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要旨

近年，船外機の大型化が進み，エンジンが船内にあるスタンドライブを搭載していた大きさのボートに船外
機を搭載することが増えてきた．この変化は，エンジンのメンテナンス性の向上や船内の居住空間の拡大につ
ながったが，一方で船外機搭載による重心移動は艇の安定性を悪化させる悪い効果も伴った．高速滑走艇にお
ける不安定な挙動の代表例として挙げられるのが，ヒーブとピッチの連成運動であるポーポイズである．ポー
ポイズを低減させるため，従来ドライバーは船速を減少させて対応していたが，こうした対応は高速化したボ
ートの性能を十分に活かしきれない．この課題に対応するため，船外機の姿勢制御によるポーポイズの低減に
関する研究を実施した．
本論文は以下の 6章で構成した．
第 1章では，緒言として本論文の背景と目的について述べ，関連する研究を整理した．
第 2章では，実機試験結果を用いた運動モデルの推定法について提案した．運動モデルは，減揺制御に用い
るために，船外機の姿勢を陽に考慮していることが求められる．そこで艇体と船外機に働く力をそれぞれ定義
し，それらが艇体の状態と船外機の姿勢に依存する形とした．運動モデルに含まれるシステムパラメータは実
機試験結果を基に同定し，その際用いる最適化の手段として，滑らかではなく，多峰性も強い関数景観を有す
る問題にも適用可能な Covariance Matrix Adaption Evolution Strategy (CMA-ES) を採用した．実機試験
では，対象船の船速と船外機トリムを広く変化させながらデータを取得した．推定したシステムパラメータを
用いた数値シミュレーションの結果は，実機試験結果とよく一致しており，本手法の妥当性を確認できた．ま
た，CMA-ESを用いた最適化計算に与える乱数シードの影響についても検討を行った．
第 3章では，ポーポイズの安定性に関する解析を行った．線形化した運動モデルは，平衡点が不安定化する
と，運動が直ちに発散する．しかし実機で生じるポーポイズは，運動が発散せず，最終的に定常状態に落ち着
き，安定なリミットサイクルが生じる．本論文ではこの事実を考察するため，平衡点周りで線形化した運動モ
デルと，非線形な運動モデルの 2つを用い，ポーポイズの安定性に関する検討を行った．その結果，線形化し
た運動モデルが不安定になる点で，安定な固定点が出現する事実を基に，ポーポイズがスーパークリティカル
なホップ分岐によって生じることを示した．また，対象船における船外機のスラストおよびトリム角による安
定性の変化を，実機試験と解析結果から考察した．さらに，実機試験において，同一条件下においても，運動
の初期値に応じてポーポイズの発生と消滅が生じる結果が得られたことを説明し，それについての理論的考察
も併せて示した．一方，数値計算におけるタイムステップの選択によっては，平衡点と固定点が併存する可能
性があることも示し，これは実機試験で生じる現象に対応している可能性を示唆した．
第 4章では，リヤプノフ安定論に基づき，船外機トリム角をアクティブに制御することで，ポーポイズを低
減する制御手法を提案した．船外機のトリム角の平均値を変化させると，ポーポイズは低減するが，同時に船
速も低下するため高速化の障壁となる．そこで本研究では，ポーポイズを低減すること，及び，その際に船外
機のトリム角の平均値を維持すること，という 2つの目標を立てて，制御手法を検討した．制御手法として，



ii

運動モデルの不確かさや非線形性に対するロバスト性を持ち，船外機のトリム角の作動特性にも適したスライ
ディングモード制御を採用した．その結果，2つの目標を達成できる新しいアルゴリズムを提案し，数値シミ
ュレーションのみならず，実機試験によってもその性能を検証した．またスライディングモード制御における
重要な制御設計パラメータの影響を，数値シミュレーションと実機試験により検証し，理論的な側面から考察
を行った．
第 5章では，より簡素な表現の運動モデルについて検討した．第 2章で提案した運動モデルは，精緻ではあ
るものの，実機での計測が一般に難しいヒーブ項についての運動方程式が含まれていた．そこでヒーブ項を省
略すると同時に，運動方程式を単純な展開計算をベースに構成することで，簡易化を行った．その結果得られ
た運動モデルは，第 2章で得た運動モデルと概ね同等の性能を有することを確認し，加えて実機試験結果との
一致をも確認した．また，第 4章で提案した制御器による減揺効果を有することから，船外機の挙動に対する
船体の応答が，第 2章で提案した運動モデルと同等であることを確認し，簡易運動モデルの有効性を示した．
これらの検証を通じて，第 2章で提案した運動モデルの推定法を，他の運動モデルに対して適用できる可能性
を示した．
第 6章では，以上の内容を総括すると同時に，本研究の扱う分野の将来の発展性を展望し，本論文の結論と

した．
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第 1章

序章

1.1 研究背景
クルージングや漁業などで使用される滑走艇では，船外機の大型化や多機がけ対応により，従来エンジンが
船内にあるスタンドライブが搭載されていた大きさのボートに船外機を搭載する例が増加している．National
Marine Manufacturers Association (NMMA) が発行しているレポート [1]によると，2020年のスタンドラ
イブを搭載したボートの売り上げ台数は 2010年比で 40%以上減少しているのに対し，船外機を搭載したボー
トの売り上げ台数は約 90%増加している．こうした変化は，エンジンのメンテナンス性の向上や船内の居住
空間の拡大につながった．また，艇抵抗低減に効果のあるステップハル艇 [2]の普及により，ボートの高速化
や燃費の改善も進んできた．一方で，船外機搭載による重心移動は艇の安定性を悪化させるという悪い効果も
伴った．高速滑走艇の不安定挙動の代表例として挙げられるのが，ヒーブとピッチの連成運動であるポーポイ
ズである．
一般にポーポイズが発生すると，ドライバーは船外機のトリムを下げたり，トリムタブやインタセプタを使

用することで，船速を落としてポーポイズの低減を図る．しかし，こうした対応は抵抗が増加することから，
燃費の悪化につながり，高速化したボートの性能を十分に活かしきれない．また，船型や重心位置の変更によ
りポーポイズを改善することは可能であるが，これらはボート製造会社が追加のコストと開発期間を負担する
ことにつながる．
そこで，本研究では船外機の姿勢を変化させると艇体の姿勢も変化することに着目し，船外機のトリム角を

アクティブに制御してポーポイズを減揺することを検討する．

1.2 研究目的
ポーポイズを減揺する制御を行うためには，まずその運動を定式化した後に，制御器を設計する必要がある．
艇体運動の定式化においては，船外機の姿勢を陽に考慮する必要がある．流体力学に基づく運動モデルは多く
のシステムパラメータを含み，大型船舶の分野では，その推定に模型試験や CFDを使うことが多い．しかし
ながら，船外機艇は製造会社が極めて多く，艇体形状も製造会社によって異なることから，全ての艇に対して
模型試験や CFDを行うのは現実的ではない．そこで本研究では，実機試験結果を用いてシステムパラメータ
を同定する手法を提案する．この手法により，将来的にボート製造会社は船外機を搭載して，あるパターンで
運転することで，自社のボートの運動モデルを推定できるようになる．制御器の設計においては，船外機の特
性を理解して設計することが求められる．船外機のトリム角は一定速度で変化し，速度を可変にすることがで
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きない．こうしたアクチュエータに対して，一般的な最適制御を適用すると，制御対象が十分減揺した後でも
アクチュエータが大きく動き，かえって揺れを増幅させることになる．そこで本研究では，可変構造制御の一
つである，スライディングモード制御の適用を検討する．
第 2 章では，運動方程式を立式したのちに，実機試験結果を用いたシステム同定の手法を提案する．第 3 章

では，ポーポイズの発生原理を非線形力学的観点から考察する．この章はポーポイズの減揺制御には直接的に
影響しないが，ポーポイズという現象を理解する上で重要である．第 4 章では，スライディングモード制御を
用いたポーポイズの減揺制御器の設計を行う．第 5 章では，第 2 章で提案した運動モデルをより簡素化した
モデルについて検討を行う．ポーポイズは 3自由度の運動として表現することが可能であるが，ボートの運動
は本来 6自由度であり，第 5 章で提案するモデルは将来の自由度の拡張性を見越したものとなっている．
本研究の目的は，ボートにおいて最も重要な不安定現象の一つであるポーポイズを題材として，ボートの運

動モデルのより実際的な推定方法と艇体の運動制御方法を確立することである．

1.3 先行研究と学位論文の関係
本節では，本研究で扱う滑走艇のポーポイズの運動と制御に関する先行研究をそれぞれ分けて記述する．

1.3.1 運動モデルとシステム同定に関する先行研究
高速滑走艇のモデル化は古くからいくつかのアプローチで行われてきた．この分野における最も先行的な研
究の 1つは Savitsky [3]によって行われた．Savitskyは Day & Haag [4]の研究を基に，艇体を五角柱のモデ
ルに近似し，艇に働く揚力と抗力，そしてスラストのつり合いを計算することで，艇の姿勢を予測する手法
を提案した．この研究はその後の多くの研究のベースとなり，例えば Ghadimi et al. [5]は Savitskyのモデ
ルにおいて，全圧力分布を用いて流体力学的特性を決定する数学モデルを提案し，Savitskyのモデルとの比
較を実施した．また，Zhao [6] は簡略化された非線形解析を，Zhao et al. [7] の完全非線形数値解法と比較
し，さらに落下試験により検証した上で，Savitskyのモデルにおける揚力係数，抗力係数，圧力中心に関する
経験式と比較してよく一致することを確認した．Savitskyのモデルを単純な Vハル艇から拡張するような研
究も見られる．例えば，Svahn [8]は Savitskyのモデルをステップハル艇に拡張する方法を提案した．また，
Sakaki et al. [9]はトリムタブとインタセプタを備えたの評価方法を提案し，遺伝的アルゴリズムを用いて性
能を最適化する手法を提案した．

2D + t法は艇体を前後軸と交差する断面に分割し，2次元のラプラス方程式を船首側から解くことで，艇体
の姿勢や抵抗を予測する手法である．Zarnick [10]は 2D + t法を用いて運動モデルを定式化し，その係数を理
論的または経験的に求めた．Hicks et al. [11]はこのモデルを使って，流体力係数を多変数テイラー級数に展開
することでモデル精度の向上を狙った．Sun [12]はポテンシャル流理論に基づく二次元境界要素法 (BEM) を
開発し，剛体の入水問題について研究を行った．その上で，BEMと組み合わせた 2D + t法を用いて，滑走艇
の流体力学的性能を調査した．この研究を発展させ，Sun & Faltinsen [13]は波浪中における滑走艇の性能に
ついて検討し，Fridsma [14]の実験と比較した．また，Ghadimi et al. [15]はトランサム影響を考慮した無次
元長に対する関数を導入した上で，同様に 2D + t法を用いて圧力分布を計算し，平衡方程式を満たす反復法
を用いて滑走艇のピッチ角と抵抗を予測する手法を提案し，同様に Fridsma [14]の実験と比較した．
さらに，Ghassemi & Ghiasi [16]はポテンシャルに基づく境界要素法によって誘導圧力抵抗を，境界層理

論によって摩擦抵抗を，そして実用的な手法によってスプレー抵抗をそれぞれ計算することで，艇抵抗を予測
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するモデルを提案し，その結果は実機試験結果とよい一致を見せた．
運動モデルの形式として，慣性項と減衰項と復原項を組み合わせた常微分方程式の形で表現したものも存在
する．例えば Troesch [17]はこの形式で運動モデルを表現し，模型試験によってその値を同定した．この研究
で，Troeschは慣性項と減衰項が艇体の揺れの振幅と周波数に依存することを明らかにした．
こうした研究はいずれも，艇体に対するモデル化に注力されており，船外機に働く力をモデル化した研究は

多くはない．片山ら [18]は船外機の水没部の抵抗を模型試験によって求めている．しかしながら，船外機のト
リム角を変化させた検討までは行われていない．
一方，こうしたモデルには複数のシステムパラメータが存在する．こうしたパラメータは，模型試験を基に
同定する方法 [17,18]や，数値流体解析 (CFD)により同定する方法が存在する．例えば Su et al. [19]は VOF
法と 6 自由度の運動を組み合わせて解析することで，実験データを用いることなく艇体姿勢を予測する方法
を提案した．Avci & Barlas [20] は CFD において発生するベンチレーション問題 (Numerical Ventilation
Problem)に取り組み，計算データの精度向上に貢献した．しかしながら，模型試験では実船とのスケールの
違いによる誤差が発生する．Fathi Kazerooni & Seif [21]は異なるスケールの模型船で試験を行い，抵抗係数
が異なることを示した．また，Judge et al. [22]も同様に異なるスケールの模型船で試験を行い，艇体ピッチ
角が異なることを示した．加えて上記で示した CFDの結果は，いずれも模型試験との比較であり，実機試験
と比較した結果は，文献調査では見つかっていない．
本研究ではこれらの先行研究を踏まえて，船外機のトリム角をアクティブに制御してポーポイズを減揺する
ため，艇体と船外機に働く力をそれぞれ定義し，かつ船外機の姿勢によってその力が変化するようなモデルを
提案する (2.1 節) ．次に実船の試験データからモデルに含まれるシステムパラメータを同定する手法を提案す
る (2.2 節) ．この手法ではシステム同定問題を数値シミュレーションと実機試験結果の差を最小化する問題と
して捉え，Covariance Matrix Adaption Evolution Strategy (CMA-ES)を用いて解く．この手法を用いて
実際に実機試験結果からシステムパラメータを推定し，その結果について考察する (2.3 節) ．

1.3.2 滑走艇の安定性とポーポイズの発生に関する先行研究
ポーポイズの発生と消滅に関する研究においても，Savitsky [3] の研究は最も先行的な研究の 1 つであ

る．Savitsky は，1.3.1 節で述べた五角柱のモデルを用いて予測された艇のピッチ角がポーポイズの限界
ラインよりも小さいときは，安定であることを示した．Savitsky [3] と Brown [23] の式をベースとして
Ekman & Rydelius [24]は，インタセプタの高さによりポーポイズの発生限界がどのように変化するかを調査
した．その際，対象艇の実機試験とより一致するように，ピッチ角の計算値に定数を加えた．
一方，Hicks et al. [11]は線形システムを用いて重心位置による安定性の変化を分析し，境界となる重心位

置を特定した．その上で，非線形項を含むシミュレーションを用いて，状態変数の二次項のうちどの項を含む
かで，ポーポイズの発生有無が変化することを明らかにした．Katayama [25]は線形システムのパラメータを
拘束試験で同定し，減衰係数を増加させていくことでポーポイズが消滅していくこと，また結合復原係数を削
除することでポーポイズが完全に消滅することを明らかにした．線形モデルの係数同定に 2D + t法と BEM
を用いたのは，Sun & Faltinsen [26]である．同定した線形システムを用いて安定性解析によりポーポイズの
発生を予測した後，非線形シミュレーションを用いて時系列解析を行った．Sun & Faltinsen [27]はこの研究
を発展させ，2D + t法に基づく数値シミュレーションを用いて重心位置に対するポーポイズの発生限界につ
いて調査し，Day & Haag [4]の試験と比較した．このように重心位置とポーポイズの発生に関して調査した
研究は多く，近年では Zan et al. [28]がトリマラン艇のポーポイズ発生に関して重心と慣性モーメントの影響
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を調査し，重心を前方に移動させたり慣性モーメントを増加させることでポーポイズの振幅が増加することを
示した．
また，CFDを用いてポーポイズの発生に関して調査した研究も見られる．Kim et al. [29]は，CFDを用い

て異なる side appendageを持つ滑走艇について計算を行い，side appendageの違いによるポーポイズの発生
について調査した．また Sajedi et al. [30]は，高さの異なるウェッジを装着した場合の流体力学的効果につい
て実験と CFDを用いて調査し，ウェッジをつけることでポーポイズを減揺できることを確認した．
非線形力学の観点からポーポイズを取り扱った研究も存在する．Troesch & Falzarano [31]は線形システム
による安定性を論じたのちに，Troesch [17]の研究における模型実験から得られた非線形シミュレーションを
用いて，重心位置を変化させたときにホップ分岐が生じ，安定性に変化が生じることを示した．ここでいうホ
ップ分岐とは，平衡状態から振動が出現する分岐現象のことを呼ぶ [32]．これらの研究では，ポーポイズがシ
ステムの平衡点の安定性が損なわれることによって生じること，また非線形システムではリミットサイクルが
生じることが明らかにされてきた．一方で，ポーポイズのリミットサイクルとしての安定性に関する考察は，
文献調査では見つけられていない．また，これらの研究は模型試験を基にしたシミュレーションにより考察を
行っており，実機での現象との対応が取れているとは言い難い．Katayama et al. [33]は，拘束試験により得
られた揚力，抵抗，ピッチ方向モーメントから，実船スケールにおける揚力，抵抗，ピッチ方向モーメントを
推定した．その結果，実船スケールにおけるポーポイズの発生領域は模型スケールよりも大きくなること予測
し，模型スケールと実船スケールでの結果が一致しないことを示した．しかしながら，この研究では実船スケ
ールでの検証までは行われていない．
本研究では，第 2 章で求めた実船ベースの運動モデルを用いて記述する非線形システムと，これを平衡点近

傍で線形化したシステムのそれぞれに対して安定性を解析することで，ポーポイズを非線形力学理論における
分岐解析の側面から明らかにする．本研究では，まず平衡点近傍で線形化する方法とその安定性の判別法を示
す (3.1.1 節)．次に，固定点の探索とその安定性の判別を数値計算を用いて行う方法を示す (3.1.2 節)．これ
らの手法を用いて，第 2 章で求めた運動モデルを用いて安定性を分析し，ポーポイズの発生とその分岐現象に
ついて考察する (3.2 節)．

