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ABSTRACT 

Investigating the performance of breakwaters during the failure process has recently been 

mainly emphasized inside Japan. Performance can be evaluated through reliability design 

methods based on the deformation level using parameters such as sliding. Although it has not 

yet been completely applied to actual design due to the difficulties of considering all design 

conditions, it is expected to become one of the essential design methodologies in the future. 

Caisson breakwaters are among the most commonly constructed breakwaters, especially in 

Japan. Sliding is their most frequent failure mode, and even though it is not allowed under 

conventional design, caissons can maintain their functionality even if a limited amount of it 

occurs. Breakwater caissons' performance during the failure process was investigated in this 

study by developing a reliable design method to evaluate the effectiveness of introducing 

horizontal plates to reduce the caissons' sliding motion. Such structure proposal was based on 

the hypothesis that a horizontal plate located at the harborside could increase the water 

constriction during the movement of the caisson, increasing the hydrodynamic response through 

parameters such as the added mass and, consequently, decreasing the expected sliding distance 

and expanding the structure's functionality. 

Chapter 1 of this study provided a general background on vertical breakwaters along with the 

problem statement, objectives, and research approach. 

Chapter 2 examined documented vertical breakwater failures due to impulsive pressures and 

reviewed and summarized fundamental and recent studies involving impulsive pressures from a 

caisson design viewpoint, including prediction methods to estimate the maximum impact load 

and existing models for wave loading and dynamics of caisson breakwaters. 

Chapter 3 described the derivation of a model for caissons with horizontal plates (non-regular 

caissons) and the methodology to estimate the hydrodynamic coefficients of the dynamic 

response and the sliding for these structures. 
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Chapter 4 discussed the application of the models derived in Chapter 3. The influence of the 

plate's geometric characteristics and arrangements on the pressures, the hydrodynamic 

parameters added mass (constant added mass) and damping coefficient (memory effect 

function), and the caisson's sliding were the objects of discussion. Assessments of the wave's 

rising time and magnitude were also performed, showing their strong influence on the caisson 

sliding. 

Chapter 5 described the physical model tests for the impulsive wave generation, forces, and 

motions of the caissons, both regular and with horizontal rear plates. A numerical calculation 

was also conducted to investigate the reproducibility of the analytical method and the 

experimental wave generation. The influence of the plates on the caisson's sliding during 

physical tests was discussed, as well as the fit of the analytical models from further analysis of 

the resultant data from the wave-induced caisson sliding tests. 

The study concluded that the current models for regular caissons sliding should not be applied 

to caissons with horizontal plates. The proposed model led to a good representation of the 

physical phenomenon, and although an increment in the added mass was seen, its influence on 

the sliding was reduced by the effect of the damping parameters. Furthermore, the horizontal 

plates were found to affect the sliding of the caisson breakwaters. Their impact was positive for 

plates at the surface, leading to sliding reductions, while the submersion negatively affected such 

parameters. On the other hand, increments of the plate length also had a good effect, decreasing 

the displacement of the caisson under the same conditions. However, their positive influence 

decreased for plates over two-thirds of the water depth. These and other findings were 

summarized in Chapter 6, responding to the research questions and providing recommendations 

for future investigations on the topic. 
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Chapter 1. INTRODUCTION 



 2 

1.1 BACKGROUND 

Climate change is leading to an increase in the frequency and intensity of natural disasters and 

sea-level elevation, which threatens the stability of coastal protection structures. Furthermore, 

recent disasters have exposed the catastrophic damage to the land and port facilities that the 

destruction of such systems can cause. This fact implies that the loss of the structure's 

functionality influences the extent of damage in the area to be protected. Hence, evaluating the 

degree of functional deterioration of the structure at the time of failure ("performance at failure") 

is becoming essential.  

Among coastal protection structures, vertical breakwaters have been widely utilized. Protecting 

the coastline, ports, and harbors from wave impacts, as well as beaches and navigation channels 

from sediment transport, are their most essential functions.  

 

Figure 1.1. Idealized typical section of a vertical breakwater. (Goda, 1985) 

There are different types of breakwaters. Vertical breakwaters, in particular, are generally 

composed of a superstructure usually formed by a deck and a parapet wall meant to reduce wave 

overtopping, a substructure built out of caissons, and a low rubble mound foundation acting as a 

buffer between the caisson and the seabed. An idealized typical section is shown in Figure 1.1, 

while a distinction according to the ratio of mound height to water depth hb *  (Allsop et al., 

1999) is resumed in Table 1-1. Caissons are open reinforced concrete boxes, and the larger ones 

usually have partition walls, dividing them into inner cells to reduce the span length of the 
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external walls. The inner cells are filled with different materials such as sand, rubble and/or 

concrete, which converts the caisson breakwaters into massive structures able to withstand and 

reflect significant waves actions. 

Table 1-1. Distinction of breakwater type (Allsop et al., 1999) 

 

In Japan, thanks to the large inventory of such structures over the years, sliding has been proved 

as the prominent failure mode related to breakwater damage (Goda and Takagi, 2000). Also, due 

to a combination of increases in sea level and wave height, sliding distances of caisson 

breakwaters are expected to become five times greater than at present, according to Takagi et al. 

(2011). Caisson (upright part of the breakwaters) can maintain their functionality even if a 

limited amount of sliding occurs.  

Table 1-2. Occurrence frequency of failure types of caisson breakwaters 

 (Goda and Takagi, 2000) 

Most 

Frequency 

Failure type 

1 Sliding of the caisson.  

2 Displacement of concrete blocks and large rubble stones armoring a 

rubble foundation mound 

3 Breakage and displacement of armor units in the energy-dissipating 

mound in front of a caisson. 

4 Rupture of front walls and other damage on concrete sections of a 

caisson. 

5 Failure in the foundation and subsoil 
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Sliding is not generally allowed under traditional breakwater design. Its stability has been 

conventionally judged using safety factors, balancing external and resisting forces. However, 

deformation parameters such as the sliding distance directly indicate their stability. Some 

researchers have been proposing "deformation-based reliability" design methods, such as Aoki 

et al. (1995). In (Shimosako and Takahashi, 2000), a Level 3 Reliability design method (three 

levels of design methods for caisson breakwaters depending on the level of probabilistic concepts 

are employed) is also proposed. Furthermore, from such a viewpoint, a structure with the same 

failure limit may have different failure performance; thus, developing new structural shapes and 

devices is also pursued to improve performance at the time of failure, i.e., extending 

functionality. 

From Figure 1.2 and Figure 1.3, the direct relation between breakwaters' loss of functionality 

and damage to the land area can be easily seen. The images correspond to Kamaishi City and 

Ofunato City in Iwate Prefecture, Japan. Those cities were affected by the 2011 Great East Japan 

Tsunami.  

In Figure 1.2, the white shapes represent the caissons' location after the tsunami. In the case of 

Kamaishi City, some caissons from the north breakwater were displaced. The initial site can be 

easily defined since other caissons remained there even after certain displacement. In the center, 

where a straight white shape is displayed, caissons were not much affected. Similar behavior to 

that of the north but less destructive is also observed in the south. However, the discontinued 

black line in the Ofunato City image represents the initial location of the breakwater's caissons, 

showing that all caissons were displaced from their original position. That has a direct influence 

on the land damage seen in Figure 1.3. Among other factors, the tsunami impact on the land area 

was reduced where caissons remained partly or mostly in closer locations. 
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Figure 1.2. Breakwater damage in Kamaishi City (above) and Ofunato City (below) in Iwate 

Prefecture, Japan. June 2011. (Tomita et al.,2012) 

    

Figure 1.3. Damage from the tsunami inundation in Kamaishi City with a maximum runup 

height of 11.7m (left) and Ofunato City with a maximum runup height of 10.9m (right) June 

2011. (A. Suppasri et al.,2013) 

The January 2024 earthquake and tsunami affecting the Noto peninsula in the southern part of 

the Sea of Japan and another earthquake a few months later in June at the same location remind 

us that the primary source of tsunamis and impulsive waves striking are more severe and 

frequent.  

Harbor 

 side 

Seaside 

Seaside 

Harbor side 

Seaside Harbor side 
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Figure 1.4. Aerial view of Iida Port before (left) and after (right) the damage to the eastern 

breakwater. Red circles indicate the position of the loss of the east breakwater (Sato T., 2024).  

Iida Port in Suzu City was hit hard by the January earthquake measuring six on the Japanese 

seismic intensity scale. According to some reports, the eastern breakwater suffered noticeable 

damage due to the tsunami, as seen in Figure 1.4., leading to 4m wave heights that reached parts 

of the city at the time of the disaster (Nikkei Crosstech, 2024). 

 

Figure 1.5. Damage to the east breakwater in Iida Port. Caisson collapsed and was submerged 

in the water. (Sato T., 2024).  

In the center part, sections of caissons collapsed or were submerged in water, and wave-

dissipating blocks were lost at the tip. Additionally, preliminary studies point out the breakwater 

damage was caused by either large waves overtopping or sliding due to the strong waves' impact. 

Interestingly, the last maintenance of the damaged areas was between 1980 and 1987, while the 
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zones where more recent maintenance back in 2016 was performed showed almost no damage. 

Even though no tsunami warning was issued during the June event, a slight change in sea levels 

was detected. Reconstruction works should consider the maintenance and optimization of the 

current designs. 

1.2 PROBLEM DEFINITION 

Analysis of caisson breakwater failures, mainly in Japan and Europe (Takahashi et al., 2010), 

identified caisson sliding due to impulsive wave pressure as one of the most critical failure 

modes. On the other hand, the caisson’s shape is directly related to the dynamics of the 

breakwater and its sliding distance against wave loads. Nevertheless, despite several theoretical 

models for the dynamics of caisson breakwater having been developed using different 

approaches, such as in (Aoki and Okube, 1995), (Shimosako et al., 2006), (Cuomo et al., 2011), 

and (Cozzutto et al.,2019), most of them are aimed at regular caissons. When new shapes need 

to be analyzed, the caisson dynamics are usually examined by physical tests. On this ground, 

modeling the dynamic behavior of non-regular caisson breakwaters would optimize the check 

for new structures before reaching experimental stages. That is the case of the rear horizontal 

plates, which were first analyzed by Yoshihara (2019) under the hypothesis that the plate would 

increase the inertial resistance of the structure. The plate addition showed a reduction of the 

sliding distance of around 20%, but it employed the same model used for regular caissons 

accounting only for the horizontal reaction forces.  

Considering as much as possible the number of conditions is indispensable in modeling the 

phenomena accurately. For example, vertical hydrodynamic forces (uplift forces) might reduce 

the frictional resistant force, increasing sliding. Thus, the non-inclusion of the vertical force 

might lead to an overestimation of the positive influence of the horizontal plate on the caisson 

sliding reduction. 
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1.3 RESEARCH QUESTIONS 

However, can the current simplified sliding models of regular caissons be applied when 

introducing new shapes, such as caissons with rear horizontal plates (non-regular caissons)? If 

the inertial resistance of the structure indeed increases due to the plates, what happens to the 

hydrodynamic parameters, and how do they affect the sliding simulation? Additionally, to what 

extent do the rear horizontal plates affect the total sliding of caissons, and what are the 

particularities for each analysis approach (analytical, numerical, and experimental) regarding 

such shapes?  

The present research intends to contribute to the study of the caisson breakwaters' performance 

during the failure process by developing a reliable design method and describing the 

effectiveness of introducing horizontal plates to reduce the sliding motion of caissons. How does 

the introduction of vertical hydrodynamic force influence the effectiveness of the plate, and 

which plate length and submersion might be more efficient and practical to utilize, or if it is not 

needed at all, are the main questions to answer in this study. Identifying improvements and future 

research opportunities in caisson shape optimization will also expand the development of more 

tenacious structures, reduce the amount of sliding and the loss of functionality as long as 

possible, and achieve the final purpose of reducing damage to the coastal zones. 

To respond to the above, a study on the effect of horizontal plates on the dynamic response and 

sliding caisson breakwaters is carried out and documented in this dissertation. 
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1.4 RESEARCH APPROACH 

The present research centers on the sliding distance as a direct deformation parameter of the 

caisson's stability performance. As part of the fundamental research to enhance the accuracy of 

caisson motion models, an improved sliding model for regular caissons based on the application 

of the wavemaker theory and considering the uplift forces added to the system by the plates are 

developed, expecting to provide a better assessment of the effect of this element on the caisson 

sliding reduction. The model also includes using parameters related to the damping to account 

for the energy dissipation due to the presence of the plate. A methodology is established and 

applied to superficial and submerged single and multiple plates, simulating the dynamic behavior 

of the new caisson shapes to analyze later the effect of the plate length and submersion depth on 

the overall sliding of the structure. Furthermore, methods for a more practical, accessible, and 

faster analysis are applied to solve the boundary problems and estimate the hydrodynamic 

parameters since various shape variations might be studied in the future. Most of the models' 

development and application are computed in MATLAB.  

Additionally, small-scale physical experiments are carried out for the regular and non-regular 

caisson shapes to confirm the response of the structures against impulsive waves generated by 

an experimentally first-tested method for generating concentrated waves at targeted locations. 

The sliding for each case is measured and compared in order to define the effect on the sliding 

of the different configurations. The best designs are expected to make the structure more 

tenacious, reduce the amount of sliding and the loss of functionality as much and long as 

possible, and achieve the final purpose of reducing the damage to the coastal zones. 

The general description of the dissertation structure is as follows: 

Chapter 2 examines actual failures of breakwaters due to impulsive pressures,  reviews studies 

involving impulsive pressures from a caisson design viewpoint, their generation and estimation 
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formulas, and past research on time-series load and sliding models for the evaluation of caissons’ 

motion. 

Chapter 3 describes the derivation of a model for caissons with horizontal plates (non-regular 

caissons) and the methodology to estimate the hydrodynamic coefficients of the dynamic 

response and the sliding for these structures. 

Chapter 4 discusses the application of the models derived in Chapter 3. The influence of the plate 

geometric characteristics and arrangements on the pressures, the hydrodynamic parameters 

added mass (constant added mass) and damping coefficient (memory effect function), as well as 

the sliding of the caisson, are the objects of discussion. A discussion of the effect of the wave 

characteristics, such as rising time and magnitude, on the sliding is also included. 

Chapter 5 describes the physical model tests for the impulsive wave generation, forces and 

motions of the caissons, both regular and with horizontal rear plates. Numerical calculations are 

also conducted to investigate the reproducibility of the analytical method and the experimental 

wave generation. The influence of the plates on the sliding of the caisson during the physical 

tests is discussed, as well as the fit of the analytical models from further analysis of the resultant 

data from the wave-induced caisson sliding tests. 

Chapter 6 summarizes the conclusions of the study, responding to the objectives and research 

questions and providing recommendation points for future investigations on the topic. 
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OUTLINE 

For the development of this study, fundamental and more recent research related to caisson 

breakwater design is reviewed. Topics such as failure modes, documented vertical breakwater 

failures, and existing models for dynamics of caisson breakwater and for the wave loads leading 

to their failure are resumed in this chapter. 

 

2.1 CAISSON BREAKWATERS. FAILURES 

Most of the research related to caisson breakwater dynamics under wave loading focuses on 

observing damaged and failed structures. Surveying different cases allows for investigating the 

dynamics of the caissons by analyzing large data sets of responses from actual structures under 

natural physical phenomena.   

As Takahashi et al. (2000) stated, the total length of Japanese breakwaters exceeds 800 km, with 

the major ones being caisson breakwaters, half of which are ordinary composite type and the 

other half mostly caisson breakwaters covered with wave-dissipating concrete blocks 

(Takahashi, 2000). This makes Japan the country with more breakwaters of this type, which, 

along with its tendency to be impacted by natural phenomena, leads to considerable accumulated 

knowledge and collected data on the behavior of such structures. Figure 2.1 displays a correlation 

of chains of main tsunami damage in caisson composite breakwaters (Raby et al., 2015) based 

on the manual of the National Institute for Land and Infrastructure Management (NILIM, 2013) 

of the Ministry of Land, Infrastructure, Transport and Tourism (MLIT) of Japan.  
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Figure 2.1. Correlation of chains of main tsunami damage in caisson composite breakwaters 

(Raby et al., 2015) based on (NILIM, 2013) 

 

One of the most referred to research documenting the breakwater failures outside Japan is that 

by Franco (1991,1994) and Oumeraci (1994), summarizing the Italian experience between 1993 

and 1991. The later included an extensive compilation of cases in Japan. In all cases, the collapse 

was found to be due to unexpected high wave impact loading, resulting from the underestimation 

of the design conditions and the wave breaking at the limited depth at the toe of the structure. 

Goda (1974) reported and analyzed multiple historical sliding-induced failures of vertical 

caisson breakwaters in Japan. At a similar time, Takahashi et al. (1993, 1998, 2000) discussed 

punctual caisson failures in 1973 and 1991 as well as results from an extensive field survey of 

Japanese breakwaters, later summarizing the caisson wall failures in the period 1977-1997, and 
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also reported mayor failures taking place between 1983 and 1991.  Goda and Takagi (2000) also 

summarized failure modes of vertical caisson breakwaters over several decades. After 2011, 

many reports and dedicated research, such as the one about the world record breakwater in 

Kamaishi by T. Arikawa et al.(2012). In most of the study and among other findings, the authors 

confirmed impulsive breaking wave pressure to be the leading cause of damage for caisson 

breakwaters, together with the collision of concrete blocks against the caisson walls. 

Additionally, they identified sliding of caissons and structural failures due to impulsive wave 

pressure as the most important failure modes for caisson breakwaters installed on a steep 

foreshore and subject to breaking wave attack. 

 

2.2 CAISSON SLIDING MODELS 

The concept of expected sliding distance (ESD) was proposed by Ito, Fujishima, and Kitatani 

(1966) in their research on the stability of breakwaters as the statistical value given as an average 

of caisson sliding distances (horizontal displacement) during the service lifetime of the caisson. 

However, the value itself was not estimated since assessing the wave pressure precisely at the 

time was difficult, hence the sliding distance. It was not until the Goda wave pressure formula 

(Goda,1974) and its amendments by Takahashi, Tanimoto and Shimosako (1993,1994b) that 

researchers started proposing models that consider calculating the sliding distance. 

In Japan, Goda (1994) suggested modeling the dynamics of a composite breakwater as that of a 

rigid body suspended on a system of mass and dual springs for rotational and horizontal motions 

and using the momentum theory of impulsive breaking wave forces to estimate the sliding 

distance of the superstructure. Shimosako et al. (1994) presented a model for the caisson motion 

represented by Eq. (2.1) where Ma is the added mass, FR is the frictional resistance force FR  = 
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µW' – U (µ been the friction coefficient, W the caisson weight, and U the uplift), and FD is the 

force related sliding velocity including the wave-making resistance force. 

 (
𝑊

𝑔
+𝑀𝑎) 𝑥̈ = 𝑃 − 𝐹𝑅 − 𝐹𝐷  (2.1) 

P represents horizontal wave force but establishes that the effective force producing caisson's 

sliding, that is the shear force at the caisson bottom FT should be used instead of P in order to 

include the effect of dynamic response of caisson since, although the magnitude of impulsive 

pressure intensity is large, the shear force is significantly reduced due to the caisson's dynamic 

response. Furthermore, if wave pressure is not impulsive, the shear force equals the horizontal 

wave force (Shimosako et al., 1994). The study uses a triangular wave thrust for the analysis 

(wave loads models will be discussed later in the next section). The forces acting on the caisson 

when the sliding occurs are represented in Figure 2.2. 

 

Figure 2.2. Forces acting on the caisson in sliding. Based on (Shimosako et al.,1994) 

 

However, the simplified sliding model of Shimosako et al. (1994) assumed that the added mass 

Ma and FD are small enough to be neglected, consequently, utilizing the below expression. 

 (
𝑊

𝑔
) 𝑥̈ = 𝐹𝑇 − 𝜇𝑈 − 𝜇𝑊′  (2.2) 
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Aoki and Okube (1995) presented an arrangement as in Eq. (2.3) where M is the added mass, N 

is the damping coefficient and Ff is the frictional force. The model not only did account for the 

damping in the model, but adopted Cummins's (1962) impulsive response to express the damping 

in function of time R as in Eq. (2.4) and not as a unique coefficient. 

