumn. Further virtual
scenario simulation analysis indicates that a reasonable vegetation configuration plan can
effectively enhance the visual diversity and landscape rhythm of park green spaces across
different seasons.

The research methods proposed in this chapter provide new technical support for the
refined characterization of urban green space landscape features, assessment of vegetation
configuration plans, and improvement of green space planning and management levels.
Moreover, the spatiotemporal changes in vegetation visual characteristics revealed by multi-
temporal analysis lay the foundation for the 4D vegetation landscape modeling based on NeRF
and Stable Diffusion in Chapter 5.

4.2 Proposed framework

This section introduces the framework for multi-temporal urban green space vegetation
visualization analysis, including key steps such as data collection, preprocessing, semantic
segmentation, S3PVI calculation, and seasonal change analysis. Figure 4.1 shows the overall
workflow of the method:

First, high-resolution street view images are collected. Then, the SfM algorithm is used to
extract key points, including camera positions and angles, from multiple street view images.
Using 3D Gaussian splatting technology, a smoother and more realistic 3D scene is
reconstructed. Based on the 3D reconstructed scene, standardized views are generated at a fixed
height (e.g., 1.6 m) and distance for observation.

It's important to note that when the original street view image data does not have
significant differences and the angles cannot be adjusted, the standardized view generation step
can be skipped, proceeding directly to plant visual feature evaluation based on S3PVI. This
flexibility allows the framework to adapt to various data conditions and still produce
meaningful results.
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4.2.1 Data Collection and Preprocessing 4.2.2 Standardized View Generation
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Figure 4.1 Workflow diagram of the multi-temporal urban green space vegetation
visualization analysis framework.

In the image processing stage, the standardized view images are input into an EfficientNet-
based classification network to identify tree species, and the DANet is used for semantic
segmentation to determine the specific locations and ranges of plants (Tan & Le, 2020; Xue et
al., 2019). The visible vegetation area (Area,,) and the total image area (Area,,) are calculated
from the segmentation results to obtain the S3PVI index. The S3PVI index is then used to
statistically analyze the seasonal changes in vegetation. This workflow demonstrates how to
achieve detailed, multi-temporal analysis of urban green vegetation through street view images
and advanced image processing technologies, combined with 3D reconstruction and
standardized view generation.

4.2.1  Data collection and preprocessing

1) Street view image acquisition

The first step of the multi-temporal urban green space vegetation visualization framework
is to collect street view images of the target urban area. These images can be obtained from
online platforms such as Google Street View or Baidu Maps (Baidu Map Open Platform, n.d.;
Google Earth, n.d.), ensuring that the collected data covers all angles of the scene and different
times to capture the temporal changes in the visual appearance of the scene's plants.
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2) 3D scene reconstruction from street view images using 3D Gaussian splatting.

To address the inconsistency issues in the original street view images, such as differences
in camera angles and distortions, 3D Gaussian splatting technology is employed to reconstruct
the 3D scene of the street view (Kerbl et al., 2023). This process includes the steps shown in
Figure 4.2.
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Figure 4.2 Process of 3D scene reconstruction using SfM and 3D Gaussian splatting

1) SfM: The SfM algorithm is used to reconstruct a 3D point cloud of the street view from
two-dimensional street view images. The SfM algorithm estimates the positions and
orientations of the cameras and the 3D coordinates of the scene points based on
corresponding features identified in multiple images. The output of this step is a sparse
3D point cloud data.

2) 3D Gaussian splatting: The sparse 3D point cloud obtained from SfM is converted into
a continuous volumetric density representation to obtain a smoother and more realistic
3D scene. This step utilizes the 3D Gaussian splatting technique, which is based on the
principle of applying a Gaussian distribution weight to each point in the point cloud,
converting the point cloud data into a continuous volumetric density representation.

Specifically, for each point p;(x,y, z) in the point cloud, a Gaussian kernel function is
constructed as Equation (3):

llp — il > 3)

G(plpio) = exp <— 552
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where G (p|p;,0) represents the function value of the Gaussian kernel with center at point
p; and standard deviation o at point p.Then, 3D Gaussian splatting is performed on the point
cloud using these steps:

1) Initialize an empty voxel grid V to store the volumetric density.
2) Traverse each point p; in the point cloud P.
3) For each point p;, calculate its coordinates (x,, ¥, z,,) in the voxel grid V.

4) Based on the Gaussian kernel function G(p|p;,0), calculate the volumetric density
increment of point p; at the corresponding position (x,, y,, Z,,) in the voxel grid V.

5) Accumulate the calculated volumetric density increment to the corresponding position
in the voxel grid V.

6) Repeat steps 2-5 until all points have been traversed.
7) Perform thresholding on the voxel grid V to extract the 3D surface.

By superimposing the Gaussian kernel functions of all points, a continuous volumetric
density representation is obtained, generating a smoother and more realistic 3D scene.

Finally, through the two steps of SfM and 3D Gaussian splatting, the reconstruction of a
continuous 3D scene from 2D street view images is achieved. This method effectively addresses
the inconsistency issues in the original street view images and lays the foundation for
subsequent scene analysis and applications.

4.2.2  Standardized view generation

From the reconstructed 3D scene, standardized views are generated to simulate pedestrian
perspectives and ensure consistency across different urban environments. The parameters in
Table 4.1. are used to generate standardized views.

Table 4.1 Virtual camera parameter settings for standardized view generation

Parameter Description
The virtual camera is located at a height of 1.6 meters (Osaka
Camera height Prefectural Government, 2020), representing the average eye level of
pedestrians.

The distance between the virtual camera and the target plant is
Camera distance  calculated using Equation (4) based on the plant height, ensuring full
visibility of the plant.
The aspect ratio of the generated views is 2:1, simulating the human
field of view.
The bottom edge of the plant trunk is aligned with the bottom of the
Plant positioning  image frame, and the top edge of the plant canopy touches the top of
the image frame.

Image aspect ratio
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The shooting distance, which varies according to plant height, is defined by Equation (4).

H

D= o an(30% )

where D is the optimal shooting distance from the camera to the base of the plant, and H is the
height of the plant. The constant factor 1/2tan(30°) = 0.866 serves as a practical multiplier
derived from trigonometric principles to estimate the necessary distance for field photography.
As depicted in Figure 4.3, images are taken with a frame ratio of 2:1 from a height of 1.6 meters,
ensuring that the top and bottom edges of the frame align with the top and bottom edges of the

plant. This standardized approach provides a consistent basis for analyzing the visual features
of urban green spaces.

The aspect ratio is 2:1.

Figure 4.3 Standardized imaging method for plant analysis.

To ensure the usability of the view, Figure 4.4 compares the real street view images before
and after preprocessing. The original street view images suffer from distortions and
inappropriate perspectives, such as being taken from a distance or angles not representative of
pedestrian viewpoints. After the 3D scene reconstruction and generation of standardized images,
these issues are significantly improved.
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(a) Original image: significant distortion, (b) Preprocessed image: standardized plant
non-standard viewing angle, and observation angle and distance,
distance. improved image quality and consistency.

Figure 4.4 Comparison of street view images before and after preprocessing.

To evaluate the quality of the optimized images, the peak signal-to-noise ratio (PSNR) and
structural similarity index (SSIM) are used (Hore & Ziou, 2010). PSNR and SSIM assessments
reveal that the average PSNR of the preprocessed images increased by 5.2 dB and the average
SSIM improved by 0.14. These improvements indicate that the preprocessing effectively
reduces noise and enhances structural similarity, providing a high-quality data foundation for
subsequent S3PVI calculations.

4.2.3  Plant visual feature evaluation based on S3PVI

In the multi-temporal urban green space vegetation visualization framework, the
combination of image classification and semantic segmentation is a key step to accurately
identify and separate the pixels of each plant species in standardized views. A deep learning-
based image classification and semantic segmentation model is adopted, which is trained on a
dataset containing 2,000 annotated images, covering 51 common plant species in urban
environments, as shown in Table 4.2.

Table 4.2 IoU scores for common urban plant species in semantic segmentation

NUM Botanical name Common name 10U (%)
1 Ternstroemia gymnanthera Japanese Ternstroemia  90.74
2 Camptotheca acuminata Cancer tree 91.70
3 Cupressus macrocarpa Monterey cypress 89.04
4 Cinnamomum camphora Camphor 81.38
5 Quercus acutissima Quercus acutissima 70.97
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NUM Botanical name Common name 10U (%)
6 Ligustrum lucidum Glossy privet 78.38
7 Acer Maple 81.63
8 Gardenia jasminoides Cape jasmine 89.85
9 Hibiscus makinoi Makino's mallow 88.29
10 Pinus thunbergii Japanese black pine 79.51
11 Cortaderia selloana Pampas grass 86.74
12 Paliurus ramosissimus Thorny wingnic 79.07
13 Camellia japonica Japanese camellia 77.34
14 Acacia baileyana Cootamundra wattle 88.23
15 Lithocarpus edulis Japanese stone oak 80.93
16 Castanopsis sieboldii Itajii 73.29
17 Torreya nucifera Japanese torreya 77.38
18 Quercus myrsinifolia Japanese white oak 87.37
19 Ginkgo biloba Ginkgo 74.79
20 Bassia scoparia Kochia 81.71
21 Rhaphiolepis indica var. umbellata ~ Rhaphiolepis umbellata 81.64
22 Rosa spp. Rosa 86.41
23 Cordyline spp. Cordyline 79.72
24 Quercus glauca Ring-cupped oak 87.55
25 Ceratonia siliqua Arakashi 73.81
26 Jacaranda mimosifolia Blue Jacaranda 83.17
27 Washingtonia filifera California palm 80.21
28 Erythrina bidwillii Coral tree 86.92
29 Paeonia lactiflora Chinese peony 89.65
30 Styphnolobium japonicum var. 84.75
pendulum Japanese pagoda
31 Lavandula angustifolia English lavender 73.21
32 Pelargonium crispum lemon geranium 92.50
33 Salvia rosmarinus Rosemary 90.48
34 Litsea japonica Hamabiwa 82.25
35 Chamaecyparis pisifera 'Filifera' Sawara cypress 69.48
36 Rhododendron spp. Azalea 79.39
37 Eurya emarginata Eurya emarginata 87.23
38 Juniperus rigida Temple juniper 75.00
39 Cycas revoluta Sago palm 83.68
40 Photinia - fraseri Christmas berry 85.22
41 Muhlenbergia capillaris Muhly grass 90.78
42 Magnolia denudata Lily tree 76.77
43 Prunus serrulata Cherry blossoms 69.61
44 Picea abies Norway spruce 81.13
45 Helianthus annuus Common sunflower 75.49
46 Hedera canariensis Canary ivy 87.57
47 Brassica oleracea var. acephala Acephala group 91.82
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NUM Botanical name Common name 10U (%)

48 Forsythia suspensa Weeping forsythia 74.69
49 Osmanthus fragrans Sweet osmanthus 87.02
50 Pinus pinea Stone pine 86.05
51 Pittosporum tobira Japanese cheese wood ~ 69.10

1) Dataset development and characteristics:

The dataset was meticulously curated, drawing inspiration from the cityscapes dataset
(Cordts et al., 2016). Special attention was given to ensuring a diverse representation of plant
types and environmental conditions, with a particular focus on the ornamental status of plants.
Each image underwent a rigorous annotation process, involving at least two individuals to
provide pixel-level labels. The dataset was strategically divided into training, validation, and
test subsets at a ratio of 70%, 15%, and 15%, respectively (Gomes & Zheng, 2020).