1.3.3 ポーポイズの減揺に関する先行研究
ポーポイズの減揺に関する最も多い研究は重心位置やデッドライズなどの船型と艇体のピッチ角に関する
ものである．Savitsky [3]は，艇体のピッチ角を小さくすることや，艇体のデッドライズを小さくすることで，
ポーポイズが消滅することを示した．類似の研究は多く見られ，Sun & Faltinsen [27]は，2D + t法を用いて
同じくポーポイズを抑えられる重心位置やピッチ角の影響について考察した．また，トリムタブなどの付属物
を用いてポーポイズの減揺に取り組んだ研究も見られる．例えば Ashkezari & Moradi [34]は CFDを用いて，
船尾にウェッジをつけた艇体は，艇体ピッチ角を減少させて長手方向の不安定性を減少させることを明らかに
した．また，Mansoori & Fernandes [35]はインタセプタを用いることで，船尾に揚力を発生させて艇体ピッ
チ角を低減させ，ポーポイズを減少できることを CFD を用いて示した．一方，Ekman & Rydelius [24] は
Savitsky [3]と Brown [23]の式をベースとした運動モデルにより，インタセプタの高さを変えることで艇体
ピッチ角がより減少しポーポイズが発生しなくなることを示した．付属物とは異なるが，Wang et al. [36]は，
船底後方にベンチレーションを発生させることで，艇体ピッチ角を低減させてポーポイズを減揺できることを
示した．このように様々な手段によって艇体ピッチ角を減少させることがポーポイズの減揺につながることが
多く示されてきた．
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一方，アクティブな制御によってポーポイズを減揺させようという取り組みも見られる．ポーポイズは艇体ピ
ッチ角を変化させるピッチモーメントを適切に制御することによって減揺することが可能である．例えば，ピッ
チモーメントはフラップの角度により揚力を変化させることで，制御することができる．Xi & Sun [37,38]は
フラップの角度をアクティブに制御することで，ポーポイズの減揺できることを示した．また Jokar et al. [39]
は，空気圧で駆動するフラップを最適レギュレータを用いて制御する方法を提案し，シミュレーションと模型
実験によってその効果を検証した．
船外機を搭載した滑走艇において，艇体ピッチ角を変化させるモーメントとして最も大きなものの一つに船

外機の姿勢が挙げられる．Taniguchi & Katayama [40]は，船外機のトリム角を艇体ピッチ角に対して適切な
位相で作動させてスラストによるピッチモーメントを変化させることでポーポイズを減揺できることを，実機
スケールのシミュレーションを用いて示した．船外機に働く力には揚力も存在し，これもピッチ角を変化させ
るモーメントに大きな影響を与えるが，この研究では揚力に対する言及までは見られない．
本研究では，第 2 章で求めた実船ベースの運動モデルを用いて，船外機のトリム角をアクティブに制御し，

ポーポイズを減揺させる手法について検討を行う．まず，制御器の設計方法を示し (4.1 節)，次に第 2 章で求
めた運動モデルを用いてシミュレーションによる検証を行う (4.2 節)．最後に実機試験を用いて制御器の検証
を行う (4.3 節)．

1.4 自著論文 (学術雑誌掲載論文および学会論文)と学位論文の関係
本節では，学位論文の内容と学術雑誌掲載論文および学会論文の内容との関係について説明する．

査読論文
1. Satoru Hamada, Yoshiki Miyauchi, Youhei Akimoto, Naoya Umeda, and Atsuo Maki. System

identification of porpoising dynamics of high-speed planing craft using full scale trial data. Ocean
Engineering, Vol. 270, p. 113585, 2023.

この論文 [41]では，艇体と船外機に働く力を定義した上で，船外機の姿勢によってその力が適切に変化
するような運動モデルを提案した．運動モデルに含まれるシステムパラメータを，実機試験の結果から
CMA-ESを用いて同定し，実機試験結果と比較して検証を行った．実機試験結果をある程度再現した
が，一部の検証データでは，ポーポイズが自然と減衰してしまう結果となった．この内容は第 2 章に記
載している．

2. Satoru Hamada and Atsuo Maki. Linear and nonlinear analyses of the porpoising dynamics of
high-speed planing craft using full-scale trial data. Journal of Marine Science and Technology,
pp. 1–12, 2023.

この論文 [42]では，文献 4 の手法を用いて同定した運動モデルを用いて，ポーポイズを非線形システ
ムと平衡状態周りで線形化されたシステムのそれぞれに対して安定性を解析した．非線形力学理論にお
ける分岐解析の側面から解析した結果により，ポーポイズがホップ分岐であることを確認した．この内
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容は第 3 章に記載している．

投稿予定査読論文
3. Satoru Hamada, Hiroyuki Kajiwara, and Atsuo Maki. Porpoising Stabilization of High-speed

Planing Craft by Manipulating the Outboard Motor Trim Angle. [Manuscript submitted for
publication.], 2023.

この論文 [43]では，文献 2 で同定した運動モデルを用いて，スライディングモード制御によるポーポ
イズの減揺を試みた．運動シミュレーションと実機試験により設計した制御器の性能を検証し，いずれ
の結果でも減揺効果を確認した．またスライディングモード制御の重要な設計変数について，その影響
を検証した．この内容は第 4 章に記載している．

学会講演論文
4. Satoru Hamada, Yoshiki Miyauchi, Naoya Umeda, and Atsuo Maki. System identification of

high speed planing craft using full scale trial data. Conference Proceedings The Japan Society of
Naval Architects and Ocean Engineers, Vol. 35, pp. 67–76, 2022. (in Japanese)

この論文 [44]では，文献 1 に対して，使用する実験データを追加してより精度の高い同定を試みた．ま
た同定の際に使用する評価関数に含まれるペナルティを変更し，文献 1 で課題となったポーポイズが
自然と減衰する状況を改善した．この内容は第 2 章に記載している．

5. Satoru Hamada, Hiroyuki Kajiwara, and Atsuo Maki. Porpoising Stabilization of High-Speed
Planing Craft by Controlling Outboard Motor Trim Angle. Conference Proceedings The Japan
Society of Naval Architects and Ocean Engineers, Vol. 37, pp. 89–93, 2023. (in Japanese)

この論文 [45]は，文献 3 を抜粋し，講演会論文としてまとめたものである．この内容は第 4 章に記載
している．

6. Satoru Hamada and Atsuo Maki. System Identification of Simple Model of High Speed Planing
Craft Using the Full Scale Test Data. In Conference Proceedings The Japan Society of Naval
Architects and Ocean Engineers, 2024. (in Japanese)

この論文 [46]では，ポーポイズを表現する簡易モデルを提案し，CMA-ESを用いてシステムパラメー
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タの同定を試みた．同定した運動モデルは実機試験結果をよく再現しただけでなく，文献 3, 5 で設計
した制御器を用いて減揺することを確認した．この内容は第 5 章に記載している．

1.5 記号の定義
本論文では，n次元 Euclid空間を Rn とし，特に n = 1のときの実数の集合を Rで表す．tは時間であり，

各種時間についての変数のオーバードットは，時間による微分を表すものとする．また，行列 Aの転置は AT

で表す．

1.6 対象船
本研究では，300 馬力の船外機を搭載した船長 7.09m の滑走艇を対象艇とした．用いた対象艇の諸元を

Table 1.1に，写真を Fig. 1.1に示した．それぞれの変数の定義については，2.1.1 節に示す．

Table1.1: Principal particulars of the subject craft.

Items value
Weight of craft with engine: M [kg] 2709
Overall length of craft: LOA [m] 7.09
Longitudinal position of CoG from OoH: LCG [m] 1.98
Vertical position of CoG from OoH: HCG [m] 0.70
Longitudinal position of CoT from OoH: LCT [m] 0.21
Vertical position of CoT from OoH: HCT [m] 0.69
Vertical position of T from CoT: HT [m] 1.03
Longitudinal position of the center of Ne from CoT: LNe [m] 0.30
Vertical position of the center of De from CoT: HDe [m] 1.03
Maximum speed of craft: ẋmax [m/s] 22.25
Area on the side of the underwater of the engine: Se [m2] 0.138
Area on the bottom of the torpedo of the engine: St [m2] 0.0433
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Fig.1.1: The subject craft.
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第 2章

運動モデルの同定

本章では，ポーポイズの減揺制御に適した運動モデルの推定方法について紹介する．推定した運動モデルは，
ポーポイズの発生と消滅の点において実機試験結果を再現し，船速やポーポイズの振幅の点で実機試験結果を
ある程度再現していることを目標とする．
まず本研究で主として用いる運動方程式について紹介する．運動方程式は直進で航行している状態を想定し，

船外機の姿勢を考慮したものとする．次に，運動方程式に含まれるシステムパラメータの同定方法について紹
介する．最後に実機試験の結果を用いてシステム同定を行った結果を示す．

2.1 運動モデルの定式化
本節では，運動モデルの定式化を行う．艇体と船外機に働く力を独立して定義し，それぞれの力やその働く
中心位置に関して，複数のシステムパラメータを用いて表現する．

2.1.1 座標系と運動方程式
本研究では，空間固定座標系 O − xz を用いて，ポーポイズを，サージ，ヒーブ，ピッチの 3自由度の運動
として表現する．右手直交座標系を用い，水平面に対して前向きの運動を x(t)，下向きの運動を z(t)，上向
きに回転する運動を θ(t)として定義する．また，艇体に対する船外機のトリム角を θe(t)とする．Fig. 2.1に
座標系と，Table 2.1と Table 2.2に示した艇体および船外機に働く力とその中心位置を示す．CoGは船外機
を含む艇全体の重心位置 (Center of the gravity)を，CoTはエンジンのトリム角の回転中心 (Center of the
trim)を，OoHは艇体のベースラインとトランサムの交点で定義する艇体の原点 (Origin of the hull)を表す．
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Fig.2.1: Coordinate system and definition of parameters.

Table2.1: List of the forces and the positions of the centers of the forces for the planing craft.

Definition Notation
Drag of craft w/o engine [N] Db

Vertical position of the center of Db from OoH [m] HD

Lift of craft w/o engine [N] NL

Longitudinal position of the center of NL from CoG [m] LL

Buoyancy [N] NB

Longitudinal position of the center of NB from OoH [m] LB

Longitudinal position of CoG from OoH [m] LCG

Vertical position of CoG from OoH [m] HCG

Sinkage of craft origin [m] d

Wetted keel length [m] LK

Overall length of craft [m] LOA

このとき，運動方程式を Eq. (2.1.1) − Eq. (2.1.3)のように定義する．

(M +Mx) ẍ = Db cos θ + (T +De) cos (θ + θe) +NL sin θ +Ne sin (θ + θe) (2.1.1)
(M +Mz) z̈ = −Db sin θ − (T +De) sin(θ + θe) +NL cos θ +Ne cos(θ + θe)

+NB +Mg − czzż − czθ θ̇ (2.1.2)
(Iy + Jy) θ̈ = Db (HCG −HD) + T (HT −HDe +He) +DeHe +NLLL +NeLe

+NB (LCG cos θ − LB)− cθzż − cθθ θ̇ (2.1.3)

ここで，M [kg]はエンジンを含めた艇体質量，Mx [kg]とMz [kg]は x方向と z 方向の附加質量，Iy [kgm2]

はピッチ方向の慣性モーメント，Jy [kgm2] はピッチ方向の附加慣性モーメントを表す．また，czz [Ns/m]，
czθ [Ns]，cθz [Ns]，cθθ [Nms]はそれぞれ減衰係数を表す．
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Table2.2: List of the forces and the positions of the centers of the forces for the engine.

Definition Notation
Thrust [N] T

Vertical position of the point of action of T from CoT [m] HT

Drag of engine [N] De

Vertical position of the center of De from CoT [m] HDe

Vertical position of the center of De from CoG [m] He

Lift of engine [N] Ne

Longitudinal position of the center of Ne from CoT [m] LNe

Longitudinal position of the center of Ne from CoG [m] Le

Longitudinal position of CoT from OoH [m] LCT

Vertical position of CoT from OoH [m] HCT

状態ベクトル X(t) ∈ R5 と制御ベクトル u(t) ∈ R2 を Eq. (2.1.4)と Eq. (2.1.5)で定義するとき，

X(t) =
[
z(t) θ(t) ẋ(t) ż(t) θ̇(t)

]T (2.1.4)

u(t) =
[
T (t) θe(t)

]T (2.1.5)

Eq. (2.1.1) − Eq. (2.1.3)は非線形状態方程式として，Eq. (2.1.6)のように表すことができる．

Ẋ(t) = f(X(t), u(t)) =


f1 (X(t), u(t))
f2 (X(t), u(t))
f3 (X(t), u(t))
f4 (X(t), u(t))
f5 (X(t), u(t))

 (2.1.6)

2.1.2 艇体形状に依存するパラメータ
艇体形状に依存するパラメータは艇体の 3Dモデルから艇体姿勢に応じて内挿する．対象とするパラメータ

は静水面下の濡れ面積 Sd [m2]，静水面下の艇体の体積 VB [m3]，静水面下の艇体の浮心位置 LB [m]，キール
の濡れ長さ LK [m]である．これらは，沈み量 d [m]と艇体のピッチ角 θ の 2軸のマップから線形補間による
内挿を行う．dを Eq. (2.1.7)で定義する．

d = z +HCG cos θ + LCG sin θ (2.1.7)

それぞれのコンター図を Fig. 2.2 − Fig. 2.5に示す．
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Fig.2.2: Contour map of Sd.

Fig.2.3: Contour map of VB.
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Fig.2.4: Contour map of LB.

Fig.2.5: Contour map of LK.
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2.1.3 艇体と船外機に加わる力とその位置
艇抵抗とその位置
船外機を除く艇体に働く抵抗 Db を Eq. (2.1.8)で定義する．

Db = −1

2
ρẋ |ẋ| (Sd + Ss)Ct (2.1.8)

ここで，ρ [kg/m3] は水の密度，Ss [m2]は静水面上でスプレーによる濡れ面積を表す．Ss をシステムパラメ
ータKS を用いて Eq. (2.1.9)で定義する．

Ss = KSSd (2.1.9)

Savitsky [3]によれば，スプレーは静水面に対して π/2の幅を持ち，五角柱モデルであれば求めることが可能
である．一方，実船ではデッドライズが船長方向に変化し，厳密に求めることが難しいため，本研究では実機
試験結果から同定する．このように実験から同定するシステムパラメータを，本研究ではK∗ と表す．K∗ はい
ずれも無次元数である．Ct は抵抗係数を表し，摩擦抵抗係数 Cf と造波抵抗係数 Cw を用いて，Eq. (2.1.10)
で定義する．

Ct = (1 +Kf)Cf + Cw (2.1.10)

但し，Cf と Cw をそれぞれ Eq. (2.1.11)と Eq. (2.1.12)で定義する．

Cf =
0.075

(log10 Re − 2)
2 (2.1.11)

Cw =
KCw

Fn4 (2.1.12)

Reはレイノルズ数，Fnはフルード数であり，それぞれ Eq. (2.1.13)と Eq. (2.1.14)で定義する．

Re =
ẋ

ν
LK (2.1.13)

Fn =
ẋ√

g∇1/3
(2.1.14)

ここで，ν [m2/s]は水の動粘性係数，g [m/s2]は重力加速度を表す．∇ [m3]は艇の排水容積であり，Eq. (2.1.15)
で定義する．

∇ =
M

ρ
(2.1.15)

Kf は形状影響係数を表し，本運動モデルにおいて同定すべきシステムパラメータの一つである．また，
Eq. (2.1.11)は ITTC-1957に基づく．Rabaud & Moisy [47]はフルード数が十分に大きい場合，造波抵抗係
数は 1/Fn4 に比例すると提案した．この結果は，Chapman [48]の実験結果や Tuck et al [49]による数値計
算結果とよく一致している．Rabaud & Moisy はフルード数が 1.2程度以下を対象としているが，本研究の速
度領域は 2.0以上の領域である．しかし，文献調査でこの領域の造波抵抗に関する文献を見つけられなかった
ため，本研究では，Rabaud & Moisy の研究に基づいて造波抵抗係数を定義した．KCw は造波抵抗を表すた
めのシステムパラメータである．



2.1 運動モデルの定式化 15

艇体の抵抗中心位置 HD をシステムパラメータKHD を用いて Eq. (2.1.16)で表す．

HD = KHD
d

cos θ (2.1.16)

KHD は HD に関するシステムパラメータであり，Eq. (2.1.17)で定義する．

KHD = 0.5 + 0.5 tanh
(
K∗

HD
20

)
(2.1.17)

KHD は明らかに 0 < KHD < 1であるから，Eq. (2.1.17)によりその範囲を限定する．また，K∗
HD は後に示

す Eq. (2.1.39)によりおおよそ ±135の範囲内となり，

dKHD
dK∗

HD

∣∣∣∣
K∗

HD=±135

≈ 10−6 (2.1.18)

となる．Eq. (2.1.18) の結果が小さすぎると，後述する最適化の過程で K∗
HD が変化しても，KHD が変化せ

ず，その結果計算される目的関数が変化しないため，最適化が進まないということが考えられる．そこで式
Eq. (2.1.17)のように，K∗

HD を 20で割ることで，Eq. (2.1.18)の結果が最適化を進めるのに十分な傾きを持
つように定義した．以降で，tanh関数を用いるシステムパラメータについても同じ考え方で定義する．

艇揚力とその位置
船外機を除く艇体に働く揚力 NL を翼形状に対する揚力の基本的な式である Eq. (2.1.19)で定義する．

NL = −1

2
ρẋ2SdCL (2.1.19)

CL は揚力係数であり，Eq. (2.1.20)で定義する．

CL = |KNL| tan
(
θ − θ|NL=0

)
(2.1.20)

KNL は揚力に関するシステムパラメータであり，同定すべきシステムパラメータである．一般的な非対称
翼と同様，滑走艇も θ = 0 のとき NL > 0 となる．そこで，NL = 0 となる角度 θ を θ|NL=0 と表記して，
Eq. (2.1.21)で定義する．

θ|NL=0 = tan−1 (KLθ) (2.1.21)

KLθ も同定すべきシステムパラメータである．
艇体の揚力中心位置 LL をシステムパラメータKCOP を用いて Eq. (2.1.22)で表す．

LL = LCG −KCOPLOA (2.1.22)

KCOP はK∗
COP を用いて Eq. (2.1.23)で定義する．

KCOP = 0.5 + 0.5 tanh
(
K∗

COP
200

)
(2.1.23)