 (𝑚 +𝑀)𝑥̈ + 𝑁𝑥̇ = 𝐹(𝑡) − 𝐹𝑓  (2.3) 

 (𝑚 +𝑀∞)𝑥̈ + ∫ 𝑅(𝑡 − 𝜏)𝑥(̇𝜏)𝑑𝜏
𝑡

0
= 𝐹(𝑡) − 𝐹𝑓  (2.4) 

Takahashi et al. (1994, 1998) investigated the dynamic response and the sliding through FEM 

models and presented a more sophisticated model accounting for non-linearities and evaluating 

cumulative sliding of caissons, but it was found to be complicated and time-consuming (Cuomo 

et al., 2011). Thus, Shimosako and Takahashi (1999) presented a simplified model for estimating 

the distance of caisson sliding S validated with data from small-scale physical model tests. It 

contemplates the effective caisson weight W, friction coefficient μd , characteristics of the 

triangular wave thrust: duration td and peak value Fx,max , and the uplift Fy,max exerted upon the 

caisson bottom (Shimosako and Takahashi, 1999). 

 𝑆 =
𝑡𝑑
2 (𝐹𝑥,𝑚𝑎𝑥−𝐹𝑦,𝑚𝑎𝑥 + 𝜇𝑑𝑊)

3
 (𝐹𝑥,𝑚𝑎𝑥 − 𝐹𝑦,𝑚𝑎𝑥 + 𝜇𝑑𝑊)

8 𝜇𝑑 𝑚𝑐  𝑊 (𝐹𝑥,𝑚𝑎𝑥 − 𝐹𝑦,𝑚𝑎𝑥 )
2   (2.5) 

The mentioned method was included in the performance-based design (Shimosako and 

Takahashi, 1999) and reliability design (Goda and Takagi,  2000; Kim and Takayama, 2003) 

methods for caisson breakwaters. 

Models for the dynamics of caisson breakwaters have continuously improved, trying to 

reproduce more features of the caisson dynamics. Sliding, tilting, and more and better 

representations of the interaction structure-foundation have been gradually included since the 

middle of last century. Nevertheless, more comprehensive research has been focusing on sliding, 

especially since the introduction of performance-based reliability design proposals based on the 
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expected sliding distance of caissons. However, most of the sliding models did not allow for the 

representation of the effect of the variation in time of the loading. Among those alternative 

models, one of the first ones from Loginov (1962 and 1969) is included in the Russian guidelines 

for evaluating the loadings and their effects on maritime structures and compiled in Marinski 

and Oumeraci (1992). The model combines swaying and rotating motions of the caisson in two 

rocking motions around two separate centers (located respectively above and below the center 

of gravity of the caisson) and neglects the effect of damping (Cuomo et al., 2011). 

Takahashi et al. (1994) used a full-dynamic FEM to account for it, but it was not implemented 

since it was not suitable for the performance design (Cuomo et al., 2011). The simplified models 

for the dynamic behavior of caisson breakwaters developed by Oumeraci et al.(1992) and 

improved by Oumeraci and Kortenhaus (1994) attempted to quantify the relative importance of 

the applied dynamic load and the dynamics (mass, stiffness and damping) of the breakwater 

(including the superstructure, its foundation soil and the surrounding water) on the overall 

dynamic response of the system as a whole. The equation of motion in the study is as in Eq.(2.6), 

where a dot denotes differentiation with respect to time, M, C and K are, respectively, the mass, 

the damping and the stiffness matrixes at two degrees of freedom. The vector u is composed of 

the displacement along x, and the rocking θ. 

 𝑀. 𝑢̈(𝑡) + 𝐶. 𝑢̇(𝑡) + 𝐾. 𝑢(𝑡) = 𝐹(𝑡)  (2.6) 

M included horizontal and rotational hydrodynamic mass, while the damping coefficients were 

obtained experimentally by means of pendulum tests on the caisson breakwater model (Oumeraci 

et al. 1992). Cuomo et al. (2011) used a non-linear 3D model based on Oumeraci and Kortenhaus 

(1994) and included a coupling between the dynamic response and the bearing capacity of the 

soil.  The model also considered the horizontal and rotational hydrodynamic mass as part of M, 

while damping and stiffness were determined by expressions related to the properties of the soil 

foundation. 
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2.3 WAVE IMPACT MODELS 

As stated in the revision of caisson breakwater failures, various studies identified sliding of 

caissons and structural failures due to impulsive wave pressure as the most important failure 

modes for caisson breakwaters. Thus, such wave types are reviewed in the present section. 

2.3.1 Impulsive loads 

An impulsive pressure is exerted on a vertical wall when an incident wave begins to break in 

front of the wall and collides with it, having the wavefront almost vertical. The impinging wave 

loses its forward momentum in the short time during which the collision takes place. The forward 

momentum is converted into an impulse which is exerted on the vertical wall. This pressure may 

rise to more than ten times the hydrostatic pressure corresponding to the wave height, though its 

duration will be very short. Such an abnormally high breaking wave pressure is called an 

impulsive (breaking wave) pressure (Goda, 2000). Two types of impulsive pressures are defined: 

Wagner and Bagnold-type pressures. The former does not entrap an air layer, while the latter 

does. The magnitude of impulsive pressure intensity is quite large, being several times the 

ordinary wave pressure. However, the effective pressure for caisson sliding is greatly reduced 

due to the caisson's dynamic response. 

Furthermore, it is pointed out that the best countermeasure against impulsive pressures is the 

design prevention of dangerous conditions by determining the impulsive pressure coefficients. 

At the same time, other solutions currently involve using alternative breakwater structures, such 

as a composite breakwater covered in front with wave-dissipating concrete blocks or perforated 

wall caisson breakwaters. According to a study of impulsive pressures on a caisson of composite 

breakwater by Shimosako et al. (1993) and after reviewing actual failures of composite 

breakwaters due to impulsive pressures, the failure of the caisson due to impulsive pressure is 

characterized by small but steady sliding of the caissons. 
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Additionally and for easier general understanding, Figure 2.3 distinguishes between the impact 

loads for which the load duration and time history are most relevant for the dynamic response of 

the structure and which, therefore, need to be handled with special care and the pulsating wave 

loads for which the expected response of the structure is such that quasi-static approaches might 

apply (PROVERBS - Oumeraci et al., 1999). 

 

Figure 2.3. Distinction of loads type and approaches (PROVERBS - Oumeraci et al., 1999)  

 

2.3.2 Time- series Wave Loads on Caisson Breakwaters 

According to Takayama and Fujii (1991), the most influential uncertain factors in the caisson 

motion simulations are the empirical formula of wave force and the friction factors used. 

Therefore, besides utilizing a correct friction factor (0.6 being the accepted for concrete caisson 

on rubble mounds), selecting the time-history load that better represents the study case is 

primordial. 

An example of a dimensionless time-series load applied by a breaking wave on the seaward face 

of a vertical breakwater during physical experiments (Cuomo, 2007) is plotted in Figure 2.4 

alongside a superimposed idealized load history. Non-dimensionalization of pressure and time 
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is done by water density ρ, gravity acceleration constant g, and significant wave height Hs and 

period Tm, respectively.  

 

Figure 2.4. Wave-impact history load recorded during physical model tests (Cuomo, 2007)  

 

The load model simulates a triangular spike characterized by a maximum reached during loading 

(Pmax), the time needed to get to Pmax from 0 called rising time (tr) and back to 0 the duration 

time (td). The grey-colored area is related to the impulse, which is the moment transferred to the 

structure during the wave impact. Such impact is more violent, corresponding to shorter rising 

times and vice versa. Furthermore, passing Pmax and before reaching 0, the force passes through 

a lower magnitude (Pqs+) with slow variation and long duration compared to the impulse peak. 

Following the pattern of the wave pressures, simplified time-series loads are proposed for use in 

the evaluation of caisson breakwater displacements. Most simplified models then assume a 

triangular time-history of wave thrust variation with a short duration. The existing load time 

series in the reviewed literature are summarized in Table 2-1. 
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Table 2-1. Summary of existing wave time-history loads for use in the dynamic analysis of 

caisson breakwaters. A modified version of the summary by Cuomo et al.(2011) 

Reference Time series scheme Time series equation 

Lundgreen(1969) 

 

𝑚𝑎𝑥 {
𝐹𝑚𝑎𝑥
2

[1 − cos (
𝜋𝑡

𝑡𝑟
)] ; 0} 

Goda (1994) 

 

𝐹𝑚𝑎𝑥
𝑡

𝑡𝑟
       for t < tr 

(𝐹𝑞𝑠+)
𝑡

𝑡𝑟
       for t ≥ td 

Oumeraci and 

Kortenhaus 

(1994) 
 

𝐹𝑚𝑎𝑥
𝑡

𝑡𝑟
                   for t < tr 

𝐹𝑚𝑎𝑥 (
𝑡𝑑−𝑡

𝑡𝑑−𝑡𝑟
)           for tr < t < td 

 0                            for t ≥ td 

Shimosako et al. 

(1994) 

 

𝐹𝑚𝑎𝑥
𝑡

𝑡𝑟
                   for t < tr 

𝐹𝑚𝑎𝑥 (2 −
𝑡

𝑡𝑟
)         for tr < t < 2tr 

 0                            for t ≥ 2tr 

Aoki  and Okube 

(1995) 

 

    
𝛼𝐹𝑠

𝑡𝑟
𝑡 + 𝐹𝑠                    for t < tr 

−
𝛼𝐹𝑠

𝑡𝑟
𝑡 + (1 + 2𝛼)𝐹𝑠     for t ≥ tr 

Shimosako and 

Takahashi (1999) 

 

𝑚𝑎𝑥 {𝐹𝑚𝑎𝑥
𝑡

𝑡𝑟
; (𝐹𝑞𝑠+)𝑠𝑖𝑛 (

2𝜋

𝑇𝑖
𝑡)}             for t < tr 

𝑚𝑎𝑥 {𝐹𝑚𝑎𝑥 (2 −
𝑡

𝑡𝑟
) ; (𝐹𝑞𝑠+)𝑠𝑖𝑛 (

2𝜋

𝑇𝑖
𝑡)}   for tr < t < 2tr 

 (𝐹𝑞𝑠+)𝑠𝑖𝑛 (
2𝜋

𝑇𝑖
𝑡)                                       for t ≥ 2tr 

Oumeraci et al. 

(2001) 

 

𝐹𝑚𝑎𝑥
𝑡

𝑡𝑟
                   for t < tr 

𝐹𝑚𝑎𝑥 (
𝑡𝑑−𝑡

𝑡𝑑−𝑡𝑟
)           for tr < t < td 

𝐹𝑞𝑠+                         for t ≥ td 

For most of the equations in Table 2-1, parameters such as the quasi-static seaward force Fqs+ 

are determined by the original formulation of Goda’s method (Goda,1974) since it was proposed 

for ordinary vertical breakwaters, while the estimation of the maximum wave force or impact 
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maximum Fmax and the time components follows the formulation in each related reference. The 

model by Shimosako and Takahashi (1999) is the most sophisticated and has been adopted in 

Japan as a basis for the sliding caisson breakwater (Cuomo et al., 2011). However, small-scale 

experimental investigations by Kim and Takayama (2004) highlighted that the time-history 

model largely overestimates the wave force in the standing wave part of the Shimosako and 

Takahashi model, while its estimation for the impulsive part comparatively agrees with the 

experimental data. Thus, Oumeraci et al. (2001) simplified the standing part to a constant value. 

Among the models, the proposed by Shimosako et al. (1994) includes impulsive and pulsating 

(positive for landward and negative for seaward) forces, while Aoki and Okube’s (1995) is based 

on the former, but it considers the sliding for all simulation cases. This is accounted for by 

considering the starting point of the load time-series not for a null force but for the static frictional 

force Fs, which is the load necessary to move the caisson considering its weight and the friction 

coefficient between the caisson bottom and the foundation. It also utilizes a parameter α to 

consider how much the maximum force exerted to the caisson exceeds the static frictional force. 

The consideration of rising and duration time is then viewed from the reference. 

For practical reasons, the triangular pulse described by the rise time tr and the total duration of 

the force td as discussed above, represents a reasonable choice since the triangular shape is 

derived from the actual force history based on the equivalence of breaking wave momentum and 

force impulse. 

Furthermore, when doing small-scale experiments, some scaling problems in the impulsive part 

of the wave are expected due to the possible compressions of air pockets and the impact of 

breaker tongues, as well as due to the oscillations of air pockets or air scape in the quasi-static 

part (PROVERBS - Oumeraci et al., 1999). This can partially be adjusted by using the 

corrections in Figure 2.5. 
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Figure 2.5. Physical processes involved in the wave load history and associated scaling 

problems (PROVERBS - Oumeraci et al., 1999)  

 

2.3.3 Prediction  Methods  for  Wave  Impact  Loads  on  Vertical Walls 

The maximum wave force is an essential parameter for wave models; thus, estimating its 

magnitude has been at the center of research since the last century. Among the design methods 

that include forces of the wave loading is Sainflou (1928) for the vertical wall without berm; 

thus, no uplift is considered, but it is challenging to implement. Goda (1985), the most widely 

used design method, considered pressures, forces and uplift. However, these two are related to 

quasi-static waves. 

Reviewed models accounting for impact waves started appearing in the early works of Hiroi 

(1920), followed by Minikin (1963) that developed a prediction formula that has been proven to 

be sometimes incorrect (Allsop et al., 1996) (PROVERBS - Oumeraci et al., 1999) 

overestimating the wave force, but it is still recommended in the Coastal Engineering Manual 

thus used in design practice in United States; while Takahashi et al. (1994) extended the Goda 
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model to also described impact waves.  Later, time-dependent approaches started to be developed 

as in Oumeraci and Kortenhaus (1995), followed by amendments as part of the European 

PROVERBS project (PRObabilistic design tools for VERtical Breakwaters)by McConnell 

(1998), Hull and   Müller(1998), and Vicinanza (1998).  

The Goda formula was extended to include the incident wave direction (Tanimoto, 1976), 

modification factors applicable to different vertical wall types, and impulsive pressure 

coefficients (Takahashi et al., 1994). That and the whole prediction method by Goda (2020) 

represent a landmark in the evolution of more developed approaches to assessing wave loads at 

walls. It has been included in various international standards, including those in Japan. The 

extension of coefficients and the notoriety are not covered here, but it is a necessary review. 

Another prediction method for wave impact forces in vertical breakwaters included or 

recommended in standards such as the British Standards (BS6349-1 and BS6349-2, 2000) is that 

from Allsop et al. (1996) and Allsop and Vicinanza(1996) and which was also recommended by 

Oumeraci (2001). 

Table 2-2. Examples of wave impact forces used in standards. 

Reference Expression for maximum impulsive pressure/force 

Minikin (1963) 𝐹𝐻,𝑖𝑚𝑝 =
101

3
𝜌𝑔𝐻𝐷

2
𝑑

𝐿𝐷𝐷
(𝑑 + 𝐷) 

Allsop and Vicinanza(1996) 𝐹𝐻,𝑖𝑚𝑝 = 15𝜌𝑔𝑑
2 (
𝐻𝑠𝑖
𝑑
)
3.134

 

Goda (2000) 
𝑃𝐼(max) =

𝜋𝜌𝑔𝐶𝑏𝐻𝑏
2

4𝑔𝜏
 

𝐹𝐻,𝑖𝑚𝑝 = 15𝜌𝑔𝐻𝑏
2  [*] 

In Table 2-2, three examples of expressions used in predicting wave impact forces used in 

international standards, as mentioned before, are showcased. In the Minikin formula, HD and LD 

are the design wave height and length, respectively; D is the water depth at a distance LD from 
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the structure, and d is the water depth at the toe of the structure. For Allsop and Vicinanza's 

expression, Hsi is the design wave height, and d is the water depth. Goda’s method relies on 

several formulae with parameters and coefficients. However, Goda (2000) presents the PI(max) 

for the peak value of the impulsive pressure, where Hb and Cb are the wave’s height and speed. 

Data collected from small experiments where then used to determine a minimum value for the 

impulsive duration of (πCb /g60), yielding to the expression with the asterisk.  
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Chapter 3. ANALYTICAL STUDY: THEORETICAL DESCRIPTION 
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OUTLINE 

The initial approach followed in this study is the development of the analytical models 

corresponding to the sliding of the new shape breakwaters: caissons with a single submerged 

horizontal plate, including the particular case with the plate at the surface, and caissons with 

multiple plates considering the variation of plate(s) lengths and submersion depths. In this 

chapter, the fundaments of the theoretical framework used to build the models, such as linear 

wave and wavemaker theories, sliding simulations for regular breakwater caissons, and methods 

for boundary value problem solutions, are discussed first. The methodology to determine the 

sliding for the different cases and the solution for the linear waves in each case are then 

presented. The physical characteristics of those solutions, such as velocity potential, pressures, 

forces, added masses, damping coefficients, and memory-effect functions used within it, are 

derived, as well as the final sliding model for the study cases. 

 

3.1 THEORETICAL BACKGROUND AND DESCRIPTION 

The theoretical description of a methodology to determine the sliding for a breakwater with a 

horizontal plate is displayed in this chapter by introducing and deriving velocity potential, 

pressure, force, added mass, damping coefficient, and memory-effect function formulations. The 

base theories and methods for applying the methodology [linear wave and wavemaker theories 

and the sliding simulation for regular breakwater caissons introduced by Aoki et al. (1995)] are 

presented as well. Furthermore, a practical method (Yoshida et al.,1990) called the Boundary-

Point Selection Method is introduced in the velocity potential calculations that simplify 

analytical formulations and computing processing time. Applying such a method leads to the 

analytical solution of the presented boundary value problem.  
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3.1.1 Linear Wave Theory  

[Enhanced subsection based on the previous work of the author in Fundora (2021)] 

Linear wave theory (L.W.T) is one of the simplest water wave theories introduced in the 19th 

century due to the application of linearization techniques to the fluid governing equations and 

boundary conditions, conveying a simplified version of them, and is still widely used. A list of 

the simplifications and approximations can be summarized as: a) Constant water depth h, b) 

Periodic waves with period T , c) Considerations restricted to the 2D vertical plane (x, z), d) 

Neglection of viscous (and turbulent) stresses so the motion becomes irrotational. e)Assumption 

that the wave height H is much smaller than the wavelength L . 

Each of these assumptions contributes to simplifying the problem, but only the last two are 

approximations (Svendsen, 2006). The resulting wave solution has been called “small amplitude 

waves”, “infinitesimal waves”, “sinusoidal waves” or ‘linear waves”. The latter is used in this 

study. In some fields, they are also referred to as “Airy waves” or “first-order Stokes waves” 

because G.B. Airy(1845) derived the first expressions describing these waves, and G.G. Stokes 

(1846) derived the higher-order theory. 

The theory uses a potential flow (flows that can be described with the velocity potential) 

approach to define the motion of waves on a fluid (water) surface and assumes an inviscid, 

incompressible, and irrotational fluid flow. Here is a simple explanation of such an ideal fluid: 

it is considered inviscid when its viscosity is zero, i.e., there is no internal friction or resistance 

to flow; incompressible when it has constant density under different pressures, meaning that its 

volume remains unchanged; and irrotational when there is no vorticity, i.e., the fluid particles do 

not rotate around their axes and keep their movement orientation. These assumptions on the fluid 

properties are significant since they allow for simplifying the mathematical description of the 

fluid dynamics; potential functions can describe the flow, and governing equations can be 

simplified.  
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L.W.T is mainly limited to conditions where the wave height H is small compared to the water 

depth h (in shallow waters) and to the wavelength L (in deep waters). The free surface elevation 

η(x,t) is sinusoidal and a function of the horizontal position x and the time t. Such a water surface 

profile is one of the desired final solutions. The (x,z) are cartesian coordinates with z=0 at the 

still water level and positive upwards, and the sinusoidal progressive wave propagates in the 

positive x-direction. A representation of essential wave characteristics is displayed in Figure 3.1. 

Table 3-1 lists the wave parameters related to it and others necessary to determine the solution. 

 

Figure 3.1. Wave characteristics. Linear Wave Theory. 

 

Table 3-1. Parameters related to linear wave theory and their symbols. 

 

Parameter Symbol  Parameter Symbol 

Free water surface η(x,t)  Wave amplitude a = H/2 

Time t  Wave height H 

Velocity components 

 (x, z directions) 

u,w  Wave number 

Wavelength 

k =2π/L 

L 

Velocity potential (2D) φ(x,z,t)  Wave frequency ω=2π/T 

Fluid density ρ  Wave period T 

Gravitational acceleration g  Mean water depth h 
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 Hydrodynamics fundamental equations are derived from the conservation laws of physics: mass, 

momentum, and energy conservation. For example, Eq. (3.1) is the two-dimensional Laplace 

equation or continuity equation for the cartesian system presented above. It expresses the 

conservation of mass for potential flows and provides a partial differential equation as the 

governing equation to be solved for the scalar function Φ, which is called velocity potential.  

 ∇2Φ ≡
𝜕2Φ

𝜕𝑥2
+
𝜕2Φ

𝜕𝑧2
= 0  (3.1) 

To understand the velocity potential more, let’s recall vector analysis. According to its formulae, 

for an arbitrary scalar function Φ (x, t), an identity of ∇ × ∇Φ = 0 (rot grad Φ = 0) holds. 