2) Model architecture and selection:

The principle of image classification is distinguishing between object classes by
processing their distinct features in an image. Deep neural networks, such as convolutional
neural networks and visual transformers, have shown remarkable performance, especially when
trained on large, well-labeled datasets (Kolesnikov et al., 2020). In this analysis, an image
classification model was first applied to streamline and enrich the subsequent semantic
segmentation. The EfficientNet architecture (Tan & Le, 2020) was used for tree species
classification, with the EfficientNet-b4 variant achieving a commendable accuracy of 97.9% on
this dataset.

For semantic segmentation, which labels each pixel in an image, several models were
tested. PSPNet (Zhao et al., 2017), DANet (Xue et al., 2019), and ISANet (L. Huang et al.,
2019) emerged as top performers. The models were evaluated using mean square error (MSE),
with DANet scoring the lowest MSE of 148.74, outperforming ISANet (235.66) and PSPNet
(337.09). Considering all evaluations, EfficientNet-b4 was selected for image classification,
while DANet was chosen for the segmentation task.

3) Training process and data augmentation:

The model was trained using the Adam optimizer with an initial learning rate of 0.0001, a
batch size of 8, and a total of 100 epochs (Kingma & Ba, 2017). Various data augmentation
techniques, including random flipping, scaling, and cropping, were implemented to enhance the
model's robustness and generalization ability (Shorten & Khoshgoftaar, 2019).

4) Model performance and analysis:

The final model achieved a mean Intersection over Union (mloU) of 82.17% on the test
set, demonstrating its effectiveness in distinguishing different plant species. Table 4.2 presents
a detailed breakdown of the IoU scores for each of the 51 plant species. The scores range from
69.10% to 92.50%, highlighting varying performance across different species.
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Lemon geranium achieved the highest IoU score of 92.50%, indicating exceptionally
accurate segmentation. Other high-performing species include cancer tree (91.70%), acephala
group (91.82%), and Japanese ternstroemia (90.74%).

At the lower end, Japanese cheese wood had the lowest loU of 69.10%, followed closely
by cherry blossoms at 69.61% and Sawara cypress at 69.48%. These lower scores suggest
challenges in accurate segmentation for these species.

The case of cherry blossoms (69.61% IoU) warrants deeper analysis. Despite focusing on
images of blooming cherry trees, the relatively low performance could be attributed to several
factors.

Variability in flower density: Cherry blossoms can vary significantly in their blooming
density, challenging the model's ability to consistently segment the flowers.

Viewing angles: Images taken from various angles (below, eye level, or above) could affect
the model's ability to consistently identify and segment the blossoms.

Cultivar diversity: Numerous cherry blossoms cultivars with subtle differences in flower
shape, size, and color may not be adequately represented in the training data, leading to lower
segmentation accuracy for some varieties.

Other species with lower IoU scores, such as Japanese white oak (74.79%) and lily tree
(76.77%), may face similar challenges related to variability in appearance or similarity to other
species. For instance, Japanese white oak might be confused with other oak species, while lily
tree could be challenging due to its seasonal changes in appearance.

These results highlight the complexity of urban vegetation classification and segmentation,
where factors such as species variability, environmental conditions, and image capture
techniques can significantly influence plant appearance and model performance.

To address these challenges, future work could focus on expanding the dataset for
challenging species, ensuring a wider representation of varieties and growth conditions.
Incorporating multi-temporal data to capture seasonal variations, especially for species with
significant appearance changes, would be beneficial. Developing species-specific sub-models
or fine-tuning techniques for more accurate segmentation of challenging species could
significantly improve performance. Exploring advanced data augmentation techniques to better
simulate real-world variability in plant appearances would enhance the model's robustness.
Additionally, investigating the use of ensemble methods or multi-scale approaches could
improve segmentation accuracy across diverse species. These improvements would collectively
contribute to enhancing the model's performance across all plant species in urban environments,
further solidifying its utility in urban green space analysis.

While the model's overall performance is strong, with a high mean IoU, the analysis
reveals areas for potential improvement, particularly in handling species with high variability
or complex morphological characteristics. The trained model is applied to the standardized
views generated from the reconstructed 3D scene to generate segmentation maps.
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Figure 4.5 compares original photographs of various plant species with their
corresponding segmented images. Each row showcases different species, such as cherry
blossoms, false cypress, maple, and kochia. The segmented images use distinct colors to
represent each plant species: pink for cherry blossoms, light blue for azalea, yellow for false
cypress, green for rose, brown for lemon geranium, light gray for pampas grass, reddish-brown
for maple, purple for kochia, white for California palm, beige for ginkgo, and dark gray for
Japanese black pine.

The segmentation accurately identifies and separates the plant species from the
background, highlighted in black, demonstrating the effectiveness of the segmentation process
in differentiating between various types of vegetation in diverse settings. For example, the
image clearly shows the segmentation of cherry blossoms in pink, a tall maple tree in reddish-
brown, and bright kochia plants in purple.

All plants in the dataset can be segmented in the segmentation model, as evidenced by the
variety of species represented in the image, from trees like false cypress and ginkgo to shrubs
like rose and grasses like pampas grass. The segmentation image can be used to calculate the
S3PVI value and subsequently analyze the changes in the visual visualization features of plants,
which is particularly useful given the diverse range of plant types depicted in the photographs.

[ Cherry blossoms  [[]Azalea

[ False cypress [l Rose

Bl Lemon geranium [l Pampas grass
B Maple B Kochia

[ california palm [ Ginkgo

M Japanese black pine Jl§ Background

Figure 4.5 Examples of original and segmented images.
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4.2.4  S3PVI calculation for plant visual feature quantification

To ensure consistent and reliable data collection for S3PVI evaluation, standardized field
photography procedures have been developed, drawing from best practices in urban vegetation
assessment and visual quality analysis (Osaka Prefectural Government, 2020).

After semantic segmentation, the S3PVI of each plant species in the segmented image is
calculated using the Equation (5):
* Area

S3PVI=="2 Y100 (9 5
T Area, (%) (5)

where n is the total number of photos taken in the test area, Area,, is the total number of pixels
of the target plant in image i took along the horizontal direction, and Area,, is the total number
of pixels in image i. This ratio reflects the percentage of pixels attributed to the plant relative
to the entire image, providing a S3PVI value from 0% to 100%. The average of these values for
all images quantifies the plant's visibility in the area.

The S3PVI is inspired by the GVI, which quantifies vegetation visibility in street-level
images. While the GVI focuses on overall greenery visibility, the S3PVI extends this concept
by quantifying the visibility of individual plant species across multiple seasons. This species-
level, multi-temporal analysis provides a more detailed understanding of the visual
characteristics and dynamics of urban green spaces. The average S3PVI values across all
images quantify the visibility of each plant species in the study area. By evaluating multiple
species in each image, the S3PVI enables a detailed assessment of their respective contributions
to the aesthetics of urban green spaces.

4.3 Experiments and results
4.3.1  Visual feature analysis of real street vegetation

To validate the effectiveness of the multi-temporal urban green space vegetation
visualization framework, Sanshikisaido in Suita City, Osaka Prefecture, Japan, was selected as
a case study. Sanshikisaido is situated in the Kita-senri residential area of Suita City, extending
approximately 500 meters. It is renowned for its seasonal foliage displays, particularly its
autumn colors. Figure 4.6 provides a detailed overview of Sanshikisaido's vegetation
composition in Suita City, Osaka Prefecture, Japan.
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Figure 4.6 Vegetation distribution along Sanshikisaido, Suita City.

The map focuses on the Sanshikisaido road and its surrounding urban area, with a legend
explaining symbols for buildings, roadways, and various plant species. The central feature is
Sanshikisaido itself, lined predominantly with maple trees and interspersed with cherry
blossoms. The urban layout surrounding the road is clearly defined, showing buildings and
streets. The area is divided into four numbered sections by dashed lines.

Figure 4.7 shows zone 1 lined with various plants, predominantly maple trees (represented
by red dots). There are also several azalea bushes (blue lines) interspersed among the maples.
A cluster of false cypress trees (magenta line) is visible on one side of the street, and two cherry
blossoms trees (green dots) are located at opposite ends of the depicted area. This close-up
includes additional information about camera placements. Sixteen camera locations are marked
with small 'x' symbols, numbered from 1 to 16. Each camera location is accompanied by an
arrow indicating the camera's orientation or direction of view. The legend in the bottom right
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corner of this detailed view confirms the symbols used for different vegetation types and adds
explanations for the camera-related markings.
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Figure 4.7 Detailed vegetation map and camera placement in zone 1 of Sanshikisaido.

Figure 4.8 showcases zone 2 of Sanshikisaido, extending the vegetation mapping from the
previous figure. The street's vegetation remains predominantly maple trees, with interspersed
azaleas. Notable additions include a small cluster of false cypress trees on the left and several
cherry blossoms in the upper right corner. Camera placements continue from the previous zone,
numbered 16 to 40, each marked with its orientation.
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Figure 4.8 Detailed vegetation map and camera placement in zone 2 of Sanshikisaido.

Figure 4.9 illustrates zone 3 of Sanshikisaido. This section shows a curve in the street, with
maple trees remaining the dominant vegetation. A notable cluster of cherry blossoms appears
on the curved portion of the road. Camera locations are numbered from 39 to 58, following the
street's contour.
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Figure 4.9 Detailed vegetation map and camera placement in zone 3 of Sanshikisaido.

Figure 4.10 depicts zone 4 of Sanshikisaido, the final section of the street study. This zone
shows a gently curving road lined exclusively with maple trees, in contrast to the more diverse
vegetation in previous zones. Camera positions are numbered from 58 to 80, following the
street's curve.
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Figure 4.10 Detailed vegetation map and camera placement in zone 4 of Sanshikisaido.

The 80 digital camera icons represent locations where standardized view generation was
implemented. Each camera location adheres to the height and distance specifications outlined
in Figure 4.3, ensuring consistent and comparable photographic data collection across the entire
Sanshikisaido street. This standardized approach is crucial for accurate temporal analysis and
comparison of urban vegetation changes.
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From these 80 locations, four representative sites (Locations 1, 2, 25, and 45) were selected
to showcase the diverse vegetation types and their temporal dynamics along Sanshikisaido.

To access and analyze these historical street view data, the Google Maps built-in time
travel feature was utilized. This tool allows users to view historical imagery by selecting the
street view date in the upper-left corner of the interface, which opens a time slider. By
manipulating this slider, images from different years can be accessed, enabling a comprehensive
temporal analysis of the streetscape. This method facilitated systematic access to and
comparison of street View images from different periods, allowing for an in-depth
spatiotemporal analysis.

Figure 4.11 shows Google Street View images collected at Location 1 for 10 different
periods between 2010 and 2022. This comprehensive dataset represents all available Street
View data for the region, ensuring a thorough temporal analysis. The image collection follows
the standardized view generation protocol described in Section 4.2.2, keeping the camera angle,
height, and distance consistent across all time periods. All photo data was input into a multi-
temporal evaluation framework to obtain the corresponding S3PVI values. The lower half of
Figure 4.11 shows the identified plants and the corresponding segmented images for each photo.
The cherry blossoms are highlighted in pink, while the background is black. This visual
representation makes it easy to track the coverage of cherry blossoms over time.