艇浮力
艇体に働く浮力 NB を Eq. (2.1.24)で定義する．

NB = −ρVBg (2.1.24)
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船外機に働く力とその位置
船外機に働く抵抗 De と揚力 Ne を Eq. (2.1.25)と Eq. (2.1.26)で定義する．

De = −1

2
ρẋ2SeKDe (2.1.25)

Ne = −1

2
ρẋ2StCLe (2.1.26)

Se [m2]は船外機の水没部を側方から見た時の面積，St [m2]は船外機の水没部を下方から見た時のプロペラ
中心軸における水没部の面積を表す．また，KDe は船外機の抵抗係数を表し，同定すべきシステムパラメータ
である．一方，CLe は船外機の揚力係数であり，Eq. (2.1.27)で定義する．

CLe = KNe tan
(
θe − θe|Ne=0

)
(2.1.27)

KNe は船外機の揚力に関する同定すべきシステムパラメータである．船外機の揚力は，θe = 0の時に Ne = 0

となるとは限らない．そこで，Ne = 0となる角度 θe を θe|Ne=0 と表記して Eq. (2.1.28)で定義する．

θe|Ne=0 = tan−1 (KNeθe) (2.1.28)

KNeθe は同定すべきシステムパラメータである．
船外機の抵抗中心位置 He と，船外機の揚力中心位置 Le はそれぞれ Eq. (2.1.29)と Eq. (2.1.30)で求める

ことができる．

He = HDe − (LCT + LCG) sin θe − (HCT −HCG) cos θe (2.1.29)
Le = LNe + (LCT + LCG) cos θe − (HCT −HCG) sin θe (2.1.30)

なお，船外機の抵抗はスラストと同軸上に働くとする．

HDe = HT (2.1.31)

2.1.4 減衰項と慣性項
減衰係数は z 方向と θ 方向でそれぞれの相互干渉を含めて，4つの項で表す．それぞれの減衰係数は同定す
べきシステムパラメータであり，後述する回帰式によって求める．
慣性モーメント Iy を Eq. (2.1.32)で定義する．

Iy = M (KIyLOA)
2 (2.1.32)

環動半径を表すKIy は同定すべきシステムパラメータの 1つである．
附加質量をそれぞれ Eq. (2.1.33) − Eq. (2.1.35)のように定義する．

Mx = KMxM (2.1.33)
Mz = KMzM (2.1.34)
Jy = KJyIy (2.1.35)
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Eq. (2.1.33) − Eq. (2.1.35)に含まれる 3つのシステムパラメータ，KMx，KMz，KJyをそれぞれ，Eq. (2.1.36)
− Eq. (2.1.38)で定義する．

KMx = 0.5 + tanh
(
K∗

Mx
20

)
(2.1.36)

KMz = 0.5 + tanh
(
K∗

Mz
50

)
(2.1.37)

KJy = 0.5 + tanh
(
K∗

Jy
50

)
(2.1.38)

附加質量係数KMx，KMz，KJy は模型試験による測定で，概ね [−0.5, 1.5]の範囲を取ることが明らかになっ
ている [17, 50]．そこで，Eq. (2.1.36) − Eq. (2.1.38)のように上下限の制約を行う．

2.1.5 システムパラメータの回帰式
定義したシステムパラメータのうち，KIy は艇体固有の値であり定数となる．また艇体及び船外機の揚力が
それぞれ 0となる点を定義するKLθ とKNeθe 及び，船外機の抵抗係数と揚力係数であるKDe とKNe は運動
モデルの冗長性を減らすため，本研究では定数とする．その他のシステムパラメータと減衰係数は ẋ，z，θの
3つの艇体の状態変数の 2次までを考慮した回帰式として定義する．各状態変数は適切な値で無次元化してい
る．回帰式の係数となるシステムパラメータマトリックスを K ∈ R13×10 とすると，



K∗
Mx

K∗
Mz

K∗
Jy

KS
Kf
KCw
K∗

HD
KNL
K∗

COP
czz
czθ
cθz
cθθ



=



KMx1 KMx2 · · · KMx10
KMz1 KMz2 · · · KMz10
KJy1 KJy2 · · · KJy10
KS1 KS2 · · · KS10
Kf1 Kf2 · · · Kf10
KCw1 KCw2 · · · KCw10
KHD1 KHD2 · · · KHD10
KNL1 KNL2 · · · KNL10
KCOP1 KCOP2 · · · KCOP10
czz1 czz2 · · · czz10
czθ1 czθ2 · · · czθ10
cθz1 cθz2 · · · cθz10
cθθ1 cθθ2 · · · cθθ10


K



1
ẋ

ẋmaxz

∇ 1
3

sin θ(
ẋ

ẋmax

)2

(
z

∇ 1
3

)2

sin2 θ(
ẋ

ẋmax

)(
z

∇ 1
3

)
(

ẋ

ẋmax

)
sin θ(

z

∇ 1
3

)
sin θ



(2.1.39)

となる．但し，ẋmax [m/s]は艇体が出せる最高速度を表す．例えば，K∗
Mx は Eq. (2.1.40)のように展開できる．

K∗
Mx = KMx1 +KMx2

ẋ

ẋmax
+KMx3

z

∇ 1
3

+KMx4 sin θ +KMx5

(
ẋ

ẋmax

)2

+KMx6

(
z

∇ 1
3

)2

+KMx7 sin2 θ +KMx8

(
ẋ

ẋmax

)(
z

∇ 1
3

)
+KMx9

(
ẋ

ẋmax

)
sin θ +KMx10

(
z

∇ 1
3

)
sin θ (2.1.40)

本研究における運動モデルでは，K の各要素と定数と定めた 5つのパラメータの合計 135個のパラメータを
同定することにより，Eq. (2.1.1) − Eq. (2.1.3)の運動方程式を解くことができる．全てのシステムパラメー
タを含む運動方程式は，Appendix Iに記す．
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2.2 システムパラメータの同定方法
本節では，まずシステム同定の方法について概説した後，提案する評価関数とシステムパラメータの探索範
囲について述べる．そして最適化方法について説明する．

2.2.1 同定方法
本研究では，ポーポイズを伴う滑走艇のシステム同定問題を，入力データセット D に含まれる艇体運動の
時刻歴と運動シミュレーションの時刻歴の差を最小化する問題として定義する．最適なシステムパラメータの
セット γopt は領域 Γから求める．ここで入力 D は実機試験の測定結果であり，状態ベクトル Xinput と制御
ベクトル uinput を含む．
システム同定では，カルマンフィルタを用いる方法 [51] や，最小二乗回帰を用いる方法 [52]，そして，

CMA-ESを用いる方法 [53]などが提案されている．本研究で扱うシステム同定は，一般に複数のピークを持
つ関数の最適化問題である．そのため，得られた解が必ずしもこの問題に対して大域的に最適な結果とは限ら
ない．また，システムパラメータの組み合わせによっては，システムが漸近的に不安定になる可能性さえある．
このような場合，状態変数は短時間で無限大に発散する可能性がある．このような困難を克服するために，以
下のように新たな評価関数を設定してシステムパラメータを探索することにした．
まず，評価関数として，シミュレーションのデータと実機試験のデータの差の二乗ノルムと適切なペナルテ

ィ関数を組み合わせたものを用いる．ペナルティ関数はシミュレーションが無限大に発散することを抑制する
と同時に，γopt を用いて計算されたシミュレーションの結果が，実機試験の結果をより再現できるよう検討
した．
次に，システムパラメータを探索する方法として，Covariance Matrix Adaptation Evolution Strategy

(CMA-ES) [54]を用いる．CMA-ESは，逐次二次計画法などの準ニュートン法とは異なり，勾配を必要としな
い．そのため滑らかではなく，多峰性も強い関数景観を有する問題にも適用可能である．例えば，Maki et al. [55]
は CMA-ESを用いて最適着桟問題を解いている．この問題は，操船モデルの非線形性や衝突リスクを考慮す
る必要性から解くことが難しかったが，すべての条件を満たす最適結果を算出した．CMA-ESの詳細につい
ては2.2.4 節で説明する．

2.2.2 評価関数
運動シミュレーション履歴は，Eq. (2.2.1)で表される初期値と Eq. (2.2.2)で表される制御ベクトルを用い

て常微分方程式 Eq. (2.1.6)を解くことにより求められる．
Xsim(0) = Xinput(0) (2.2.1)

usim = uinput (2.2.2)

サブスクリプトの inputは入力データすなわち実機試験の結果を，simは運動シミュレーションの結果を示す．
運動シミュレーションにはオイラー法を用い，タイムステップは 0.01 sとシミュレーションに十分小さな値
とする．最適化においては，状態ベクトルX(t)に含まれる全ての変数を用いるのではなく，Eq. (2.2.3)で定
義する新たな状態ベクトルに含まれる変数を用いる．

X (t) =
[
z(t) θ(t) ẋ(t)

]T (2.2.3)
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運動シミュレーションの結果得られた状態ベクトル Xsim(t) と実機試験における状態ベクトル Xinput(t) を，
それぞれ Xinput の平均値 µinput と標準偏差 σinput を用いて標準化した X̂sim(t)と X̂input(t)を，Eq. (2.2.4)
と Eq. (2.2.5)で定義する．

X̂ i
input(t) =

(
X i

input(t)− µi
input

)
σi

input
(2.2.4)

X̂ i
sim(t) =

(
X i

sim(t)− µi
input

)
σi

input
(2.2.5)

スーパースクリプトの i はデータセットの番号を表し，その総数は ninput とする．データセットの詳細
は2.3.1 節で示す．評価関数 J を，

J =

ninput∑
i=1

(
Pi

∫ tf,i

0

∥∥∥X̂ i
input(t)− X̂ i

sim(t)
∥∥∥2 dt) (2.2.6)

とするとき，最適パラメータセット γopt を Eq. (2.2.7)で求める．

γopt = arg min
γ∈Γ

J (2.2.7)

Pi は最適化を行う際に適用するペナルティであり，シミュレーション時間に関するペナルティ Pt,i，システム
パラメータに関するペナルティ Pr,i,j，状態変数の振幅に関するペナルティ Pa,i,j を用いて，Eq. (2.2.8)で定
義する．

Pi = Pt,i +

nrange∑
j

Pr,i,j +

namp∑
j

Pa,i,j (2.2.8)

Pt,i は数値シミュレーションにおいて状態変数が発散した場合に与えるペナルティである．Xsim の各状態変
数が，事前に定義した範囲 [Xmin, Xmax]を超えた時，その時刻を tover として Eq. (2.2.9)で定義する．

tover = inf {t ≥ 0 : Xsim(t) 6∈ [Xmin, Xmax]} (2.2.9)

このとき，Pt,i を Eq. (2.2.10)で定義する．

Pt,i =


(

tf,i
tover

)10

(tover < tf,i)

1 (else)
(2.2.10)

tf,i はそれぞれのデータセットの長さである．システムが不安定な場合，計算開始後数ステップで指数的な発
散をすることがある．CMA-ESでは，解候補は評価関数の小さな順に並べられて，上位のもののみが選択され
る．そのため一般に発散した解はこの過程で棄却される．しかし発散した解が多すぎると，選択された解の中
に発散した評価関数値が残り，結果として最適化プロセスが進まない，ということが起こり得る．そこで，発
散した解の中でもより安定していた解を選択することで最適化が進むよう，Eq. (2.2.10)を用いて適切な関数
景観を得る．本研究では全ての状態変数に対して，[Xmin, Xmax] = [−1010, 1010]とする．
Pr,i,j はシステムパラメータが上下限を超えた場合に与えるペナルティである．同定対象となるパラメータ

は2.2.3 節で後述するように上下限の制約を持つ．これは式 Eq. (2.1.39)において Kの各要素が上下限を持つ
ことを意味する．一方，左辺にある運動方程式を直接構成するシステムパラメータは回帰式で表された結果，
広範な上下限制約を持つことになる．そこで，Eq. (2.1.39)の左辺にあるシステムパラメータ K∗ が取りうる
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適切な範囲として [K∗L, K∗H ]を与え，この範囲から K∗ が外れた場合に，Eq. (2.2.11)で定義する Pr,i,j を，
ペナルティとして与える．

Pr,i,j =


100 (K∗L −K∗) + 100 (K∗ < K∗L)

0 (K∗L ≤ K∗ ≤ K∗H)

100 (K∗ −K∗H) + 100 (K∗H < K∗)

(2.2.11)

また，船外機の抵抗と揚力はそれぞれ艇体の抵抗と揚力よりも小さいことは明らかである．そこで，KDe/Db，
KNe/NL を Eq. (2.2.12)と Eq. (2.2.13)のように新たに定義し，同様にペナルティを与える．

KDe/Db =
De
Db

(2.2.12)

KNe/NL =
Ne
NL

(2.2.13)

nrange は対象とするシステムパラメータの個数であり，本研究では，Table 2.3に示す通り，nrange = 5とす
る．また，それぞれの上下限も Table 2.3に示す．なお，Table 2.3にないパラメータに対してはペナルティを
定義しない．

Table2.3: Minimum and maximum values of system parameters.

parameter minimum maximum
KS 0 2

Kf 0 10

KCw 0 10

KDe/Db 0 0.5

KNe/NL −0.5 0.5

Pa,i,j は状態変数の振幅が実験値と大きく異なる場合に与えるペナルティである．運動モデル推定における
最大の目標はポーポイズの発生と消滅を再現することである．そこで，艇体のピッチ角 θとピッチ角速度 θ̇に
対して Eq. (2.2.14)と Eq. (2.2.15)のようにペナルティを定義する．

Pa,i,θ =


θratio,i (θratio,i > 2)

1

θratio,i
(θratio,i < 0.5)

0 (else)

(2.2.14)

Pa,i,θ̇ =


θ̇ratio,i

(
θ̇ratio,i > 2

)
1

θ̇ratio,i

(
θ̇ratio,i < 0.5

)
0 (else)

(2.2.15)

但し，

θratio,i =
θsim,max,i|t>tf,i/2

− θsim,min,i|t>tf,i/2

θinput,max,i|t>tf,i/2
− θinput,min,i|t>tf,i/2

(2.2.16)

θ̇ratio,i =

θ̇sim,max,i

∣∣∣
t>tf,i/2

− θ̇sim,min,i

∣∣∣
t>tf,i/2

θ̇input,max,i

∣∣∣
t>tf,i/2

− θ̇input,min,i

∣∣∣
t>tf,i/2

(2.2.17)
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とする．ペナルティを与えるのは上述の通り，θ と θ̇ の 2つであるから，namp = 2である．

2.2.3 変数の探索範囲
Eq. (2.2.7)における γ は下式で表される．

γ =
(
KIy, KLθ, KDe, KNe, KNeθe, Kmx(i=1···10), Kmz(i=1···10), KJy(i=1···10), KS(i=1···10),

Kf(i=1···10), KCw(i=1···10), KHD(i=1···10), KNL(i=1···10), KCOP(i=1···10),

czz(i=1···10), czθ(i=1···10), cθz(i=1···10), cθθ(i=1···10)
)

(2.2.18)

それぞれの変数は下記の制約条件を持つ．

γk ∈ Γk = [−100, 100] (2.2.19)

但し Table 2.4に記載した変数に関しては，それぞれ表の値を用いた．このうち，定数である 5つのパラメー
タはそれぞれ適正な値を設定した．その他のパラメータについては，探索的に以下の方法で上下限を定めた．
まず，減衰係数に関わるパラメータの上下限を [−105, 105]，それ以外のパラメータの上下限を [−10, 10]と
し，最適化を実施した．最適化の結果，変数が上下限制約を超えた場合は上下限を 10倍に広げる一方，上下
限値の 5%以下となった場合は上下限を 0.1倍に狭めて再度最適化した．これを繰り返して，Table 2.4の上下
限を得た．

Table2.4: Maximum and minimum values of each parameter.

parameter value
KIy [10−5, 2]

KLθ [−0.175, 0.175]

KDe [10−10, 0.05]

KNe [10−10, 2]

KNeθe [−0.0349, 0.0349]

Kmx2, Kmx3, Kmx4, Kmx5, Kmx6, Kmx7, Kmx8, Kmx10, Kmz4, Kmz6 [−10, 10]

Kmz7, Kmz8, Kmz9, KJy7, KJy8, KJy9, KS2, KS4, KS5, KCw2 [−10, 10]

KCw3, KCw4, KCw5, KCw8, KCw9, KHD2, KHD3, KHD4, KHD5, KHD6 [−10, 10]

KHD7, KHD8, KHD9, KHD10, KNL2, KNL5, KNL7, KNL8, KNL9 [−10, 10]

KCOP3, KCOP6, KCOP7, KCOP9, KCOP10 [−103, 103]

czz5, czz7, czz9, czθ7, czθ9, czθ10, cθz4, cθz6, cθz8, cθz10 [−104, 104]

cθθ4, cθθ8, cθθ9 [−104, 104]

czz2, czz4, czz6, czz8, czz10, czθ3, czθ4, czθ5, czθ6, czθ8 [−105, 105]

cθz2, cθz3, cθz5, cθz9, cθθ2, cθθ3, cθθ5, cθθ6, cθθ7, cθθ10 [−105, 105]

czz1, czz3, czθ1, czθ2, cθz1, cθz7, cθθ1 [−106, 106]
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2.2.4 CMA-ESによる最適化
本研究では，Eq. (2.2.7)を解くため，矩形制約条件 [56]とリスタート戦略 [57]を含んだ Covariance Matrix

Adaptation Evolution Strategy (CMA-ES) [54]を用いる．CMA-ESは Fig. 2.6 [55]のように共分散行列を
用いて，最適解を探索する手法である．

Fig.2.6: Schematic presentation of the CMA-ES procedure including (1) generating multiple candidate solutions,
(2) evaluating and ranking the solutions based on the objective function, (3) updating the covariance
matrix, (4) shifting the center of the distribution to a weighted mean vector, (5) updating the step
size and (6) generating multiple candidates in the next step. This figure duplicates Fig. 2 in the
literature [55].