Therefore, if ∇ × u = 0 is satisfied, the velocity vector u can be represented as u = ∇Φ in terms 

of a scalar function Φ (the velocity potential), and flows that can be described with the velocity 

potential are referred to as potential flows. Introducing the velocity potential may initially seem 

an unnecessary complication, but it is advantageous in mathematical development. The velocity 

is a vector quantity with three unknown scalar components, whereas the velocity potential is a 

single scalar unknown from which all three velocity components may be computed (Kashiwagi, 

2018). Thus, the solution of incompressible, inviscid, irrotational flow requires the solution of 

Laplace’s equation for two dimensions as in Eq.(3.2), where u and w are the horizontal and 

vertical velocity components, respectively. 

 𝜕𝑢

𝜕𝑥
+
𝜕𝑤

𝜕𝑧
= 0  (3.2) 

The flow is also determined by the boundary conditions. For this problem, the kinematic 

condition at the bottom and the linearized kinematic and dynamic condition at the water surface 

are as in Eqs. (3.3), (3.4) and (3.5), respectively. For further details, including basic equations of 

the wave theory and their derivation to linearized forms, as well as velocity potential 

formulations, reference is made to Svendsen (2006). 
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 𝜕Φ

𝜕𝑧
= 0           𝑎𝑡 𝑧 = −ℎ 

(3.3) 

 𝜕Φ

𝜕𝑧
=
𝜕𝜂

𝜕𝑡
           𝑎𝑡 𝑧 = 𝜂 

(3.4) 

 𝜕Φ

𝜕𝑡
+ 𝑔𝑧 = 0           𝑎𝑡 𝑧 = 𝜂 

(3.5) 

The solution for the potential function (velocity potential and water surface elevation) satisfying 

the two-dimension Laplace’s equation and subject to the boundary conditions is:  

 Φ(𝑥, 𝑧, 𝑡) =
𝑎𝑔

𝜔

cosh𝑘(𝑧+ℎ)

cosh𝑘ℎ
sin(𝑘𝑥 − 𝜔𝑡)  (3.6) 

 𝜂(𝑥, 𝑡) = 𝑎 cos(𝑘𝑥 − 𝜔𝑡)  (3.7) 

The velocity potential and water surface elevation on the x-z vertical plane are usually utilized 

in a complex form, as in Eq. (3.8) and Eq.(3.9). Furthermore, the solution to Eq.(3.9) is 

meaningful as long as the wave number satisfies Eq. (3.10) denominated as the dispersion 

relation.     

 

𝜂(𝑥, 𝑡) = 𝑎 cos(𝑘𝑥 − 𝜔𝑡) = 𝑎 cos(−𝑘𝑥 + 𝜔𝑡) 

   = 𝑎𝑒𝑖(−𝑘𝑥+𝜔𝑡)    = 𝑎𝑒−𝑖𝑘𝑥𝑒𝑖𝜔𝑡  (3.8) 

 Φ(𝑥, 𝑧, 𝑡) = −
𝑎𝑔

𝑖𝜔

cosh𝑘(𝑧+ℎ)

cosh𝑘ℎ
𝑒−𝑖𝑘𝑥𝑒𝑖𝜔𝑡  (3.9) 

 𝜔2 = 𝑔𝑘 tanh𝑘ℎ  (3.10) 

Once the velocity potential is known, velocity components of the flow u, w can be obtained from 

the derivation of Laplace’s equation for irrotational flow. Moreover, by integrating the velocity 

potential with the momentum equation for inviscid fluid as in Eq.(3.11), the unsteady Bernoulli 

equation (3.12) is obtained. Finally, the pressure p equation (3.13) can be arranged from 

Eq.(3.12) for more clarity. Bernoulli’s pressure equation is obtained from the conservation of 

momentum. 
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𝐷𝑣⃗ 

𝐷𝑡
= −

1

𝜌
∇𝑝 + 𝑥   where 𝑣 = ∇Φ, 𝑥 = (0,−𝑔) (3.11) 

 𝜕Φ

𝜕𝑡
+
1

2
𝑞2 +

𝑝

𝜌
+ 𝑔𝑧 = 0     where 𝑞2 = 𝑢2 + 𝑤2 = (

𝜕Φ

𝜕𝑥
)
2

+ (
𝜕Φ

𝜕𝑧
)
2

  
(3.12) 

 𝑝 = −𝜌
𝜕Φ

𝜕𝑡
−
1

2
𝜌𝑞2 − 𝑔𝑧  (3.13) 

3.1.2 Wavemaker Theory. 

In the solution of boundary value problems of velocity potential, the most straightforward 

application might be the wavemaker theory. Classical wavemaker theory assumes that the water 

volume displaced by a board with sinusoidal motion in a 2D flume equals the crest volume of 

the propagating wave. There are flap-type and piston-type wave generators, and the latter is used 

in this study. For a piston-type wave generator (board) with a full stroke S, the water volume V 

displaced by the board is expressed by Eq.(3.14), where h is the water depth. The water volume 

elevated by the motion of a wave with height H and wave number k = 2π/L can be estimated by 

Eqs. (3.14) and (3.15). 

 

Figure 3.2. Wave generation by a piston-type generator. Based on Galvin (1964) 

 

 𝑉 = 𝑆ℎ (3.14) 

 𝑉 = ∫
𝐻

2
sin 𝑘𝑥

𝐿
2⁄

0
𝑑𝑥 =

𝐻

𝑘
  

(3.15) 

 𝐻

𝑆
=  𝑘ℎ 

(3.16) 
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The ratio between wave height H and the stroke S as a function of kh can be obtained by equating 

Eqs. (3.14) and (3.15). Such relation implies that for large wave numbers k, i.e., for short wave 

periods T, larger wave heights are generated. The relation stated in Eq. (3.16) might appear 

simple; however, it has many applications. Nonetheless, the problem arises when trying to obtain 

an accurate value of H and when considering not only the progressive wave but also other 

components. 

3.1.2.1 Velocity Potential 

The wavemaker theory is used in the resolution of boundary value problems of velocity potential. 

The general equation of velocity potential is expressed by: 

 Φ(𝑥, 𝑧, 𝑡) = 𝜙(𝑥, 𝑧)𝑒𝑖𝜔𝑡 (3.17) 

The exact solution of the generated wave's velocity potential ϕ (x,z) is expressed as Eq.(3.18). 

The first term of the equation is associated with a progressive wave (or propagating mode), and 

the second term with a spatially decaying standing wave (or evanescent mode). 

 𝜙 = 𝐴cosh𝑘 (𝑧 + ℎ)𝑒−𝑖𝑘𝑥 +∑𝐵𝑛cos𝑘𝑛(𝑧 + ℎ)𝑒
−𝑘𝑛𝑥

∞

𝑛=1

 (3.18) 

Where A and Bn are unknown constants and k and kn are the wave numbers that satisfy the 

relations in Eq.(3.19). The first equality is the linear dispersion relation. The wave numbers can 

be obtained by rewriting Eq.(3.19) in a dimensionless form with the parameter 
𝜔2ℎ

𝑔
   as in 

Eq.(3.20) that yields to a direct or a Newton-Raphson iteration. 

 𝜔2 = 𝑔𝑘 tanh( 𝑘ℎ) = −𝑔𝑘𝑛 tan( 𝑘𝑛ℎ) (3.19) 

 
𝜔2ℎ

𝑔
  = 𝑘ℎ tanh( 𝑘ℎ) = −𝑘𝑛ℎ tan( 𝑘𝑛ℎ) (3.20) 

Considering the oscillating board located at x = 0, its motion is expressed by Eq.(3.21) and the 

kinematic boundary condition on the board given by Eq.(3.22): 
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 𝜉(𝑧, 𝑡) =  𝜉𝑜( 𝑧)𝑒
𝑖𝜔𝑡  (3.21) 

 
𝜕𝜙

𝜕𝑥
|
𝑥=0

𝑒𝑖𝜔𝑡 =
𝑑𝜉

𝑑𝑡
= 𝑖𝜔𝜉𝑒𝑖𝜔𝑡 (3.22) 

This indicates continuity of velocity and yields to: 

 −𝑖𝑘𝐴cosh𝑘 (𝑧 + ℎ) −∑𝑘𝑛𝐵𝑛cos𝑘𝑛(𝑧 + ℎ) = 𝑖𝜔𝜉0(𝑧)

∞

𝑛=1

 (3.23) 

To obtain the expression of the unknown constants A and Bn, orthogonality properties of 

functions are utilized on the terms cosh 𝑘(𝑧 + ℎ)  and cos 𝑘𝑛(𝑧 + ℎ), respectively. For example, 

A is determined by integrating Eq.(3.23) over the region −ℎ ≤ 𝑧 ≤ 0   after multiplying 

cosh 𝑘(𝑧 + ℎ). 

 −𝑖𝑘𝐴 ∫ cosh2𝑘(𝑧 + ℎ)𝑑𝑧
0

−ℎ

= 𝑖𝜔∫ 𝜉0(𝑧)cosh𝑘(𝑧 + ℎ)𝑑𝑧
0

−ℎ

 (3.24) 

Thus, 

 

𝐴 = −
𝜔

𝑘
 
∫ 𝜉0(𝑧)cosh𝑘(𝑧 + ℎ)𝑑𝑧
0

−ℎ

∫ cosh2𝑘(𝑧 + ℎ)𝑑𝑧
0

−ℎ

 

                              = −
4𝜔

sinh2𝑘ℎ + 2𝑘ℎ
∫ 𝜉0(𝑧)cosℎ𝑘(𝑧 + ℎ)𝑑𝑧
0

−ℎ

 
(3.25) 

 

While for the evanescent mode waves, Bn is given as: 

 

𝐵𝑛 = −
𝑖𝜔

𝑘𝑛
 
∫ 𝜉0(𝑧)cos𝑘𝑛(𝑧 + ℎ)𝑑𝑧
0

−ℎ

∫ cos2𝑘𝑛(𝑧 + ℎ)𝑑𝑧
0

−ℎ

 

                               = −
4𝑖𝜔

sin 2𝑘𝑛ℎ + 2𝑘𝑛ℎ
∫ 𝜉0(𝑧)cos𝑘𝑛(𝑧 + ℎ)𝑑𝑧
0

−ℎ

 
(3.26) 

3.1.2.2 Hydrodynamic Forces Acting on the Wavemaker. Piston-Type Case 

The dynamic wave pressure pw at the wavemaker (x=0) is 
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−𝜌
𝜕Φ

𝜕𝑡
|
𝑥=0

 = −𝑖𝜌𝜔𝜙|𝑥=0 𝑒
𝑖𝜔𝑡 

 = −𝑖𝜌𝜔[𝐴𝑐𝑜𝑠ℎ𝑘 (𝑧 + ℎ) + ∑ 𝐵𝑛𝑐𝑜𝑠𝑘𝑛(𝑧 + ℎ)
∞
𝑛=1 ] 𝑒𝑖𝜔𝑡   (3.27) 

For the piston-type wavemaker, the displacement at the board is constant, so let’s consider 

 𝜉𝑜( 𝑧) = 𝑑 (=const.). Thus, from Eq. (3.25) and (3.26), A and Bn are expressed by Eqs. (3.28) 

and (3.29), respectively. 

 𝐴 = −
4𝜔

sinh2𝑘ℎ + 2𝑘ℎ
 
𝑑

𝑘
 sinh 𝑘ℎ 

(3.28) 

 𝐵𝑛  = −
4𝑖𝜔

sin 2𝑘𝑛ℎ + 2𝑘𝑛ℎ
 
𝑑

𝑘𝑛
 sin 𝑘𝑛ℎ 

(3.29) 

Considering the above, the wave force F acting on the board of the wavemaker can be derived 

and rearranged as follows: 

 

𝐹 = ∫ 𝑝𝑤(−1) 𝑑𝑧
0

−ℎ

 

= −𝑖𝜌𝜔 {
4𝜔

sinh 2𝑘ℎ + 2𝑘ℎ
 
𝑑

𝑘
 sinh 𝑘ℎ∫ cosh𝑘(𝑧 + ℎ)𝑑𝑧

0

−ℎ

+∑
4𝑖𝜔

sin 2𝑘𝑛ℎ + 2𝑘𝑛ℎ
 
𝑑

𝑘𝑛
 sin 𝑘𝑛ℎ∫ cos𝑘𝑛(𝑧 + ℎ)𝑑𝑧

0

−ℎ

∞

𝑛=1

} 𝑒𝑖𝜔𝑡 

= −𝑖𝜌𝜔 {
4𝜔

sinh 2𝑘ℎ + 2𝑘ℎ
 
𝑑

𝑘
 sinh 𝑘ℎ 

1

𝑘
 sinh 𝑘ℎ

+∑
4𝑖𝜔

sin 2𝑘𝑛ℎ + 2𝑘𝑛ℎ
 
𝑑

𝑘𝑛
 sin 𝑘𝑛ℎ 

1

𝑘𝑛
 sin 𝑘𝑛ℎ

∞

𝑛=1

} 𝑒𝑖𝜔𝑡 

     = −4𝑖𝜌𝜔2𝑑 {
 sinh2 𝑘ℎ

𝑘2(sinh2𝑘ℎ + 2𝑘ℎ)
 +∑

𝑖  sin2 𝑘𝑛ℎ

𝑘𝑛
2(sin 2𝑘𝑛ℎ + 2𝑘𝑛ℎ)

 

∞

𝑛=1

} 𝑒𝑖𝜔𝑡 

𝐹 =
−4𝜌𝜔 𝑠𝑖𝑛ℎ2 𝑘ℎ

𝑘2(𝑠𝑖𝑛ℎ 2𝑘ℎ + 2𝑘ℎ)
(𝑖𝜔𝑑𝑒𝑖𝜔𝑡)

− 4𝜌∑
𝑠𝑖𝑛2 𝑘𝑛ℎ

𝑘𝑛
2(𝑠𝑖𝑛 2𝑘𝑛ℎ + 2𝑘𝑛ℎ)

(−𝜔2𝑑𝑒𝑖𝜔𝑡)

∞

𝑛=1

  

(3.30) 
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The latest arrangement allows visualizing the first (𝑖𝜔𝑑𝑒𝑖𝜔𝑡) and second (−𝜔2𝑑𝑒𝑖𝜔𝑡) derivatives 

of the board motion 𝝃 . Furthermore, for easier visualization, the elements associated with them 

are grouped and renamed as N and M. Those terms are called hydrodynamic parameters: the 

“damping coefficient” and the “added mass”, Eqs. (3.31) and (3.32) respectively. Hence, the 

force F can simply be written as in Eq. (3.33), where the negative sign represents that it is a 

reaction force. This form will be used for further derivations later in this chapter and the 

following chapter. 

 𝑁 =
4𝜌𝜔 𝑠𝑖𝑛ℎ2 𝑘ℎ

𝑘2(𝑠𝑖𝑛ℎ 2𝑘ℎ + 2𝑘ℎ)
 

(3.31) 

 𝑀 = 4𝜌∑
𝑠𝑖𝑛2 𝑘𝑛ℎ

𝑘𝑛
2(𝑠𝑖𝑛 2𝑘𝑛ℎ + 2𝑘𝑛ℎ)

∞

𝑛=1

 
(3.32) 

 𝐹 = −𝑁
𝑑𝜉

𝑑𝑡
− 𝑀

𝑑2𝜉

𝑑𝑡2
 

(3.33) 

 

By using the dimensionless expression of the frequency in the dispersion equation, as in Eq. 

(3.20), the dimensionless forms of N and M, as in Eqs. (3.34) and (3.35), provide insights into 

the physical meaning of such parameters and their application to the solution of real engineering 

problems. 

 
𝑁

𝜌𝜔ℎ2
=

4 𝑠𝑖𝑛ℎ2 𝑘ℎ

(𝑘ℎ)2(𝑠𝑖𝑛ℎ 2𝑘ℎ + 2𝑘ℎ)
 

(3.34) 

 
𝑀

𝜌ℎ2
= 4∑

𝑠𝑖𝑛2 𝑘𝑛ℎ

(𝑘𝑛ℎ)2(𝑠𝑖𝑛 2𝑘𝑛ℎ + 2𝑘𝑛ℎ)

∞

𝑛=1

 
(3.35) 

Figure 3.3 displays the dimensionless damping coefficient 
𝑁

𝜌𝜔ℎ2
 and dimensionless added mass 

𝑀

𝜌ℎ2
   as functions of 

𝜔2ℎ

𝑔
. In this case, the two sides of the wavemaker board are considered; thus, 
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the values are 2
𝑁

𝜌𝜔ℎ2
 and 2

𝑀

𝜌ℎ2
.  

 

Figure 3.3. Dimensionless damping coefficient and added mass as functions of 
w 2h

g
. (Fundora, 

2021) 

 

When frequency tends to be infinite, the damping coefficient  𝑁(𝜔→∞) = 0. It is not a surprise 

that the damping coefficient gets reduced to nullity. Since damping is the process of dissipating 

the energy from the radiated waves, it is reasonable that after a stroke of the board, an immediate 

damping process occurs, leading to a decrease in the amplitude of the oscillation until all the 

energy due to the stroke is dissipated. 

On the other hand, the added mass at an infinite frequency is 𝑀(𝜔→∞) = 1.0855𝜌ℎ
2 . The 

dimensionless value 1.0855 is obtained analytically by calculating the limit of the expression of 

added mass from Eq. (3.35) when the frequency 𝜔 tends to infinite. That value is considered as 

the “constant added mass”, which hereafter will be related to the symbol M∞ . It is important to 

note that the direct output of the limit calculation is 0.54275, but the two sides of the wavemaker 

board are considered. This value corresponds to the 0.543 value first obtained by Cooker and 

Peregrine (1990) in their solution derivation for the two-dimensional boundary-value problem 

for water wave impact on a vertical wall. The term used in the mentioned study was ‘momentum 
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length for a semi-infinite wave’ and the nominalization was not by the same dimensions or 

properties as in this study, but it can be considered as an equivalent analysis. 

Furthermore, following the dependence of the added mass to the geometry explained before, the 

constant added mass of 1.0855 is related to the board's shape: a rectangular prism or a rectangle 

in a two-dimensional analysis, in this case with a small width. However, from the second half of 

the 1990s, the inclusion of the added mass or hydrodynamic mass in the sliding calculation was 

extended by Oumeraci and Kortenhaus (1994). Aoki and Okube (1995) introduced the use of the 

dimensionless value 1.0855 and were followed by Shimosako and Takahashi (1998,2000), 

Miguel Esteban et al. (2007)  and others. Before that, inertia was mainly considered only as the 

relation of the caisson mass in water or experimentally determined.  

Besides the theoretical calculation of the constant added mass, a numerical verification was 

carried out in a previous study (Fundora, 2021). For example, for 
𝜔2ℎ

𝑔
 =500, around ω =100 rad/s, 

M∞ = 1.0811159564, demonstrating the tendency to the theoretical value. 

 

3.1.2.3 Hydrodynamic Forces Expressed in Time-Domain. Components: Added Mass and 

Memory- Effect Function. 

 In section 3.1.2.2, the hydrodynamic force acting on the wave board (which can be applied to 

vertical walls, i.e., vertical caissons) is expressed by the damping coefficient N and the added 

mass M, both of which are given as the function of wave frequency ω. However, when included 

in systems with only time-dependent parameters, frequency-domain parameters may present 

challenges. Thus, the translation to the time domain proves to be useful in such cases, which 

accounts for numerous engineering problems. 

Then, if an arbitrary motion of the wavemaker board is considered as a succession of impulsive 

displacements, time-domain hydrodynamic forces can be expressed as the sum of the reaction 
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forces caused by the impulsive motion of that board. An analogy of using the impulse response 

function in linear systems, as in Cummins (1962), is used for the below derivation. 

Impulsive displacements Δξ taking place in small durations Δt are expressed as:    

 𝛥𝜉 =
𝑑𝜉

𝑑𝑡
𝛥𝑡 

(3.36) 

In the period of Δt, it is assumed that the fluid motion has a velocity potential Φ that is 

proportional to v i.e., 𝛹
𝑑𝜉

𝑑𝑡
 , being 𝛹  any function for now unknown. After the impulsive 

movement, the water surface elevation induced by the impulsive displacement will decay and 

finally be still. By taking the velocity potential of the decaying wave expressed as φΔξ; if such 

impulsive displacement is continuously generated, the velocity potential at the time t is defined 

as in Eq.(3.37). In there, if t refers to the time at which the output is observed, τ refers to the time 

at which the input is applied.  