Figures 4.12, 4.13, and 4.14 present similar temporal analyses for Locations 2, 25, and 45
respectively.

Location 2 (Figure 4.12) focuses on false cypress trees. The segmented images show these
trees in yellow, with consistent presence across all time periods. A notable maple presence is
also detected in the 2018.11 image.

Location 25 (Figure 4.13) emphasizes azalea growth. The segmented images highlight
azaleas in light blue, showing variations in their presence and size over the years.

Location 45 (Figure 4.14) showcases the evolution of maple trees. The segmented images
highlight maple foliage in reddish-brown, particularly visible in the 2018.11 image, capturing
autumn colors.

These additional locations demonstrate the versatility of the standardized view generation
method in capturing diverse urban vegetation types and their temporal changes. The consistent
imaging and segmentation approach across all locations enables comparative analysis of
different plant species' growth patterns and seasonal variations.
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Figure 4.11 Temporal analysis of vegetation presence at location 1 (2010-2022)

57



S\ e \\& ‘.:v,s
T .
b\ '
\ J
- ’I > e
it
A (@)
-
@ ..
) 0 %
/ -

Maple

Cherry blossoms
False cypress
Azalea

Camera location
Camera orientation
Camera scope

2016.06

2021.01

2015.04

2018.11

2022.03

False cypress ll Maple

B Background

Figure 4.12 Temporal analysis of vegetation presence at location 2 (2010-2022)
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Figure 4.13 Temporal analysis of vegetation presence at location 25 (2010-2022)
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Figure 4.14 Temporal analysis of vegetation presence at location 45 (2010-2022)




In the street view data of Sanshikisaido, the S3PVI values of four major plant species were
detected, including cherry blossoms, maple, false cypress, and azalea. It's important to note that
the current focus is on the aesthetic viewing periods of plants, particularly when they have
special ornamental value. As a result, the dataset of 2000 plant images and subsequent S3PVI
calculations are primarily based on times when plants are in their most visually appealing states.
For instance, in the case of Sanshikisaido, which is famous for its seasonal foliage display, the
current S3PVI values are calculated during these optimal aesthetic periods.

This approach enables the quantification and visualization of the seasonal peak aesthetic
value of urban green spaces, with a particular emphasis on iconic or culturally significant
vegetation periods. Figure 4.15 presents a comprehensive 3D visualization of the S3PVI values
for four key plant species in Sanshikisaido from 2010 to 2022. The graph's axes represent time
(x-axis), plant species (y-axis), and S3PVI values in percentage (z-axis). The four species
tracked are cherry blossoms (red line), maple (orange line), false cypress (green line), and
azalea (blue line).
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Figure 4.15 Seasonal change curves of S3PVI values for major plant species
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Cherry blossoms show distinct peaks in April 2010 (45.61%) and April 2014 (42.78%).
However, from 2015 onward, the S3PVI values for cherry blossoms are notably lower. It's
important to note that these lower values do not indicate the absence of cherry trees, but rather
suggest that they were not in their peak blooming state during the observed periods.

Maple exhibits the highest variability among the four species. Its S3PVI value reaches a
maximum of 56.78% in November 2018, likely corresponding to its autumn foliage display.
The maple's S3PVI values show clear seasonal patterns, with higher values typically occurring
in autumn months and lower values at other times of the year.

False cypress demonstrates relatively consistent S3PVI values throughout the observed
period, generally ranging between 10% and 15%. This stability reflects the evergreen nature of
the species, maintaining its visual presence across seasons.

Azalea's S3PVI values fluctuate moderately, generally ranging from about 5% to 10%.

Figure 4.15 effectively captures the seasonal dynamics of these four species' visual impact
in Sanshikisaido's urban landscape. It highlights the periods when each species contributes most
significantly to the aesthetic value of the area, while also revealing patterns in their visual
prominence over the years.

As the visual dominance transitions from cherry blossoms in early spring to false cypress
and azalea in late spring and summer, and then to maples in autumn, we see a landscape that
constantly evolves, offering diverse visual experiences throughout the year. This pattern not
only highlights the seasonal strengths of each species but also points to the system's
methodology in assessing visual contributions, which appears to be particularly attuned to
capturing peak aesthetic moments of each plant type.

The S3PVI tool provides data for landscape planners and designers, particularly in
evaluating current conditions, especially in brownfield projects. It offers objective information
on the visibility of different plant species throughout their ornamental seasons, which can be
used as a baseline for further analysis and decision-making. Planners and designers can use
these insights in conjunction with their professional knowledge, on-site investigations, and
consideration of local ecological and social factors to develop urban green space strategies.

4.3.2  Multi-temporal visualization evaluation of virtual park vegetation design schemes

To validate the practical application of the multi-temporal urban green space vegetation
visualization framework in urban planning and design, this study conducted a simulation
experiment using a virtual park design.

Figure 4.16 presents a detailed plan view of this virtual park, showcasing a thoughtfully
designed 7,000 square meter urban green space. This compact yet diverse layout incorporates
a range of landscape elements, including a water feature, various structures, a winding
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pedestrian pathway, and a rich variety of vegetation. The design strategically positions trees,
shrubs, and herbs to create distinct zones and visual interest, while also incorporating landscape
stones and different ground covers. This virtual model serves as an ideal testbed for simulating
the park's visual evolution over time, demonstrating how the multi-temporal vegetation
visualization framework can be applied to urban planning and design processes, helping
stakeholders envision and optimize green spaces as they develop and mature.

Virtual park

Legend

@ Water feature
©  Structures
© Pedestrian pathway

@ - Landscape stones
Tiles
Grass

Tree
Shrubs
Herbs

Figure 4.16 Virtual park design layout for multi-temporal vegetation visualization.

Figure 4.17 provides a comprehensive layout of the 14 specific camera locations in the
virtual park design. The figure illustrates the strategic placement of these camera locations,
showing their distances from the target plants, and the corresponding vegetation views seen
from each point.

The left side of Figure 4.17 details the positions of the 14 viewpoints within the park, each
marked with a number and an arrow indicating the direction of the view. These points are
carefully distributed throughout the park to capture a diverse range of visual perspectives. The
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distances between each viewpoint and the target vegetation are indicated, providing precise
measurements that are essential for accurate visual analysis.

On the right side of the Figure 17, each viewpoint is associated with a specific plant view,
depicting the vegetation visible from that point. These visual representations include detailed

images of the plants, highlighting their species, size, and arrangement.

Camera location
—  Camera orientation
——= Camera scope

Figure 4.17 Location map of the virtual camera setup for the virtual park.

Figure 4.18 illustrates seven different planting design schemes by combining three types
of trees: cherry blossoms, maples, and pines.

At the top of each design scheme, visual representations of the three types of trees are
shown: cherry blossoms with pink flowers, maples with orange leaves, and pines with green
needles. Each design scheme features a distinct combination of these trees to create unique
landscape effects.
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Scheme list Cherry blossom .Maple .Japanese pine

Scheme 1: Scheme 2: Scheme 3:
Cherry blossoms Maple Japanese pine

Scheme 4: Scheme 5:
Cherry blossoms + Maple Cherry blossoms + Japanese pine

Scheme 6: Scheme 7:
Japanese pine + Maple Cherry blossoms + Japanese pine + Maple

Figure 4.18 Seven planting design schemes for the virtual park
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Each scheme is presented with a visual simulation of the trees in the upper half and a
corresponding layout plan in the lower half. The schemes progress from single-species
plantings to more complex combinations: the first uses cherry blossoms (pink markers), the
second focuses on maples (orange markers), and the third highlights pines (green markers). The
fourth scheme combines cherry blossoms and maples, demonstrating their visual interaction.
The fifth mixes cherry blossoms with pines, while the sixth blends maples and pines. The
seventh and final scheme incorporates all three tree types, offering the most diverse landscape
composition. These vegetation configurations were implemented in a virtual park model, with
fourteen key nodes selected for virtual camera placement to simulate tourist viewpoints. Using
3D rendering technology, high-quality scene images were generated for each scenario across
all four seasons, enabling a comprehensive visual comparison of landscape effects across
different configurations.

Figure 4.19 provides a detailed demonstration of Scheme 1, showcasing the seasonal
changes observed from 14 camera locations in the virtual park. This figure captures the
transformation of cherry blossoms through spring, summer, autumn, and winter, illustrating
their distinct seasonal characteristics. Figure 4.20 demonstrates the seasonal changes observed
at the same 14 camera positions when the trees are replaced with maples in Scheme 2. It is
evident that the viewing seasons and visual effects of maple trees differ significantly from those
of cherry trees.

Scheme 3, presented in Figure 4.21, exhibits pine trees, which show minimal changes
across the four seasons. This consistency is observed at all 14 camera positions, highlighting
the evergreen nature of pines. In Scheme 4, cherry trees and maple trees are combined. The
arrangement is depicted in the plan view on the left side of Figure 4.22. More varied landscape
changes are observed at the camera positions throughout the year, but it's important to note that
both species will shed their leaves and become dormant in winter.

Figure 4.23 illustrates Scheme 5, which combines cherry trees and pine trees. Compared
to Scheme 4, this combination results in less dramatic color changes in autumn. However, the
presence of evergreen pine trees provides continuous landscape interest in winter, avoiding the
bare appearance of deciduous trees.

Scheme 6, shown in Figure 4.24, combines pine trees and maple trees. While the colors
may be relatively uniform in spring and summer, this combination produces a particularly
striking landscape effect in autumn due to the maple's vibrant fall foliage contrasting with the
evergreen pines. In Scheme 7, cherry trees, pine trees, and maple trees are integrated, as
depicted in Figure 4.25. This comprehensive scheme ensures visual interest across all seasons:
flowering trees in spring, lush foliage in summer, vibrant colors in autumn, and the enduring
presence of non-deciduous pine trees in winter.
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Figure 4.20 Seasonal transformation of vegetation in Scheme 2.
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Figure 4.21 Seasonal transformation of vegetation in Scheme 3.
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Figure 4.22 Seasonal transformation of vegetation in Scheme 4.
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Figure 4.23 Seasonal transformation of vegetation in Scheme 5.
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Scheme 7: Cherry blossom + Japanese pine + Maple
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Figure 4.25 Seasonal transformation of vegetation in Scheme 7.
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Figure 4.26 illustrates the S3PVI values for seven different planting design schemes across
the four seasons. The S3PVI analysis of the seven planting schemes reveals insights into
seasonal landscape dynamics, offering information for landscape design decisions. Schemes 1
(cherry blossoms) and 2 (maple) demonstrate high S3PVI values in spring and autumn
respectively, highlighting the potential for single-species plantings to create powerful visual
impacts during specific seasons. This approach can be ideal in certain contexts, such as creating
iconic cherry blossoms avenues or maple viewing areas that offer visitors an intense, focused
seasonal experience.

Scheme 3 (Japanese pine) exhibits the most consistent S3PVI values year-round, ranging
from about 40% to 50%, underscoring the value of evergreen plants in maintaining landscape
appeal throughout the seasons. Schemes 4, 5, and 6, which combine two tree types, achieve a
better balance of visual interest across the year. For instance, Scheme 5 (cherry blossoms and
Japanese pine) provides both spring spectacle and year-round greenery. Scheme 7,
incorporating all three tree types, appears to offer the most comprehensive year-round appeal,
with peaks in spring and autumn and sustained interest in summer and winter.