その手順は以下の通りである．まず，CMA-ESは正規分布 N(m(τ),C(τ))から λ個の解候補 γk=1···λ を生
成する．ここで τ は繰り返し計算のステップを表す．この解候補を用いて，2.2.2 節に基づき，評価関数 J を
計算する．解候補は評価関数 J の小さな順に並べられ，上位 µ個が選択される．この µ個の解候補を用いて
加重平均 m(τ+1) と共分散行列 C(τ+1) を更新し，新たな解候補 γk=1···λ を生成する．これを繰り返すことで，
解候補は最適解に収束する．解候補は矩形制約条件により，Eq. (2.2.19)及び Table 2.4に基づいて生成され
る．また，リスタート戦略に基づく停止条件は，Maki et al. [55]の研究による条件に基づき，以下の停止条件
を設定した．

• それぞれの変数の解候補の標準偏差が 10−5 よりも小さい場合．
• dγ を解候補 γ の次元としたとき，直前 20 + 3dγ/λ回の評価関数の四分位範囲が共分散行列のトレー
スに 10−5dγ を乗じた値よりも小さい場合

• 前回のリスタートから 105 回リスタートが発生しなかった場合

本研究では，CMA-ESの λの初期値を 64，最大値を 512とし，リスタートの都度 2倍に変化するよう設定し
た．また，繰り返し計算の最大値は 1× 106 回とし，全ての計算が収束した後で，最も評価関数の小さかった
解候補を最適解 γopt とした．CMA-ESのアルゴリズムは，Appendix IIに示す．
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2.3 計算結果
本節では，まずシステム同定に用いる実験データについて述べる．次に2.2 節の方法で，2.1 節の運動モデ

ルを同定した結果を示す．最後に CMA-ESの乱数シードの影響について調査する．

2.3.1 実験データ
システムパラメータの同定には，一定の船外機トリム角とエンジン回転数で実船で航走したデータを用いた．
測定時間は 10 s～20 s，サンプリング周波数は 100 Hzである．Table 2.5にデータの一覧を示す．横軸は船外
機トリム角 θe [deg.]，縦軸は船速 ẋ [m/s]のレンジを示している．同じエンジン回転数でもトリム角により船
速が異なるため，船速に関してはレンジで示している．測定は同じトリム角かつ同じエンジン回転数で 2回ず
つ実施した．エンジン回転数条件は θe = −8deg.では 6条件，それ以外のトリム角条件では 7条件である．そ
れぞれのトリム角条件から 3条件をシステム同定後の検証データとし，残りを学習データとした．表内の ◦は
学習データを，•は検証データを表す．検証データは，全データのうち 22%に当たる 15条件であり，学習デ
ータは 53条件である．

Table2.5: List of train and test data without changing the trim angle. ◦ represents the train data whereas •
does the test data.

θe = 4° θe = 0° θe = −2° θe = −4° θe = −8°

10.0 ≤ ẋ < 11.8 ◦◦ ◦◦ ◦• ◦• -
11.8 ≤ ẋ < 13.0 ◦• ◦• ◦◦ ◦◦ -
13.0 ≤ ẋ < 14.5 ◦◦ ◦◦ ◦◦ ◦• ◦•
14.5 ≤ ẋ < 15.5 ◦◦ ◦• ◦• ◦◦ ◦◦
15.5 ≤ ẋ < 16.5 - - - - ◦•
16.5 ≤ ẋ < 18.0 ◦• ◦◦ ◦◦ ◦• ◦◦
18.0 ≤ ẋ < 20.0 ◦• ◦• ◦◦ ◦◦ ◦◦
20.0 ≤ ẋ < 23.0 ◦◦ ◦◦ ◦• ◦◦ ◦•

Fig. 2.7はそれぞれの実験データのスラストとピッチ角の振幅を表したものである．ピッチ角振幅が 2°以上
のものをポーポイズが発生していると定義した．
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 porpoise threshold

Fig.2.7: The experimental result of the amplitude of θ.

Fig. 2.8はポーポイズが発生している条件でのピッチ角の振動周波数を示したものである．スラストが大き
くなるにつれて，すなわち船速が速くなるにつれて，周波数が高くなっていることを確認した．

Fig.2.8: The experimental result of frequency analysis.
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2.3.2 解析結果
Fig. 2.9は最適化の過程における評価関数値の変化などを表す．Fig. 2.9aは最適化プロセス全体を表し，

Fig. 2.9bは評価関数が最小となった点の周辺を拡大したものである．それぞれの図の左上は，各計算ステップ
での評価関数の最小値 J をプロットしたものである．右上は，各計算ステップでの評価関数の最小値 J と最
適化プロセス全体での評価関数の最小値min(J)の差をプロットしたものである．左下は，共分散行列 C の固
有値の平方根を表したものであり，各主成分方向への分布長さを示す．また，右下は，共分散行列の対角成分
の平方根を表し，それぞれのパラメータの標準偏差を示す．上の 2つのグラフにおいて，スパイク状になって
いるステップで，リセットがかかっており，合計 71回のリセットがかかっている．
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(a) Overall view.

(b) Magnified view around the fixed point.

Fig.2.9: The optimization process. Displayed are J in log scale (upper left), J − min(J) in log scale (upper
right), square root of the eigenvalues of the covariance matrix (lower left), and the square root of the
diagonal elements of the covariance matrix (lower right).

評価関数が最小となったのは，533852ステップの時である．その時のシステムパラメータを用いて，運動
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シミュレーションを実施した．Fig. 2.10は，実験と計算の平均船速の比を示したものである．実験結果に対す
る船速の誤差は 5%以下であり，おおむね一致している．

Fig.2.10: The ratio of average of ẋ between experiment and calculation.

Fig. 2.11は計算でのスラストとピッチ角振幅を表したものである．また，Fig. 2.12は実験と計算のピッチ振
幅の比を表したもので，Fig. 2.7と Fig. 2.11の比である．但し，Fig. 2.12では，実験においてポーポイズが発
生した条件のみ示した．ポーポイズの振幅は実験結果と比較してやや小さいが，ポーポイズの発生と消滅を再
現していることが確認できた．



28 第 2章 運動モデルの同定

 porpoise threshold

Fig.2.11: The calculated result of the amplitude of θ.

Fig.2.12: The ratio of amplitude of θ between experiment and calculation.

より詳細な分析を行うため，いくつかの時系列データを示す．Fig. 2.12の中で計算結果の振幅が実験結果に
対して最も小さなときの時系列データを Fig. 2.13に，最も大きなときの時系列データを Fig. 2.14に示す．
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Fig.2.13: The test data result at θe = −8° and average of ẋ = 13.2 m/s. The black line represents the
experimental result, and the red line represents the calculated result.

Fig.2.14: The test data result at θe = −2° and average of ẋ = 11.2 m/s. The black line represents the
experimental result, and the red line represents the calculated result.

いずれの結果もポーポイズが減衰することなく，安定して発生している．一方で周波数がいずれの条件でも
ずれており，Fig. 2.14の結果を周波数分析した Fig. 2.15でも，その様子は確認できる．
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Fig.2.15: The frequency analysis result at θe = −2° and average of ẋ = 11.2 m/s. The black line represents the
experimental result, and the red line represents the calculated result.

Fig. 2.16は実験においてポーポイズが発生した条件での，実験データのスペクトラムのピーク周波数と計算
結果のスペクトラムのピーク周波数を比較したものである．
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Fig.2.16: The comparison between the frequency analysis of the experimental result and the calculated result.

Fig. 2.16より周波数のずれは全域に渡って発生していることが確認できる．この周波数のずれは，Eq. (2.2.8)
において，状態変数の振幅に関するペナルティ Pa,i,j を用いたためと考えられる．本来，システム同定は実機試
験と数値シミュレーションの状態変数の差のノルムを最小化するように行われるため，周波数のずれは起こり
にくい．しかし本研究では，ポーポイズの発生と消滅を再現することを優先する目的で Pa,i,j を導入したため，
評価関数の中でもこの影響が強くなり，周波数がずれたものと考えられる．実験結果と計算結果の周波数の違
いは，周波数分析の分解能である 0.05 Hz程度であること，前述の通りポーポイズの発生と消滅の再現には成
功していることから，本システム同定結果はポーポイズの減揺制御に供するに十分な性能を持つと判断する．

2.3.3 乱数シードの違いによる検証
CMA-ESは確率的手法であり，その結果は与える乱数シードによって変化する．そこで，本研究では 10個
の乱数シードによる評価関数の違いについて検証を行った．計算は乱数シードを変えて 10回実施したが，繰
り返し計算の最大値は 3× 105 回とした．Fig. 2.17は学習データと検証データの評価関数の比較を行ったもの
である．
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Fig.2.17: The objective function J of the train and test data.

ばらつきはあるが，学習データの評価関数の値が大きいデータは，検証データの評価関数の値も大きい傾向
にあり，汎化性能は十分であると言える．一方，学習データの評価関数が 7500付近の結果において，検証デー
タの評価関数が極めて大きい事例が見られる．このことを考察するため，検証データに含まれる 15条件，す
なわち Table 2.5の中で •で表した条件に対して，それぞれの評価関数 Jtest, i を Eq. (2.3.1)で定義する．

Jtest, i =
1

tf,i
Pi

∫ tf,i

0

∥∥∥X̂ i
input(t)− X̂ i

sim(t)
∥∥∥2 dt i = 1, · · · , ntest = 15 (2.3.1)

Fig. 2.18に，検証データ毎の Jtest の値を CMA-ESの乱数シードを変化させながら計算した結果を示す．
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Fig.2.18: The objective function Jtest at each test condisionts.

検証データの No. 15 で計算結果間での評価関数の値が大きくばらついていることが確認できる．そこで，
No. 15 の条件で評価関数が最小となった試行の時系列データを Fig. 2.19に，最大となった試行のデータを
Fig. 2.20に示す．

Fig.2.19: The test data result at θe = −8° and average of ẋ = 22.3 m/s whose Jtest is the smallest. The black
line represents the experimental result, and the red line represents the calculated result.
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Fig.2.20: The test data result at θe = −8° and average of ẋ = 22.3 m/s whose Jtest is the largest. The black
line represents the experimental result, and the red line represents the calculated result.

この条件ではポーポイズが発生していないことから，各状態変数の変動成分は小さい．これに対して，船速
が実験結果からずれているため，標準化のプロセスで，Jtest の値が大きくなり，結果的に評価関数 J の値が
大きくなったと考えられる．船速のずれは 2%以下であり，シミュレーションと実験は良い一致を見せている
と判断する．
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2.4 結言
本章では，ポーポイズを再現する運動モデルとその運動モデルに含まれるシステムパラメータの同定方法に
ついて，提案を行った．ポーポイズは直進運動中に主として発生することから，サージ，ヒーブ，ピッチの 3
自由度の運動として表し，船外機の姿勢を陽に考慮する形で運動方程式を提案した．
次に，運動モデルに含まれるシステムパラメータの同定問題を，実機試験結果と数値計算結果の誤差を最小
化する問題として定義することを提案した．この問題はシステムパラメータの組み合わせによっては，システ
ムが不安定になり，短時間で無限大に発散する懸念を持つ．また，多くのシステムパラメータを持ち，互いに
必ずしも独立ではないことから，解の多峰性が存在する．そこで，本研究では評価関数にいくつかのペナルテ
ィを組み合わせること，また同定に Covariance Matrix Adaptation Evolution Strategy (CMA-ES) を用い
ることで，これらの問題を解決できることを示した．
本研究では，実機試験結果を取得し，この結果を用いて運動モデルを推定して，提案手法の妥当性を検証し

た．繰り返し計算数と各変数の探索範囲を適切に設定することで，運動モデルはポーポイズの発生と消滅の点
において実機試験を再現し，またポーポイズの振幅や周波数についても妥当な結果を得られた．
最後に，CMA-ESの乱数シードの影響について調査した．乱数シードにより，学習データの評価関数の値

は変化するが，その結果に応じて検証データの評価関数も変化しており，十分な汎化性能を持つことを確認し
た．また，検証データの評価関数の値が大きいものは，評価関数を求める際の標準化のプロセスで評価関数の
値が大きくなったためであることも確認できた．
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Appendix I
Eq. (2.1.1) − Eq. (2.1.3)はシステムパラメータを用いて次のように表すことができる．式中で下線を引い

たものが，システムパラメータである．
(
1 +KMx

)
Mẍ = −1

2
ρẋ |ẋ|

(
1 +KS

)
Sd

{(
1 +Kf

)
Cf +

KCw

Fn4

}
cos θ

+

[
T −

KDe

2
ρẋ |ẋ|

(
1 +KS

)
Sd

{(
1 +Kf

)
Cf +

KCw

Fn4

}]
cos (θ + θe)

− 1

2
ρẋ2SdKNL tan

(
θ − tan−1

(
KLθ

))
sin θ

−
KNe

2
ρẋ2SdKNL tan

(
θ − tan−1

(
KLθ

))
sin (θ + θe) (I.1)(

1 +KMz
)
Mz̈ =

1

2
ρẋ |ẋ|

(
1 +KS

)
Sd

{(
1 +Kf

)
Cf +

KCw

Fn4

}
sin θ

−
[
T −

KDe

2
ρẋ |ẋ|

(
1 +KS

)
Sd

{(
1 +Kf

)
Cf +

KCw

Fn4

}]
sin(θ + θe)

− 1

2
ρẋ2SdKNL tan

(
θ − tan−1

(
KLθ

))
cos θ

−
KNe

2
ρẋ2SdKNL tan

(
θ − tan−1

(
KLθ

))
cos(θ + θe)

+NB +Mg − czzż − czθ θ̇ (I.2)(
1 +KJy

)
M
(
KIyLOA

)2
θ̈ = −1

2
ρẋ |ẋ|

(
1 +KS

)
Sd

{(
1 +Kf

)
Cf +

KCw

Fn4

}(
HCG −KHD

d

cos θ

)
+ T (HT −HDe +He)−

KDe

2
ρẋ |ẋ|

(
1 +KS

)
Sd

{(
1 +Kf

)
Cf +

KCw

Fn4

}
He

− 1

2
ρẋ2SdKNL tan

(
θ − tan−1

(
KLθ

)) (
LCG −KCOPLOA

)
−

KNe

2
ρẋ2SdKNL tan

(
θ − tan−1

(
KLθ

))
Le

+NB (LCG cos θ − LB)− cθzż − cθθ θ̇ (I.3)
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Appendix II
CMA-ESのアルゴリズムは以下の通りである．アルゴリズムはMaki et al. [55]より引用したものであり，

アルゴリズムそのものは Hansen [54]の手法に基づく．本アルゴリズムにおける各種記号は Appendix II内で
のみ有効である．

Algorithm CMA-ES [54]

1: Set m(0), σ(0) and C(0) according to the search space. Initialize two evolution paths p(0)
C = p(0)

σ = 0
2: while a termination condition is not satisfied do.
3: Step 1

Generate λ independent samples (zi)i=1,··· ,λ from the normal distribution N(0, I). Compute solution
set (xi)i=1,··· ,λ as yi = Bzi and xi = m(t) + σ(t)yi, where B is an arbitrary real matrix satisfying
C(t) = BBT .

4: Step 2
Compute objective function values f (xi) and sort them in ascending order as (xi:λ)i=1,...,λ . Here,
xi:λ indicates the i-th best solution among λ candidates. Hereafter, yi and zi corresponding to xi:λ

are represented as yi:λ and zi:λ.
5: Step 3

Compute the weighted average of (yi:λ)i=1,...,λ as dy =
∑λ

i=1 wiyi:λ. Then, update the evolution
paths as follows:
p(t+1)
σ = (1− cσ) p(t)

σ + (cσ (2− cσ)µw)
1/2

√
C(t)

−1
dy

p(0)
C = (1− cc) p(t)

C + (cc (2− cc)µw)
1/2 dy

Here, µw is defined as µw = 1/
∑λ

i=1 w
2
i , cσ and cc are the cumulation factors for evolution paths,

and
√

C(t) is the unique and symmetric matrix satisfying C(t) =
(√

C(t)
)2

.
6: Step 4

Update the parameters:
m(t+1) = m(t) + cmσ(t)dy
σ(t+1) = σ(t) exp

[
cσ
dσ

(
‖p(t+1)

σ ‖
χd

− 1

)]
C(t+1) = C(t) + c1

[
OP

(
p(t+1)
c

)
− C(t)

]
+cµΣ

λ
i=1wi

[
OP (yi:λ)− C(t)

]
Here, OP(v) = vvT is the tensor product and χd is the expected value E[‖N(0, I)‖] of the norm of
the d-dimensional normal distribution, whose approximated value d1/2

(
1− 1

4d + 1
21d2

)
is used. The

coefficients cm, c1 and cµ are the learning rates for the mean vector update, the rank-one covariance
update and the rank-µ covariance update, respectively. The damping factor for σ-update is denoted
by dσ.