 𝛷(𝑥, 𝑧, 𝑡) = 𝜓
𝑑𝜉

𝑑𝑡
+ ∫ 𝜑(𝑡 − 𝜏)

𝑑𝜉

𝑑𝑡
(𝜏)𝑑𝜏

𝑡

−∞

 
(3.37) 

The pressure is then given as: 

 𝑝(𝑥, 𝑧, 𝑡) = −𝜌
𝜕Φ

𝜕𝑡
= −𝜌𝜓

𝑑2𝜉

𝑑𝑡2
+∫

𝜕𝜑(𝑡 − 𝜏)

𝜕𝑡

𝑑𝜉

𝑑𝑡
(𝜏)𝑑𝜏

𝑡

−∞

 
(3.38) 

And the force F acting on the board is obtained by integrating the pressure at x=0. 

 

𝐹(𝑡) = ∫ 𝑝(−1) 𝑑𝑧
0

−ℎ

 

= 𝜌∫ 𝜓
𝑑2𝜉

𝑑𝑡2
𝑑𝑧

0

−ℎ

+ 𝜌∫ [∫
𝜕𝜑(𝑡 − 𝜏)

𝜕𝑡

𝑑𝜉

𝑑𝑡
(𝜏)𝑑𝜏

𝑡

−∞

] 𝑑𝑧
0

−ℎ

 

(3.39) 

By letting the first and second terms be as in Eqs. (3.40) and (3.41), respectively,  

 𝜇 = −𝜌∫ 𝜓𝑑𝑧
0

−ℎ

 
(3.40) 



  40  

 

 𝑅(𝑡) = −𝜌∫
𝜕𝜑(𝑡)

𝜕𝑡
𝑑𝑧

0

−ℎ

 
(3.41) 

 

The force in Eq.(3.39) yields to Eq.(3.42). The latter can also be expressed as in Eq.(3.43). 

 𝐹(𝑡) = −𝜇
𝑑2𝜉

𝑑𝑡2
−∫ 𝑅(𝑡 − 𝜏)

𝑑𝜉

𝑑𝑡
(𝜏)𝑑𝜏

𝑡

−∞

 
(3.42) 

 𝐹(𝑡) = −𝜇
𝑑2𝜉

𝑑𝑡2
−∫ 𝑅(𝜏)

𝑑𝜉

𝑑𝑡
(𝑡 − 𝜏)𝑑𝜏

∞

0

 
(3.43) 

The above equation is for an arbitrary motion; thus, if we consider a sinusoidal displacement, 

𝜉 = 𝑑𝑒𝑖𝜔𝑡 can be substituted into it. 

 

𝐹 = −𝜇(−𝜔2𝑑) − ∫ 𝑅(𝜏)(𝑖𝜔𝑑)𝑒𝑖𝜔(𝑡−𝜏)𝑑𝜏
∞

0

 

= [−𝜇(−𝜔2𝑑) − 𝜔𝑑∫ 𝑅(𝜏)  sin𝜔𝜏 𝑑𝜏
∞

0

− 𝑖𝜔𝑑∫ 𝑅(𝜏)  cos𝜔𝜏 𝑑𝜏
∞

0

] 𝑒𝑖𝜔𝑡 

= −(𝑖𝜔𝑑𝑒𝑖𝜔𝑡)∫ 𝑅(𝜏)  cos𝜔𝜏 𝑑𝜏
∞

0

− (−𝜔2𝑑𝑒𝑖𝜔𝑡) [𝜇 −
1

𝜔
∫ 𝑅(𝜏)  sin𝜔𝜏 𝑑𝜏
∞

0

] 

(3.44) 

When recalling the force’s structure in Eq. (3.33), then N and M can also be expressed as: 

 𝑁(𝜔) = ∫ 𝑅(𝜏) 𝑐𝑜𝑠 𝜔𝜏 𝑑𝜏
∞

0

 
(3.45) 

 𝑀(𝜔) = 𝜇 −
1

𝜔
∫ 𝑅(𝜏) sin𝜔𝜏 𝑑𝜏
∞

0

 
(3.46) 

While applying the inverse Fourier transform to the above equations are as below: 

 𝑅(𝑡) =
2

𝜋
∫ 𝑁(𝜔) cos𝜔𝜏 𝑑𝜏
∞

0

 
(3.47) 
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 𝜇 = 𝑀(𝜔′) −
1

𝜔′
∫ 𝑅(𝜏) sin𝜔′𝜏 𝑑𝜏
∞

0

 
(3.48) 

The ' symbol is used to underline that ω' and ω are different. When ω' tends to infinite, the 

second term of the right-hand side of Eq.(3.48) becomes zero; thus it is proper to say that: 

 𝜇 = 𝑀(𝜔′=∞) (3.49) 

R(t) is referred to as the ‘memory-effect function’ or ‘retardation function’. While μ is the 

‘constant added mass’, which is not the function of ω and hereafter will be used the same symbol 

from the previous section: M∞.  Aoki and Okube (1995) expressed the memory-effect function 

of a regular breakwater not as a function of frequency ω but of a term κ as in Eq.(3.50) where κ 

= kh. That is basically the rearrangement of Eq. (3.47) after substituting N(ω) for the expression 

of N in Eq. (3.34) to switch its dependence on frequency to the wave number k by introducing 

the derivation of frequency from the dispersion relation. They also presented a linear 

approximation, as seen in Eq.(3.51). The memory-effect function, as in Aoki and Okube (1995), 

was later used by researchers such as Takagi and Shibayama (2006). The output of the two 

versions can be seen in Figure 3.4. 

 𝑅(𝑡) =  
4𝜌𝑔ℎ

𝜋
∫

tanh2 𝜅

𝜅2
cos (√𝜅 tanh𝜅 √𝑔 ℎ⁄ 𝑡) 𝑑𝜅

∞

0

 
(3.50) 

 𝑅(𝑡) = (2.17 − 1.146√
𝑔

ℎ
𝑡) 𝜌𝑔ℎ 

(3.51) 

Furthermore, another relationship is observed: dimensionless memory-effect function for t=0 is  

𝑅(𝑡∗=0)
∗ = 2.1710 , and the dimensionless added mass for infinite frequencies is 𝑀(𝜔∗→∞)

∗ =

 1.0855 for the case of regular caisson breakwaters. 

 𝑀(𝜔∗→∞)
∗ =

1

2
𝑅(𝑡∗=0)
∗ = 1.0855   (3.52) 
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Figure 3.4. Dimensionless Memory- Effect Function 

 

3.1.3 Wave forces 

In Chapter 2, existing models for time-history wave loads on caisson breakwaters were discussed. 

For this study, the wave force in time-domain F(t) is determined by a triangle-shaped profile 

(Figure 3.5) used in Aoki and Okube (1995) for sliding calculation, which is similar to the model 

introduced by Shimosako and Takahashi (1994).  

Figure 3.5. Diagrams for times series model of the wave force for sliding calculation and 

displacement-velocity time series.  

 

─── Eq.(3.50) 

----- Linear approximation. Eq.(3.51)  
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The mathematical expression for the above model is as in Eq. (3.53) where Fs is the static 

frictional force (note that in the previous subsection, relation Fs = Ff   was already established), t 

is time, tp the wave force rising time and α the wave force magnitude or rising coefficient. 

Following the model representing the physical phenomena, the caisson will slide when the wave 

force F exceeds the maximum static friction force Fs. Thus, the model at time t = 0 represents a 

wave force equal to the static frictional force F(t=0) = Fs, and a maximum force Fmax achieved 

at t = tp with a value shown in Eq.(3.54).  

. 𝐹(𝑡) =

{
 
 

 
 

𝛼𝐹𝑠
𝑡𝑝
𝑡 + 𝐹𝑠        (0 ≤ 𝑡 ≤ 𝑡𝑝)

−
𝛼𝐹𝑠
𝑡𝑝
𝑡 + (1 + 2𝛼)𝐹𝑠   (𝑡𝑝 ≤ 𝑡)

}
 
 

 
 

 

(3.53) 

 𝐹(𝑡𝑝) = 𝐹𝑚𝑎𝑥 = (1 + 𝛼)𝐹𝑠 (3.54) 

Therefore, if Fs is known, the profile is determined using α (the wave force magnitude) as a 

parameter. Furthermore, according to this figure, the maximum velocity vmax is obtained after 

the peak on the wave force, close to t =2tp when F(t) is again lower than Fs, but there is still 

energy from the precedent movement. From there, it reduces until reaching zero, when the wave 

force gets radically smaller with respect to Fs. At that point, sliding stops, and the maximum 

value of displacement x is achieved. 

3.1.4 Equation of motion for regular caissons 

Accounting for the derivations in section 3.1.2, the motion of the wavemaker board is described 

by Eq.(3.55). It follows Newton’s 2nd law, in which m is the mass of the caisson, 
𝑑2𝜉

𝑑𝑡2
 term the 

acceleration, and f the summatory of forces acting on the caisson, including terms such as the 

added mass M and the velocity component  
𝑑𝜉

𝑑𝑡
 with the damping coefficient N. By applying the 

wavemaker theory to the breakwater caisson problem and using the memory-effect function, Eq. 
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(3.56) serves as an alternative to Eq.(3.55) and where the lower limit in the integration -∞ can 

be replaced by 0 when considering the wavemaker board (caisson) movement starting at t=0. 

Referring to the right-hand side of the above equations, the horizontal forces acting on the 

caisson during the sliding motion are shown in Figure 3.6, where F is the wave force, Ff is the 

frictional force, and FR the resistance force. In this model, vertical forces such as the uplift forces 

are dismissed. In the simplified model of Aoki and Okube (1995) and the one proposed by 

Shimosako and Takahashi (2000), it is assumed that the friction coefficient takes a constant value 

corresponding to both the static fs and the dynamic ff coefficients. Since fs = ff, the dynamic 

frictional force Ff=ff*Ww and the static frictional force Fs=fs*Ww share the same value. That 

consistent assumption is made and followed. Ww is the weight of the structure in water and the 

product of mw g, where mw is the mass of the caisson in water and g is the acceleration of gravity. 

Figure 3.6. Forces acting on a vertical breakwater caisson (Aoki and Okube, 1995) 

Consequently, Eq.(3.56) can be rewritten as Eq. (3.57) where m is the mass of the caisson, F(t) 

is the wave force in the time-domain, and Ff  is the frictional force. As it was explained before, 

𝑴∞ refers to the added mass force generated by the water surrounding the caisson due to its 

 (𝑚 +𝑀)
𝑑2𝜉

𝑑𝑡2
+ 𝑁

𝑑𝜉

𝑑𝑡
= 𝑓 

(3.55) 

 (𝑚 + 𝜇)
𝑑2𝜉

𝑑𝑡2
+∫ 𝑅(𝑡 − 𝜏)

𝑑𝜉

𝑑𝑡
(𝜏)𝑑𝜏

𝑡

−∞

= 𝑓 
(3.56) 
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motion, and the integration term refers to the wave-making damping. Furthermore, considering 

x the displacement or sliding, the terms  𝒙̇  and  𝒙̈  are their first and second derivative with 

respect to time i.e., the motion’s velocity and acceleration, respectively. Accordingly, the sliding 

distance of the caisson can be calculated by numerically integrating the below equation twice 

with respect to time. 

 (𝑚 +𝑀∞)𝑥̈ + ∫ 𝑅(𝑡 − 𝜏)𝑥̇(𝜏)𝑑𝜏
𝑡

0

= 𝐹(𝑡) − 𝐹𝑓 (3.57) 

Substituting the wave time-history load in Eq. (3.57), the motion equation can be rewritten as 

below, and it is the final form used in this study for vertical breakwaters with regular caissons. 

 (𝑚𝑎 +𝑀𝑥𝑥
∞ )𝑥̈ + ∫ 𝑅𝑥𝑥(𝑡 − 𝜏)𝑥̇(𝜏)𝑑𝜏

𝑡

0

=

{
 
 

 
 

 

𝛼𝑓𝑠
𝑡

𝑡𝑝
𝑚𝑤𝑔               (0 ≤ 𝑡 ≤ 𝑡𝑝)

𝛼𝑓𝑠 (2 −
𝑡

𝑡𝑝
)𝑚𝑤𝑔         (𝑡𝑝 ≤ 𝑡)

 

(3.58) 

An example configuration with the characteristics and properties as in Aoki and Okube (1995) 

and Yoshihara (2019) is tested to obtain concrete values. The solution to the motion equation is 

shown in Figure 3.7. 

Table 3-2. Geometrical characteristics and properties of an example configuration for the 

analytical model. 

Characteristics / 

Properties 
Symbol Value 

Water depth h 8 m 

Caisson width B 6 m 

Freeboard d 2 m 

Friction coef. f, fs 0.6  

Rising time tp 0.5 s 

Wave force coef. α 0.1  

Water density ρ 1000 kg/ m3 

Concrete density ρc 2150   kg/ m3 
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Figure 3.7 Displacement and velocity of the wavemaker board/caisson (for α=0.1, tp=0.5, 

f=fs=0.6) 
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3.2 MODEL DESCRIPTION AND GENERAL METHODOLOGY 

The models used in the theoretical study represent caissons with horizontal plates on the harbor 

side. The derivation of the models is made to allow investigation of the effect of submerged 

horizontal plates on the performance of a vertical breakwater during the failure process by 

simulating the caisson sliding under impulsive wave loads. The analysis cases include caissons 

with a single plate at the surface, a single submerged plate, and twin plates with diverse plate 

lengths and arrangements that attend to submersion depth. A semi-analytical model developed 

by the author (Fundora and Aoki, 2023 and 2024) based on the piston-type wavemaker theory to 

estimate the hydrodynamic characteristics due to the fluid-structure interaction and simulate the 

sliding of the geometries object of study.  

3.2.1 Caisson with A Submerged Horizontal Plate. 

The structure consists of a semi-submerged caisson of width B and freeboard d, with a rear 

submerged horizontal plate of longitude l, as shown in Figure 3.8. In this study, the horizontal 

axis is at the sea surface level, and the vertical axis corresponds to the rear wall of the caisson. 

The seabed is considered parallel to the sea surface; thus, the water depth h is constant.  

 

Figure 3.8. Model representation of a caisson with a submerged horizontal plate.(Fundora and 

Aoki, 2024) 
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The fluid is divided into four sub-domains with different velocity potentials Φ. For the analysis, 

F: wave force, FR: horizontal reaction force, V: vertical reaction force, and Ff: frictional force; 

m: caisson mass, W: caisson weight, and hs: submerged depth. General materials properties are 

given by the hydrodynamic and static frictional coefficients f and fs, respectively, water density 

ρ, and concrete density ρc. 

3.2.2 Caisson with Twin Plates 

The initial hypothesis of the influence of water constriction on incrementing hydrodynamic 

coefficients, such as added mass, was presented before. Nevertheless, to further investigate the 

effects of the added mass, but also the damping on the general sliding of the caisson, a twin plate 

arrangement model is also derived. 

 

Figure 3.9. Model representation of a caisson with twin plates.  

The twin plates arrangement keeps one plate at the water surface and the second one is 

submerged at ½ of the water depth. Although different submersion depth can be analyzed with 

the derived model and methodology, a single location is enough to validate the hypothesis for 

this section. Water depth and properties of the medium remain, as in the case with a single plate.  
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3.2.3 Methodology 

A semi-analytical model for the sliding simulation of caissons with submerged plates, which 

includes the special case of a plate at the surface (Fundora and Aoki, 2023) and twin plates, is 

developed based on the linear wavemaker theory (Dean and Dalrymple, 1984) and potential 

theory the sliding calculation method from Aoki and Okube (1995). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. Sliding Calculation Flow (Fundora and Aoki, 2024) 
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), 
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∞
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The Boundary Point Selection method (BPSM) (Fundora and Aoki, 2023; Yoshida et al., 1990) 

is used to solve the boundary problem of the fluid-structure interaction. The simulation model 

includes vertical forces (represented by the vertical added mass Mzx and the memory-effect 

function Rzx). Initially, the caisson sliding simulation is performed using the same parameters 

from previous studies to validate the model with the solutions by the conventional potential 

method for a regular caisson (Yoshihara, 2019) and a caisson with a horizontal plate of different 

lengths (Fundora and Aoki, 2023). Simulations for different plate lengths and submersion depths 

are performed using a  MATLAB code written to solve the theoretical formulations. 

 

3.3 GOVERNING EQUATIONS. BOUNDARY AND CONTINUITY CONDITIONS. 

Determining the velocity potential in each region is the starting point of the methodology. 

According to wave theory, its general form is expressed as Eq.(3.59), where 𝝓𝒋 is a superposition 

of the progressive wave and the decaying wave (evanescent mode wave), ω is frequency, t is 

time, and subscript j = I, II, III, IV indicates the regions of the model.  

 𝛷𝑗(𝑥, 𝑧, 𝑡) = 𝜙𝑗(𝑥, 𝑧)𝑒
𝑖𝜔𝑡 (3.59) 

 

3.3.1 Caisson with A Submerged Horizontal Plate 

For the model of the caisson with a submerged horizontal plate, Region I is the free surface in 

the seaside of the caisson, Region II is the fluid area behind the harborside wall within the water 

surface and the submerged plate, Region III is the fluid area between the submerged plate and 

the seabed, while Region IV is the harborside area located after the plate. This model can also 

be applied to a plate at the surface by making hs equal to zero and dismissing Region II in the 

analysis. 
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3.3.1.1 Boundary and Continuity Conditions  

Linked to the analytical derivation of the velocity potentials and the solution of the boundary 

problem itself, the boundary and continuity conditions must first be stated. Based on the 

wavemaker theory (Dean and Dalrymple, 1984), the "sinusoidal motion" of the breakwater is 

given by Eq.(3.60) as the vertical boundary condition considering 𝑑(constant) = 𝜉0(z) where 

𝜉0 is the initial deformation or displacement. The horizontal conditions at the bottom and the 

plate are presented by Eq.(3.61) while the continuity or Laplace’s equation for the regions is 

expressed in Eq.(3.62). Furthermore, regions II and III share a physical boundary with region IV 

at x=l. Thus, accounting for the continuity of the horizontal fluid velocities and the wave 

pressure fluctuations due to continuities of mass and energy flux through the boundary is 

required and expressed by Eqs. (3.63), (3.64), (3.65) and (3.66). This is a resume of the boundary 

and continuity condition; nonetheless, each region's particularities will be described in the 

following subsections. 

 
𝜕𝜙𝑗

𝜕𝑥
= 𝑖𝜔𝑑 ;   𝑥 = −𝐵 (𝑗 = 𝐼);  𝑥 = 0 (𝑗 = 𝐼𝐼, 𝐼𝐼𝐼) 

(3.60) 

 
𝜕𝜙𝑗

𝜕𝑧
= 0   ;    𝑧 = −ℎ𝑠 (𝑗 = 𝐼𝐼, 𝐼𝐼𝐼);  𝑧 = −ℎ  (𝑗 = 𝐼𝐼𝐼) 

(3.61) 

 
𝜕2𝜙𝑗

𝜕𝑥2
+
𝜕2𝜙𝑗

𝜕𝑧2
= 0   ;   (𝑗 = 𝐼𝐼, 𝐼𝐼𝐼, 𝐼𝑉) 

(3.62) 

 𝜙IV(𝑙, 𝑧) = {
𝜙II(𝑙, 𝑧)       (0 ≥ 𝑧 ≥ −ℎ𝑠) 

− 
𝜙III(𝑙, 𝑧)      (−ℎ𝑠 ≥ 𝑧 ≥ −ℎ)    

 

(3.63) 

(3.64) 

 
𝜕𝜙IV(𝑙, 𝑧)

𝜕𝑥
= {

𝜕𝜙II(𝑙, 𝑧)

𝜕𝑥
       (0 ≥ 𝑧 ≥ −ℎ𝑠)  

𝜕𝜙III(𝑙, 𝑧)

𝜕𝑥
      (−ℎ𝑠 ≥ 𝑧 ≥ −ℎ)    

 
(3.65) 

(3.66) 
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3.3.1.2 Velocity potential and boundary condition in Region I  

The general form of the velocity potential in Region I is expressed as: 

 𝛷I(𝑥, 𝑧, 𝑡) = 𝜙I(𝑥, 𝑧)𝑒
𝑖𝜔𝑡 (3.67) 

where 𝜙I is a superposition of the progressive wave and the decaying wave (evanescent mode 

wave). The caisson width B is added since the axis origin is in the shoreward surface of the 

breakwater. 