Comparing these schemes emphasizes key factors affecting park landscape visual features:
plant species selection, spatial layout, and color matching. Scheme 7 demonstrates how
combining cherry blossoms, maple, and Japanese pine can create diverse seasonal landscapes,
offering rich spatial layers and color variations throughout the year. This multi-temporal
visualization framework provides landscape designers with a tool to quantify and visualize
S3PVI values across seasons for different planting schemes. It can help identify schemes that
offer balanced, year-round appeal or those that might benefit from adjustments to enhance their
off-peak season performance.

It's crucial to recognize that S3PVI analysis aims to provide objective metrics to support
design decisions rather than replace designers' creativity and professional judgment. Its primary
value lies in supporting and enhancing the subjective design process, enabling designers to
make more informed decisions based on data. For example, designers might choose to maintain
highly concentrated single-species plantings in certain areas for dramatic visual effect, while
adopting more diverse plant configurations in others to ensure year-round landscape appeal. In
this way, S3PVI analysis serves as a supportive tool, assisting designers in creating dynamic,
seasonally balanced urban green spaces while meeting specific design objectives.
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4.4 Discussion

The multi-temporal urban green space vegetation visualization analysis framework
constructed in this study demonstrates its capability to assess current conditions through the
analysis of the Sanshikisaido case study, particularly suitable for initial assessments of
brownfield projects. Quantitative indicators such as the S3PVI index and visual contribution
rate reveal the differential roles of various plant types in shaping the visual effect of street
landscapes. Based on the street view photo data of Sanshikisaido, this study analyzed the
temporal changes of vegetation visual features with monthly precision. The virtual park project
further validates the framework's potential in planning and designing vegetation layouts on 3D
ground surfaces, offering a new perspective for urban green space planning and design decision-
making. By creating virtual environments, this study simulated different vegetation
configuration schemes and quantitatively evaluated these schemes using the S3PVI index. This
method allows planners and designers to visualize and compare seasonal changes and visual
effects of different design schemes before actual implementation.

4.4.1  Advantages and limitations of the multi-temporal urban green space vegetation
visualization analysis framework

This research framework provides insights into the changes of urban vegetation visual
characteristics by introducing a temporal dimension. However, it should be noted that the
current framework mainly assesses the visual features of plants in their ornamental state. While
this approach can capture the seasonal highlights of vegetation landscapes, it may not fully
reflect the ecological value and visual contribution of plants during their non-ornamental
periods.

Compared to traditional assessment methods such as GCR and GVI, S3PVI focuses on the
plant type scale and can distinguish the visual contributions of different plant species. This
feature gives S3PVI a unique advantage in assessing the diversity and seasonal changes of plant
landscapes.

However, the research framework also has some limitations. The current plant dataset is
limited in scale, which may affect the accuracy of the model in identifying diverse vegetation
types. Moreover, existing technology still faces challenges in capturing plant features during
periods of non-significant visual characteristics, which may lead to biases in identifying certain
plant species in some seasons. For example, at certain stages of the growth cycle, such as cherry
trees outside their flowering period, may be difficult to accurately identify and classify. These
limitations suggest the need for further expansion of the dataset and improvement of
identification algorithms to enhance the framework's applicability under different seasonal and
diverse vegetation conditions.

The application of 3D Gaussian splatting for data processing and optimization in this
framework addresses a critical issue in urban vegetation analysis: the inconsistency of street
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view images. Traditional methods often rely directly on street view images for calculations like
GVI, which can lead to significant errors due to variations in camera angles, distances, and
distortions. This framework's approach of using 3D Gaussian splatting to reconstruct 3D scenes
from street view images, followed by the generation of standardized views, represents an
advancement in data preprocessing for urban green space analysis.

The process, which involves SfM for initial 3D point cloud reconstruction and 3D
Gaussian splatting for creating a continuous volumetric density representation, effectively
mitigates issues of inconsistent perspectives and distortions in original street view images. By
generating standardized views that simulate a consistent pedestrian perspective (at 1.6 meters
height and with optimized distances based on plant height), the framework ensures a more
accurate and reliable basis for S3PVI calculations.

However, it is important to note that while this method significantly improves data
consistency, it also introduces computational complexity. Future research could focus on
optimizing the efficiency of this process for large-scale urban analyses and exploring how this
standardized approach might be integrated with or compared to other methods of urban
vegetation assessment.

4.4.2  The significance of the S3PV1I for quantitative evaluation

In constructing the multi-temporal visualization analysis framework, this chapter created
a dataset containing 51 common urban environmental plants, providing a crucial data
foundation for the development and validation of the S3PVI index. The construction of this
dataset involved street view image collection, expert labeling, and multiple rounds of validation,
ensuring the quality and representativeness of the data. These 51 plants cover common street
trees, park plants, and seasonal ornamental plants, providing rich training and testing samples
for the S3PVI index.

This dataset contributes significantly to the development of the S3PVI index, enabling it
to identify and quantify the visual contributions of different plant types across seasons. For
instance, it allows the system to distinguish the unique visual effects of cherry blossoms in
spring and maple trees in autumn, thus providing quantitative basis for seasonal planning of
urban green spaces.

However, there is still room for improvement in terms of plant species richness and
annotation accuracy. Future research could consider expanding the dataset to include more plant
species, especially those common in different climatic regions. Meanwhile, improving
annotation precision, particularly for plants that are difficult to identify during non-ornamental
periods, is also a focus for future work.

4.4.3  Application of the multi-temporal analysis framework in empirical case studies

Moreover, the current focus of the multi-temporal visualization analysis framework is
primarily on the visual aesthetic features of vegetation, with insufficient attention to other green
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space functions such as ecological functions and recreational activities. Future studies should
aim to integrate the S3PVI index with other ecological and recreational assessment indicators
(Fix et al., 2018; Maclean et al., 2021) to achieve a comprehensive assessment of the
multifunctional attributes of urban green spaces. Additionally, variations in topography, climate,
and culture across different regions may influence people's preferences for plant landscapes
(Hoyle et al., 2017). As the samples in this study are mainly from Japanese cities, the
generalizability of the assessment results needs to be validated across a broader range. Future
research should enhance the diversity of vegetation types and urban environments considered
and incorporate influences from more diverse cultural backgrounds to improve the robustness
and applicability of the assessment framework.

4.4.4  Multi-temporal vegetation visualization analysis supporting 4D vegetation
landscape modeling

Compared to traditional field surveys and manual interpretation methods, multi-temporal
visualization analysis offers significant advantages in efficiency and cost-effectiveness for data
acquisition and automated processing. However, the accuracy of image processing and semantic
segmentation still needs further improvement. Future research can explore integrating street
view images with other data sources, such as high-resolution satellite images and LiDAR point
cloud data, to provide more comprehensive and multi-scale information on urban green space
vegetation.

Future research could explore integrating generative technology systems to achieve more
complex 4D seasonal change simulations, further enhancing decision support capabilities in
planning and design processes. This integration could allow for more accurate predictions of
how vegetation will change over time, taking into account factors such as growth rates, seasonal
variations, and environmental influences. Such advancements would provide planners and
designers with a more dynamic and realistic view of their proposed green spaces over extended
periods.

Additionally, the development of interactive design tools could enable planners to directly
design vegetation layouts on 3D ground surfaces, creating a more intuitive and interactive
planning process. These tools could incorporate real-time feedback on factors such as visual
impact, ecological value, and maintenance requirements, allowing for more informed decision-
making. The use of virtual reality (VR) or mixed reality (MR) technologies could further
enhance this process, allowing stakeholders to virtually walk through proposed designs and
experience them from multiple perspectives.

By coupling S3PVI spatiotemporal change features with 4D modeling tools, a detailed
depiction of the growth and development process of garden plants can be achieved. This could
lead to the creation of an immersive garden landscape design platform, where planners,
designers, managers, and even the public could collaboratively participate in the entire process
of urban green space creation. Such a platform would not only improve the quality of designs
but also increase public engagement and acceptance of urban green space projects.
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4.45  Improvement directions and application extensions

Looking towards the future, the S3PVI analysis framework has the potential to extend
beyond its current focus on 2D image analysis. By expanding into 3D space and multi-sensory
dimensions, future iterations of the framework could explore the correlations between
vegetation visual features and other elements of the urban landscape experience. This could
include factors such as garden spatial structure, recreational activities, soundscape, and even
olfactory aspects, providing a more holistic understanding of how vegetation contributes to
high-quality urban environments.

The integration of these multi-dimensional analyses with the S3PVI framework could lead
to a new paradigm in urban green space governance driven by digital twins. In this scenario,
vegetation landscapes' assessment, simulation, perception, and feedback would form a dynamic
closed loop. Real-world data would continuously inform and refine digital models, while these
models would in turn guide real-world interventions and management strategies. This approach
could revolutionize how urban green spaces are planned, designed, and managed, allowing for
more responsive, adaptive, and effective strategies.

As these technologies and methodologies continue to evolve, it will be crucial to validate
their effectiveness and practicality through real-world applications and case studies. Future
research should focus on expanding plant datasets, improving identification algorithms, and
exploring integration with other urban planning and management tools. By doing so, the value
and reliability of this framework in practical applications can be enhanced, ultimately
contributing to the creation of more sustainable, resilient, and enjoyable urban green spaces.

4.5 Summary of this chapter

Chapter 4 presents a multi-temporal urban green space vegetation visualization analysis
framework, applied to the Sanshikisaido case study and a virtual park project. The framework
introduces the S3PVI index for quantifying the visual contribution of different plant types in
urban landscapes across seasons.

The study employs 3D reconstruction from street view images, deep learning-based image
classification, and semantic segmentation to analyze vegetation characteristics. A dataset of 51
common urban plants supports the development and validation of the S3PVI index.

The Sanshikisaido case study demonstrates the framework's ability to capture seasonal
changes in vegetation visibility, providing insights into the visual contributions of various plant
species throughout the year. The virtual park project illustrates the potential of this approach in
supporting decision-making for urban green space planning and design.

The chapter discusses the framework's capabilities compared to traditional assessment
methods, noting its ability to differentiate between plant types and capture temporal variations.
It also acknowledges limitations, such as the focus on plants in their ornamental states and
challenges in identifying plants during non-distinctive visual periods.
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Future research directions are outlined, including the expansion of the plant dataset,
improvement of identification algorithms, and integration with other urban planning tools. The
potential for extending the framework into 3D space and multi-sensory dimensions is
considered, along with the possibility of developing more interactive design tools.

The chapter sets the stage for Chapter 5, which will explore 4D vegetation landscape
modeling, integrating technologies such as NeRF and Stable Diffusion to create time-evolving
models of urban vegetation.

The conclusion considers the implications of this research for urban green space
governance, suggesting that multi-dimensional analyses could contribute to more responsive
and effective strategies for creating sustainable urban environments. The framework presented
in this chapter aims to advance urban vegetation assessment methods and contribute to the
evolving field of urban green space management.
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Chapter 5
Plant landscape modeling: integrating dynamics and

techniques

51 Overview

Chapter 4 introduced a multi-temporal urban green space vegetation visualization
framework and the S3PVI to characterize the visual importance of urban green spaces at the
species level. The S3PVI quantifies the visual characteristics of different plant species across
spatial and temporal dimensions, providing a foundation for understanding the dynamic
features of urban vegetation. By focusing on the plant scale and capturing temporal changes in
visual importance, S3PVI facilitates 4D time-varying landscape modeling.