7: end while
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第 3章

非線形力学的観点からみたポーポイズの発
生原理

ポーポイズは第 2 章で提案したように，非線形システムとして表すことができる．本章では，この非線形シ
ステムと，これを平衡点近傍で線形化したシステムのそれぞれに対して安定性を解析することで，ポーポイズ
を非線形力学理論における分岐解析の側面から明らかにする．まず，平衡点近傍で線形化する方法とその安定
性の判別法について示し，次に固定点の探索とその安定性の判別を数値計算を用いて行う方法について示す．
これらを踏まえて，第 2 章で同定したモデルを用いて，平衡点近傍の安定性と固定点の安定性について分析
し，ポーポイズの発生とその分岐現象について考察する．

3.1 平衡点と固定点の安定判別
本節では，平衡点の探索方法とその安定判別の方法について述べたのちに，固定点の探索方法とその安定判
別の方法について述べる．

3.1.1 平衡点の探索とその安定性
非線形状態方程式 Eq. (2.1.6)において，

f(X∗, u∗) = 0 (3.1.1)

となるような，(X∗, u∗)の組み合わせを平衡点と呼ぶ．ここで ∗ は平衡点にある変数を表す．Eq. (3.1.1)を
用いると，u∗ を与えたとき，X∗ を一意に求めることができる．平衡点 X∗ からの微小なずれを ξ(t) ∈ R5，
u∗ からの微小なずれを ζ(t) ∈ R2 とする．このとき，

X(t) = X∗ + ξ(t) (3.1.2)
u(t) = u∗ + ζ(t) (3.1.3)

とした軌道を考える．Eq. (3.1.2)と Eq. (3.1.3)を Eq. (2.1.6)に代入すると，Eq. (3.1.4)を得る．

Ẋ(t) = Ẋ∗ + ξ̇(t) = f (X∗ + ξ(t), u∗ + ζ(t)) (3.1.4)
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ここで ξ(t)と ζ(t)が十分に小さいとすると，右辺をテイラー展開し，二次以上の項を無視することができる．

f (X∗ + ξ(t), u∗ + ζ(t)) = f (X∗, u∗) +
∂f

∂X

∣∣∣∣X(t)=X∗

u(t)=u∗

ξ(t) +
∂f

∂u

∣∣∣∣X(t)=X∗

u(t)=u∗

ζ(t) (3.1.5)

X∗ = const.より，Eq. (3.1.4)において Ẋ∗ = 0であるから，Eq. (3.1.1)，Eq. (3.1.4)，および Eq. (3.1.5)
より，平衡点 (X∗, u∗)に関する線形状態方程式，

ξ̇(t) =
∂f

∂X

∣∣∣∣X(t)=X∗

u(t)=u∗

ξ(t) +
∂f

∂u

∣∣∣∣X(t)=X∗

u(t)=u∗

ζ(t) (3.1.6)

を得る．制御ベクトルが u(t) = u∗ = const.のとき，A ∈ R5×5 を，

A =
∂f

∂X

∣∣∣∣X(t)=X∗

u(t)=u∗

(3.1.7)

とし，Aの固有値を λe
i とする．このとき，Eq. (3.1.8)が成立すると，平衡点は安定であると言える．

Reλe
i < 0 ∀i (3.1.8)

3.1.2 固定点の探索とその安定性
線形化されたシステムにおいて，ポーポイズが生じると平衡状態が不安定化し，如何なる初期値に対しても
解が発散する．一方，実現象を観察すると，振幅は最終的に定常となり，リミットサイクルが生じていること
がわかる．これは，システムに非線形性があるためである．そこで，このリミットサイクルの安定性を分析す
るため，川上 [58–60]の方法を用いる．この方法は，非線形システムに対し，Newton法を用いてポアンカレ
断面上の固定点を探索すると同時に，ポアンカレ写像の特性乗数も計算し，周期軌道の安定性を判別すること
ができる．なお，この方法では，不安定な周期軌道も計算できる点に特徴がある．本節ではまず，川上の方法
による固定点の探索方法について述べる．次に固定点に微小なずれを与えたときの安定性の評価方法について
述べる．

固定点の定義
制御ベクトル u = u0 = const.が与えられているとき，X = X0，t = t0 からスタートする Eq. (2.1.6)の解

軌道を Eq. (3.1.9)で表す．

X(t) = φ(t, X; t0, X0) (3.1.9)

X(t) ∈ R5 を変数 θ̇(t)に写す写像，

q : R5 → R; X(t) 7→ q (X(t)) = θ̇(t) (3.1.10)

を用いて，超曲面 Φを Eq. (3.1.11)のように定義する．

Φ =
{
X(t) ∈ R5 | q (X(t)) = 0

}
(3.1.11)

Φは φに関するポアンカレ断面となる．ここで X0 は，q(X0) = 0，すなわち超曲面 Φ上に存在するとする．
ポーポイズは艇体のピッチ角 θが周期的に変動する運動であり，Eq. (3.1.9)は周期解を表すから，φ(t,X)は
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必ず超曲面 Φを横断的に交わる．そこで変数 Y (t)と写像した結果 Ψを Eq. (3.1.12)と Eq. (3.1.13)で定義
する．

Y (t) =
[
z(t) θ(t) ẋ(t) ż(t)

]T (3.1.12)
Ψ =

{
Y (t) ∈ R4

}
(3.1.13)

Φから Ψへの写像Hを，

H : Φ → Ψ; X(t) 7→ Y (t) (3.1.14)

と定義する．このとき，Y0 は，

Y0 = H(X0) (3.1.15)

となる．Y0 ∈ Ψの近傍点 Y1 ∈ Ψに対し，H−1(Y1) = X1 ∈ Φを初期値とする φ(t, X; t0, X1)が再び Φと
交わる点を X2，その時刻を t0 + τ(X1)とすると，

X2 = φ (t0 + τ(X1), X; t0, X1) (3.1.16)

となる．φを用いて，Ψをそれ自身に写す写像 P を Eq. (3.1.17)のように定義する．

P : Ψ → Ψ; Y1 7→ Y2 = H
(
φ
(
t0 + τ

(
H−1(Y1)

)
, X; t0, H−1(Y1)

))
(3.1.17)

X0 ∈ R5 が，

X0 = H−1 (P (H(X0))) (3.1.18)

を満たすとき，X0 を固定点と呼び，τ0 = τ
(
H−1(Y0)

)が周期となる．
固定点の導出方法
次に，変数 X̂(t, X)を Eq. (3.1.19)で定義する．

X̂(t, X) =
[
z(t) θ(t) ẋ(t) ż(t) τ(X)

]T (3.1.19)

固定点は Newton法を用いて，Eq. (3.1.20)を解くことで得られる．

F
(
X̂
)
= φ (t0 + τ(X0), X; t0, X0)−X0 = 0 (3.1.20)

ヤコビ行列 JF ∈ R5×5 を Eq. (3.1.21)で定義する．

JF =
dF
dX̂

(3.1.21)

このとき，漸化式，

X̂(k̂+1) = X̂(k̂) − αJ−1
F F

(
X̂(k̂)

)
(3.1.22)

を終端条件， ∥∥∥F (X̂(k̂)
)∥∥∥ < ϵF (3.1.23)
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まで解くことで，F
(
X̂
)
= 0となる X̂ を求めることができる．ここで，‖F‖は F のユークリッドノルムを

表す．本研究では ϵF = 10−10 とする．また，本研究では，αの初期値は 0.1とした上で，減速 Newton法を
用いる．すなわち

∥∥∥F (X̂(k̂+1)
)∥∥∥が条件，∥∥∥F (X̂(k̂+1)

)∥∥∥ <
∥∥∥F (X̂(k̂)

)∥∥∥ (3.1.24)

を満たさないときは，αの値を 0.5倍にして，満たすまで繰り返しこの手続きを行う．解軌道 φ(t, X; t0, X0)

はその成分毎に表すと Eq. (3.1.25)のように表すことができる．

φ(t, X; t0, X0) =


φ1(t, X; t0, X0)
φ2(t, X; t0, X0)
φ3(t, X; t0, X0)
φ4(t, X; t0, X0)
φ5(t, X; t0, X0)

 (3.1.25)

ここで，φに対する X の各成分の偏微分を Eq. (3.1.26)で定義する．

βij =
∂φi (t0 + τ(X0), X; t0, X0)

∂X̂j
, for i = 1, · · · , 5, j = 1, · · · , 5 (3.1.26)

βij を用いると，JF は Eq. (3.1.27)のように表すことができる．

JF =


β11 − 1 β12 β13 β14 β15

β21 β22 − 1 β23 β24 β25

β31 β32 β33 − 1 β34 β35

β41 β42 β43 β44 − 1 β45

β51 β52 β53 β54 β55

 (3.1.27)

固定点の安定判別
次に固定点の安定性について考える．固定点 X0 の写像 Y0 からの微小なずれを δ(k) ∈ R4 として，Y (k) を

Eq. (3.1.28)で定義する．

Y (k) = Y0 + δ(k) (3.1.28)

このとき，Y (k+1) はポアンカレ写像 P を用いて，Eq. (3.1.29)で表すことができる．

Y (k+1) = Y0 + δ(k+1) = P
(
Y0 + δ(k)

)
(3.1.29)

δ(k) が十分小さいとすると，Eq. (3.1.29)の右辺をテイラー展開し，二次以上の項を無視することができる．

P
(
Y0 + δ(k)

)
= P (Y0) +

dP
dY

∣∣∣∣
Y=Y0

δ(k)

= Y0 +
dP
dY

∣∣∣∣
Y=Y0

δ(k) (3.1.30)

Eq. (3.1.29)と Eq. (3.1.30)より，固定点 Y0 に対する変分方程式，

δ(k+1) =
dP
dY

∣∣∣∣
Y=Y0

δ(k) (3.1.31)
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を得る．JS ∈ R4×4 を，

JS =
dP
dY

∣∣∣∣
Y=Y0

(3.1.32)

とし，JS の固有値を λf
i とすると，Eq. (3.1.33)が成立するとき，すなわち λf

i が単位円の内部にあるとき，固
定点は安定であると言える． ∥∥λf

i
∥∥ < 1 ∀i (3.1.33)

λf
i を特性乗数と呼ぶ．ところで，Eq. (3.1.17)より，

P(Y ) = H (φ(t0 + τ(X), X; t0, X0)) (3.1.34)

である．これを Eq. (3.1.32)に代入すると，

JS =
dH (φ(t0 + τ(X), X; t0, X0))

dY (3.1.35)

となる．JS を βij を用いて展開すると，

JS =


β11 β12 β13 β14

β21 β22 β23 β24

β31 β32 β33 β34

β41 β42 β43 β44

 (3.1.36)

となる．Eq. (3.1.27)と Eq. (3.1.36)より，JF と JS は βij を用いて同時に算出することができ，固定点の探
索と同時に特性乗数を求めることができることがわかる．
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3.2 計算結果と考察
本節では，第 2 章で同定したモデルを用いて，平衡点周りの安定性と固定点の安定性について検証する．

3.2.1 平衡点周りの安定性
Troesh & Falzarano [31]は重心位置によるポーポイズの発生について解析を行った．本研究では特に船外

機の姿勢に着目し，船外機の姿勢とスラストの変化に対して，平衡点の安定性がどのように変化するかについ
て調査した．代表的な船外機のトリム角 θe における，平衡状態の船速 ẋとスラスト T の関係を Fig. 3.1に示
す．それぞれの点は Eq. (3.1.8)を用いて安定判別を行った．

(a) Calculation result at θe = −8°. (b) Calculation result at θe = −2°. (c) Calculation result at θe = 4°.

Fig.3.1: Velocity of the craft at each equilibrium point. The solid line represents stable states, and the dashed
line represents unstable states.

最もスラストが高い点では，いずれの条件でも安定である．θe = −8°と θe = −2°の条件では，スラストが
減少していくと不安定になることが確認できた．次に，θe = −2°において，λe

i を左半平面にあるか右半平面
にあるかを識別して，複素平面上に示したものが Fig. 3.2である．
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Fig.3.2: Eigenvalues at θe = −2° on the complex plane.

固有値は，原点近傍の固有値群 A，虚軸近傍に存在する複素共役な固有値群 B，2個の実数もしくはその周
辺に存在する複素共役な固有値群 C の 3種類に分類できる．スラストによってほとんど変化しない固有値群
Aを除く 2つの固有値群について，スラストによって固有値がどのように変化するかを矢印で表している．ス
ラストが低下するにつれて，すなわち船速が低下するにつれて，B に属する固有値の実部は大きくなり，やが
て右半平面に遷移する．このとき，Eq. (3.1.8)が成立しなくなり，システムが不安定となる．Fig. 3.3は，そ
れぞれの平衡状態の安定性を T と θe に対してプロットしたものである．
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Fig.3.3: Stability around the equilibrium point with varying thrust and trim angle. The blue area is determined
as stable, and the red area is determined as unstable. The white area is an unexplored region.

平衡状態周りの安定性の解析結果からは，船外機トリム角が小さくなるほど，不安定な領域が増加し，ポー
ポイズが発生しやすくなることが確認できた．この結果は Fig. 2.11において，船外機トリム角が負の方向に
大きくなるほど，ピッチ角振幅が大きくなる傾向と一致した．

3.2.2 固定点周りの安定性
次に3.1.2 節の手法を用いて，固定点を探索する．固定点の探索においては，Eq. (3.1.25)で表される軌道を

導出する必要がある．この軌道は Euler法により計算するが，その際，タイムステップによって結果がどのよ
うに変化するかについて最初に検証を行った．タイムステップと周期 τ0 の比率を 0.0001から 0.01まで変化
させて固定点を探索し，探索した固定点を初期値として周期起動 φ2

(
t ∈

[
t0, t0 + τ0

]
, X; t0, X0

)
を計算

した．その振幅をタイムステップと周期 τ0 の比率に対してプロットしたものが，Fig. 3.4である．このとき，
スラスト T = 4600 N，船外機トリム角 θe = −2°とした．
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Fig.3.4: The convergence check of the fixed point calculation.

タイムステップを短くしていくと，ピッチ振幅は徐々に減少し収束する．これは，Euler 法ではタイムス
テップを小さくすると，誤差が指数関数的に小さくなるためである．そこで，本研究ではタイムステップを
τ0/10000 sとして，固定点の探索を行うことにする．船外機トリム角とスラストを変化させながら固定点を探
索し，周期起動 φ2

(
t ∈

[
t0, t0 + τ0

]
, X; t0, X0

)
の振幅をスラスト T に対して示したものが，Fig. 3.5で

ある．
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Fig.3.5: Amplitude of θ over the time history of numerical simulation from the fixed point.

Fig. 2.11と比較すると，絶対値が小さいものの，θe が小さくなるほど振幅が大きくなる傾向や，T が大きく
なるほど，振幅が小さくなる傾向は一致した．またそれぞれの点における安定性を判定した結果，全ての点に
おいて安定であることが確認できた．

Fig. 3.6aにおいて，赤い線は，赤い点で示す T = 4600 N，θe = −2°の点における固定点を初期値とする，
φに含まれる θ と θ̇ の軌跡を示している．また，水色の線は，水色の点で示す固定点の θ に 0.1 °を加えた点
を初期値とした時の軌跡，濃青色の線は，濃青色の点で示す固定点の θに −0.1°を加えた点を初期値とした時
の軌跡をそれぞれ示している．これらの軌跡はいずれも，タイムステップを τ0/10000 sとして，Euler法によ
り求めた．



48 第 3章 非線形力学的観点からみたポーポイズの発生原理

(a) Overall view.

(b) Magnified view around the fixed point.

Fig.3.6: Phase space of θ and θ̇. The red line is the orbit starting from the fixed point indicated by the red
point. The light blue line represents the orbit starting from the point obtained by adding 0.1° to θ of
the fixed point. The dark blue line represents the orbit starting from the point obtained by adding
−0.1° to θ of the fixed point.
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Fig. 3.6bは Fig. 3.6aの固定点近傍を拡大したものである．固定点に擾乱を加えた時の軌跡は，固定点を初
期値とする軌跡に漸近しており，固定点が安定であることがわかる．Fig. 3.7は，固定点を初期値として求め
た φ3

(
t ∈

[
t0, t0 + τ0

]
, X; t0, X0

)
の平均値と平衡点における船速を，スラストに対してプロットしたも

のである．平衡点における船速は Fig. 3.1の値を用いている．

(a) Calculation result at θe = −8°. (b) Calculation result at θe = −2°. (c) Calculation result at θe = 4°.

Fig.3.7: Velocity of the craft at each equilibrium point. The solid line represents stable states, and the dashed
line represents unstable states. FP represents the fixed point, and EP represents the equilibrium point.

スラストを徐々に小さくしていくと，ある点において平衡状態が不安定となり，同時に安定な固定点が発現
することがわかる．ポーポイズの発生はスーパー・クリティカルなホップ分岐によるものであり，実船におい
て船速を変化させると安定な状態から不安定な状態に遷移して，安定なリミットサイクルであるポーポイズが
発生する，という現象と一致した．

3.2.3 安定な平衡点と固定点の共存
3.2.2 節では，Fig. 3.4に基づいて，タイムステップを τ0/10000 sとしたときの結果について検討し，平衡

状態が不安定になると安定な固定点が発現することを示した．ところが，タイムステップを τ0/1000 sとする
と，異なる現象が見られる．本節ではこのことについて詳述する．T = 5100 N，θe = −2°の条件で，タイム
ステップを τ0/1000 sとして，平衡点と固定点およびそれぞれの近傍点を初期値とする軌跡を Fig. 3.8に示す．
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(a) Phase space of θ and θ̇.

(b) Phase space of θ and ẋ.

Fig.3.8: The orbits from the fixed point, the equilibrium point, and the points in the vicinity of both points.
The red line indicates an orbit starting from the fixed point represented by the red point. The pink line
is the orbit starting from the point obtained by adding −0.1° to θ of the fixed point. The blue point
represents the equilibrium point. The light blue line is the orbit starting from the point obtained by
adding 0.1° to θ of the equilibrium point.
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それぞれの図において，赤色の点は固定点を，青色の点は平衡状態を表す．また赤色の線は固定点を初期値
とする軌跡を表す．薄い赤色の線は薄い赤色の点で示す固定点の θに −0.1°を加えた点を初期値とした時の軌
跡，薄い青色の線は薄い青色の点で示す平衡状態の θ に +0.1°を加えた点を初期値とした時の軌跡をそれぞ
れ表す．赤色の線と薄い赤色の線は，タイムステップを τ0/1000 s = 0.00101 sとして Euler法により求めた．
また，青色の線はタイムステップを 0.0001 sとして求めた．薄い青色の線は青色の平衡状態の点へ，薄い赤色
の線は赤色の固定点を初期値とする軌跡へそれぞれ収束する．Fig. 3.8bより，平衡状態と固定点では船速がわ
ずかに異なっており，同じ入力条件でも初期値によって，どちらの状態へ収束するかが変化していることがわ
かる．
このような現象は実機試験においても確認できる．Fig. 3.9に，T = 4800 N，θe = 4°の条件で航走したと
きの結果を示す．

Fig.3.9: Full-scale craft test results at T = 4800 N and θe = 4°. The dashed red line indicates 35 s.