 𝜙I(𝑥, 𝑧) = 𝐴I+𝑐𝑜𝑠ℎ𝑘 (𝑧 + ℎ)𝑒𝑖𝑘(𝑥+𝐵) +∑𝐵𝑛
I+𝑐𝑜𝑠𝑘𝑛(𝑧 + ℎ)𝑒

𝑘𝑛(𝑥+𝐵)

∞

𝑛=1

 
(3.68) 

𝑨𝐈+  and 𝑩𝒏
𝐈+  are unknown coefficients, while 𝒌  and 𝒌𝒏  are eigenvalues determined by the 

expressions below where the first equality is the dispersion relation. The subscript and 

superscript j refer to the region's notation, although in regions I and IV it will not be utilized 

since the region's height coincides with the water depth h. Thus, for simplicity, 𝒉𝑰 = 𝒉𝑰𝑽 = 𝒉 

and 𝒌𝑰 = 𝒌𝑰𝑽 = 𝒌. 

 
𝜔2ℎ𝑗

𝑔
= 𝑘ℎ tanh𝑘𝑗ℎ𝑗 = −𝑘𝑛

𝑗
ℎ𝑗 tan 𝑘𝑛

𝑗
ℎ𝑗              ; (𝑗 = 𝐼, 𝐼𝐼, 𝐼𝑉) 

(3.69) 

The "sinusoidal motion" of the breakwater is given by Eq. (3.70) as the vertical boundary 

condition, with 𝝃𝟎 as the initial deformation/displacement. 

 
𝜕𝜙I(−𝐵,   𝑧)

𝜕𝑥
= 𝑖𝜔𝜉0(𝑧)        at  𝑥 = −𝐵 

(3.70) 

Substituting Eq.(3.68) into Eq.(3.70) and taking the consideration 𝛏𝟎(𝐳) = 𝒅  constant, the 

following expression is obtained. 

 𝑖𝑘𝐴I+𝑐𝑜𝑠ℎ𝑘 (𝑧 + ℎ) +∑𝑘𝑛𝐵𝑛
I+𝑐𝑜𝑠𝑘𝑛(𝑧 + ℎ)

∞

𝑛=1

= 𝑖𝜔𝑑 (3.71) 
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3.3.1.3 Velocity potential in the region over the horizontal plate (II): x < l  

The general form of the velocity potential for the region over the plate is expressed as: 

 𝛷II(𝑥, 𝑧, 𝑡) = 𝜙II(𝑥, 𝑧)𝑒
𝑖𝜔𝑡 (3.72) 

The terms of 𝝓𝑰𝑰 are similar to the ones in Eq.(3.68) but with the axis origin in the shoreward 

surface of the breakwater and with the particular of using 𝒉𝑰𝑰 =  𝒉𝒔 as water depth. Additionally, 

an extra term is included, representing the form of the wave moving as a response to the x-

movement (a sort of reflection). Notice that although the general form is alike, the coefficients 

are different. 𝐴−and 𝐴+ are complex constants representing the incident and reflected waves, 

respectively. 𝐵𝑛
− and 𝐵𝑛

+ represent the evanescent mode of such waves which vanish at x → ∞. 

 

𝜙II(𝑥, 𝑧) = 𝐴− cosh 𝑘𝐼𝐼(𝑧 + ℎ𝐼𝐼) 𝑒
−𝑖𝑘𝐼𝐼𝑥 +∑𝐵𝑛

− cos 𝑘𝑛
𝐼𝐼(𝑧 + ℎ𝐼𝐼) 𝑒

−𝑘𝑛
𝐼𝐼𝑥

∞

𝑛=1

+ 𝐴+ cosh 𝑘𝐼𝐼(𝑧 + ℎ𝐼𝐼) 𝑒
𝑖𝑘𝐼𝐼x +∑𝐵𝑛

+ cos 𝑘𝑛
𝐼𝐼(𝑧 + ℎ𝐼𝐼) 𝑒

𝑘𝑛
𝐼𝐼𝑥

∞

𝑛=1

 
(3.73) 

The governing equation and boundary conditions are: 

 
𝜕2𝜙II
𝜕𝑥2

+
𝜕2𝜙II
𝜕𝑧2

= 0                                                                        
(3.74) 

 
𝜕𝜙II
𝜕𝑥

= 𝑖𝜔𝑑                               at  𝑥 = 0 
(3.75) 

 
𝜕𝜙II
𝜕𝑧

= 0                               at  𝑧 = −ℎ𝑠 (3.76) 

  

Thus, substituting Eq. (3.73) in Eq.(3.75), the following expression is obtained. 

 

−𝑖𝑘𝐼𝐼𝐴−𝑐𝑜𝑠ℎ𝑘𝐼𝐼 (𝑧 + ℎ𝐼𝐼)

+∑−𝑘𝑛
𝐼𝐼𝐵𝑛

−𝑐𝑜𝑠𝑘𝑛
𝐼𝐼(𝑧 + ℎ𝐼𝐼)

∞

𝑛=1

+ 𝑖𝑘𝐼𝐼𝐴+𝑐𝑜𝑠ℎ𝑘𝐼𝐼 (𝑧 + ℎ𝐼𝐼)

+∑𝑘𝑛
𝐼𝐼𝐵𝑛

+𝑐𝑜𝑠𝑘𝑛
𝐼𝐼(𝑧 + ℎ𝐼𝐼) 

∞

𝑛=1

= 𝑖𝜔𝑑 
(3.77) 
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3.3.1.4 Velocity potential in the region under the horizontal plate (III): x < l   

The general form of the velocity potential is expressed as: 

 𝛷II(𝑥, 𝑧, 𝑡) = 𝜙II(𝑥, 𝑧)𝑒
𝑖𝜔𝑡 

(3.78) 

The governing equation and boundary conditions are: 

 
𝜕2𝜙III
𝜕𝑥2

+
𝜕2𝜙III
𝜕𝑧2

= 0                                                                                      
(3.79) 

 
𝜕𝜙III
𝜕𝑥

= 𝑖𝜔𝑑                                             at  𝑥 = 0 
(3.80) 

 
𝜕𝜙III
𝜕𝑧

= 0                    at  𝑧 = −ℎ and  𝑧 = −ℎ𝑠 
(3.81) 

To obtain the general form of  III, which satisfies the above equation, Fourier cosine expansion 

with respect to z is used as below. Note that m is the series terms, and it is not related to the same 

symbol used as mass of the caisson. 

 𝜙III(𝑥, 𝑧) =
1

ℎ𝐼𝐼𝐼
𝜙̃0

𝐼𝐼𝐼
(𝑥) +

2

ℎ𝐼𝐼𝐼
∑ 𝜙̃𝑚

𝐼𝐼𝐼
(𝑥)

∞

𝑚=1

cos
𝑚𝜋

ℎ𝐼𝐼𝐼
(𝑧 + ℎ) 

(3.82) 

where  𝝓̃𝒎
𝑰𝑰𝑰
(𝒙) is given as in Eq.(3.83).   

 𝜙̃𝑚
𝐼𝐼𝐼
(𝑥) = ∫ 𝜙III(𝑥, 𝑧)

−ℎ𝑠

−ℎ

cos
𝑚𝜋

ℎ𝐼𝐼𝐼
(𝑧 + ℎ)𝑑𝑧   ;   (𝑚 = 0,1,2, … ) 

(3.83) 

The value of 𝒛  is taken globally, i.e., measured from the water surface, and the governing 

equation should be satisfied at the region boundaries. Notice that hIII = h-hs, which can be used 

to simplify the calculations. Next, to derive the differential equation for 𝝓̃𝒎
𝑰𝑰𝑰
(𝒙), Fourier cosine 

transform is applied to Eq.(3.79). 

For the first term, 
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∫
𝜕2𝜙III
𝜕𝑥2

−ℎ𝑠

−ℎ

cos
𝑚𝜋

ℎ𝐼𝐼𝐼
(𝑧 + ℎ)𝑑𝑧  

=
𝜕2

𝜕𝑥2
∫ 𝜙III cos

𝑚𝜋

ℎ𝐼𝐼𝐼
(𝑧 + ℎ)𝑑𝑧

−ℎ𝑠

−ℎ

 

= 
𝑑2𝜙̃

𝑚

𝐼𝐼𝐼

𝑑𝑥2
 

(3.84) 

For the second term, 

 

∫
𝜕2𝜙III
𝜕𝑧2

−ℎ𝑠

−ℎ

𝑐𝑜𝑠
𝑚𝜋

ℎ𝐼𝐼𝐼
(𝑧 + ℎ) 𝑑𝑧 

= [
𝜕𝜙III
𝜕𝑧

 𝑐𝑜𝑠
𝑚𝜋

ℎ𝐼𝐼𝐼
(𝑧 + ℎ)] −ℎ

−ℎ𝑠  +  ∫
𝜕𝜙III
𝜕𝑧

−ℎ𝑠

−ℎ

𝑚𝜋

ℎ𝐼𝐼𝐼
𝑠𝑖𝑛

𝑚𝜋

ℎ𝐼𝐼𝐼
(𝑧 + ℎ) 𝑑𝑧 

= [𝜙III  
𝑚𝜋

ℎ𝐼𝐼𝐼
𝑠𝑖𝑛

𝑚𝜋

ℎ𝐼𝐼𝐼
(𝑧 + ℎ)] −ℎ

  −ℎ𝑠  

−  ∫ 𝜙III

−ℎ𝑠

−ℎ

(
𝑚𝜋

ℎ𝐼𝐼𝐼
)
2

𝑐𝑜𝑠
𝑚𝜋

ℎ𝐼𝐼𝐼
(𝑧 + ℎ) 𝑑𝑧 

= −(
𝑚𝜋

ℎ𝐼𝐼𝐼
)
2

∫ 𝜙III

−ℎ𝑠

−ℎ

𝑐𝑜𝑠
𝑚𝜋

ℎ𝐼𝐼𝐼
(𝑧 + ℎ) 𝑑𝑧 

= −(
𝑚𝜋

ℎ𝐼𝐼𝐼
)
2

𝜙̃𝑚
𝐼𝐼𝐼

 
(3.85) 

Thus, Eq.(3.79) yields the following ordinary differential equation for 𝝓̃𝒎: 

 
𝑑
2
𝜙̃𝑚

𝐼𝐼𝐼

𝑑𝑥2
− (

𝑚𝜋

ℎ𝐼𝐼𝐼
)
2

𝜙̃𝑚
𝐼𝐼𝐼
= 0     ;     (𝑚 = 0,1,2, … ) 

(3.86) 

And the general solution to the above equation are Eqs.(3.87) and (3.88) where Co, Do, Cm, Dm 

(m=0, 1, 2, …) are unknown coefficients. 

 𝜙̃0
𝐼𝐼𝐼
(𝑥) = 𝐶0 + 𝐷0𝑥   ;    (𝑚 = 0) 

(3.87) 

 𝜙̃𝑚
𝐼𝐼𝐼
= 𝐶𝑚 cosh

𝑚𝜋

ℎ𝐼𝐼𝐼
𝑥 + 𝐷𝑚 sinh

𝑚𝜋

ℎ𝐼𝐼𝐼
𝑥    ;    (𝑚 = 1,2,3, … ) 

(3.88) 
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Substituting the preceding terms in Eq. (3.82), the general solution of 𝜙III is as below:  

 

𝜙III(𝑥, 𝑧) =
1

ℎ𝐼𝐼𝐼
(𝐶0 + 𝐷0𝑥) 

+
2

ℎ𝐼𝐼𝐼
∑ {(𝐶𝑚 cosh

𝑚𝜋

ℎ𝐼𝐼𝐼
𝑥 + 𝐷𝑚 sinh

𝑚𝜋

ℎ𝐼𝐼𝐼
𝑥) cos

𝑚𝜋

ℎ𝐼𝐼𝐼
(𝑧 + ℎ)} 

∞

𝑚=1

 
(3.89) 

Then, the application of the vertical boundary condition expressed by Eq.(3.80) yields to: 

 
𝐷0
ℎ𝐼𝐼𝐼

+
2

ℎ𝐼𝐼𝐼
∑ 𝐷𝑚

∞

𝑚=1

𝑚𝜋

ℎ𝐼𝐼𝐼
cos

𝑚𝜋

ℎ𝐼𝐼𝐼
(𝑧 + ℎ) = 𝑖𝜔𝑑 

(3.90) 

3.3.1.5 Velocity potential in the region after the horizontal plate (IV): x > l  

Region IV is located after the horizontal plate. The velocity potential 𝛷IV(𝑥, 𝑧, 𝑡) = 𝜙IV(𝑥, 𝑧)𝑒
𝑖𝜔𝑡 

in the region l < x has the same structure as Eq.(3.68), except that the origin of the x-axis is 

shifted by l. Thus, 𝜙IV is expressed as: 

 𝜙IV(𝑥, 𝑧) = 𝐸− cosh 𝑘(𝑧 + ℎ) 𝑒−𝑖𝑘(𝑥−𝑙) +∑𝐹𝑟
− cos 𝑘𝑟(𝑧 + ℎ) 𝑒

−𝑘𝑟(𝑥−𝑙)

∞

𝑟=1

 
(3.91) 

Where 𝑬−and 𝑭𝒓
−  (r=1, 2, …) are unknown coefficients. Note that a similar equation with a 

different origin was used in Region I; Since Region IV shares a physical boundary with regions 

II and III, the method and solution for the coefficients E- and Fr
- will be explained in the 

following subsection. 

3.3.1.6 Final Analytical Expression for the Boundary-value Problem 

As stated in the previous subsection, Region IV shares a physical boundary with regions II and 

III in x=l. Thus, accounting for the continuity of the horizontal fluid velocities and the wave 

pressure fluctuations due to mass and energy flux continuities through the boundary is required. 

Furthermore, determining the final solution of the velocity potential for each region is linked. 

The undetermined coefficients of the velocity potential of each region are determined by the 



  57  

 

continuity conditions for the velocity potential and its derivative at the boundary surface of the 

adjacent regions. Continuity conditions at the boundary x=l (depending on the case) were 

described in Eqs. (3.63), (3.64), (3.65) and (3.66). 

For the analysis, the plate thickness has been disregarded.  The cross-section dimensions and 

mass of the plate are considered infinitesimal inferior to one of the caissons. Furthermore, this 

is a useful and common simplification when considering analytical solutions. It allows the 

analysis to focus on the essential behavior of the system without being deterred by the details of 

individual element thicknesses. By doing so, arriving at more manageable and insightful results 

is often the output.  

Boundary between regions II and IV: Substituting Eqs.(3.73) and (3.91) into the conditions 

𝜙II(𝑙, 𝑧) = 𝜙IV(𝑙, 𝑧) and  
𝜕𝜙II(𝑙,𝑧)

𝜕𝑥
=

𝜕𝜙IV(𝑙,𝑧)

𝜕𝑥
   in Eqs. (3.63) and (3.65), respectively, the follow 

relationships are obtained for (−𝒉𝒔 ≤ 𝒛 ≤ 0). 

 

𝐴− cosh 𝑘𝐼𝐼(𝑧 + ℎ𝐼𝐼) 𝑒
−𝑖𝑘𝐼𝐼𝑙 +∑𝐵𝑛

− cos 𝑘𝑛
𝐼𝐼(𝑧 + ℎ𝐼𝐼) 𝑒

−𝑘𝑛
𝐼𝐼𝑙

∞

𝑛=1

+ 𝐴+ cosh 𝑘𝐼𝐼(𝑧 + ℎ𝐼𝐼) 𝑒
𝑖𝑘𝐼𝐼𝑙 +∑𝐵𝑛

+ cos 𝑘𝑛
𝐼𝐼(𝑧 + ℎ𝐼𝐼) 𝑒

𝑘𝑛
𝐼𝐼𝑙

∞

𝑛=1

= 𝐸− cosh 𝑘(𝑧 + ℎ) +∑𝐹𝑛
− cos 𝑘𝑛(𝑧 + ℎ) 

∞

𝑛=1

 
(3.92) 

 

−𝑖𝑘𝐼𝐼𝐴−𝑐𝑜𝑠ℎ𝑘𝐼𝐼 (𝑧 + ℎ𝐼𝐼)𝑒
−𝑖𝑘𝐼𝐼𝑙 +∑−𝑘𝑛

𝐼𝐼𝐵𝑛
−𝑐𝑜𝑠𝑘𝑛

𝐼𝐼(𝑧 + ℎ𝐼𝐼)𝑒
−𝑘𝑛

𝐼𝐼𝑙

∞

𝑛=1

+   𝑖𝑘𝐼𝐼𝐴+𝑐𝑜𝑠ℎ𝑘𝐼𝐼(𝑧 + ℎ𝐼𝐼)𝑒
𝑖𝑘𝐼𝐼𝑙

+∑𝑘𝑛
𝐼𝐼𝐵𝑛

+𝑐𝑜𝑠𝑘𝑛
𝐼𝐼(𝑧 + ℎ𝐼𝐼)𝑒

𝑘𝑛
𝐼𝐼𝑙  

∞

𝑛=1

= −𝑖𝑘𝐸− cosh 𝑘(𝑧 + ℎ) +∑−𝑘𝑛𝐹𝑛
− cos 𝑘𝑛(𝑧 + ℎ) 

∞

𝑛=1

 
(3.93) 

 

Boundary between regions III and IV: Substituting Eqs.(3.89) and (3.91) into the conditions 
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𝜙III(𝑙, 𝑧) = 𝜙IV(𝑙, 𝑧) and  
𝜕𝜙III(𝑙,𝑧)

𝜕𝑥
=

𝜕𝜙IV(𝑙,𝑧)

𝜕𝑥
  in Eqs.(3.64) and (3.66), respectively, the follow 

relationships are obtained for (−𝒉 ≤ 𝒛 ≤ −𝒉𝒔). 

 

1

ℎ𝐼𝐼𝐼
(𝐶0 + 𝐷0𝑙) +

2

ℎ𝐼𝐼𝐼
∑ {(𝐶𝑚 cosh

𝑚𝜋

ℎ𝐼𝐼𝐼
𝑙 + 𝐷𝑚 sinh

𝑚𝜋

ℎ𝐼𝐼𝐼
𝑙) cos

𝑚𝜋

ℎ𝐼𝐼𝐼
(𝑧 + ℎ)} 

∞

𝑚=1

= 𝐸− cosh 𝑘(𝑧 + ℎ) +∑𝐹𝑛
− cos 𝑘𝑛(𝑧 + ℎ) 

∞

𝑛=1

 
(3.94) 

 

𝐷0
ℎ𝐼𝐼𝐼

+
2

ℎ𝐼𝐼𝐼
∑ {(𝐶𝑚 sinh

𝑚𝜋

ℎ𝐼𝐼𝐼
𝑙 + 𝐷𝑚 cosh

𝑚𝜋

ℎ𝐼𝐼𝐼
𝑙)
𝑚𝜋

ℎ𝐼𝐼𝐼
cos

𝑚𝜋

ℎ𝐼𝐼𝐼
(𝑧 + ℎ)} 

∞

𝑚=1

= −𝑖𝑘𝐸− cosh 𝑘(𝑧 + ℎ) +∑−𝑘𝑛𝐹𝑛
− cos 𝑘𝑛(𝑧 + ℎ) 

∞

𝑛=1

 
(3.95) 

Final equation system: By assembling and arranging the equations derived in this section, the 

below system of equations is finally presented.  