Inspired by the findings in Chapter 4, this chapter explores the integration of temporal
dynamics with advanced imaging technologies to develop a 4D modeling approach for plant
landscapes. The aim is to create immersive dynamic representations of urban green spaces,
supporting intuitive and flexible planning and design. The multi-temporal vegetation
segmentation images and the spatiotemporal variation characteristics of S3PVI obtained in
Chapter 4 guide the generation of realistic seasonal changes in the 4D modeling process. In
addition to using this data to guide image generation, S3PVI values are incorporated into the
Stable Diffusion model as inputs to describe the visualization degree of visible plants in the
scene. This integration further enhances the accuracy and realism of the generated plant
landscapes by providing quantitative information on the visual prominence of different plant
species.
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This modeling approach employs NeRF and Stable Diffusion techniques to visualize plant
growth and seasonal changes. The integration of low-rank adaptation (LoRA) (E. J. Hu et al.,
2021) and ControlNet (L. Zhang et al., 2023) enhances computational efficiency and ensures
spatial consistency, enabling the simulation of plant development over time. The prior
information provided by S3PVI, including multi-temporal vegetation segmentation images,
spatiotemporal variation characteristics, and quantitative descriptions of plant visibility,
contributes to improving the accuracy and diversity of the generated images, facilitating the
integration between multi-temporal analysis and 4D modeling.

These tools have the potential to provide urban planners and environmental scientists with
additional means to observe, predict, and plan urban vegetation growth patterns. If proven
effective through further research and validation, they could contribute to supporting
sustainable and responsive urban green space management, as suggested by Nitoslawski et al.,
(2019). The combination of multi-temporal visualization and 4D modeling broadens the scope
of urban green space research, providing a comprehensive approach to understanding and
managing urban vegetation dynamics.

This chapter presents the technical framework for constructing 4D plant models, discusses
innovative methods for achieving these dynamic simulations, and showcases a practical
application case study, an actual park streetscape. Extending the static models discussed in
previous chapters to include time-based dynamics, it provides new perspectives on the
interaction between urban environments and their green spaces. The integration of plant
lifecycle data into urban ecological planning and design could potentially play a significant role
in improving the effectiveness of these processes.

The combination of multi-temporal visualization and 4D modeling contributes to
advancing urban green space research, supplementing traditional methods. By leveraging
advanced technologies and building on the foundation laid in Chapter 4, this framework
enhances the understanding of urban green spaces and provides tools for sustainable urban
development and ecological planning. Incorporating temporal dynamics into urban vegetation
visualization offers a potentially comprehensive approach to visualizing and managing urban
vegetation holistically and interactively. This may help bridge the gap between static and
dynamic representations of urban green spaces.

5.2 Proposed framework
5.2.1  Technical framework construction

The backbone of the proposed 4D plant modeling framework consists of two key
components: NeRF with multiresolution hash encoding for learning 3D scene representations
and stable diffusion for synthesizing time-varying appearances. Choosing NeRF with
multiresolution hash encoding was driven by its capability for faster training and rendering of
3D scenes. Its real-time performance makes it highly suitable for interactive applications like
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VR, enabling seamless exploration and manipulation of 3D models. In contrast, the 3D
Gaussian splatting method, which performed well in Chapter 4, lags behind NeRF in these
aspects.

Table 5.1 compares the performance of NeRF (multiresolution hash encoding) and 3D
Gaussian splatting across different metrics, including the SSIM, PSNR, Frames Per Second
(FPS), and training time. While 3D Gaussian splatting achieves higher SSIM, PSNR and FPS
scores, indicating better image quality, NeRF (multiresolution hash encoding) excels in terms
of training time, making it more suitable for real-time applications and efficient scene
processing.

Table 5.1 Performance comparison between NeRF and 3D Gaussian splatting

Metric NeRF (multiresolution hash encoding) 3D Gaussian splatting
SSIM 0.72 0.83

PSNR 24.92 26.91

FPS 9.00 137.30

Training Time 7.5 min 38.3 min

To complement the strengths of NeRF with multiresolution hash encoding in capturing 3D
scene representations, Stable Diffusion was selected for synthesizing time-varying appearances
in the proposed 4D plant modeling framework. Stable Diffusion, a state-of-the-art text-to-image
generation model, leverages the diffusion model paradigm to convert random noise into target
images through iterative forward and reverse diffusion processes. By incorporating text
embeddings as additional inputs, Stable Diffusion enables a conditional control mechanism that
guides the image generation process towards the desired seasonal characteristics specified by
the text prompts.

Moreover, Stable Diffusion's latent space representation and attention mechanism allow it
to establish semantic associations between textual descriptions and image content, ensuring the
generated vegetation images align with the given seasonal features. The model's rich training
data and strong generative capabilities enable it to accommodate the representation
requirements of various vegetation types and seasonal variations. The open-source nature and
active community support of Stable Diffusion provide flexibility and extensive reference
resources for its application in this research. By integrating Stable Diffusion with the 3D scene
representations learned by NeRF, the proposed framework can introduce realistic seasonal
changes to vegetation while maintaining spatial consistency, ultimately achieving dynamic and
photorealistic 4D plant model construction.
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5.2.2  Model generation pipeline

The proposed method adopts a cascaded approach to generate 4D plant models in two
stages. In the first stage, NeRF is trained for each input scene to learn a compact 3D
representation of its geometry and appearance. The training process involves sampling 5D
coordinates from different camera poses, which include three-dimensional spatial coordinates
(X, ¥, z) and two-dimensional viewing direction information. These coordinates are then
encoded into high-dimensional feature representations using specialized encoding techniques,
such as hash encoding or quadtree encoding. A multi-layer perceptron (MLP) network processes
these high-dimensional features to predict colors and densities at each point. The results are
rendered using volume rendering techniques, which combine the predicted colors and densities
along the light paths to generate the final images. The MLP network is optimized using a
photometric reconstruction loss, which minimizes the difference between the rendered images
and the ground-truth images to ensure high fidelity.

In the second stage, the scene photos, along with text prompts specifying the desired
seasonal variations, are input into the Stable Diffusion pipeline. It is worth noting that this stage
makes full use of the multi-temporal vegetation segmentation images and S3PVI values
obtained in Chapter 4 to guide the synthesis of realistic vegetation images. Stable Diffusion
utilizes these inputs to manipulate the latent representation of the images. The process begins
with the scene photos, and by gradually denoising and decoding the refined latent code, Stable
Diffusion synthesizes plant images that exhibit the targeted seasonal characteristics while
preserving the original scene content. The integration of text prompts helps guide the diffusion
model to introduce the specified seasonal changes. To ensure spatial consistency, the initial
renderings from NeRF are used as a baseline, upon which Stable Diffusion builds to introduce
appearance changes. This approach leverages the strengths of both NeRF and Stable Diffusion
to generate realistic and seasonally varied 4D plant models.

To further improve the visual quality and geometric consistency of the generated images,
the proposed method integrates LoRA and ControlNet into the pipeline.

LoRA 1is a parameter-efficient fine-tuning technique that adapts pre-trained weights
through low-rank decomposition, enabling fast and effective fine-tuning for downstream tasks.
In this study, LoRA is applied to pre-process the input images, emphasizing key structures such
as trunks and branches.

The LoRA training process is crucial, enabling Stable Diffusion to comprehend the
meaning of S3PVI values and generate images with corresponding vegetation visibility. The
steps include: (1) collecting over 50 medium-resolution images of each plant species across
different seasons; (2) standardizing all images to 512x512 pixel resolution to ensure consistent
processing; (3) performing automatic image annotation using the BLIP neural network,
carefully labeling each image according to its corresponding season; (4) employing the
Kohya ss framework (Bmaltais, n.d.) for LoRA training, which has been verified for
compatibility and performance with Stable Diffusion. Finally, the result graphs of each LoRA
model are analyzed, focusing on the model weight effectiveness and performance indicators,
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rather than relying solely on reducing the loss. Through this process, the LoORA models can
effectively learn the seasonal characteristics of plants, preparing them for the subsequent image
synthesis stage.

During the training data preparation phase, each vegetation image is combined with its
corresponding S3PVI value and image description text. This allows the LoRA model to
establish a mapping between image visual features, S3PVI quantitative indicators, and textual
semantic descriptions. Once trained, the Stable Diffusion model, equipped with the LoRA
plugin, can understand the vegetation visibility level represented by a given S3PVI value and
reflect it in the image generation process, ensuring that the generated vegetation images have
visibility rates matching the input S3PVI values.

Furthermore, the multi-temporal vegetation segmentation images obtained in Chapter 4
are applied to ControlNet's semantic segmentation control. By utilizing pre-generated
segmentation masks, ControlNet can explicitly define the spatial scope of Stable Diffusion's
image modifications, focusing on the vegetation regions and avoiding interference with the
background. The segmentation masks also provide Stable Diffusion with a reference for the
spatial layout of the vegetation, ensuring that the generated images maintain structural
consistency with the original scene.

By establishing the association between S3PVI and vegetation visibility levels through
LoRA training and integrating multi-temporal vegetation segmentation information into
ControlNet, Stable Diffusion can more accurately and elaborately represent the visual features
of vegetation across different seasons. The S3PVI prior knowledge learned by LoRA enables
the generated images to quantitatively reflect the visibility of vegetation, while the
segmentation-guided ControlNet further optimizes the spatial structure expression of the
vegetation. The synergy between the two enhances the 4D modeling method's ability to capture
the temporal and spatial variation patterns of vegetation simultaneously, reconstructing the
dynamic process of plant landscapes with higher realism and detail richness.

This modeling approach, which combines S3PVI and semantic segmentation with LoORA
and ControlNet, fully utilizes the spatiotemporal feature information of vegetation revealed by
the multi-temporal visualization analysis in Chapter 4, transforming it into prior knowledge that
Stable Diffusion can understand and leverage. This greatly improves the accuracy and
expressiveness of 4D scene construction. It represents a new perspective, achieving full-time,
high-fidelity digitalization and simulation of urban green spaces through the integration of
multi-dimensional data and methods.

5.2.3  The main process of the system

The process involves several key steps, as shown in Figure 5.1:
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Figure 5.1 4D generation system for plant landscape modeling.
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1)

2)

3)

4)

5)

6)

524

Video capture: A comprehensive video of the intended plant is recorded to ensure full
coverage from every angle. Plants, within the scope of video production, can be
categorized as either real or virtual. This is achieved by filming over a full 360-degree
rotation at a consistent speed.

Frame extraction: The video is fragmented into frames using a multimedia processing
tool (FFmpeg Developers, 2016). The count of frames obtained is reliant on the length
of the video, intending to secure over 200 frames to facilitate comprehensive scrutiny.

Image processing and analysis: Preliminary analysis for 3D reconstruction involves
crucial steps such as feature extraction, feature matching, and camera pose estimation.
Tools such as COLMAP can be used for this purpose (Schonberger & Frahm, 2016).

Seasonal transformation via Stable Diffusion: Frames are input into Stable Diffusion to
generate images of the plant in different seasonal states. Techniques such as LoRA are
utilized for accurate seasonal depiction, while ControlNet maintains the plant's
structural integrity.

Creating 3D scenes with Instant-ngp, the integrated framework for NeRF
implementation with multiresolution hash encoding: These frames, along with the data
derived from COLMAP, are input into Instant-ngp. This step generates a realistic 3D
rendition of the plant, which can be explored in VR, offering real-time interaction and
the ability to modify various aspects such as lighting and viewpoint.