Fig. 3.8とは入力条件が異なるが，一定の入力条件において，35 sまではポーポイズが発生していないのに
対し，35 s以降ではポーポイズが発生していることがわかる．このように，実船においても，僅かな状態の変
化によって，それまでポーポイズの発生がなく安定して航走していた状態から，ポーポイズに遷移する状況は
確認されており，分岐点付近では，安定な平衡状態と安定なリミットサイクルが併存する場合もあることがわ
かった．また，このことは，特に分岐点近傍においては，僅かな状態の変化によって，ポーポイズを減揺でき
る可能性があることを示唆している．初期値の依存性に関する議論は非線形力学のテキストでも扱われるトピ
ックであるが，これもその一例であると考えられれ，このことが，実機試験でも観察できたことは価値がある．

3.2.2 節で示した通り，タイムステップを τ0/10000 sとした場合にはこのような現象は発生しなかった．非
線形システムの場合，数値的な問題として生じている可能性も否定できない．
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3.3 結言
本章では，非線形力学的観点からみたポーポイズの発生原理について分析を行った．まずシステムを平衡点
近傍で線形化して安定性を判別する方法について示した．次に非線形システムにおいて周期解の安定性を判別
するため，固定点を探索しその安定性を判別する方法について論じた．第 2 章で同定したモデルを用いて解析
を行ったところ，平衡点近傍の安定性は船外機トリム角とスラストをそれぞれ減少させることで失われ，不安
定化することを明らかにした．また，平衡点が不安定になった点で固定点を探索したところ，周期解が存在し，
リミットサイクルが出現することがわかった．このリミットサイクルはいずれも安定であり，分岐点ではスー
パークリティカルなホップ分岐が発生していることが確認できた．
一方，数値計算におけるタイムステップの違いによっては，平衡点と固定点が共存する可能性があることを

示した．この結果は実機試験においても確認されており，分岐点付近では，僅かな状態の変化によってポーポ
イズを減揺できる可能性があることを示唆した．



53

第 4章

ポーポイズの減揺制御

本章では，船外機のトリム角をアクティブに制御して，ポーポイズを減揺する方法について紹介する．船外
機艇のドライバーは通常，所望の艇体姿勢と船速を得るために船外機のスラストとトリム角を指定する．そこ
で，本研究では船外機のスラストは一定とした上で，以下の制御目標を満たす制御器を設計する手法を検討
した．

• 制御目標 1：艇体のピッチ角の揺動を船外機のトリム角を制御することで減衰させる．
• 制御目標 2：制御によって船外機トリム角の平均値を変化させない．

本章では，まず制御器の設計手法とその安定性について紹介する．次に対象船を用いて制御器を実際に設計し，
運動シミュレーションによってその効果を検証する．最後に実船において，設計した制御器の検証を行う．

4.1 制御器の設計法
本節では，ポーポイズを減揺するための制御器の設計手法とその安定性の判別方法について述べる．

4.1.1 平衡点周りの線形状態方程式
平衡点 (X∗, u∗)に関する線形状態方程式 Eq. (3.1.6)を展開すると，Eq. (4.1.1)を得る．

d
dt


z(t)− z∗

θ(t)− θ∗

ẋ(t)− ẋ∗

ż(t)

θ̇(t)

 =


0 0 0 1 0
0 0 0 0 1
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55



z(t)− z∗

θ(t)− θ∗

ẋ(t)− ẋ∗

ż(t)

θ̇(t)

+


0 0
0 0
b31 b32
b41 b42
b51 b52


[
T (t)− T ∗

θe(t)− θ∗e

]
(4.1.1)

where aij =
∂fi
∂Xj

, bik =
∂fi
∂uk

for i = 1, · · · , 5, j = 1, · · · , 5, k = 1, 2

船外機のトリム角は一般的に通電中一定速度で変化する．すなわち，トリム角速度を ωe [rad/s]，トリム角速
度の操作変数を v(t)とし，平衡点 θ∗e の周りで船外機が揺動することを考えると，θe(t)は Eq. (4.1.2)で表す
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ことができる．

θe(t) = θ∗e +

∫ t

0

ωe sgn v(τ)dτ (4.1.2)

where sgn v(τ) =

{
−1 v(τ) < 0

1 v(τ) > 0

但し，船外機は制御作動中に停止することはない，すなわち v(τ) = 0となることはないものとする．Eq. (4.1.2)
を変形して両辺を微分すると，Eq. (4.1.3)を得る．

d
dt (θe(t)− θ∗e ) = ωe sgn v(t) (4.1.3)

本章冒頭で述べた前提により船外機のスラストは一定であり，その結果船速も一定であると仮定する．すなわ
ち，T (t) = T ∗，ẋ(t) = ẋ∗ とする．Eq. (4.1.1)と Eq. (4.1.3)より，状態方程式と出力方程式は Eq. (4.1.4)
と Eq. (4.1.5)で表すことができる．

d
dt


z(t)− z∗

θ(t)− θ∗

ż(t)

θ̇(t)
θe(t)− θ∗e


ẊE(t)

=


0 0 1 0 0
0 0 0 1 0
a41 a42 a44 a45 b42
a51 a52 a54 a55 b52
0 0 0 0 0


AE


z(t)− z∗

θ(t)− θ∗

ż(t)

θ̇(t)
θe(t)− θ∗e


XE(t)

+


0
0
0
0
ωe


BE

sgn v(t)

vE(t)

(4.1.4)

θe(t)− θ∗e
y(t)

=
[
0 0 0 0 1

]
CE


z(t)− z∗

θ(t)− θ∗

ż(t)

θ̇(t)
θe(t)− θ∗e


XE(t)

(4.1.5)

制御目標 2は，船外機の角度 θe をある狙いの角度 θc
e 周りで動かすことを示している．そこで，制御動作によ

って船外機の平均トリム角が変化するのを防ぐため，新たな状態変数 XI(t) ∈ Rを導入する．

ẊI(t) = θc
e − θe(t) = (θc

e − θ∗e )

r

− (θe(t)− θ∗e )

y(t)

(4.1.6)

本研究では，θc
e = θ∗e，すなわち r = 0として考える．

4.1.2 積分器を持つスライディングモード制御の問題定式化
スライディングモード制御は，Itkis [61] によってはじめて紹介され，Utkin [62, 63] によって主要な理論

が構築された．スライディングモード制御では，スイッチング関数を導入し，これをゼロに収束させること
で，状態変数をスライディング超平面に拘束するよう制御を行う．これにより，有限時間内にスライディング
変数が 0 となることが保証される．また，モデルの不確かさや非線形性に対する高いロバスト性を持つ．さ
らに Eq. (4.1.2) に示すように，船外機は一定速で作動することから，スライディングモードとの親和性が
高いと考えられる．スライディングモード制御は航空機や UAV の姿勢制御に多く用いられてきた [64–68]．
一方，文献調査ではこれをポーポイズの減揺に適用した事例は見つけることができなかった．本研究では
Edwards & Spurgeon [69]の方法に基づき，スライディングモード制御則の検討を行う．
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Eq. (4.1.4) − Eq. (4.1.6)より，拡大系状態方程式として Eq. (4.1.7)を導く．

d
dt

[
XI(t)
XE(t)

]
=

[
0 −CE
0 AE

] [
XI(t)
XE(t)

]
+

[
0
BE

]
vE(t) (4.1.7)

Eq. (4.1.7)で表される線形モデルと実現象の間には，モデル化誤差，線形化誤差，予測できない外乱などの様
々な未知の誤差が存在する．そこで，これらの誤差を fe(t, XES(t), vE(t)) ∈ R6 とし，Eq. (4.1.7)に加えて，
改めて拡大系状態方程式 Eq. (4.1.8)を定義する．

d
dt

[
XI(t)
XE(t)

]
ẊES(t)

=

[
0 −CE
0 AE

]
AES

[
XI(t)
XE(t)

]
XES(t)

+

[
0
BE

]
BES

vE(t) + fe(t, XES(t), vE(t)) (4.1.8)

ここで，XES(t)，AE，BE，CEを，X1(t) ∈ R5, X2(t) ∈ R，A11 ∈ R4×4，A12 ∈ R4×1，A21 ∈ R1×4，A22 ∈ R，
B2 ∈ R，C1 ∈ R1×4，C2 ∈ Rを用いて，それぞれ Eq. (4.1.9) − Eq. (4.1.12)のように表す．

XES(t) =

[
X1(t)
X2(t)

]
(4.1.9)

AE =

[
A11 A12

A21 A22

]
(4.1.10)

BE =

[
0
B2

]
(4.1.11)

CE = −
[
C1 C2

]
(4.1.12)

Eq. (4.1.9) − Eq. (4.1.12)より，fu(t, XE(t)) ∈ R5，fm(t, XE(t), v(t)) ∈ Rを用いると，Eq. (4.1.8)を
Eq. (4.1.13)のように表すことができる．

[
Ẋ1(t)

Ẋ2(t)

]
=

 0 C1 C2

0 A11 A12

0 A21 A22

[X1(t)
X2(t)

]
+

 0
0
B2

 v(t) +

[
fu(t, XE(t))

fm(t, XE(t), v(t))

]
(4.1.13)

where
[

fu(t, XE(t))
fm(t, XE(t), v(t))

]
= fe(t, XES(t), vE(t))−

[
0
B2

]
(v(t)− vE(t))

但し，fu(t, XE(t))と fm(t, XE(t), v(t))はそれぞれ，k1, k2, k3 ≥ 0及び関数 α(t, XE(t))によって，そ
れぞれ Eq. (4.1.14)と Eq. (4.1.15)で制約されると仮定する．

‖fu(t, XE(t))‖ ≤ k1‖XE(t)‖+ k2 (4.1.14)
‖fm(t, XE(t), v(t))‖ ≤ k3‖v(t)‖+ α(t, XE(t)) (4.1.15)

Eq. (4.1.13)で表される拡大系状態方程式を原点周りに安定化することができれば，θe を θ∗e に漸近させなが
ら，XE(t)を 0に収束させることが可能となり，2つの制御目標を達成できることになる．

4.1.3 スライディングモード制御入力の定義
スイッチング関数 s(t)を S1 ∈ R1×5，S2 ∈ Rを用いて Eq. (4.1.16)で定義する．

s(t) =
[
S1 S2

]
S

[
X1(t)
X2(t)

]
= S2

[
M 1

]
S

[
X1(t)
X2(t)

]
(4.1.16)

where M = S−1
2 S1 ∈ R1×5
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ここで，S2 は任意の正の値とする．スライディング超平面 S を，

S = {XES(t) : s(t) = 0} (4.1.17)

で定義する．スライディングモード制御では，XES(t)はまず，S に拘束されたのち，原点に収束する．座標変
換行列，

Ts =

[
I5 0
S1 S2

]
(4.1.18)

を用いて，Eq. (4.1.13)を変換すると，Eq. (4.1.19)を得る．[
Ẋ1(t)
ṡ(t)

]
=

[
Ā11 Ā12

S2Ā21 S2Ā22S
−1
2

] [
X1(t)
s(t)

]
+

[
0

S2B2

]
v(t)

+

[
fu(t, XE(t))

S1fu(t, XE(t)) + S2fm(t, XE(t), v(t))

]
(4.1.19)

但し，Ā11 ∈ R5×5，Ā12 ∈ R5×1，Ā21 ∈ R1×5，Ā22 ∈ Rをそれぞれ Eq. (4.1.20) − Eq. (4.1.23)で定義する．

Ā11 =

[
0 C1

0 A11

]
−
[
C2

A12

]
M (4.1.20)

Ā12 =

[
C2

A12

]
S−1
2 (4.1.21)

Ā21 = MA11 +
[
0 A21

]
−A22M (4.1.22)

Ā22 = M

[
C2

A12

]
+A22 (4.1.23)

M は Eq. (4.1.16)において s(t)を定義するため導入されたベクトルであり，Ā11 が安定となるように選択す
る．このとき，制御入力 v(t)を線形成分 vL(t)と非線形成分 vN(t)を用いて以下のように定義する．

v(t) = vL(t) + vN(t) (4.1.24)

where


vL(t) = −(S2B2)

−1(SAES − ΦS)

L

XES(t)

vN(t) = −ρc(S2B2)
−1

Ln

P2s(t)

‖P2s(t)‖

但し，P2 > 0とし，Φを Φ = −0.5/P2 として定義する．ρc はスカラー値であり，設計変数 γ2 > 0を用いて
Eq. (4.1.25)で定義する．

ρc ≥ ‖S2‖ (‖M‖(k1‖XES(t)‖+ k2) + k3‖vL(t)‖+ α(t, XE(t))) + γ2

1− k3‖S2B2‖‖(S2B2)−1‖‖B−1
2 ‖

(4.1.25)

実現象において，Eq. (4.1.25)の右辺を正確に予測することは難しい．そのため，実際の設計に際しては，γ2

ではなく，ρc を設計変数とする．
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4.1.4 安定性判別
Eq. (4.1.24)で定義した制御入力を用いて，システムを安定化するための条件について，リヤプノフ関数を

用いて検討する．Eq. (4.1.19)に Eq. (4.1.24)を代入すると，
[
Ẋ1(t)
ṡ(t)

]
=

[
Ā11 Ā12

0 Φ

] [
X1(t)
s(t)

]
+

[
fu(t, XE(t))

S1fu(t, XE(t)) + S2fm(t, XE(t), v(t))

]
+

 0

−ρc
P2s(t)

‖P2s(t)‖


(4.1.26)

を得る．まず，s(t)の安定性について考える．リヤプノフ関数 Vs(t)を Eq. (4.1.27)で定義する．

Vs(t) = s(t)TP2s(t) (4.1.27)

Vs(t)を時間微分すると，Eq. (4.1.28)を得る．

V̇s(t) = 2s(t)TP2ṡ(t)

= 2s(t)TP2

(
Φs(t) + S1fu(t, XE(t)) + S2fm(t, XE(t), v(t))− ρc

P2s(t)

‖P2s(t)‖

)
≤ −‖s(t)‖2 − 2ρc‖P2s(t)‖+ 2s(t)TP2S2(Mfu(t, XE(t)) + fm(t, XE(t), v(t)))

≤ −‖s(t)‖2 − 2‖P2s(t)‖
(
ρc − ‖S2‖(‖M‖‖fu(t, XE(t))‖+ ‖fm(t, XE(t), v(t))‖)

)
(4.1.28)

ここで，

k3‖S2B2‖‖(S2B2)
−1‖‖B−1

2 ‖ < 1 (4.1.29)

とすると，Eq. (4.1.25)より，Eq. (4.1.30)が成立する．

ρc ≥ k3ρc‖S2B2‖‖(S2B2)
−1‖‖B−1

2 ‖
+ ‖S2‖ {‖M‖(k1‖XES(t)‖+ k2) + k3‖vL(t)‖+ α(t, XE(t))}+ γ2

≥ k3ρc‖S2‖‖(S2B2)
−1‖

+ ‖S2‖ {‖M‖(k1‖XES(t)‖+ k2) + k3‖vL(t)‖+ α(t, XE(t))}+ γ2

≥ ‖S2‖ (‖M‖(k1‖XES(t)‖+ k2))

+ ‖S2‖
{
k3
(
‖vL(t)‖+ ρc‖(S2B2)

−1‖
)
+ α(t, XE(t))

}
+ γ2

≥ ‖S2‖ (‖M‖(k1‖XES(t)‖+ k2)) + ‖S2‖ {k3 (‖vL(t)‖+ ‖vN‖) + α(t, XE(t))}+ γ2

≥ ‖S2‖(‖M‖‖fu(t, XE(t))‖+ ‖fm(t, XE(t), v(t))‖) + γ2 (4.1.30)

Eq. (4.1.30)を用いると，Eq. (4.1.28)は，

V̇s(t) ≤ −‖s(t)‖2 − 2γ2‖P2s(t)‖
≤ −‖s(t)‖2 (4.1.31)

となり，s(t)の二次安定性の成立が確認できる．ここで，任意の対称行列 R に対して，最も小さな固有値を
λmin(R)，最も大きな固有値を λmax(R)と表記する．このとき，Courant‒Fischerの最大・最小定理より，任
意の行列 y に対し，

λmin(R) ≤ yTRy

yTy
≤ λmax(R) (4.1.32)
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が成立する．Eq. (4.1.32)を用いると，

‖P2s(t)‖2 =
(
P

1/2
2 s(t)

)T
P2

(
P

1/2
2 s(t)

)
≥ λmin(P2)‖P 1/2

2 s(t)‖2

= λmin(P2)Vs(t) (4.1.33)

を得る．Eq. (4.1.31)と Eq. (4.1.33)より，

V̇s(t) =
d
dt

(√
Vs(t)

)2
= 2
√

Vs(t)
d
dt
√
Vs(t)

≤ −2γ2‖P2s(t)‖

≤ −2γ2
√
λmin(P2)

√
Vs(t)

⇔ d
dt
√
Vs(t) ≤ −γ2

√
λmin(P2) (4.1.34)

を導く．s(t) = 0となる時刻を t = ts とし，両辺を t = [0, ts]で積分すると，Vs(ts) = 0より，√
Vs (ts)−

√
Vs (0) ≤ −γ2

√
λmin(P2)ts

⇔ ts ≤
√
Vs (0)

γ2
√

λmin(P2)
(4.1.35)

となる．すなわち有限な時間 ts において，s(ts) = 0となり，状態 XES(t)はスライディング超平面 S に拘束
されることがわかる．
次に t > ts における，S 上での状態のふるまいについて考える．Ā11 は安定行列であり，

P1Ā11 + ĀT
11P1 = −Q1 (4.1.36)

となるような，正定行列 P1 ∈ R5×5 と Q1 ∈ R5×5 を選ぶことができる．リヤプノフ関数 Vx(t)を，

Vx(t) = X1(t)
TP1X1(t) (4.1.37)

と定義する．Vx(t) を時間微分すると，Courant‒Fischer の最大・最小定理を用いて，V̇x(t) に関する不等式
Eq. (4.1.38)を得る．

V̇x(t) = 2X1(t)
TP1Ẋ1(t)

= 2X1(t)
TP1

(
Ā11X1(t) + Ā12 s(t)

0

+fu(t, XE(t))

)
= X1(t)

T (P1Ā11 + ĀT
11P1

)
X1(t) + 2X1(t)

TP1fu(t, XE(t))

= −X1(t)
TQ1X1(t) + 2X1(t)

TP1fu(t, XE(t))