For −𝒉𝒔 ≤ 𝒛 ≤ 0: 

(𝐴−𝑒−𝑖𝑘
𝐼𝐼𝑙 + 𝐴+𝑒𝑖𝑘

𝐼𝐼𝑙)𝑐𝑜𝑠ℎ𝑘𝐼𝐼 (𝑧 + ℎ𝐼𝐼)

+∑(𝐵𝑛
−𝑒−𝑘𝑛

𝐼𝐼𝑙 + 𝐵𝑛
+𝑒𝑘𝑛

𝐼𝐼𝑙)𝑐𝑜𝑠𝑘𝑛
𝐼𝐼(𝑧 + ℎ𝐼𝐼)

∞

𝑛=1

= 𝐸− 𝑐𝑜𝑠ℎ 𝑘(𝑧 + ℎ) +∑𝐹𝑟
− 𝑐𝑜𝑠 𝑘𝑟(𝑧 + ℎ) 

∞

𝑟=1

 

(I) 

𝜙𝐼𝐼 = 𝜙𝐼𝑉 

at x = l 

Ref. to Eq.(3.92) 

 

 

(−𝐴−𝑒−𝑖𝑘
𝐼𝐼𝑙 + 𝐴+𝑒𝑖𝑘

𝐼𝐼𝑙)𝑖𝑘𝐼𝐼𝑐𝑜𝑠ℎ𝑘𝐼𝐼 (𝑧 + ℎ𝐼𝐼)

+∑(−𝐵𝑛
−𝑒−𝑘𝑛

𝐼𝐼𝑙 + 𝐵𝑛
+𝑒𝑘𝑛

𝐼𝐼𝑙)𝑘𝑛
𝐼𝐼𝑐𝑜𝑠𝑘𝑛

𝐼𝐼(𝑧 + ℎ𝐼𝐼)

∞

𝑛=1

= −𝑖𝑘𝐸− cosh 𝑘(𝑧 + ℎ) +∑−𝑘𝑟𝐹𝑟
− cos 𝑘𝑟(𝑧 + ℎ) 

∞

𝑟=1

 

(II) 

𝜕𝜙𝐼𝐼
𝜕𝑥

=
𝜕𝜙𝐼𝑉
𝜕𝑥

 

at x = l 

Ref. to Eq. (3.93)  
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(−𝐴− + 𝐴+)𝑖𝑘𝐼𝐼𝑐𝑜𝑠ℎ𝑘𝐼𝐼 (𝑧 + ℎ𝐼𝐼)

+∑(−𝐵𝑛
− + 𝐵𝑛

+) 𝑘𝑛
𝐼𝐼𝑐𝑜𝑠𝑘𝑛

𝐼𝐼(𝑧 + ℎ𝐼𝐼)

∞

𝑛=1

= 𝑖𝜔𝑑 

(III) 

at x = l 

𝜕𝜙𝐼𝐼
𝜕𝑥

= 𝑖𝜔𝑑 

Ref. to Eq. (3.77) 

 

 

For −𝒉 ≤ 𝒛 ≤ −𝒉𝒔: 

1

ℎ𝐼𝐼𝐼
(𝐶0 + 𝐷0𝑙) +

2

ℎ𝐼𝐼𝐼
∑ {(𝐶𝑚 cosh

𝑚𝜋

ℎ𝐼𝐼𝐼
𝑙+ 𝐷𝑚 sinh

𝑚𝜋

ℎ𝐼𝐼𝐼
𝑙) cos

𝑚𝜋

ℎ𝐼𝐼𝐼
(𝑧 + ℎ𝐼𝐼𝐼)} 

∞

𝑚=1

= 𝐸− cosh𝑘(𝑧 + ℎ)+∑𝐹𝑟
− cos𝑘𝑟(𝑧 + ℎ) 

∞

r=1

 

(IV) 

𝜙𝐼𝐼𝐼 = 𝜙𝐼𝑉 

at x = l 

Ref. to Eq. (3.94)  

 

 

𝐷0
ℎ𝐼𝐼𝐼

+
2

ℎ𝐼𝐼𝐼
∑ {(𝐶𝑚 sinh

𝑚𝜋

ℎ𝐼𝐼𝐼
𝑙 +  𝐷𝑚 cosh

𝑚𝜋

ℎ𝐼𝐼𝐼
𝑙)
𝑚𝜋

ℎ𝐼𝐼𝐼
cos

𝑚𝜋

ℎ𝐼𝐼𝐼
(𝑧 + ℎ𝐼𝐼𝐼)} 

∞

𝑚=1

= −𝑖𝑘𝐸− cosh 𝑘(𝑧 + ℎ) +∑−𝑘𝑟𝐹𝑟
− cos 𝑘𝑟(𝑧 + ℎ) 

∞

𝑟=1

 

(V) 

𝜕𝜙𝐼𝐼𝐼
𝜕𝑥

=
𝜕𝜙𝐼𝑉
𝜕𝑥

 

at x = l 

Ref. to Eq.(3.95)  

 

𝐷0
ℎ𝐼𝐼𝐼

+
2

ℎ𝐼𝐼𝐼
∑𝐷𝑚

∞

𝑚=1

𝑚𝜋

ℎ𝐼𝐼𝐼
𝑐𝑜𝑠

𝑚𝜋

ℎ𝐼𝐼𝐼
(𝑧 + ℎ𝐼𝐼𝐼) = 𝑖𝜔𝑑 

(VI) 

at x = 0 

𝜕𝜙𝐼𝐼𝐼
𝜕𝑥

= 𝑖𝜔𝑑 

Ref. to Eq.(3.90)  

 

Where 𝐴− , 𝐴+  and 𝐸−  are the complex constants which represent the incident, reflected and 

transmitted waves, respectively. 𝐵𝑛
−, 𝐵𝑛

+and 𝐹𝑟
− represent the evanescent mode of such waves 

which vanish at x → ∞. On the other hand, 𝐶0 , 𝐶𝑚 , 𝐷0  and 𝐷𝑚  are complex constants to be 

determined by applying a numerical method to solve the boundary problem, which will be 

discussed in the upcoming section. 
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3.3.2 Caisson with Twin Horizontal Plates 

The velocity potential for the caisson with twin plates follows the general form for the velocity 

potential defined by Eq.(3.59), where 𝝓𝒋  is a superposition of the progressive wave and the 

decaying wave (evanescent mode wave), and subscript j = I, II, III, IV indicates the regions of 

the model. For this case: Region I is the free surface in the seaside of the caisson, Region II is 

the fluid area within the plate at the surface and the submerged plate, Region III is the fluid area 

between the submerged plate and the seabed, while Region IV is the harborside area located after 

the plate. 

 

3.3.2.1 Boundary and Continuity Conditions.  

According to the wavemaker theory explained in the previous sections, the condition of 

movement of the caisson is defined by the boundary at the caisson walls as in Eq.(3.60), while 

the conditions at the bottom and under and above the plate are shown in Eq.(3.96). Laplace 

equation for the regions is defined in Eq. (3.62), and the continuity conditions in the horizontal 

plane between regions are expressed from Eq. (3.63) to Eq. (3.66). 

 

 
𝜕𝜙𝑗

𝜕𝑥
= 𝑖𝜔𝑑 ;   𝑥 = −𝐵 (𝑗 = 𝐼);  𝑥 = 0 (𝑗 = 𝐼𝐼, 𝐼𝐼𝐼) 

Ref. to 

Eq.(3.60) 

 
𝜕𝜙𝑗

𝜕𝑧
= 0   ;    𝑧 = 0 (𝑗 = 𝐼𝐼)𝑧 = −ℎ𝑠 (𝑗 = 𝐼𝐼, 𝐼𝐼𝐼);  𝑧 = −ℎ  (𝑗 = 𝐼𝐼𝐼) (3.96) 

 
𝜕2𝜙𝑗

𝜕𝑥2
+
𝜕2𝜙𝑗

𝜕𝑧2
= 0   ;   (𝑗 = 𝐼𝐼, 𝐼𝐼𝐼, 𝐼𝑉) 

Ref. to 

Eq.(3.62) 

 𝜙IV(𝑙, 𝑧) = {
𝜙II(𝑙, 𝑧)       (0 ≥ 𝑧 ≥ −ℎ𝑠) 

− 
𝜙III(𝑙, 𝑧)      (−ℎ𝑠 ≥ 𝑧 ≥ −ℎ)    

 

Ref. to 

Eq.(3.63) 

Eq.(3.64) 
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𝜕𝜙IV(𝑙, 𝑧)

𝜕𝑥
= {

𝜕𝜙II(𝑙, 𝑧)

𝜕𝑥
       (0 ≥ 𝑧 ≥ −ℎ𝑠)  

𝜕𝜙III(𝑙, 𝑧)

𝜕𝑥
      (−ℎ𝑠 ≥ 𝑧 ≥ −ℎ)    

 

Ref. to 

Eq.(3.64) 

Eq.(3.65) 

3.3.2.2 Final Analytical Expression for the Boundary-value Problem 

The derivation of the velocity potential for Regions I and III remains the same as in section 0. In 

contrast, the new Region II has the same conditions as Region III; thus, the velocity potential is 

defined as in Region III as well. Please notice that in this case, the unknown coefficients have 

the superscript j as a note that they are not the same values.  

Then, for all 0 ≥ z ≥ -hs, the system of equations is determined by Eqs. (3.97), (3.98) and (3.99), 

where j=II, III representing Regions II and III for a total of six general expressions. Notice that 

𝒛 is globally measured from water surface to seabed even if is within the expression of velocity 

potential for a region with water depth smaller than the overall water depth. Furthermore, 

parameters in Region IV are not defined with superscripts since they match the ones related to 

total free surface water depth.  

 

1

ℎ𝑗
(𝐶0

𝑗
+ 𝐷0

𝑗
𝑙) +

2

ℎ𝑗
∑ (𝐶𝑚

𝑗
cosh

𝑚𝜋

ℎ𝑗
𝑙+ 𝐷𝑚

𝑗
sinh

𝑚𝜋

ℎ𝑗)
𝑙) cos

𝑚𝜋

ℎ𝑗
(𝑧+ ℎ𝑗)  

∞

𝑚=1

= 𝐸− cosh𝑘(𝑧 + ℎ)+∑ 𝐹𝑛
− cos𝑘𝑛(𝑧 + ℎ) 

∞

𝑛=1

 

(3.97) 

at x = l 

(I and IV) 

 

 𝐷0
𝑗

ℎ𝑗
+
2

ℎ𝑗
∑ (𝐶𝑚

𝑗
sinh

𝑚𝜋

ℎ𝑗
𝑙 +  𝐷𝑚

𝑗 cosh
𝑚𝜋

ℎ𝑗
𝑙)
𝑚𝜋

ℎ𝑗
cos

𝑚𝜋

ℎ𝑗
(𝑧 + ℎ𝑗)

∞

𝑚=1

= −𝑖𝑘𝐸− cosh 𝑘(𝑧 + ℎ) +∑−𝑘𝑛𝐹𝑛
− cos 𝑘𝑛(𝑧 + ℎ) 

∞

𝑛=1

  

(3.98) 

at x = l 

(II and V) 

 

 𝐷0
𝑗

ℎ𝑗
+
2

ℎ𝑗
∑𝐷𝑚

𝑗 𝑚𝜋

ℎ𝑗
cos

𝑚𝜋

ℎ𝑗
(𝑧 + ℎ𝑗)

∞

𝑚=1

= 𝑖𝜔𝑑  
(3.99)  

at x = 0 

(III and 

VI) 
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3.4 SOLUTION OF THE BOUNDARY-VALUE PROBLEM. BOUNDARY-POINT 

SELECTION METHOD 

[Enhanced subsection based on the previous work of the author in Fundora (2021) and Fundora 

and Aoki (2023)]  

The Boundary Point Selection Method BPSM (Yoshida et al., 1990) is used to solve the velocity 

potential in each region (Fundora and Aoki, 2023, 2024), i.e., determine the values of the 

unknowns presented in the preceding section: 𝐴−, 𝐴+, 𝐵𝑛
−, 𝐵𝑛

+, 𝐶0, 𝐷0, 𝐶𝑚, 𝐷𝑚, 𝐸− and 𝐹𝑟
−. The 

examples of unknowns and equations in this subsection refer to the single submerged plate as a 

reference, but it can also be applied to the twin plates model. The application of the method 

replaces integral and differential calculus with solutions expressed as algebraic equations. By 

specifying that the potential equations for the regions with shared boundaries and their 

derivatives hold (converge) on the calculation points, a linear relational expression with respect 

to the unknown coefficients is obtained, allowing the determination of the value for such 

coefficients.  

The potential connection method, regional division method, or collocation method (it has been 

diversely named) was one of the leading analysis methods for the boundary value problem of 

waves, according to Ijima et al. (1971). It is due to some advantages that will be explained further 

in this section that it has been used by researchers such as the same Ijima et al. (1971), Black et 

al. (1971), Goda et al. (1976), Mcluver (1986), Wu and Liu (1988), and Yoshida et al. (1989) for 

the wave-proofing function of coastal structures and the analysis of floating structures.  

For the practical application of the BPSM, the physical boundary x = l is divided into sections, 

a point within each section is selected (see a representation in Figure 3.8), and the six main 

equations of the system resumed in subsections are set to be satisfied in those points: Eqs. (3.92), 

(3.93) and  (3.77) for (0 ≥ 𝑧 ≥ −ℎ𝑠) and Eqs. (3.94), (3.95) and (3.90) for (−ℎ𝑠 ≥ 𝑧 ≥ −ℎ).  
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Each selected point (z) gets associated the number of initial equations and several unknowns 

depending on the maximum value of m, n and r, i.e., series term truncation in 𝝓𝐈𝐈, 𝝓𝐈𝐈𝐈 and 𝝓𝐈𝐕, 

respectively. The truncation is such that the number of final equations obtained along the water 

depth hj matches the number of final unknowns, leading to the solution of the equation system.  

From applying the method to submerged plates, the following relations arise n + m = r -1 and n 

+ m + 2 = ZII + ZIII, where Zj is the total number of points selected in a region. However, 

although such relations should hold for all-natural n, m and r, errors or unstable solutions are 

obtained for some combinations. Thus, the best approach has been proven by applying n = ZII -

1, m = ZIII -1 and r = ZIV -1. This is consistent with Yoshida et al. (1990), who concluded that: 

“(…) if the number of series terms in each region is taken as the number of calculation points on 

the boundary, the square error is the smallest and a good solution is obtained; adding that it is 

enough to take a series term corresponding to the number of calculation points determined by 

the interval”. 

When applying the BPS method, taking the initial or/and final point of a section is also possible, 

and it does not constitute a problem in this initial setup. However, in Yoshida et al. (1990), 

different arrangements were tested for various problems (Figure 3.11). Also, although results 

were the same in almost all cases, taking initial points when others submerged in-line structures 

were analyzed (case A-2) outputted inaccurate results. Thus, since the inclusion of submerged 

structures is planned in this study's further stages, stable results for such variations and inclusions 

are needed. Then, the midpoints are taken for analysis. 

Additionally, to test the influence of the number of selected points (Z) on the accuracy and 

suitability of the method, the analysis was made for a different number of points 

(Z=10,20,30,40,80). As expected, a higher number of Zs led to more accurate values (compared 

with the respective analytical solution). However, in cases where the section's length became a 
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number with infinite or repeating decimal (e.g., Z=30 with a section length of 0.266̅), the solution 

was inaccurate. That adds another recommendation: Section's length ∉ Q repeating decimal.   

Figure 3.11. Arrangement of calculation points in the point selection method for an isolated 

plate and a submerged wall. (Yoshida et al., 1990) 

Although it is reasonable to think that applying a more significant number of selected z, m, n 

and r will better approximate the exact solution of the velocity potentials 𝝓; this practice leads 

to unstable and inaccurate solutions. However, selecting many points is unnecessary since 

relatively small ratios of the section's length to the water's depth hs / h and (h- hs)/h, such as 1/10 

or 1/20, lead to accurate solutions. 

    
Figure 3.12. Comparison between the solutions by conventional and by BPS method in region 

III (l=0). (Fundora, 2021) 
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An example of its suitability and accuracy is that the BPSM solutions in Region I of the study 

case match the conventional (analytical) method solutions. Low Root Mean Square errors RMSE 

indicating good fits, especially for ZIV ≥ 20, can be seen in Figure 3.12. Comparisons are made 

with the conventional method applied in Aoki et al.(1995) for Region I and with solutions in 

Yoshihara (2019) for Region II (case l/h≈0, l/h=0.0001, i.e., l = 1cm for the case of h=8m). 

More so, in analyzing R-squared errors, values of approximately 1 are the rule as in Table 3-3, 

which implies an almost perfect match or prediction. Even though the suitability and accuracy 

of the method are initially tested in Region I and III (for l=0, noticed in that area, the conventional 

analysis is easy; thus, the application of the BPSM is not particularly necessary. On the other 

hand, the traditional method is tedious and difficult in Region II, III and IV due to evaluating the 

integrals related to the eigenfunctions. Therefore, in those regions, the BPS method became 

helpful and practical.  

Table 3-3. RMSE and R-squared for solutions applying BPSM with different points number 

(Z) in Region I and II (l/h=0). Comparison with results by the conventional method. (Fundora, 

2021)  

 

R
E

G
IO

N
 I

 

RMSE R2 

R
E

G
IO

N
 I

I 

RMSE R2 

Z Mxx Nxx Mxx Nxx Mxx Nxx Mxx Nxx 

10 2.E-03 3.E-03 0.99996 0.99998 2.E-03 5.E-04 0.99996 1.00000 

20 5.E-04 3.E-04 1.00000 1.00000 2.E-04 3.E-04 1.00000 1.00000 

40 9.E-05 7.E-05 1.00000 1.00000 5.E-05 3.E-04 1.00000 1.00000 

80 2.E-05 1.E-05 1.00000 1.00000 9.E-05 3.E-04 1.00000 1.00000 

 

In general, the application of the method leads to a good match with analytical solutions. The 

advantages include simplifying the theoretical formulations and computer programming, lower 

computer memory required for the numerical calculation, and short calculation time. However, 

this method is limited to cases where the flow area can be divided into rectangular shapes. That 

is a disadvantage if compared to the finite difference (FDM), boundary element (BEM), or finite 

element (FEM) methods. 
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An admissible error of 1.E-03 is settled; thus, the analysis for the cases of study is made by 

applying the BPSM with 20 sections or points (Z=20), i.e., ZIV  = 20, while ZII and ZIII will 

depend on the submersion depth hs. The previous statements apply to the caisson with the plate 

at the surface and to single submerged plates at more than ¼ of the total water depth. For the 

case of single submerged plates with small submersion depths, the application of the method 

does not yield a solution. The reason is that the BPSM is basically a numerical technique; thus, 

when there is low free water surface depth on top, there is a smaller number of calculation points 

in that region over the plate and fewer series terms, making it more difficult to the whole system 

to converge a solution for the number of unknowns. Accordingly, a total of 40 points (ZIV  = 40) 

will be used for the cases where the plate is located over such depth. This effect is not seen in 

the no-free surfaces, i.e., region under the plate, since the boundary conditions determine a more 

stable flux. There, the governing equations are derived so that the terms within the series are not 

directly frequency dependent, which translates to no wave number values in the velocity 

potential equations under the plate. 

Furthermore, to simplify the procedure, the initial deformation d in the equation system is 

selected as unitarian, i.e., d = 1. This means that the obtained coefficients and results are divided 

by d. When not working dimensionless, to get the real value of the coefficients, the values 

obtained directly from the application of the method (elements with superscript ‘calc’) should 

be multiplied by d. (A = dAcal, Bn = dBn
cal, Co = dCo

cal, Do = dDo
cal, Cm = dCm

cal, Dm = dDm
cal). 

Resuming the main recommendations for the application of the method: 

 a) Selecting sections’ midpoints as calculation points to avoid inconsistent results. b) Taking the 

number of series terms in each region as the number of calculation points on the region boundary. 

c) Avoiding sections' length with repeating decimal values. d) Using ratios of section's length to 

water's depth hs / h, such as 1/10 or 1/20, that, although relatively small, lead to accurate 
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solutions. e) Redefining the sections’ length to h /40 for regions over the plate with free water 

surface around a quarter of the water depth and a small number of calculation points. 

3.5 PRESSURE, FORCES AND HYDRODYNAMIC COEFFICIENTS. 

If the boundary-value problem is solved, the velocity potential for each region is obtained; thus, 

physical properties such as pressure and forces can be derived from it. From the latter's 

breakdown, the hydrodynamic coefficient can be obtained and used in the sliding simulation. 

3.5.1.1 Pressures and Forces 

The general expression for the pressure in the regions of the model applying Eq. (3.59) for the 

velocity potential 𝛷𝑗(𝑥, 𝑧, 𝑡) = 𝜙𝑗(𝑥, 𝑧)𝑒
𝑖𝜔𝑡  is defined by Eq.(3.100). Since the solution for 

velocity potential derived in sections 3.3 and 3.4 is  𝜙𝑗(𝑥,𝑧), then the general expression for the 

pressure is given by Eq.(3.101). The sign implies the direction of the acting pressure. 

Considering for the horizontal pressure acting on the wall, a negative value in the direction 

against the movement as a reaction, and for the vertical pressure on the plate: negative upwards 

and positive downwards.  

 𝑝𝑗(𝑥,𝑧,𝑡) = −𝜌
𝜕𝛷𝑗(𝑥, 𝑧, 𝑡)

𝜕𝑡
  = −𝜌

𝜕𝜙(𝑥, 𝑧)𝑒𝑖𝜔𝑡

𝜕𝑡
 = −𝑖𝜌𝜔𝜙𝑗(𝑥,𝑧)𝑒

𝑖𝜔𝑡 
(3.100) 

 𝑝𝑗(𝑥,𝑧) = ±𝑖𝜌𝜔𝜙𝑗(𝑥,𝑧) 
(3.101) 

 𝐹𝑥𝑥|(𝑥=−𝐵)  = ∫ 𝑝(−𝐵,𝑧)𝑑𝑧     
0

−ℎ

 
(3.102) 

 𝐹𝑥𝑥
𝐼𝐼|
(𝑥=0)

 = −∫ 𝑝𝐼𝐼(0,𝑧)𝑑𝑧 
0

−ℎ𝑠

 
(3.103) 

 𝐹𝑥𝑥
𝐼𝐼𝐼|

(𝑥=0)
= −∫ 𝑝𝐼𝐼𝐼(0,𝑧)𝑑𝑧

−ℎ𝑠

−ℎ

 
(3.104) 

 𝐹𝑧𝑥
𝑗|
(𝑧=−ℎ𝑠)

= ∫ 𝑝𝑗(𝑥,−ℎ𝑠)
𝑑𝑥

𝑙

0

     ; 𝑗 = 𝐼𝐼, 𝐼𝐼𝐼 
(3.105) 
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Accordingly, and as an example, the pressure for Region III under the horizontal plate at the 

surface can be expressed as Eq.(3.106). Thus, the pressure acting horizontally on the vertical 

wall (x=0) and the pressure acting vertically below the horizontal plate (z=0) is determined by 

Eqs. (3.107) and (3.108), respectively. 