Integrating seasonal changes in 3D Scenes: The seasonally transformed images,
combined with the data from the COLMAP analysis, are then processed through
Instant-ngp. This step creates a detailed 3D scene reflecting the plant in various seasons.

Model evaluation metrics

To evaluate the quality and realism of the generated 4D plant models, several metrics are
employed:

1)

2)

3)

PSNR measures the ratio between the maximum possible power of a signal and the
power of corrupting noise that affects the fidelity of its representation. Higher PSNR
values indicate better image quality and less distortion compared to the ground truth.

SSIM assesses the perceived quality of digital images and videos by quantifying the
similarity between two images based on luminance, contrast, and structure. SSIM
values range from -1 to 1, with higher values indicating greater structural similarity to
the reference image (Hore & Ziou, 2010).

Learned perceptual image patch similarity (LPIPS) is a learned metric that measures
the perceptual similarity between two images using deep features extracted from a pre-
trained CNN. Lower LPIPS scores suggest higher perceptual similarity to the ground
truth (R. Zhang et al., 2018).
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These metrics provide a comprehensive assessment of the generated 4D plant models,
considering both low-level image quality and high-level perceptual similarity. By evaluating
the models using these metrics, the effectiveness of the proposed framework can be
quantitatively validated.

5.3 Experiments and results

5.3.1  Experimental setup

To demonstrate the effectiveness of the proposed 4D plant modeling framework,
experiments were conducted using a dataset of virtual plants. The use of virtual plants allows
for controlled testing and refinement of the approach, as obtaining comprehensive data from
real plants across all seasons can be challenging. Table 5.2 provides a detailed summary of the
equipment, software, and model versions used in this study, along with the specific parameters
employed for training the LoRA model.

Table 5.2 Equipment, software, and parameters used.

Category Equipment Specifications/Version ParamEterS for  LoRA Value
/Software training
CPU Intel Core i5-11400 LoRA type Standard

Cosine
PC specifications  gpy NVIDIA GeForce RTX | o ccheduler with
3060 Ti —
restarts
RAM DIMM 16 GB LR Warmup (% of steps) 10
FFmpeg Version: 5.1.2 Optimizer ﬁ}(tjamWS
coLMAp  Version: 3.7-windows- yp resolution 512512
no-cuda
Instant-ngp  RTX-3000-and-4000 Network Rank and Alpha 128, 128
St_able_ Version ID: baf6946 Total steps 2000
. Diffusion

Analytical model -

& Software Equipment Specifications/Version Parameters for LORA /6
/Software training
Additional Version ID: e9f3d62 Train Batch Size 1
networks
ControlNet  Version ID: 3011ff6 Epoch 1
Kohya_ss Version 2.0 Regularization factor 1

Mixed precision fpl6
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5.3.2  Data and target plant selection

For this study, a summer maple tree was selected as the target plant for photographic data
collection to train the LoRA algorithm. The distinctive leaves and branching patterns of the
summer maple provide clear and consistent data points that are ideal for algorithmic analysis.
The lush summer foliage ensures seasonal consistency, providing a rich dataset. The tree's
common presence and photogenic nature facilitate accessibility and high-quality image capture,
which are critical for effective algorithm training. These factors contribute to a robust and
diverse dataset, improving the accuracy and efficiency of the LoRA algorithm, which is
essential for generating precise and varied simulated models.

Using the LoRA training method outlined in Section 5.2.2, a dataset of 50 photographs
featuring maple plant models in the target season was compiled. These images were then
processed using the multi-temporal urban green space vegetation visualization framework to
generate segmented images and calculate their corresponding S3PVI values. The S3PVI values
for each image were subsequently recorded in dedicated text files. To train the LoRA model,
the Kohya ss framework was employed, utilizing the segmented images as input data.
Additionally, these segmented images were fed into Controlnet to serve as a reference for
refining certain constraints within the model. Finally, this information will be used in the Stable
diffusion.

Figure 5.2 illustrates a comprehensive process of data collection, image processing, model
training, and image generation, using a summer maple tree as an example. The workflow is
divided into four main steps, each contributing to the overall goal of analyzing and recreating
urban green spaces:

1) Collecting images: This initial step involves capturing target seasonal images using
cameras. The focus is on obtaining high-quality, representative maple trees images.

2) Processing images: The collected images are then fed into a "Multi-temporal urban
green space vegetation visualization framework". This sophisticated system processes
the raw images to extract valuable data. It generates S3PVI values, which quantify
vegetation. Additionally, it produces segmented images that highlight specific areas of
interest. These segmented images are crucial as they focus the algorithm's attention on
key visual elements that contribute to the tree's unique appearance.

3) Training the model: The processed data is used to train a model named "Kohya ss".
This step likely involves machine learning techniques to teach the model to recognize
and understand the characteristics of maple trees. The training process incorporates
both the S3PVI values and the segmented images, allowing the model to learn from
both quantitative data and visual features.

4) Generating images: The final step utilizes the trained LoRA model in conjunction with
original images. Through Stable Diffusion technology, new images are generated. This
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process aims to create realistic, detailed images of urban green spaces that reflect the
learned characteristics of the maple trees and other vegetation.

1. Collecting images

Camera

4
Target seasonal

images:r

2. Processing images | 4. Generatind imaqes
Multi-temporal urban green ’ 9 9

space vegetation visualization c
framework arherd

3. Training model |

/ S3PVI values/—/\-—> Kohya_ss =
Original images

; 4

y

LoRA
/ model // > Stable Diffusion

y

egmented /
images [l '
Input Output -
- oo > Generated image

Figure 5.2 Workflow for training LoRA model using multi-temporal vegetation visualization.

5.3.3  Seasonal variation results

Figure 5.3 demonstrates the effectiveness of the LoORA model within the Stable Diffusion
framework, showcasing a tree in different seasons and angles. The image is divided into four
rows, representing spring, autumn, late autumn, and winter.

90



180° 270°
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Figure 5.3 The state of the target plant in the VR environment in all seasons.

Each row contains four images labeled 0°, 90°, 180°, and 270°, displaying different
perspectives as the tree rotates 360 degrees. The 0° view (leftmost) shows the front view, 90°
the right side view, 180° the back view, and 270° (rightmost) the left side view. The integration
of LoRA and ControlNet ensures that the generated images maintain spatial consistency and
adhere to the original plant's edge structure while introducing realistic seasonal variations.
These changes are reflected in the color and density of the foliage: sparse leaves in spring, full
foliage in autumn, orange-brown leaves in late autumn, and bare branches in winter. By
presenting different angles and seasons, the image comprehensively illustrates the tree's growth
cycle changes, highlighting the model's ability to generate seasonal variations while
maintaining spatial structure. Table 5.3 lists all the parameters applied, further illustrating the
seasonal variations of the plant imagery.
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Table 5.3 Parameters used in Stable Diffusion for seasonal variations.

Parameter Value

Steps 26

Denoising strength 0.33

CFG scale 10

Seed 3373133097

Spring prompt green leaf, bare tree, LORA:winter:0.2
Autumn prompt yellow leaf, LORA:maple_autu:0.6
Late autumn prompt maple tree, LORA:maple_autu:0.6
Winter prompt bare tree, LORA:winter:0.6

Negative prompt: ground, background, trunks, branches, tree roots, small trees, people,
other trees, classifier for paintings, etc, background, building, trunks, branches, small trees,
grass, mountains, lake, sloping land, kkw-Autumn

ControlNet 0 Module: canny, Model: None, Weight: 1.2, Resize Mode: Resize and Fill,
Low Vram: False, Processor Res: 512, Threshold A: 100, Threshold B: 200, Guidance Start: 0,
Guidance End: 1, Pixel Perfect: False, Control Mode: ControlNet is more important

ControlNet 1 Module: depth midas, Model: None, Weight: 1, Resize Mode: Crop and
Resize, Low Vram: False, Processor Res: 512, Guidance Start: 0, Guidance End: 1, Pixel Perfect:
False, Control Mode: Balanced

ControlNet 2 Module: seg_ofade20k, Model: None, Weight: 1.25, Resize Mode: Crop and
Resize, Low Vram: False, Processor Res: 512, Guidance Start: 0, Guidance End: 1, Pixel Perfect:
False, Control Mode: ControlNet is more important

5.34 ControlNet model evaluation

Figure 5.4 presents the results obtained from the three ControlNet models employed in this
study. The left image demonstrates the Canny model's ability to capture the edges of the tree by
converting the plant images into line drawings while maintaining compositional consistency.
The center image shows the depth estimation model's accurate reproduction of the three-
dimensional structure of the tree by extracting depth maps and reconstructing the spatial layout.
The right image illustrates the semantic segmentation model's capability to segment the image
into tree and background pixels.
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Original image Edge detection Depth estimation = Semantic segmentation

Figure 5.4 Comparative results of ControlNet models for edge detection, depth estimation,
and semantic segmentation.

5.3.5 Image quality evaluation

To assess the quality of the generated plant scenes, multiple evaluation metrics were used,
including PSNR, SSIM, and LPIPS. These metrics provide a comprehensive evaluation of the
perceptual errors, visual changes, and perceptual similarity between the generated images and
the reference frames. The evaluation process begins with Instant-ngp converting the 2D images
into a 3D scene, focusing on light and color details. The reference frames serve as a benchmark
for comparison, and Instant-ngp aligns the generated frames with these reference frames. PSNR
measures the peak errors, with higher values indicating better quality. SSIM assesses the visual
similarity, with values closer to 1 representing higher similarity. LPIPS, which utilizes deep
learning, prefers lower scores for a closer resemblance to the original images. Random frame
selection ensures an unbiased evaluation across different scenes.

Table 5.4 presents the comparative analysis of the image quality metrics for the generated
plant scenes across different seasons. The high PSNR and SSIM scores, along with the low
LPIPS scores, demonstrate the high quality of the images produced by Instant-ngp, showcasing
its ability to accurately depict seasonal changes in the VR environment.
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Table 5.4 Comparative analysis of image quality metrics.

Spring Autumn Late autumn Winter
PSNR 31.512 39.468 39.455 29.366
SSIM 0.952 0.965 0.848 0.733
LPIPS 0.457 0.398 0.432 0.589

5.3.6  Seasonal variation results for streetscapes

Figure 5.5 presents a comparative analysis of the generated summer streetscape park and
the original winter streetscape, aiming to evaluate the effectiveness of the proposed system in
simulating seasonal changes. The figure comprises three sub-images: (a) displaying the original
winter image, (b) showing the system-generated summer image, and (c) presenting a real
summer scene.

Through comparative analysis, several key differences can be observed. Trees in the real
summer image appear taller, with more abundant leaves and richer colors, highlighting areas
for improvement in the system's simulation of seasonal vegetation changes. Simultaneously, the
flower beds in the real scene show less dense ground vegetation, reflecting the complex
influence of various factors on plant growth in real environments, subtle environmental
variables that have not been fully accounted for by the current generative model. Furthermore,
the real summer photograph demonstrates a brighter and sunnier environment, underscoring the
limitation of this technology, which primarily focuses on vegetation changes without adjusting
overall lighting conditions.

Despite these differences, the generated summer scene overall demonstrates a satisfactory
seasonal transition effect. These observations provide valuable insights for future research,
indicating potential directions for further enhancing the realism and accuracy of seasonal
transformation models.