≤ −λmin(Q1)‖X1(t)‖2 + 2‖X1(t)
TP1‖‖fu(t, XE(t))‖

≤ −λmin(Q1)‖X1(t)‖2 + 2
√

X1(t)TP 2
1X1(t)‖fu(t, XE(t))‖

≤ −λmin(Q1)‖X1(t)‖2 + 2
√

λmax(P 2
1 )X1(t)TX1(t)‖fu(t, XE(t))‖

= −λmin(Q1)‖X1(t)‖2 + 2λmax(P1)‖X1(t)‖‖fu(t, XE(t))‖

= −λmax(P1)‖X1(t)‖
(
λmin(Q1)

λmax(P1)
‖X1(t)‖ − 2‖fu(t, XE(t))‖

)
(4.1.38)
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‖fu(t, XE(t))‖が Eq. (4.1.39)に従う時，

‖fu(t, XE(t))‖ ≤ 1

2

λmin(Q1)

λmax(P1)
‖X1(t)‖ (4.1.39)

V̇x(t)は Courant‒Fischerの最大・最小定理を用いて，

V̇x(t) ≤ −λmax(P1)‖X1(t)‖
(
λmin(Q1)

λmax(P1)
‖X1(t)‖

)
= −λmin(Q1)‖X1(t)‖2

≤ −X1(t)
TQ1X1(t) (4.1.40)

となり，X1(t) の二次安定性が成立していることがわかる．Eq. (4.1.31) と Eq. (4.1.40) より，誤差
fe(t, XES(t), vE(t))に対し，Eq. (4.1.14)，Eq. (4.1.15)，Eq. (4.1.25)，Eq. (4.1.29)，および Eq. (4.1.39)
で制約される，適切な P1，P2，Q1 を選択することで，X1(t)と s(t)の安定性が保証されることになる．

4.1.5 スイッチング関数の導出法
Eq. (4.1.16)よりスイッチング関数 s(t)は行列M を求めることで得られる．t > ts において，s(t) = 0で

あるから，Eq. (4.1.16)と Eq. (4.1.19)より，Eq. (4.1.41)を得る．

Ẋ1(t) =

([
0 C1

0 A11

]
−
[
C2

A12

]
M

)
Ā11

X1(t) + fu(t, XE(t))

=

[
0 C1

0 A11

]
X1(t) +

[
C2

A12

]
X2(t) + fu(t, XE(t)) (4.1.41)

Eq. (4.1.41)は，X1(t)を状態ベクトル，X2(t)を制御ベクトルとする状態方程式としてみなすことができる．
この状態フィードバックによる安定化問題を解くことができれば，Ā11 を安定化するようなM を求めること
ができる．この安定化問題は，Q11 ∈ R5×5，Q22 ∈ Rを用いた Eq. (4.1.42)で表される二次形式評価関数 JC

を最小化する問題として解くことができる．

JC =

∫ ∞

ts

[
X1(t)
X2(t)

]T

XES(t)T

[
Q11 0
0 Q22

]
QES

[
X1(t)
X2(t)

]
XES(t)

dt (4.1.42)

但し QES は対角行列であり，Eq. (4.1.43)で定義する．

QES = diag
(

wxI
M2

xI
,

wz
M2

z
,

wθ

M2
θ

,
wż

(Mz/Tz)
2 ,

wθ̇

(Mθ/Tθ)
2 ,

wθe

M2
θe

)
(4.1.43)

w∗ は制御設計パラメータである．また，M∗ と T∗ はそれぞれ Eq. (4.1.44)で定義する．

MxI ' sup |θe(t)− θ∗e |
Mz ' sup |z(t)− z∗|
Mθ ' sup |θ(t)− θ∗|
Mz/Tz ' sup |ż(t)|
Mθ/Tθ ' sup |θ̇(t)|
Mθe ' sup |θe(t)− θ∗e |

(4.1.44)
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Eq. (4.1.42)は Eq. (4.1.45)のように展開できる．

JC =

∫ ∞

ts

{
X1(t)

TQ11X1(t) +X2(t)
TQ22X2(t)

T} dt (4.1.45)

ここで，v̂(t)，Q̂，R̂をそれぞれ次のように定義する．

v̂(t) = X2(t) = −M

F̂

X1(t) (4.1.46)

Q̂ = Q11 (4.1.47)
R̂ = Q22 (4.1.48)

このとき，Eq. (4.1.41)と Eq. (4.1.45)は，v̂(t)，Q̂，R̂を用いて，Eq. (4.1.49)と Eq. (4.1.50)で表される．

Ẋ1(t) =

[
0 C1

0 A11

]
Â

X1(t) +

[
C2

A12

]
B̂

v̂(t) + fu(t, XE(t)) (4.1.49)

JC =

∫ ∞

ts

{
X1(t)

TQ̂X1(t) + v̂(t)TR̂v̂(t)
}
dt (4.1.50)

Eq. (4.1.49)と Eq. (4.1.50)はX1(t)を状態ベクトル，v̂(t)を制御ベクトルとしたシステムにおいて，フィー
ドバックゲイン F̂ を持つ線形最適レギュレータを二次形式評価関数 JC を用いて求める問題を表している．フ
ィードバックゲイン F̂ = M は，リッカチ方程式，

ΠÂ+ ÂTΠ−ΠB̂R̂−1B̂TΠ+ Q̂ = 0 (4.1.51)

を解いて Πを求め，

F̂ = R̂−1B̂TTΠ (4.1.52)

とすることで，求めることができる．S2 は任意の正の値であるから，S2 = 1とすると，Eq. (4.1.16)より S は，

S =
[
M 1

]
(4.1.53)

として求めることができる．
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4.2 制御設計とシミュレーション
本節では，第 2 章で同定したモデルを用いて制御器を設計し，数値シミュレーションによりその効果を検証

する．本研究では，最適な制御器を設計するため，以下の手順を用いた．まず，設計パラメータをある範囲で
分布させて，複数の制御器を設計した．次にこれらの制御器を用いて，第 2 章で同定した運動モデルを用いた
運動シミュレーションを実施した．運動シミュレーションの中で制御器によって運動が変化した状態での，ピ
ッチ角と船外機トリム角の振幅を測定し，それらの値が小さくなるものを，最終的な制御器として決定した．

4.2.1 制御器の設計
スライディングモード制御器を設計するときには，Eq. (4.1.43)に含まれるM∗，T∗，w∗，及び ρc と Φま
たは P2 をそれぞれ定義する必要がある．本研究では，M∗，T∗ を Eq. (4.1.44)のように与え，wxI = 1とし
た上で，その他の w∗，ρc，P2 をそれぞれ

[
0.01 0.1 1 10 100

]
と対数で分布させて制御器を設計した．

設計した制御器は全部で 78125個である．
運動シミュレーションの時刻歴応答は，Eq. (2.1.6)に初期値 X0 と入力 uを与えて，定義されたタイムス

テップ ∆tを用いたオイラー法を用いることで求めることができる．初期値とタイムステップは入力条件とし
て，T = 4600N，θe = −2°を与えたときに，3.2.2 節で求めた以下の固定点の値を用いる．

X0 =
[
−0.543 0.0887 14.4 −0.177 0

]T (4.2.1)

u =
[
4600 −0.0346

]T
= const. (4.2.2)

∆t = 0.00116 (4.2.3)

運動シミュレーション開始後 10 sで制御器を作動させ，40 sまで計算を行った．シミュレーションの最後の
20%の時間，すなわち 32 sから 40 sの間のピッチ角と船外機トリム角の振幅を設計パラメータ毎に箱ひげ図
で比較したものが Fig. 4.1である．箱ひげ図の中で，赤色の線は分布の中央値を，青色の箱は分布の 25%と
75%の範囲を表す．上下の黒色の線は分布の最大最小値と箱の上下から四分位数間範囲の 1.5倍の位置のう
ち，より中央値に近い値を表す．黒色の線が四分位数間範囲の 1.5倍の位置を表す場合，これを超える点に外
れ値が存在するが，以下の図では表示していない．
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(a) Amplitude of θ [deg.].

(b) Amplitude of θe [deg.].

Fig.4.1: Calculation result using all controllers.

Fig. 4.1より，設計パラメータによって制御性能が変化することが確認できる．本研究では，ここから最適な
制御器を選定するために，MathWorks社が提供するMATLAB R2021aの Statistics and Machine Learning
Toolboxに含まれる決定木分析関数 fitctreeを用いた．決定木分析では，元となる集合を部分集合に分割し，
目標を満たす部分集合を抽出することができる．本研究では，目標値として，ピッチ角振幅が 0.2 °以下，ト
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リム角振幅が 2 °以下となる集合を抽出するよう分析を行った．最初の決定木分析の結果を Fig. 4.2に示す．

Fig.4.2: Classification tree result.

赤い線は，本解析の中で目標を満たした部分集合 T1 につながる分岐を表している．T1 に含まれる結果のピ
ッチ角振幅を箱ひげ図で比較したものが Fig. 4.3である．

Fig.4.3: Calculation result of amplitude of θ [deg.] using the controllers in T1.

Fig. 4.1と比較すると，ピッチ角振幅が大きく減少していることが確認できる．さらに絞り込みを行う為，再
度同じ目標値を設定して，決定木分析を行った．結果を Fig. 4.4に示す．
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Fig.4.4: Classification tree result of T1.

Fig. 4.4からは 2つの部分集合 T2 と T3 を得ることができる．そこで，T2 と T3 に含まれる結果のピッチ角
振幅を，それぞれ Fig. 4.5と Fig. 4.6に示す．

Fig.4.5: Calculation result of amplitude of θ [deg.] using the controllers in T2.
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Fig.4.6: Calculation result of amplitude of θ [deg.] using the controllers in T3.

Fig. 4.5と Fig. 4.6を比較すると，T3 の結果は wθ = 100の時を除いて，ピッチ角振幅が小さく減揺性能が
高いことがわかる．そこで，本研究では最適な制御器として，T3 からさらに設計パラメータを絞り込み，最終
的な設計パラメータを選択した．選択したパラメータを Table 4.1に，設計された制御器を Table 4.2にそれ
ぞれ示す．

Table4.1: Controller design parameters.

Item Value Item Value
MxI 0.070 wxI 1
Mz 0.20 wz 1
Mθ 0.070 wθ 1
Tz 0.20 wż 100
Tθ 0.20 wθ̇ 100
Mθe 0.035 wθe 1
ρc 0.1 P2 0.1
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Table4.2: Designed controller result.

Item Value
L

[
22.7 0 −94.7 0 7.09 −76.4

]
S

[
−0.500 0 −2.27 0 −0.609 1.00

]
Ln -0.911
Φ -5

設計された制御器にはヒーブ及びヒーブ速度に対するゲインが含まれる．しかし実機試験において，ヒーブ
をリアルタイムで計測することは極めて難しい．そこで本研究では Table 4.2のようにヒーブとヒーブ速度に
関するゲインを 0とした．このゲインの変化による安定性の検証に関しては，数値シミュレーションと実機試
験の結果によって判断する．

4.2.2 数値計算結果
Eq. (4.2.1) − Eq. (4.2.3)で定義された状態変数の初期値，制御変数，タイムステップの値を用い，Table 4.2の

制御器を用いて運動シミュレーションを実施した結果を，Fig. 4.7に示す．

Fig.4.7: The calculation result with control at T = 4600 N and θe = −2°.

シミュレーション開始 10 sから減揺制御を開始したところ，ピッチ角振幅が速やかに減衰した．また，トリ
ム角の平均値を変化させない，という制御目標 2を達成していることが確認できた．なお，17 s以降で船外機
トリム角の振幅が小さくなっているが，これはスライディング超平面に拘束された結果，高速で制御器が切り
替わっているためである．

4.2.3 設計変数の評価
設計変数のうち，ρc と Φはスライディングモード制御の性能を決める重要な変数であり，この 2つの影響
について調査する．まず，ρc を Table 4.1に対して変化させた結果を Fig. 4.8に示す．ρc = 0.2ではピッチ角
が減衰せず，また ρc = 0.02では ρc = 0.1よりも減衰に時間がかかっていることが確認できた．
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Fig.4.8: Calculation results when changing ρc. The light blue line represents the result with ρc = 0.2. The red
line denotes the result with ρc = 0.1. The dark blue line shows the result with ρc = 0.02.

この結果を考察するため，‖X1(t)‖と s(t)の計算結果を Fig. 4.9に示す．
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(a) Calculation results of ∥X1(t)∥.

(b) Calculation results of s(t).

Fig.4.9: Calculation results of ∥X1(t)∥ and s(t) with a changing ρc. The red line represents the result with
ρc = 0.1, which is the original controller. The light blue line represents the result with ρc = 0.2. The
dark blue line shows the result with ρc = 0.02.

ρc = 0.2では s(t)は 0に拘束されず，大きく変動している．ρc = 0.1では 15 s付近で s(t) = 0まで収束し
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たのち，X1(t)が 0に漸近していく．また，ρc = 0.02では，s(t) = 0に収束することなく，X1(t)が 0に漸近
していくことが確認できた．
この現象は以下のように考察できる．ρc の値が大きい場合，Eq. (4.1.24) より，‖vN(t)‖ も大きくなり，

‖v(t)‖が大きくなる．Eq. (4.1.13)より，fm(t, XE(t), v(t))の値は v(t)− vE(t) = v(t)− sgn v(t)に依存す
るが，‖vE(t)‖ = 1なので，‖v(t)‖が大きくなると fm(t, XE(t), v(t))の値が大きくなることになる．その結
果，Eq. (4.1.15)と Eq. (4.1.29)が成立しなくなり，s(t)の二次安定性が成立しない．すなわち，スライディ
ング超平面に拘束できないことがわかる．一方，ρc の値が小さい場合，Eq. (4.1.30)が成立せず，やはり s(t)

の二次安定性が成立しない．すなわち，スライディング超平面に拘束できない．ところで，Eq. (4.1.38)にお
いて，s(t) 6= 0とすると，

V̇x(t) = 2X1(t)
TP1Ẋ1(t)

= 2X1(t)
TP1

(
Ā11X1(t) + Ā12s(t) + fu(t, XE(t))

)
= X1(t)

T (P1Ā11 + ĀT
11P1

)
X1(t) + 2X1(t)

TP1Ā12s(t) + 2X1(t)
TP1fu(t, XE(t))

= −X1(t)
TQ1X1(t) + 2X1(t)

TP1Ā12s(t) + 2X1(t)
TP1fu(t, XE(t))

≤ −λmin(Q1)‖X1(t)‖2 + 2‖X1(t)
TP1‖‖Ā12s(t)‖+ 2‖X1(t)

TP1‖‖fu(t, XE(t))‖

≤ −λmin(Q1)‖X1(t)‖2 + 2
√
X1(t)TP 2

1X1(t)
(
‖Ā12s(t)‖+ ‖fu(t, XE(t))‖

)
≤ −λmin(Q1)‖X1(t)‖2 + 2

√
λmax(P 2

1 )X1(t)TX1(t)
(
‖Ā12s(t)‖+ ‖fu(t, XE(t))‖

)
= −λmin(Q1)‖X1(t)‖2 + 2λmax(P1)‖X1(t)‖

(
‖Ā12s(t)‖+ ‖fu(t, XE(t))‖

)
= −λmax(P1)‖X1(t)‖

(
λmin(Q1)

λmax(P1)
‖X1(t)‖ − 2‖Ā12s(t)‖ − 2‖fu(t, XE(t))‖

)
(4.2.4)

となる．‖fu(t, XE(t))‖に関する不等式，

‖fu(t, XE(t))‖ ≤ 1

2

λmin(Q1)

λmax(P1)
‖X1(t)‖ − ‖Ā12s(t)‖ (4.2.5)

が成立していれば，X1(t)の二次安定性は成立することになる．ρc の値が小さい場合に，ピッチ角振幅が収束
するのは，これが理由であると考えられる．
次に，Φを Table 4.1に対して変化させて計算した結果を Fig. 4.10に示す．

Fig.4.10: Calculation results with a changing Φ. The red line represents the result with Φ = −5, which is
the original controller. The light blue line represents the result with Φ = −7.5. The dark blue line
represents the result with Φ = −6.
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Φの絶対値が大きくなると，収束時間が長くなることが確認できる．Φの絶対値が大きくなると，P2 の値
が小さくなり，Eq. (4.1.35)の右辺が大きくなる．これが，スライディング超平面 S に収束するまでの時間が
長くなった理由と考えられる．
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4.3 実験結果
本節では，1.6 節で示した船を用いて実施した制御器の検証結果を示す．試験中，他船の引き波を受けるこ

とがあり，これによりポーポイズが変化する現象が見られた．以下で示す試験結果において，制御中にピッチ
角振幅が増加しているのは，基本的に波による影響を受けたためである．Table 4.2に示した制御器をそのま
ま用いて試験した結果を Fig. 4.11に示す．すなわち，この実験は，Fig. 4.7のシミュレーションと同じ制御ゲ
インを用いたものである．

Fig.4.11: The experimental result obtained using the controller of Table 4.2.

Fig. 4.7と比較すると，減衰にかかる時間は長くなっているが，制御開始後約 15 sでポーポイズが完全に減
揺されていることが確認できた．計算よりも減衰にかかる時間が長くなっているのは，モデル化誤差や，波な
ど水面の変動による外乱などが考えられる．次に設計変数 ρc を変化させて実験を行った．ρc = 0.2とした時
の実験結果を Fig. 4.12aに，ρc = 0.02の結果を Fig. 4.12bにそれぞれ示す．
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(a) The experimental result with ρc = 0.2.

(b) The experimental result with ρc = 0.02.

Fig.4.12: The experimental results obtained using controllers designed with different ρc values. Other design
parameters are given in Table 4.1.

ρc = 0.2ではポーポイズを完全に減揺できておらず，この結果は Fig. 4.8の結果と一致する．一方，ρc = 0.02

では時間がかかっているが，減衰している様子が確認できる．この結果は，計算において減衰時間が ρc = 0.1

の場合とほぼ同じであった事実と異なっている．実験においては，波の影響を受けて 23 s付近と 30 s付近で
振幅がやや大きくなっており，これが減衰時間がかかった原因と考えられる．
次に設計変数 Φを変化させて実験を行う．Φ = −6とした時の実験結果を Fig. 4.13aに，Φ = −7.5とした

時の結果を Fig. 4.13bにそれぞれ示す．



4.3 実験結果 73

(a) The experimental result with Φ = −6.0.