𝑝𝐼𝐼𝐼(𝑥,𝑧) = −𝑖𝜌𝜔 {
1

ℎ𝐼𝐼𝐼
(𝐶0 + 𝐷0𝑙)

+
2

ℎ𝐼𝐼𝐼
∑[(𝐶𝑚 cosh

𝑚𝜋

ℎ𝐼𝐼𝐼
𝑙 + 𝐷𝑚 sinh

𝑚𝜋

ℎ𝐼𝐼𝐼
𝑙) cos

𝑚𝜋

ℎ𝐼𝐼𝐼
(𝑧 + ℎ𝐼𝐼𝐼)] 

∞

𝑚=1

} 𝑒𝑖𝜔𝑡 
(3.106) 

𝑝𝐼𝐼𝐼(0,𝑧) = −
𝑖𝜌𝜔

ℎ𝐼𝐼𝐼
{𝐶0 + 2∑𝐶𝑚𝑐𝑜𝑠

𝑚𝜋

ℎ
(𝑧 + ℎ𝐼𝐼𝐼) 

∞

𝑚=1

} 𝑒𝑖𝜔𝑡 
(3.107) 

𝑝𝐼𝐼𝐼(0,𝑧) = −
𝑖𝜌𝜔

ℎ𝐼𝐼𝐼
[(𝐶0 + 𝐷0𝑥) + 2 ∑(

∞

𝑚=1

𝐶𝑚𝑐𝑜𝑠ℎ
𝑚𝜋

ℎ
𝑥 + 𝐷𝑚𝑠𝑖𝑛ℎ

𝑚𝜋

ℎ
𝑥)𝑐𝑜𝑠𝑚𝜋] 𝑒𝑖𝜔𝑡 

(3.108) 

Accordingly, the force acting on the vertical wall (x=0) can be expressed as Eq.(3.109) and 

since m ∈ ℕ, sin𝑚𝜋 = 0, thus the second term of the sum is canceled, yielding to Eq.(3.110). 

On the other hand, Eqs. (3.111) and (3.112) define the forces acting below the horizontal plate 

at the surface. 

𝐹𝑥𝑥 = −∫ 𝑝(0,𝑧)𝑑𝑧
0

−ℎ

= 𝑖𝜌𝜔 (𝐶0 +
2

𝜋
∑

𝐶𝑚
𝑚
sin𝑚𝜋

∞

𝑚=1

) 𝑒𝑖𝜔𝑡 
(3.109) 

𝐹𝑥𝑥 = 𝑖𝜌𝜔𝐶0𝑒
𝑖𝜔𝑡 (3.110) 

𝐹𝑧𝑥 = ∫ 𝑝(𝑥,0)𝑑𝑥
𝑙

0

 (3.111) 

𝐹𝑧𝑥 = [−
𝑖𝜌𝜔

ℎ
(𝐶0𝑙 +

1

2
𝐷0𝑙

2) −
2𝑖𝜌𝜔

𝜋
[
𝐶𝑚
𝑚
𝑠𝑖𝑛ℎ

𝑚𝜋

ℎ
𝑙 +

𝐷𝑚
𝑚
(𝑐𝑜𝑠ℎ

𝑚𝜋

ℎ
𝑙 − 1)]𝑐𝑜𝑠𝑚𝜋] 𝑒𝑖𝜔𝑡 (3.112) 

The above derivation for the case of a caisson with a single plate at the surface proves useful 

as an explanation. However, there are other cases with all the regions involved in the analysis 
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and the derivation can become overwhelming. That’s when the numerical techniques become 

handy. The application of the BPSM yields to the numerical obtention of the unknown 

coefficient of the velocity potentials. Therefore, directly inputting the expressions of the velocity 

potential in the general equations for pressures and forces, recalling the values for the coefficients 

now known and doing the mathematical integrations over the limits for each region proves to be 

more efficient without further derivations.  

 

3.5.1.2 Hydrodynamic coefficients: Added Mass, Damping Coefficient and Memory-effect 

Function. 

Added Mass and Damping Coefficient 

The force expression in Eq.(3.33) displays the direct relation between additional mass M and 

damping coefficient N with acceleration and velocity, respectively. Accordingly, since 𝝃 =

𝒅𝒆𝒊𝝎𝒕  , it is possible to obtain the additional mass M by dividing the Real part of the force by 

ω2d; while the division of the Imaginary part of the force value by -dω yields to the damping 

coefficient N. 

 𝐹 =  −𝑁
𝑑𝜉

𝑑𝑡
− 𝑀

𝑑2𝜉

𝑑𝑡2
 

Ref. to 

Eq.(3.33) 

  
𝑑𝜉

𝑑𝑡
=  𝑖𝜔𝑑𝑒𝑖𝜔𝑡                       (3.113) 

        
𝑑2𝜉

𝑑𝑡2
= −𝜔2𝑑𝑒𝑖𝜔𝑡                       (3.114) 

Equivalent to the final derivation of the unknown coefficient in the velocity potential 

equations, as stated at the end of subsection 3.4, from the direct application of the BPSM using 

d =1, the final values of the force are F=Fcalc*d. Thus, in practical calculations of added mass M 

and damping N coefficients, the value of a real d is eliminated, and the analysis is made with the 

real and imaginary parts of Fcalc.     
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 𝑀 =
𝑅𝑒(𝐹)

𝜔2𝑑
    i.e.   𝑀 =

𝑅𝑒(𝐹𝑐𝑎𝑙𝑐)

𝜔2
 (3.115) 

 𝑁 =
𝐼𝑚(𝐹)

−𝜔𝑑
    i.e.       𝑁 =

𝐼𝑚(𝐹𝑐𝑎𝑙𝑐)

−𝜔
        (3.116) 

Memory-effect Function 

For the derivation of the memory-effect function R(t), or its dimensionless equivalent, let’s 

first recall the equation for the memory-effect function from Eq.(3.47) reflecting the effect of 

the caisson's initial motion on the fluid force after a time t, to see the direct dependence on the 

damping coefficient.  

 𝑅(𝑡) =
2

𝜋
∫ 𝑁(𝜔) cos𝜔𝑡 𝑑𝑡
∞

0

 
Ref. to 

Eq.(3.47) 

 Thus, two approaches can be utilized for its derivation: one based on the values of N(ω) itself 

or directly substituting the expression of its curve. In the first approach, the N values for each 

frequency ω obtained in the previous steps are used to calculate the exact value of R(t). However, 

the values for the integration are limited by the frequency range utilized. This can be solved by 

using a wide range of frequencies; in this study, values of dimensionless frequency ω* = [0,100] 

provided a good match. For the second approach, a fitting curve tool is utilized to represent and 

predict the behavior of N(ω) and obtain the expression of its curve. The damping coefficient 

curves follow the representation of Gaussian functions. Thus, such a fitting curve is used. The 

general expression can be seen in Eq.(3.117).  

 𝑓(𝑥) =∑𝑎𝑛𝑒
−[
(𝑥−𝑏𝑛)
𝑐𝑛

]
2𝑛

1

 (3.117) 

Where an represents the height of the curve's peak, bn the position of the center of the peak, cn the 

standard deviation, e the Euler's number, and x the integer (in this case, the frequency). The 

advantages of this approach are that it covers infinite values of N(ω) and represents less workload 
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for the process, while the con is that fitting curves are approximations, although with minimal 

errors. Therefore, the latest approach will be used. The fitting curve tool embedded in MATLAB 

will be used with this end. 

Total Hydrodynamic Coefficients 

Furthermore, although independent values will be analyzed to understand the physical 

phenomenon, the total value of the hydrodynamic parameters will be utilized for the practical 

solution and defined as below. 

 𝑀(𝜔)𝑡𝑜𝑡𝑎𝑙 =∑𝑀𝑥𝑥

𝐼𝐼𝐼

𝑗=𝐼

+ 𝑓∑𝑀𝑥𝑧

𝐼𝐼𝐼

𝑗=𝐼

 (3.118) 

 𝑀∞𝑡𝑜𝑡𝑎𝑙 = lim
𝜔→∞

𝑀(𝜔)𝑡𝑜𝑡𝑎𝑙        (3.119) 

 𝑁(𝜔)𝑡𝑜𝑡𝑎𝑙 =∑𝑁𝑥𝑥

𝐼𝐼𝐼

𝑗=𝐼

+ 𝑓∑𝑁𝑥𝑧

𝐼𝐼𝐼

𝑗=𝐼

 (3.120) 

              𝑅(𝑡)𝑡𝑜𝑡𝑎𝑙 =
2

𝜋
∫ 𝑁(𝜔)𝑡𝑜𝑡𝑎𝑙 cos𝜔𝑡 𝑑𝑡
∞

0

 (3.121) 

 

3.6 SLIDING 

The sliding model is an idealized 2D lumped system with one degree of freedom: horizontal 

translation. The equation describing the motion of a regular breakwater (without a horizontal 

plate) was defined as (𝑚 +𝑀∞)𝑥̈ + ∫ 𝑅(𝑡 − 𝜏)𝑥̇(𝜏)𝑑𝜏
𝑡

0
= 𝐹(𝑡) − 𝐹𝑓  in subsection 3.1.4. Such 

expression was used to determine the sliding of the caisson taking constant added mass 𝑀𝑥𝑥
∞  as 

1.0855ρh2. Furthermore, many researchers also dismissed the parameters related to the motion 

velocity for that geometry. Besides, even considering the full expression, only Mxx and Nxx for 

Rxx were used, as shown in Eq.(3.122), since vertical forces were dismissed in the analysis.  
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 (𝑚 +𝑀𝑥𝑥
∞ )𝑥̈ + ∫ 𝑅𝑥𝑥(𝑡 − 𝜏)𝑥̇(𝜏)𝑑𝜏

𝑡

0

= 𝐹(𝑡) − 𝐹𝑓 
(3.122) 

However, with the addition of the horizontal plate, uplift or vertical forces are more influential 

in the system, and the friction force is not constant. Thus, Mzx and Nzx-Rzx from those forces are 

introduced in the motion equation as part of the friction force. In the case of the regular caisson, 

the frictional force is equal to 𝑭𝒇 = 𝒇𝒇 ∗  𝑾𝒘. That force for the caisson with the horizontal plate 

is expressed by Eq.(3.123), whereas the uplift force V is given by Eq.(3.124). 

  𝐹𝑓 = 𝑓𝑓(𝑊𝑤 − 𝑉) (3.123) 

 𝑉 =  𝑀𝑧𝑥  𝑥̈ + 𝑁𝑧𝑥𝑥̇ (3.124) 

  𝐹𝑓 = 𝑓𝑠(𝑚𝑤𝑔 +𝑀𝑧𝑥
∞  𝑥̈ + 𝑁𝑧𝑥𝑥̇) (3.125) 

Substituting the above equations into Eq.(3.122), the final expression for the motion is defined 

below. Therefore, our final parameter of interest, the displacement (x term), can be obtained in 

a time range by solving Eq.(3.126) employing a numerical solver that applies the Runge-Kutta 

technique to solve the system of differential equations. 

(𝑚𝑎 +𝑀𝑥𝑥
∞ − 𝑓𝑠𝑀𝑧𝑥

∞)𝑥̈ + ∫ [𝑅𝑥𝑥(𝑡 − 𝜏) − 𝑓𝑠𝑅𝑧𝑥(𝑡 − 𝜏)]𝑥̇(𝜏)𝑑𝜏
𝑡

0

=

{
 
 

 
 𝛼𝐹𝑠

𝑡

𝑡𝑝
;     (0 ≤ 𝑡 ≤ 𝑡𝑝)

𝛼𝐹𝑠 (2 −
𝑡

𝑡𝑝
) ; 𝑡𝑝 ≤ 𝑡 

}
 
 

 
 

 

 

(3.126) 
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Chapter 4. ANALYTICAL STUDY: PRACTICAL 

IMPLEMENTATION AND DISCUSSION. 
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OUTLINE 

A practical implementation and results analysis of the theoretical development derived in 

Chapter 3 is conducted in the following chapter to investigate the effect of horizontal plates on 

the performance of a vertical breakwater during the failure process by simulating the caisson 

sliding under impulsive wave loads. It includes outputs and discussion on pressure distributions, 

hydrodynamic coefficients (added mass, damping coefficient and memory effect function), and 

caisson sliding due to different arrangements of plates according to location, length, and 

submersion depth. The analysis is mainly divided into cases of caissons with a single horizontal 

plate (at the water surface and submerged) and with twin plates, including the comparison with 

the results from the absence of a plate (typical vertical caisson) with the objective of determining 

differences on models results and effectiveness of the different arrangements.  

 

4.1 CAISSON WITH A SINGLE HORIZONTAL PLATE. COMPARISON 

The effect of the single horizontal plate on the estimation of the hydrodynamic characteristics 

due to fluid-structure interaction and sliding of caissons with a single plate is presented and 

analyzed in this subsection. The first focus is on the influence of the plate length, which is 

analyzed for caisson with a single plate at the surface. Using the latter's best performances, the 

plate's submersion depth is then analyzed. All the analyses include the comparison with the 

regular caisson (without plate). 

The model described in Chapter 3, representing a breakwater with a single horizontal plate, is 

used for the analysis. The length of the plate is initially tested on the plate at the surface, where 

a more extensive water body is compressed.  Four lengths of the plate will be analyzed based on 

the ratio ‘plate length’ to ‘water depth’ l/h = 0, 0.25, 0.5, 0.75 and 1. The ratio l/h = 0 corresponds 
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to the case of regular caisson (without plate). For the plate submersion analysis, another three 

submersion depths are added, and the following ratio of ‘submersion depth’ to ‘water depth’ hs/h 

from 0 to 1 with a step of 0.1 including the locations hs = 0.25h and hs = 0.75h. For the 

submersion analysis, the ratio hs/h = 0 corresponds to a selected case from the plate length 

analysis and  hs/h = 1 to a regular caisson (without plate). Refer to Figure 4.1. 

 

Figure 4.1. Representation of the single plate model with the cases of analysis for plate length 

and submersion depth. 

A dimensional analysis is made based on the purpose of obtaining concrete values. The model 

dimensions and properties, as well as the initial parameters for the sliding calculations, 

correspond to those used for the BPS method in Chapter 3, but are reminded below. 

h = 8m       B = 6m      d = 2m      ρ = 1000kg/m3      

ρc = 2150kg/m3        f=fs=0.6      α=0.1   tp=0.5s 

where ρ and ρc are water and concrete density, respectively; α the wave force magnitude; fs and 

f the static and dynamic frictional coefficient, respectively; and tp the time instant where the 

maximum external force Fmax is reached. However, a dimensionless analysis is made as a rule 

for easier comparisons. The parameters to be used and their dimensionless expressions are 

displayed in Table 4-1. 

hs/h= [0:0.25:1] 

hs/h= [0.1:0.1:0.9] 
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Table 4-1. Parameters related to linear wave theory and dimensionless expressions. 

Parameter Symbol Dimensionless expression 

Mass m 𝑚∗ =
𝑚

𝜌ℎ2
 

Weight W 𝑊∗ =
𝑊

𝜌ℎ2𝑔
 

Displacement X 𝑋∗ =
𝑋

ℎ
 

Time t 𝑡∗ = √
𝑔

ℎ
𝑡   ;     𝑡𝑝

∗ = √
𝑔

ℎ
𝑡𝑝  ;    𝜏

∗ = √
𝑔

ℎ
𝜏 

Frequency ω 𝜔∗ = 𝜔2
ℎ

𝑔
 ;  𝜔∗ = 𝜔√

ℎ

𝑔
   

Added Mass M 𝑀∗ =
𝑀

𝜌ℎ2
 

Damping Coefficient N 𝑁∗ =
𝑁

𝜌𝜔ℎ2
;   𝑁(𝜔∗)∗ =

𝑁(𝜔 )

𝜌√𝑔ℎ3
 

Memory-effect Function R 𝑅(𝑡∗)∗ =
𝑅(𝑡)

𝜌𝑔ℎ
 

 

Note: In the analysis below,  𝜔∗ is referring to the form 𝜔2
ℎ

𝑔
  

4.1.1 Pressure Analysis 

The frequency range for applying the methodology is ω* = [0 - 100]. While the estimation for 

the hydrodynamic parameters is ω* →∞. However, in order to easily observe and understand the 

pressure behavior on the plate and the caisson wall, a reduced number of frequencies will be 

used for the pressure distribution comparison, that is the case of ω* = [0.1, 5, 10, 15, 20]. The 

geometric range of analysis is along all water depth z = [0~1]h and all the plate lengths for each 

case x = [0~1]l. Furthermore, the analysis will include comparisons taking into account the 

complex value of the pressure, as well as only the real component to better define the behavior. 

Single plate at the surface (Plate Submersion: hs=0. Plate length: l/h=0.5) 

(Real and imaginary components of the pressures) 

The pressure distribution on the wall (Figure 4.2 - left) displays more uniformity for lower 

frequencies. Higher values of pressure correspond to higher frequencies. Furthermore, the 
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Imaginary part (related to damping) is more relevant for small frequencies and tends to zero for 

higher frequencies.  

 

Figure 4.2. Pressure distribution acting on the wall(left) and the plate(right) for different 

frequencies. Single plate at z=0. (Complex arguments) 

The pressure distribution under the plate (Figure 4.2 - right) exhibits more significant pressures 

near the wall while tending to 0 when reaching the plate tip. The imaginary part slightly increases 

near the tip; this is related to the fact that in that zone, there are more effects related to the 

damping process due to the change of boundary conditions, so the impact of the fluid in the 

region behind the plate affects it more.              

      

Submerged Plate (Plate Submersion: hs=0.5. Plate length: l/h=0.5) 

(Real and imaginary components of the pressures) 

The overall pressure distribution on the wall (Figure 4.3) is interrupted due to the plate and 

variates due to the different boundary conditions. The distribution over the plate corresponds to 

the ones for a monolithic caisson (no plate-free surface). An almost uniform distribution is seen 

under the plate with higher pressure values than the upper region (more than double). 

Additionally, the imaginary part of the pressures is more representative near the surface. 
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Figure 4.3. Pressure distribution acting on the wall for different frequencies. 

 Single plate at z=h/2. (Complex argument) 

The pressure distribution on the plate (region II) and under it (region III) and the total pressure 

are seen in Figure 4.4. When analyzing the horizontal distribution on the wall (per region), the 

pressures under the plate double the pressures over it, presenting a more linear distribution. The 

pressures over the plate are slightly higher near the wall and show a sort of parabolic behavior, 

increasing at the tip (without reaching those at x=0). 

  

Figure 4.4. Pressure distribution acting on the plate(right) for different frequencies total(right) 

and per region (left). Single plate of l=h/2 at z=h/2. (Real arguments only) 
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The pressures over the plate are slightly higher near the wall and show a sort of parabolic 

behavior, increasing at the tip (without reaching those at x=0). The addition of the influence of 

both regions shows the total horizontal distribution on the plate (Figure 4.4- right). In there, 

larger pressures due to higher frequencies are confirmed, and pressures tend to be 0 for areas 

near the tip, although it does not reach 0 at the tip as the case with the plate at the surface due to 

a mix of hydrodynamic phenomena in that area. 

For different plate length (Plate Submersion: hs=0. Plate length: l/h=0, 0.5, 1).  

(Only real component of the pressures) 

The pressure distribution on the wall for different plate lengths (Figure 4.5 – left) exhibits that 

longer plates produce higher pressures but also more uniform distributions on the back wall.  The 

pressure distribution under the plate displays that longer plates result in higher uplift pressures 

and more significant pressures due to higher frequencies. Furthermore, the length does not 

influence the tendency to 0 at the tip. 