These results demonstrate the potential of the proposed framework in generating 4D plant
models that aim to capture both the spatial structure and temporal dynamics of plants. The
integration of NeRF, Stable Diffusion, LoRA, and ControlNet enables the creation of plant
visualizations across different seasons, offering a new approach to urban landscape modeling
and analysis. While there is room for improvement in certain details, such as more accurate
simulation of tree growth and environmental lighting changes, the overall approach
demonstrates some effectiveness in seasonal transition. This research provides insights and
possible directions for further enhancing the realism and accuracy of seasonal transformation
models in the future.
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(a) Original winter scene (b) Generated summer scene (c) Actual summer scene

Figure 5.5 Comparative analysis of seasonal transitions in VR environment.

5.4 Discussion
5.4.1  Limitations of controlled conditions in digital tree modeling

The investigation into digital tree modeling within virtual environments has unveiled
significant insights into the modeling process. However, it is important to acknowledge that the
controlled conditions used in this study may not fully represent the complexities of natural
environments, potentially impacting the applicability of these techniques to real trees. The
consistency of backgrounds that benefits the NeRF process might not translate well to the varied
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backgrounds of real-world settings, potentially affecting model accuracy and effectiveness. For
example, in the real park scene shown in the series of images, the quality of the image generated
by the stabilized diffusion model deteriorated due to the complexity of the scene, as shown in
Figure 5.6, with some noise and broken holes.

Figure 5.6 Example of image quality degradation in complex real-world scenes.

Future research should focus on addressing these limitations and enhancing the robustness
of the modeling system. This could involve developing more advanced algorithms capable of
handling diverse and complex backgrounds, integrating real-world data on plant growth
patterns and local climate conditions, and incorporating sophisticated lighting and atmospheric
modeling. Improving the system's ability to accurately simulate seasonal changes in vegetation,
including tree height, leaf density, and color variations, will be crucial. Additionally, exploring
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ways to represent temporal dynamics beyond just seasonal changes, such as daily and weather-
related variations, could significantly enhance the realism of the models. The development of
adaptive techniques that can adjust to the intricacies of real urban green spaces at various scales,
from individual plants to entire ecosystems, will be essential. Furthermore, creating tools that
allow urban planners and designers to interact with and modify the generated models in real-
time could greatly enhance the practical applicability of this technology in urban planning and
design processes. By addressing these challenges, future iterations of the system could provide
more accurate, versatile, and practical digital tree models that better represent the complexities
of real-world urban green spaces across different seasons and environmental conditions.

5.4.2  Extending the framework to multi-plant scenes and ecosystems

Furthermore, the current framework primarily focuses on modeling and rendering
individual plants. However, in real-world urban landscapes, plants often exist as communities
or ecosystems, exhibiting complex spatial arrangements and interactions. Future work could
explore extending the framework to generate multi-plant scenes, considering occlusions,
competitions, and mutualistic relationships among plants. This would require the development
of more sophisticated scene representation and rendering techniques, as well as the
incorporation of knowledge from ecology and plant physiology to guide the model generation
process.

54.3  Reducing dependence on extensive real image data

Additionally, the current approach heavily relies on high-quality plant image data to train
the NeRF and Stable diffusion models. However, acquiring large-scale, diverse plant image
datasets can be expensive and time-consuming. Future research could investigate leveraging
synthetic data or semi-supervised learning techniques to reduce the dependence on extensive
real image data, thereby improving the scalability and applicability of the framework. Moreover,
integrating this approach with other data sources, such as LIDAR point clouds or multispectral
imagery, could provide additional geometric and semantic information to guide the generation
of 4D plant models.

5.4.4  Converting image-space representations into explicit 3D models

While the plant models generated by the current framework exhibit excellent visual quality
and realism, they are still image-based representations lacking explicit 3D structure and
topology. To enable more in-depth analysis and interaction, such as immersive exploration in
VR or physical simulations, it is necessary to convert the image-space representations into
explicit 3D models. This can be achieved by combining advanced 3D reconstruction techniques,
such as surface mesh extraction and skeleton estimation, with rule-based procedural modeling
approaches.
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5.4.5  Integration with urban simulation tools and decision support systems

Lastly, to fully harness the potential of 4D plant models in urban landscape planning and
design, integration with other urban simulation tools and decision support systems is crucial.
This involves developing user-friendly interfaces and visualization tools that allow urban
planners and stakeholders to intuitively explore and analyze different vegetation scenarios and
their impacts on the environment and human well-being. Integrating plant growth models with
microclimate, hydrology, and biodiversity models can provide a more comprehensive
assessment of urban ecosystem services.

5.4.6  Complementary relationship between 4D modeling and S3PVI

It is also essential to consider the complementary relationship between the 4D modeling
approach presented in this chapter and the multi-temporal visualization analysis framework
introduced in Chapter 4, particularly the S3PVI index. The S3PVI index, which quantifies the
visual importance of individual plant species across different seasons, provides a solid
theoretical foundation and data support for the pursuit of realism and dynamism in 4D modeling.
By revealing the spatiotemporal differentiation patterns of vegetation visual features, S3PVI
offers valuable prior knowledge to guide the generation of realistic and diverse vegetation
images in the 4D modeling process. Conversely, the 4D modeling approach enhances the multi-
temporal visualization analysis by providing a more intuitive and immersive means of
expressing the S3PVI results. The synergistic integration of S3PVI and 4D modeling opens up
new possibilities for comprehensive understanding and representation of the multi-dimensional
spatiotemporal features of urban green spaces. Future research could explore the integration of
S3PVI with other ecological and recreational indicators, such as biodiversity, carbon
sequestration, and social interaction, to provide a more holistic analysis and visualization of the
complex interplay between the visual, ecological, and social functions of urban vegetation
within the 4D modeling platform.

5.4.7  Future work and challenges

For future work, the plan is to explore improvements in simulating multiple plants
simultaneously, dealing with occlusions and complex structures, improving the realism of
seasonal transitions, and introducing MR interactions. By addressing these challenges and
integrating the framework with a broader range of urban simulation and planning tools, more
accurate, informative, and actionable digital twins of urban green spaces can be created,
contributing to the development of sustainable and resilient cities.

Additionally, the research aims to incorporate the S3PVI index introduced in Chapter 4
into the workflow. The process would involve using S3PVI to assess the current situation,
followed by planning and designing trees and arranging various plants on a 3D ground plane.
The 4D seasonal changes would then be generated using the methods described in this chapter.
Finally, the aesthetics of the planned landscape would be evaluated using an enhanced version
of S3PVI, incorporating the technological advancements discussed. This integrated approach
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could provide a more comprehensive and dynamic assessment of urban green spaces across
different seasons, potentially leading to more informed decision-making in urban landscape
design and management.

5.5 Summary of this chapter

This chapter introduced a framework for 4D plant landscape modeling that integrates time
dynamics with advanced imaging techniques. The proposed approach combines NeRF for
learning 3D scene representations and stable diffusion for synthesizing time-varying
appearances, enabling the generation of realistic plant models across different seasons. The
integration of LoRA and ControlNet further enhances the visual quality and geometric
consistency of the generated images.

Experiments conducted on a dataset of virtual plant images demonstrated the effectiveness
of the proposed framework in capturing both the spatial structure and temporal dynamics of
plants. Quantitative evaluation using the PSNR, SSIM, and LPIPS metrics showed that the
generated plant models exhibit good fidelity and perceptual similarity compared to the ground
truth.

The developed 4D plant modeling framework has potential applications in urban landscape
planning and design. By providing realistic visualizations of plant growth and seasonal
variations, it can assist urban planners and environmental scientists in making decisions
regarding the selection, placement, and management of vegetation in urban spaces. The
framework may also be extended to other applications, such as virtual reality simulations, video
games, and film production, where realistic plant models are desirable for creating immersive
environments.

The 4D modeling approach presented in this chapter and the S3PVI index introduced in
Chapter 4 have a complementary relationship. The spatiotemporal differentiation patterns of
vegetation visual features revealed by S3PVI can inform the pursuit of realism and dynamism
in 4D modeling. The integration of S3PVI data, including multi-temporal vegetation
segmentation maps and quantitative descriptions of plant visibility levels, can enhance the
accuracy and expressiveness of the generated 4D scenes. Conversely, the 4D modeling method
provides a way to visualize and communicate the S3PVI results, potentially facilitating the
dissemination of scientific knowledge to stakeholders and the public.

The integration of S3PVI and 4D modeling offers opportunities for understanding and
representing the multi-dimensional spatiotemporal features of urban green spaces. It represents
anew approach in urban green space research, combining quantitative assessment with realistic
visualization. This integrated approach has the potential to support the understanding, planning,
and management of urban vegetation, contributing to the development of sustainable cities.

Future work will focus on improving the efficiency and scalability of the proposed
framework, exploring alternative architectures for learning 3D representations, and
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incorporating additional factors such as environmental conditions and plant-plant interactions.
Integrating the 4D plant models with urban simulation tools and decision support systems could
also be investigated to facilitate urban landscape planning and management. Moreover, future
research could explore the integration of S3PVI with other ecological and recreational
indicators to provide a more comprehensive analysis and visualization of the interplay between
the visual, ecological, and social functions of urban vegetation within the 4D modeling platform.

In conclusion, the proposed 4D plant modeling framework, built upon the foundation of
the comprehensive assessment framework and the S3PVI method, offers a tool for visualizing
and analyzing the dynamic nature of urban green spaces. The insights gained from these
approaches can contribute to a better understanding of urban green space performance,
informing planning and management practices. The integration of multi-temporal visualization
and 4D modeling represents an advancement in the field of urban landscape modeling, enabling
the creation of realistic plant visualizations that capture the temporal dynamics of plant growth
and development.
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Chapter 6

Conclusion

6.1 Summary

This dissertation presents a comprehensive and innovative approach to assessing and
modeling urban green spaces by integrating multi-source data, novel indicators, and advanced
visualization technologies. The research aims to address the limitations of existing methods and
provide urban planners and policymakers with more comprehensive, nuanced, and actionable
insights for evidence-based decision-making in urban green space planning and management.

6.1.1  Comprehensive assessment framework for urban green spaces

To achieve this goal, this study constructed a multidimensional evaluation framework that
integrates multiple data sources and evaluation metrics, such as the GVI and GCR, to assess the
spatial distribution, visibility, and composition of urban green spaces in a multi-dimensional
manner. The case study of Osaka City demonstrates the framework's potential in revealing
variations in green space provision and the influence of topography on green space distribution,
providing objective and quantitative analysis results as data support for designers and planners.

6.1.2  Multi-temporal urban green space vegetation visualization analysis framework and
S3PVI

This study also proposes a multi-temporal urban green space vegetation visualization
analysis framework that integrates various data sources and advanced technologies to capture
the temporal changes and seasonal variations in vegetation characteristics. The S3PVI indicator
aims to evaluate the visual importance and attractiveness of different plants in urban landscapes,
providing quantitative basis for plant selection and configuration decisions.
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The framework and S3PVI indicator are primarily intended for urban planners, park
designers, and street/road planners. In practical applications, these tools can be utilized to first
evaluate the current situation with S3PVI, especially in brownfield projects. This step provides
objective and detailed baseline data, helping to clarify the project's starting point and areas for
improvement. Subsequently, users can plan and design trees, laying out various plants on a 3D
ground surface. The framework allows designers to simulate the visual effects of different plant
combinations across seasons, thereby optimizing plant selection and spatial arrangement.