(b) The experimental result with Φ = −7.5.

Fig.4.13: The experimental results using the controllers designed with different Φ values. The other design
parameters are given in Table 4.1.

Φ = −7.5の時は波の影響を受けて振幅が一度大きくなっているため，断定することは難しいが，Φの値が
大きくなるほど，減衰までに時間がかかる傾向にあり，計算結果をある程度再現できていると考えられる．
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4.4 結言
本章では，スライディングモード制御を用いて，船外機のトリム角を制御し，ポーポイズを減揺する手法を
提案した．ドライバーが望む艇体の姿勢を保つため，船外機トリム角の積分器を導入し，制御によってトリム
角の平均値が変化しないように制御器を設計した．その結果，数値シミュレーションと実機試験において，ト
リム角を保ったまま，ポーポイズの減衰を確認することができた．また，スライディングモード制御の重要な
設計変数である ρc と Φに関して，その影響をシミュレーションを用いて考察を行った．実験においてもこの
効果を部分的に検証することに成功したが，モデル化誤差や波など水面の変動による外乱影響により，計算結
果を完全に再現することはできなかった．
本章では，設計変数 w∗，ρc，及び P2 を総当たりで組み合わせて制御器を設計し，その中から最適な制御器

を求めた．しかし，このやり方は組み合わせた数値の中で最適な制御器を選んだだけで，大域的な最適制御器
を求めているわけではない．より最適な制御器を求めるためには，これらの設計変数を未知数とし，減衰性能
を評価関数と定めた最適化問題を解くことが考えられる．Ghoreishi et al. [70]は，LQRの設計において，重
み関数を遺伝的アルゴリズムなどを用いて最適化する手法を提案しており，このような方法の採用が考えられ
る．また，実機におけるヒーブ計測の難しさから，本研究ではヒーブとヒーブ速度を考慮して制御器を設計し
た上でゲインをゼロとした．これに対しては，運動モデルを用いたオブザーバーを構成することで，よりヒー
ブの影響を考慮した制御器を構成することも可能である．モデル誤差や対象艇が変化した場合に同じ制御器が
適用できるか，といったロバスト性の検証も本研究では実施できなかった．これらは今後の課題とする．
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本章では，これまで使ってきた運動モデルに対して，より簡易的な運動モデルについて検討する．第 2 章で
提案し，それ以降で使ってきた運動モデルは，サージ，ヒーブ，ピッチの 3自由度を含み，船と船外機に働く
力を定義したものであった．このモデルは第 4 章で示したように，ポーポイズの減揺制御のための設計と検証
に対して有用であったが，2つの課題が存在した．1つ目は状態変数に含まれるヒーブの課題である．実船で
はリアルタイムにヒーブ量を計測することが難しく，Table 4.2で示した通り，ヒーブに関するゲインを無視
する必要があった．2つ目は，自由度に対する拡張性の課題である．特に 1機がけの船外機艇では，プロペラ
反力により，ロール方向への傾きや，その結果発生する斜航角が存在する．しかしながら，第 2 章で提案した
運動モデルは，3自由度の運動を基に定義しているため，ロールなど他の自由度を考慮する運動モデルへの拡
張が容易ではない．本章では，こうした課題を解決するため，Eq. (4.1.1)にヒントを得て，以下の 2つの条件
を満たす 2自由度の運動モデルを検討した．

• 条件 1 : 速度の変化に応じたポーポイズの発生と消滅を再現すること．
• 条件 2 : 第 4 章で設計された制御器を用いて，ポーポイズが減揺すること．

5.1 簡易運動モデルの定式化
本節では，簡易運動モデルの定式化について述べる．新たに状態ベクトル XR(t) ∈ R3 と制御ベクトル

uR(t) ∈ Rを Eq. (5.1.1)と Eq. (5.1.2)で定義する．

XR(t) =
[
θ(t) ẋ(t) θ̇(t)

]T (5.1.1)
uR(t) = θe(t) (5.1.2)

簡易運動モデルの運動方程式は，Eq. (2.1.1) − Eq. (2.1.3)から，ヒーブに関する運動方程式 Eq. (2.1.2)を
なくし，Eq. (5.1.3)と Eq. (5.1.4)のように表す．

ẍ(t) = a21(XR(t), uR(t))(θ − θ∗) + a22(XR(t), uR(t))(ẋ− ẋ∗) + b21(XR(t), uR(t))(θe − θ∗e ) (5.1.3)
θ̈(t) = a31(XR(t), uR(t))(θ − θ∗) + a32(XR(t), uR(t))(ẋ− ẋ∗)

+ a33(XR(t), uR(t))(θ̇ − θ̇∗) + b31(XR(t), uR(t))(θe − θ∗e ) (5.1.4)

ẊR(t) = 0となるような，(X∗
R, u∗

R)の組み合わせを平衡点と呼び，∗ は平衡点にある変数を表す．係数 a∗ と
b∗ が定数の場合，Eq. (5.1.3)と Eq. (5.1.4)はそのまま線形状態方程式の形に変形でき，これを用いて第 4 章



76 第 5章 簡易運動モデルの検討

の手法に基づいて制御設計を行うことが可能となる．しかしながら，ポーポイズには船速や艇姿勢に対する
依存性も存在するため，1 つの線形状態方程式で表すことはできない．そこで，本研究では係数 a∗ と b∗ を
Eq. (5.1.5)のように，ẋ，θ，θe の重回帰式として定義することで，滑走状態全域の運動を再現できるモデル
とする．



a21(XR(t), uR(t))
a22(XR(t), uR(t))
a31(XR(t), uR(t))
a32(XR(t), uR(t))
a33(XR(t), uR(t))
b21(XR(t), uR(t))
b31(XR(t), uR(t))


=


a211 a212 · · · a217
a221 a222 · · · a227
· · · · · · · · · · · ·
b311 b312 · · · b317


KR



1
ẋ

ẋmax
sin θ(
ẋ

ẋmax

)2

sin2 θ(
ẋ

ẋmax

)
sin θ

sin θe


(5.1.5)

KR に含まれるパラメータを同定することで，Eq. (5.1.3)と Eq. (5.1.4)で表される運動方程式を解くことが
できる．
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5.2 システムパラメータの同定方法
本章でも第 2 章と同様に CMA-ESを用いてシステムパラメータの同定を行う．本節では，第 2 章から変化

する評価関数とその探索範囲について述べる．

5.2.1 評価関数
Eq. (2.2.3)に代わる状態変数として，新たに XR(t)を Eq. (5.2.1)で定義する．

XR(t) =
[
θ(t) ẋ(t)

]T (5.2.1)

実機試験の運動履歴である XR−input(t) と運動シミュレーションにより得られた状態変数 XR−sim(t) を，そ
れぞれ XR−input(t) の平均値 µi

R−input と標準偏差 σi
R−input を用いて標準化した X̂R−input と X̂R−sim を，

Eq. (5.2.2)と Eq. (5.2.3)で定義する．

X̂ i
R−input (t) =

(
X i

R−input (t)− µi
R−input

)
σi

R−input
(5.2.2)

X̂ i
R−sim (t) =

(
X i

R−sim (t)− µi
R−input

)
σi

R−input
(5.2.3)

スーパースクリプトの iはデータセットの番号を表し，その総数は nR−input とする．また，tR−f,i はそれぞれ
のデータの長さを表す．データセットの詳細は5.3.1 節で表す．評価関数 JR を，

JR =

nR−input∑
i=1

(
PR,i

∫ tR−f,i

0

∥∥∥X̂ i
R−input (t)− X̂ i

R−sim (t)
∥∥∥2 dt) (5.2.4)

とするとき，最適パラメータセット γR−opt は Eq. (5.2.5)を用いて求める．

γR−opt = arg min
γR∈ΓR

JR (5.2.5)

PR,i は最適化を行う際に用いるペナルティであり，シミュレーション時間に関するペナルティ Pt,i とシス
テムパラメータに関するペナルティ Ps,i,j を用いて，Eq. (5.2.6)で定義する．

PR,i = Pt,i +

nrange∑
j

Ps,i,j (5.2.6)

Pt,i は Eq. (2.2.10)で定義されている．また，Ps,i,j は nrange = 1とし，b31 に対してのみ，Eq. (5.2.7)で定義
する．

Ps,i,1 =


(

max
{
b31 : t ∈

[
0, tf,i

]}
− b31H

)2
max{b31} > b31H

0 else
(5.2.7)

本研究では b31H を試行錯誤して求め，b31H = −3とした．
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5.2.2 探索範囲
γR は KR に含まれるパラメータであり，下式で表される．

γR =
(
a21(i=1···7), a22(i=1···7), a31(i=1···7), a32(i=1···7), a33(i=1···7), b21(i=1···7), b31(i=1···7)

)
(5.2.8)

それぞれの変数は下記の矩形制約条件のもと最適化を行った．

γk ∈ Γk = [−100, 100] (5.2.9)

また，CMA-ESにおける各種のパラメータは以下の通り設定した．

• 解候補の数 λの最小値を 32とする．
• 解候補の数 λの最大値を 256とする．
• 繰り返し計算数の最大値を 3× 105 回とする．
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5.3 計算結果
本節では，実機試験結果を用いたシステム同定の結果と，第 4 章で設計した制御器を用いた検証結果につい

て示す．

5.3.1 実験データ
簡易運動モデルは，第 2 章で示したオリジナルモデルと比較して表現力が劣る．特にオリジナルモデルでは

船外機に働く力を独立して定義していたが，簡易運動モデルでは重回帰式の中で表現しているに過ぎない．そ
のため，船外機の姿勢変化に対して適切にモデルが推定できない可能性がある．そこで，本章ではシステム同
定に用いる実験データとして，Table 2.5に加えて，一定のエンジン回転数で航走しながら，船外機トリム角を
周期的に変化させたデータを用いた．Table 5.1にデータの一覧を示す．

Table5.1: List of train and test data with changing the trim angle. ◦ represents the train data whereas • does
the test data.

θe = −2° θe = −8°

11.8 ≤ ẋ < 13.0 ◦• -
13.0 ≤ ẋ < 14.5 ◦◦ ◦◦
14.5 ≤ ẋ < 15.5 ◦• ◦•
15.5 ≤ ẋ < 16.5 - ◦◦
16.5 ≤ ẋ < 18.0 ◦◦ ◦•

Table 2.5と同様，◦ は学習データを，• は検証データを表す．Table 2.5と Table 5.1を合わせた全データ
は 84条件であり，検証データは全データのうち 23%に当たる 19条件，学習データは残りの 65条件である．
Fig. 5.1は Table 2.5と Table 5.1に含まれる実験データのスラストとピッチ角の振幅を表したものである．
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 porpoise threshold

Fig.5.1: The experimental result of the amplitude of θ.

5.3.2 解析結果
Fig. 5.2は最適化の過程における評価関数値の変化などを表す．合計 14回のリセットがかかり，評価関数が

最小となったのは，214379ステップの時である．
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Fig.5.2: Optimization process of CMA-ES.

Fig. 5.3は，実験と計算の平均船速の比を示したものである．実験結果に対する船速の誤差は 1%以下であ
り，極めて高い精度で一致した．

Fig.5.3: The ratio of average of ẋ between experiment and calculation.



82 第 5章 簡易運動モデルの検討

Fig. 5.4は計算でのスラストとピッチ角振幅を表したものである．また，Fig. 5.5は実験と計算のピッチ振幅
の比を表したもので，Fig. 5.1と Fig. 5.4の比である．但し，Fig. 5.5では，実験においてポーポイズが発生し
た条件のみ示した．

 porpoise threshold

Fig.5.4: The calculated result of the amplitude of θ.

Fig.5.5: The ratio of amplitude of θ between experiment and calculation.
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ポーポイズの振幅はスラストが低い側では実験結果と比較して小さく，スラストが高い側で実験結果と比較
して大きい傾向である．Fig. 2.12と比較すると，ピッチ振幅の精度はやや悪化しているが，Fig. 5.4より，ポ
ーポイズの発生と消滅は再現できていることが確認できた．

Fig. 5.6は計算結果の中で振幅が実験結果と概ね一致したときの結果である．

Fig.5.6: The test data result at θe = −2° and average of ẋ = 15.1 m/s. The black line represents the experimental
result, and the red line represents the calculated result.

振幅，周波数ともほぼ一致しており，実験結果をよく再現した．

5.3.3 制御器を用いた検証結果
簡易運動モデルが満たすべき 2つ目の条件は，第 4 章で設計された制御器を用いてポーポイズを減揺できる

こと，である．著者らは大型船舶の自動運航船の研究におけるモデルについて，様々なモデルを比較した [71]．
その中で，シミュレータに用いる運動モデルは，合目的である必要があり，また合目的であれば十分であるこ
とを示した．簡易運動モデルの目的は実船の運動を再現することである．もしこの目的が達成されているなら
ば，別のモデルを用いて開発された制御器を用いても，オリジナルモデルと同様に減揺されるはずである．本
節では，このことについて検証を行う．

Fig. 5.6に示した実機試験結果を用いて制御器の検証を行った．運動シミュレーションの初期値
(XR(0), uR(0))を Eq. (5.3.1)と Eq. (5.3.2)で，平衡点を Eq. (5.3.3)と Eq. (5.3.4)でそれぞれ与えた．こ
れらはいずれも，Fig. 5.6の実験結果の初期値と平均値である．

XR(0) =
[
0.0369 15.2 0.219

]T (5.3.1)
uR(0) = −0.0349 (5.3.2)

X∗
R =

[
0.0620 15.13 0

]T (5.3.3)
u∗

R = −0.0350 (5.3.4)

シミュレーション開始後 10 sで制御器を作動させ，40 sまで計算を行った結果を Fig. 5.7に示す．
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Fig.5.7: Calculation result with control.

制御開始後徐々にピッチが減衰しており，簡易運動モデルでもオリジナルモデルにおいて実績のある制御器
で，ポーポイズを減揺できることを確認した．すなわち，入力に対する出力の応答性に関して，簡易運動モデ
ルがオリジナルモデルと類似した性能をもつことを確認した．
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5.4 結言
本章では，第 4 章までで使ってきた運動モデルに対して，より簡易的な運動モデルを提案した．この運動モ

デルは制御設計で用いる線形状態方程式にヒントを得て，行列の各成分を状態変数の重回帰式で表現した形と
した．CMA-ESを用いて同定したシステムパラメータを用いた運動シミュレーションはポーポイズの発生と
消滅を含む，実機試験結果を再現した．また得られた運動モデルは，第 4 章で設計された制御器によって減揺
できることを確認した．これにより，簡易運動モデルの妥当性を検証した．
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第 6章

総括

本研究の総括と今後の課題について記述する．本研究の目的は，滑走艇で発生するポーポイズを船外機のト
リム角をアクティブに制御して減揺することであり，一連の研究を通じて滑走艇の運動モデルのより実際的な
推定方法と艇体の運動制御方法の確立することであった．
第 2 章では，実機試験結果を用いた運動モデルの推定方法について提案した．運動モデルは減揺制御に用

いるため，船外機の姿勢を陽に考慮した形とした．運動モデルは多くのシステムパラメータを含むが，それ
らを模型試験や CFD によって推定することにはコストがかかる．そこで，第 2 章では Covariance Matrix
Adaption Evolution Strategy (CMA-ES)を用いて，実機試験の結果からシステムパラメータを同定する方
法を提案した．推定したシステムパラメータを用いた数値シミュレーション結果は実機試験結果とよく一致し
ており，本手法の妥当性を確認した．一方で，システム同定の過程において，評価関数の定義によって周波数
のずれが発生する課題も見つかった．本研究では運動モデルは制御開発を目的としたものであり問題視されな
かったが，より精度の要求されるシミュレーションを目的とした運動モデル推定などでは，評価関数の定義は
課題となる．
第 3 章では，ポーポイズを非線形力学理論における分岐解析の側面から考察した．平衡点周りで線形化した
運動モデルと非線形な運動モデルの 2つを用いてポーポイズの安定性に関する検討を行った．その結果，線形
化した運動モデルが不安定になる条件で，安定な固定点が出現することから，ポーポイズがスーパークリティ
カルなホップ分岐によって生じることを明らかにした．また，タイムステップの選択によっては，安定な平衡
点と安定な固定点が共存する可能性があることを示し，実機試験においてもそのような現象が現れることを確
認した．
第 4 章では，リヤプノフ安定論に基づき，船外機トリム角をアクティブに制御することで，ポーポイズを

減揺する制御手法を提案した．制御手法として船外機の作動特性に適したスライディングモード制御を採用し
た．その結果，数値シミュレーションだけでなく，実機試験においても減揺効果を確認できた．また，スライ
ディングモード制御における重要な設計変数の影響を数値シミュレーションおよび実機試験において検証し，
理論的な側面からも考察を行った．
第 5 章では，運動モデルの推定方法の汎用性を検証するため，第 2 章で提案した手法を，簡易運動モデル

に適用した．この運動モデルでは，一般に実機での計測が難しいヒーブ項を省略すると同時に運動方程式を単
純な展開計算ベースとすることで，簡易化を行った．得られた簡易運動モデルは実機試験結果をよく再現した．
また第 4 章で提案した制御器による減揺効果も確認し，制御開発における簡易運動モデルの有効性を示した．
以上の通りに，本研究では船外機のトリム角をアクティブに制御してポーポイズを減揺する手法を理論，数
値計算，実機試験のそれぞれの側面から検証してきた．本研究ではポーポイズを減揺するため，船外機のトリ
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ム角を活用したが，例えばトリムタブやインタセプタといった艇体付加物を活用することはもちろん可能であ
る．また本手法が今後，ポーポイズ特有の運動モデルのみならず，滑走艇の様々な運動モデルに適用できる可
能性を示せたことは意義深い．運動モデルの推定方法は，ポーポイズ以外の滑走艇の運動，例えば自動航行に
つながる高速航行時の運動や，自動着桟につながる低速航行時の運動，さらにはポーポイズと同様の不安定現
象であるチャインウォークなどへも適用可能であり，モデルベース制御によってこうした運動を制御すること
も可能となる．本研究を礎として，滑走艇の艇体運動制御の更なる発展を期待する．
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