The application of this method in Sanshikisaido, Suita City, Osaka Prefecture, Japan,
revealed spatiotemporal differentiation patterns of visibility characteristics for different plant
types. For instance, by analyzing the seasonal changes in S3PVI for iconic plants such as cherry
blossoms and maple trees, planners can optimize plant configurations to ensure year-round
landscape attractiveness. This not only demonstrates the practical application value of the
method but also provides new perspectives and approaches for urban green space planning and
management.

The multi-temporal nature of the framework enables users to predict and visualize
vegetation growth and changes over time, which is particularly important for long-term
planning. This comprehensive approach to assessment, planning, and management of urban
green spaces may support professionals in making more informed and sustainable decisions,
potentially leading to the creation of visually appealing and ecologically diverse urban green
space systems.

6.1.3  Application of advanced visualization technologies

This study integrates NeRF and Stable Diffusion to create immersive 4D visualizations of
urban green spaces, enabling intuitive exploration and analysis of vegetation dynamics in space
and time. These technologies aim to enable intuitive exploration and analysis of vegetation
dynamics in space and time, potentially offering urban planners and landscape architects a tool
for visualizing and communicating design proposals.

The application of these visualization techniques may be particularly useful in the later
stages of the design process, after initial assessments and planning have been conducted using
tools like S3PVI. Planners and designers could use this 4D modeling approach to create virtual
walkthroughs of proposed green spaces, allowing stakeholders to experience how the
vegetation might change across seasons and years.

Building upon the data foundation laid by the S3PVI assessment framework, the
integration of Low-Rank Adaptation (LoRA) and ControlNet aims to improve the visual quality
and geometric consistency of the generated images. This enhancement could potentially allow
for more accurate representations of specific plant species and their growth patterns, which may
be crucial for detailed design reviews and public presentations.
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Experiments conducted on a virtual plant image dataset suggest that this framework might
be effective in capturing the spatial structure and temporal dynamics of plants. In practice, this
could mean that urban planners and landscape architects might use these tools to simulate and
evaluate different planting scenarios over extended periods, potentially informing decisions
about species selection, placement, and long-term maintenance strategies.

6.2 Research contributions
6.2.1  Comprehensive assessment framework

The comprehensive assessment framework contributes to the field of urban green space
assessment by integrating multi-source data and evaluation metrics to provide a multi-
dimensional understanding of urban green spaces. The framework addresses the limitations of
existing methods that focus on single dimensions and oversimplify the evaluation process. By
considering the interplay between different indicators and the influence of topography on green
space distribution, the framework offers a more holistic and context-specific approach to urban
green space assessment, supporting evidence-based decision-making in urban planning and
management.

6.2.2  Multi-temporal urban green space vegetation visualization analysis framework and
S3PVI

The multi-temporal urban green space vegetation visualization analysis framework
represents a contribution to the field of urban green space assessment by providing a
comprehensive approach to capturing the temporal changes and seasonal variations in
vegetation characteristics. The framework integrates various data sources and advanced
technologies, enabling the characterization of the spatiotemporal differentiation patterns of
vegetation visual features. The introduction of the S3PVI indicator within this framework
further enhances its capability to evaluate the visual importance and attractiveness of different
plant types in urban landscapes, addressing a research gap in existing assessment methods that
focus primarily on overall greenness or vegetation health.

6.2.3  Integration of advanced visualization technologies

This study explores the integration of NeRF and Stable Diffusion to enhance the realism
and expressiveness of 4D urban landscape modeling. By combining these visualization
techniques, the proposed framework aims to capture both the structural and temporal aspects of
urban vegetation with improved detail and consistency.

The incorporation of LoORA and ControlNet into the modeling pipeline is intended to refine
the visual quality and spatial coherence of the generated plant images. LoRA's parameter-
efficient fine-tuning capabilities are leveraged to utilize semantic information provided by the
S3PVI values, aiming to ensure better alignment between the synthesized vegetation and the
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intended seasonal characteristics. ControlNet's semantic segmentation guidance is employed to
maintain geometric consistency by guiding the image manipulation process to respect the
underlying plant structures.

The integration of these visualization technologies contributes to the development of tools
for exploring and analyzing urban green spaces across spatial and temporal dimensions. The
resulting framework has the potential to provide insights into the dynamics of urban ecosystems
and support decision-making processes related to urban landscape management and planning.

6.3 Limitations and future work

While this dissertation introduces novel approaches to urban green space assessment and
modeling, there are several areas that require further research and development:

1) Integration of the proposed frameworks: Future work should focus on developing an
integrated system that combines the comprehensive assessment framework, the multi-
temporal visualization analysis framework with S3PVI, and the 4D plant modeling
approach. This integration could enable an understanding and representation of urban
green spaces, from multi-dimensional assessment to dynamic visualization. For
example, a unified software platform could be developed, allowing users to transition
seamlessly from initial assessment to detailed planning and long-term simulation.
This integrated system could also incorporate machine learning algorithms to
optimize data flow and decision support functions between different frameworks.

2) Incorporation of additional data sources: Integrating the proposed frameworks with
other data sources, such as LiDAR point clouds, multispectral imagery, and IoT sensor
data, could provide a more comprehensive understanding of urban green spaces. This
integration could not only assess ecological functions, microclimate eftects, and
human-environment interactions but also improve model accuracy and predictive
capabilities. For instance, incorporating high-resolution remote sensing data could
enhance vegetation health assessment, while integrating real-time meteorological data
could improve the accuracy of seasonal change predictions. Future research could
also explore effective ways to fuse and process these heterogeneous data sources, as
well as how to utilize crowdsourced data to supplement traditional data collection
methods while preserving privacy.

3) Validation and refinement of the S3PVI: The S3PVI indicator introduced in Chapter
4 should be further validated using a diverse range of urban green space types and
cultural contexts. Expanding the current plant dataset to include more species and
environmental conditions could improve the robustness and applicability of S3PVI.
Collaborating with domain experts and stakeholders could also help refine the
indicator and ensure its relevance across different urban landscapes. Future research
could consider developing a dynamic S3PVI system capable of automatically
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4)

5)

6)

adjusting weights based on local and seasonal factors. Additionally, exploring
methods to combine S3PVI with other quantitative and qualitative indicators, such as
biodiversity indices, economic metrics, health data, or public preference surveys,
might yield a more comprehensive urban green space quality assessment system that
addresses the full range of ecological, social, economic, and psychological impacts of
urban green spaces.

Expansion of the 4D plant modeling framework: The 4D plant modeling approach
presented in Chapter 5 could be extended to generate multi-plant scenes, considering
factors such as occlusions, competitions, and mutualistic relationships among plants.
Incorporating plant growth models and environmental factors could enable more
realistic and dynamic visualizations of urban vegetation. Future research directions
might include developing more complex ecosystem models capable of simulating
long-term dynamics of plant communities and their responses to climate change.
Moreover, integrating urban microclimate models and human activity patterns could
provide a more comprehensive view of urban ecosystem dynamics. Exploring how to
increase model complexity while maintaining computational efficiency will be an
important technical challenge.

Integration of S3PVI with 4D plant modeling: Future research should focus on
developing methods to seamlessly combine these two approaches for a more
comprehensive assessment of urban green spaces. Efforts should be directed towards
expanding and refining the S3PVI dataset to encompass a broader range of plant
species across various seasons and growth stages. Enhancing the S3PVI detection
system to accurately identify and assess plants over time will be crucial. Improving
the visual quality and accuracy of 4D modeling outputs to meet the high-definition
standards required for effective S3PVI analysis is another key area for development.
A primary objective will be to develop dynamic assessment capabilities for S3PVI,
enabling it to evaluate the temporal dimensions inherent in 4D models. This would
allow for a more nuanced understanding of seasonal changes in urban vegetation.
Future work could explore innovative ways to integrate S3PVI into the 4D modeling
process, potentially using it to guide both model generation and evaluation. Extending
this integrated system to larger spatial scales, such as entire cities or regions, while
maintaining detail and accuracy, represents another important research direction. This
expansion will necessitate the development of efficient algorithms capable of
processing large-scale data and performing complex computations. Pursuing these
research avenues aims to create a more dynamic and comprehensive approach to
urban green space modeling and assessment, ultimately providing urban planners and
designers with more sophisticated tools for decision-making and strategy
development.

Integration with urban planning and management tools: To fully leverage the potential
of the proposed frameworks, integration with existing urban planning and
management tools is crucial. Developing user-friendly interfaces and visualization
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platforms that allow stakeholders to explore and analyze urban green spaces could
facilitate evidence-based decision-making and collaborative planning processes.
Future research could explore how to seamlessly integrate these new tools into
existing urban information systems and decision support frameworks. For example,
developing interactive platforms that support multi-stakeholder engagement, or
creating dynamic urban green space "digital twin" systems capable of real-time
updates. Additionally, investigating how to utilize MR and virtual VR technologies to
enhance stakeholder engagement and public consultation processes could also be a
valuable direction.

Addressing these limitations and exploring the identified future research directions has the
potential to significantly advance the field of urban green space assessment and modeling. The
development of a more comprehensive, data-driven, and stakeholder-oriented approach could
bridge the gaps between assessment, visualization, and planning, ultimately supporting the
creation of sustainable, resilient, and livable urban environments. This integrated approach
could enhance decision support by providing urban planners and policymakers with more
nuanced and actionable insights, leading to more informed decision-making processes.
Moreover, the integration of advanced visualization technologies with user-friendly interfaces
could facilitate better communication and collaboration among diverse stakeholders, fostering
more inclusive and participatory urban planning processes.

The incorporation of temporal dynamics and ecological relationships in the modeling
frameworks may enable better long-term planning and management of urban green spaces,
enhancing their resilience to environmental changes and societal needs. Additionally, the
proposed integrated system could support adaptive management strategies by providing real-
time data and predictive modeling capabilities, allowing for more responsive and flexible urban
green space management.

This dissertation presents a comprehensive and innovative approach to urban green space
assessment and modeling, integrating multi-source data, novel indicators, and advanced
visualization technologies. The proposed frameworks and methodologies contribute to the
development of more holistic, nuanced, and actionable approaches to understanding and
managing urban green spaces. These contributions include a comprehensive assessment
framework that integrates multiple data sources and evaluation metrics, a multi-temporal urban
green space vegetation visualization analysis framework featuring the novel S3PVI indicator,
and the integration of advanced visualization technologies for dynamic 4D modeling of urban
green spaces.

Collectively, these contributions support the creation of sustainable and resilient urban
environments by providing tools for more informed decision-making and adaptive management.
However, realizing the full potential of these approaches requires addressing the identified
limitations and pursuing the outlined future research directions. This necessitates continued
research efforts and collaboration among diverse stakeholders, including urban planners,
environmental scientists, data scientists, and local communities.
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Future work should focus on developing an integrated system that seamlessly combines
these frameworks, incorporates a wider range of data sources, and interfaces effectively with
existing urban planning and management tools. While the proposed frameworks and
methodologies offer potential tools for urban planning and management, their practical impact
and effectiveness require further validation and refinement through real-world applications and
collaborations with urban planners, policymakers, and local communities. The true value of
these approaches will ultimately be determined by their ability to address the complex
challenges faced by cities in creating and maintaining sustainable, resilient, and livable green
spaces. As urban areas continue to evolve and face various environmental challenges, continued
research and interdisciplinary collaboration remain essential to develop and improve methods
for urban green space assessment and management.
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