 

 

Figure 4.5. Pressure distribution acting on the wall(left) and the plate(right) for different 

frequencies. Single plate at z=0. (Real arguments only) 
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For different submersion depth (Plate Submersion: hs=0, 0.5, 1. Plate length: l/h=0.5) 

(Only real component of the pressures) 

When analyzing the pressures on the structure, it is confirmed that the plate produces higher 

pressures along the wall of the region under it. Still, its submersion also makes the pressure 

distribution uniform on the wall and less steep along the plate. Figure 4.6 (left and right) share 

the same legend and show only the real part of the pressure values. The negative sign in Px 

represents the direction against the movement, while Pz represents the uplift direction. Higher 

pressures are reached for hs = 0 (plate at the surface), while higher pressure values correspond to 

higher frequencies in both cases. Maximum horizontal pressures (Px
max) occur at the bottom of 

the wall, and vertical ones (Pz
max)  at the beginning of the plate. Px

max increases for a submerged 

plate. Additionally, Pz
max increases for low frequencies and decreases for higher ones Pressures 

at the plate tip increase due to the confluence of diverse regions flows in that zone. 

 

Figure 4.6. Total pressure distribution acting on the wall (left) and the plate(right) for different 

submersion depths and frequencies. Single plate of l=h/2 at z=(0, h/2, h). (Real arguments 

only) 
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4.1.2 Hydrodynamic Parameters Analyses. 

In most cases, in order to understand the phenomena, the parameters in each region (II over the 

plate and III under the plate) will be analyzed, as well as their total values at the wall (with 

subscript xx) and at the plate (with subscript zx). As mentioned, the total values are the 

summation of the regions implied in each analysis, which translates to the expressions below. 

Mxx = Mxx
I + Mxx

II + Mxx
III 

Mzx = Mzx
II  + Mzx

III 

Nxx = Nxx
I + Nxx

II + Nxx
III 

Nzx = Nzx
II  +Nzx

III 

 

4.1.2.1 Added Mass 

Besides the investigation in each region, the added mass and damping coefficients study is 

divided into their variation according to different plate lengths and submersion depths. 

 

For different plate lengths  

[This part of the subsection is an enhanced version of a previous work of the author (Fundora, 

2021) and Fundora and Aoki (2023)] 

The plate length is analyzed for the plate at the surface hs= 0 and for plate lengths l = [0:0.25:1]h, 

including the case where the cases l = 0 or l/ h=0 corresponds to the no-plate case. 

It is evident that the added mass, both horizontal Mxx and vertical Mzx, increases as the horizontal 

plate becomes larger, and in all cases, the behavior becomes asymptotic to a particular value (see 

Table 4-2). The value of Mzx refers to the parameter in region III, noticing that region II is 

eliminated from the model when the plate is at the surface, as is the case. To obtain that value of 

added mass when the frequency tends to be infinite, i.e., constant added mass M∞ (𝑴𝒙𝒙
∞  and 
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𝑴𝒛𝒙
∞ ); the limit of the curves' expressions is determined in the form  𝑴∞ = lim

𝜔→∞
(
𝑝𝑛𝜔

𝑛−1

𝑞𝑛𝜔𝑛−1
). For 

the curve's expressions, MATLAB's fitting curve tool is used. 

 

Figure 4.7. Total Dimensionless Added Mass (Mxx and Mzx). 

 

Furthermore, Figure 4.8 displays that the horizontal Mxx
*  and vertical Mzx

*  added mass, as 

well as the ratio between them, behave relatively linearly with the variation of the plate length. 

However, the importance of the later Mzx
*  over Mxx

*  increases with plate length; thus, larger 

plates equalize the parameters in both directions. 

 

Table 4-2. Dimensionless 𝑴𝒙𝒙
∞  and 𝑴𝒛𝒙

∞  for different l/h. 

l/h Mxx
∞ Mzx

∞ Mzx
∞ / Mxx

∞ 

0 1.085 0 0 

0.25 1.240 0.0839 0.067 

0.5 1.475 0.2712 0.183 

0.75 1.722 0.5311 0.308 

1 1.972 0.8562 0.434 
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Figure 4.8. Dimensionless Constant Added Mass 𝑴𝒙𝒙
∞  and 𝑴𝒛𝒙

∞  (left) and ratio 𝑴𝒛𝒙
∞ /𝑴𝒙𝒙

∞  (right) 

for different plate lengths. 

For different submersion depth 

The submersion depths for the analysis are hs = [0:0.1:1]h, including the cases hs = 0.25h and 

0.75h, where the cases hs = 0 and hs =h  corresponds to the plate at the surface and no-plate case, 

respectively.  

In Figure 4.9, the dimensionless values for the added mass acting on the wall in regions II (left 

figure) and III (right figure) are reflected. Figure 4.10 presents the added mass acting on the plate 

for the same regions. In region II, the added mass acting on the wall increases with plate 

submersion heading to the value of a regular caisson, although it has an initial slight reduction 

for plates in the range 0<hs≤0.2h, while the one acting on the plate increases steadily. As 

expected, region III’s horizontal added mass decreases with the submersion of the plate and at a 

faster rate than the increments of region II. In contrast, the vertical added mass decreases for 

plates located in the range hs<0.4h and starts recovering for hs>0.4h, although without reaching 

the initial value. This behavior responds to the larger fluid at the first locations and the narrowing 

depth for the latter. 
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Figure 4.9. Dimensionless Added Mass on the Wall per region: over the wall -Region II (left) 

and under the plate -Region III (right) for different submersion depth. Single plate of l=h/2 

 

 Figure 4.10. Dimensionless Added Mass on the Plate per region: over the wall -Region II (left) 

and under the plate -Region III (right) for different submersion depths. Single plate of l=h/2 

 The convolution of the related regions results in the total values for the horizontal (including 

region I) and vertical added mas acting on the walls and the plate are presented in Figure 4.11. 

From there, and the resume in  

Figure 4.12, it is evident that the total horizontal added mass Mxx
* (left) reaches its higher value 

with the plate located at the surface and steadily decreases with the plate submersion since the 

volume of constricted fluid is reduced. The vertical added mass Mzx
* (right) also decreases with 

plate submersion; however, when comparing with the plate at the surface, the added mass of the 

latter has lower values than plates with 0<hs ≤ 0.3h. 
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Figure 4.11.  Total Dimensionless Added Mass on the Walls (left) and on the Plate (right) for 

different submersion depth. Single plate of l=h/2 

 

Figure 4.12.  Dimensionless Constant Added Mass (ω*=100): Horizontal in regions I and 

II(left), Vertical in regions I and II (middle) and Total(right) for different submersion depths. 

Single plate of l=h/2 

4.1.2.2 Damping Coefficient 

For different plate lengths  

The horizontal damping coefficient Nxx suffers minimal variations, although the cases with a 

plate slightly differ from the case without it. However, the vertical damping coefficient Nzx 

variation is more noticeable due to differences in the plate length. Larger plates induce higher 

damping. Furthermore, Nzx takes values closest to Nxx as the plate length increases. Yet, all 

graphs became asymptotic to 0, implying almost no influence of the damping coefficient when 

the frequency tends to be infinite. 
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Figure 4.13. Dimensionless Damping Coefficient (Nxx
*
 and Mzx

*) 

 

 

For different submersion depth 

As well as with the added mass, an analysis for the influence of the submersion depth in the 

damping coefficient is made. In the below figures, general values for the damping coefficient are 

displayed on the left side, while a focus on a lower range of frequencies for each case is presented 

for better visualization on the right side. Horizontal damping over the plates reaches larger values 

and for a broader range than under the plate. Furthermore, their values are higher than those from 

the vertical damping. The latter in the region under the plate reaches 0 values for half of the 

frequency range compared to the parameter over the plate. Additionally, while submersion 

increases, tighter patterns show the similar behavior of plates closer to the bottom and a more 

noticeable variation for the plates higher than the water depth. The total values accounting for 

all implicated regions are seen in Figure 4.18.  
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Figure 4.14. Dimensionless Damping Coefficients on the Wall over the Plate - Region II for 

different submersion depths. General (left) and zoomed (right). Single plate of l=h/2 

Figure 4.15. Dimensionless Damping Coefficients on the Wall under the Plate - Region III for 

different submersion depths. General (left) and zoomed (right). Single plate of l=h/2 

 
Figure 4.16. Dimensionless Damping Coefficients over the Plate - Region II for different 

submersion depths. General (left) and zoomed (right). Single plate of l=h/2 
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Figure 4.17. Dimensionless Damping Coefficients under the Plate - Region III for different 

submersion depths. General (left) and zoomed (right). Single plate of l=h/2 

The total horizontal damping behaves similarly for all cases, with a more noticeable difference 

of the plate at the surface with higher values and more influence along the frequency range. More 

variations are seen for plates closer to the surface since the stability produced by the plate and 

volumes of fluid over it get reduced. A smaller water depth with a free surface brings variations 

to the parameter. Furthermore, the application of the methodology when the difference of region 

depths is wider also influences it. In general, as closer to the surface, the values start emulating 

more those from the plate at the surface. 

 

Figure 4.18. Total Dimensionless Damping Coefficients on the Wall (left) and the Plate(right) 

for different submersion depths. Single plate of l=h/2 
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4.1.2.3 Memory- Effect Function 

 The memory-effect function for different plate lengths is shown below. However, the parameter 

in each region is not displayed since its calculation is a function of the result of the total Damping 

coefficient. Hence, the submersion influence is discussed in subsection 4.1.2.4. 

For different plate lengths 

In Figure 4.19, a damped sinusoidal behavior for 𝑹∗(𝒕∗) is confirmed, with higher values in 

time frames near the impact of the external force. From there, it decays exponentially and then 

damped. Thus, the parameter is analyzed in a time frame where its influence is more significant: 

0≤ t*≤ 5.  

 
Figure 4.19. Dimensionless Memory-effect Function acting on the Wall (Rxx*) and the 

Plate(Rzx*) for different plate lengths. Single plate at z=0. 

There is a similar overall behavior among the l/h ratios for 𝑹𝒙𝒙
∗ . However, it differs from the 

curve of the breakwater without a horizontal plate for times near 𝒕𝒐 with values of 𝑹𝟎
∗  around 1.8 

times higher than a regular caisson. The above reveals that Rxx function changes depending on 

the horizontal plate's presence. A more significant variation is observed in the Vertical Memory-

effect Function 𝑹𝒛𝒙
∗ . The damping tendency is still seen but with differences in the amplitude. 



90 

 

 

Unlike 𝑹𝒙𝒙
∗ , divergences between 𝑹𝒛𝒙

∗  for different l/h ratios are seen, showing the influence of 

the plate variation on the 𝑹𝒛𝒙
∗ . Additionally, disregarding shape variations, 𝑹∗ becomes 0 in the 

range between t* = (2.2~2.3). As for their influence on the sliding, there is not much variation if 

using a linear approximation as in Aoki et al. (1995), although not the same, or a higher-degree 

polynomial function for 𝑹𝒙𝒙
∗ . Contrarily, linear approximations are impossible to use for 𝑹𝒛𝒙

∗ , 

therefore, high-degree polynomial functions are used.  

4.1.2.4 Total hydrodynamic parameters. (M, N, R)xx + f(M,N,R)zx 

For the sliding calculation, within the equation of motion, horizontal and vertical parameters are 

related in the form (𝑴𝒙𝒙
∞∗ − 𝒇𝑴𝒛𝒙

∞∗) and (𝑹𝒙𝒙
∗ − 𝒇𝑹𝒛𝒙

∗ ). Hence, such form will be arithmetically 

obtained, and the curve fitting will be done to the result of it and not to the individual parameters 

of 𝑴𝒙𝒙
∞∗, 𝑴𝒛𝒙

∞∗, 𝑹𝒙𝒙
∗  or 𝑹𝒛𝒙

∗ . Note that independent memory-effect functions in each direction will 

not be determined since (𝑹𝒙𝒙
∗ − 𝒇𝑹𝒛𝒙

∗ ) curves are a direct function of (𝑵𝒙𝒙
∗ − 𝒇𝑵𝒛𝒙

∗ ). 

 

Figure 4.20. Screenshot of the curve fitting tool in MATLAB 
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Figure 4.20 shows a screenshot of the curve fitting tool in MATLAB used to determine the 

expressions for added mass used in the constant added mass calculations, and it is also 

implemented for the expressions of the damping coefficient used in the memory-effect 

calculation and its function expression directly used in the equation of motion to derive the 

sliding distance. 

For the Added Mass analysis, the difference between utilizing independent parameters or the 

complete expressions 𝑴𝒙𝒙
∞ + 𝒇𝑴𝒛𝒙

∞  is displayed in Table 4-3, where such a difference represents 

an error of 0.3%, which is small and admissible. What appears within the brackets represents the 

function to which the curve fitting is applied and the limit ω→∞ is calculated for. 

 

Table 4-3. Differences on calculations results using independent or complete expressions of 

added mass 𝑴𝒙𝒙
∞ + 𝒇𝑴𝒛𝒙

∞   

hs/h [Mxx
∞] [Mzx

∞] [Mxx
∞] + f[Mzx

∞] [Mxx
∞ + fMzx

∞] Difference % 

0.25 1.342 -0.3081 1.15714 1.161 0.00386 0.3325 

0.5 1.188 -0.2139 1.05966 1.063 0.00334 0.3142 

0.75 1.112 -0.1248 1.03712 1.04 0.00288 0.2769 

 

For the Memory Effect function analysis, there is almost no change overall except for a 

difference observed for t<0.1s in the dimensional analysis. The largest difference is seen in 

Figure 4.21 for hs/h=0.25, but still with a squared error of 0.998. This is an error already obtained 

in the Rxx  fitting that it is dragged to the Rxx +f Rzx. 

The influence of using the direct output of the forms (𝑴𝒙𝒙
∞∗ + 𝒇𝑴𝒛𝒙

∞∗) and (𝑹𝒙𝒙
∗ + 𝒇𝑹𝒛𝒙

∗ ) reduce 

errors introduced on the multiple approximations and calculations for each independent 

parameter, simplify the procedure within the methodology, and consequently decrease the 

analysis time. Furthermore, after checking the use of reduced and general equations for R(t), the 

changes were minimal. This is related to the fact that the displacement time is short, so the part 
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of the graph that passes the 0 axis is not used, and that part is well-fitted on the general curve.  

However, to be more accurate, we will continue using the fitting curve to the R(t = 0-5s). 

 
Figure 4.21. Results of the curve fitting using independent or complete expressions of memory-

effect functions 𝑹𝒙𝒙
∞ + 𝒇𝑹𝒛𝒙

∞    

Added Mass Mxx - f Mzx 

Plates located at hs/h<0.4 have larger Added Mass relationships than a caisson without plate. 

According to this parameter, those cases are initially expected to behave better, while it might 

be unreasonable to locate plates at lower locations since performance will be poorer than the 

regular case (no plate). The case hs/h = 0 (plate at the surface) still has a larger Added Mass, and 

it is expected to behave better than all cases. The Constant Added Mass derived from the curves 

is also displayed in Figure 4.22(right). 

 
Figure 4.22. Relationship 𝑀𝑥𝑥

∞∗ + 𝑓𝑀𝑧𝑥
∞∗ (left) and Dimensionless Constant Added Mass (right) 

for different submersion depths. Single plate of l=h/2. 
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Memory-effect function Rxx - f Rzx: 

As mentioned before, the Memory-effect function in the time domain is based on the damping 

coefficient in the frequency domain. Thus, the dimensionless relation Nxx - f Nzx is displayed in  

Figure 4.23(left), while the output for the memory-effect function is provided on the right side 

of the figure. The memory-effect functions for submerged plates follow a similar tendency: 

maximum at t*=0 with a fast damp reaching 0 in a range between t*=[1.91~2.95]. The effective 

time for the damping primarily decreases with plate submersion, with higher effective time for 

hs =0.1h and shorter times for regular caissons and out of the pattern  hs=0. The dimensionless 

memory effect function’s maximum (R0
*) and its integral are shown in Figure 4.24.  

 

Figure 4.23. Horizontal and Vertical relationship for Dimensionless Damping Coefficients Nxx - 

f Nzx (left) and Dimensionless Memory-effect Function Rxx - fRzx (right). Single plate of l=h/2 

 
Figure 4.24. Dimensionless Memory-effect Function (left) and  Integral of the Dimensionless 

Memory-effect Function (right). Single plate of l=h/2. 
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Furthermore, their ratio with respect to the values for the no-plate case, including the constant 

added mass from a previous analysis, is gathered in Figure 4.25 for better visualization. Based 

on the above figure, and when comparing with the regular caisson, larger added masses are 

obtained for submersion depth hs < 0.4h. The behavior is to decrease with submersion and 

slightly recover after hs > 0.75h. The memory-effect functions have lower integral values 

(component used within the motion equation) for hs ≤0.25h, while similar values to the no-plate 

case are seen for hs>0.2h, although slightly higher for hs >0.25h. The behavior is to have a 

minimum value for the plate at the surface, increasing up to around hs = 0.2, 0.25h and remaining 

stable. 

On the other hand, a quick look at the dimensionless memory-effect function’s maximum (R0
*) 

shows a reduction tendency when decreasing the submersion depth, with similar ratios than the 

regular caisson for the submersions under half of the water depth, but a sudden increment for the 

plate at the surface. A general reading is that regarding the added mass and the memory-effect 

function, while one increases, the other decreases, and vice versa; thus, their effect might get 

outweighed. The only case where this doesn’t happen is at the surface. This is expected to be 

reflected in the output of sliding calculations. slightly higher values are at hs ≥0.75h; those locate 

at 0.1h ≥ hs >0.5h have lower values.  

 
Figure 4.25. Ratio of Dimensionless Constant Added Mass and Memory-effect Function 

parameters related to the No-plate case for different submersion depths. Single plate of l=h/2. 
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4.1.3 Sliding 

The process to determine the sliding of a breakwater with a horizontal plate is described in 

section 2.3.10 of Chapter 3. Sliding depends on the Wave Force F(t), the Frictional Force Ff, the 

Added Mass at infinite frequency (M∞), and the Memory-effect Function R.  

The mentioned procedure adapts and modifies the method introduced by Aoki et al. (1995) in 

"Simulation of the sliding of the breakwaters upright part" (in Japanese). The model includes 

vertical hydrodynamic forces (see Eq.2.102) and utilizes eight and nine-degree polynomial 

functions to describe the Memory-effect Function R instead of the linear approximation. 

(𝑚𝑎 +𝑀𝑥𝑥
∞ + 𝑓𝑠𝑀𝑧𝑥

∞ )𝑥̈ + ∫ [𝑅𝑥𝑥(𝑡 − 𝜏) + 𝑓𝑠𝑅𝑧𝑥(𝑡 − 𝜏)]𝑥̇(𝜏)𝑑𝜏
𝑡

0

=

{
 
 

 
 𝛼𝑓𝑠𝑚𝑤𝑔

𝑡

𝑡𝑝
;     (0 ≤ 𝑡 ≤ 𝑡𝑝)

𝛼𝑓𝑠𝑚𝑤𝑔𝑠 (2 −
𝑡

𝑡𝑝
) ; 𝑡𝑝 ≤ 𝑡 

}
 
 

 
 

 Ref. to   

(3.126) 

 

For generalization, Eq.(3.126) is dimensionless expressed as in Eq.(4.1) 

(𝑚𝑎
∗ +𝑀𝑥𝑥

∞ ∗ + 𝑓𝑠𝑀𝑧𝑥
∞∗)𝑥̈∗  + ∫ [𝑅𝑥𝑥

∗(𝑡∗ − 𝜏∗) + 𝑓𝑠𝑅𝑧𝑥
∗(𝑡∗ − 𝜏∗)] 𝑥∗̇ (𝜏∗)𝑑𝜏∗

𝑡∗

0

     

                                               = {

𝛼𝑓𝑠(𝑚𝑤
∗𝑔)

𝑡∗

𝑡𝑝
∗        (0 ≤ 𝑡

∗ ≤ 𝑡𝑝
∗)

𝛼𝑓𝑠(𝑚𝑤
∗𝑔) (2 −

𝑡∗

𝑡𝑝
∗)  (𝑡𝑝

∗ < 𝑡∗)
}     

(4.1) 

4.1.3.1 Sliding reproducibility 

Sliding due to the implementation of equations Eq.(4.1) to the model introduced in section 4.1 

is compared with the sliding obtained by the method used in Aoki et al. (1995). The same 

parameters were used. Furthermore, an 8-degree polynomial is employed as Memory-Effect 

Function in the BPS case instead of the linear approximation in the conventional case. Fig.3-12 

displays such a comparison.  

Variation is minor, in the order of 3E-04 for general sliding and 0.000566m ≈ 0.6mm for the 

value of maximum sliding, implying a good agreement and confirming the reproducibility of 
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both displacement and velocity. Furthermore, it is irrelevant for regular caisson (without 

horizontal plate) if the exact expression of the Memory-Effect Function is used as a high-order 

polynomial function or a linear approximation. However, this is not the case when determining 

the vertical component, as it was introduced in section 3.5; thus, the high-order polynomial 

functions will be used in all cases. 

 

Figure 4.26. Displacement and Velocity for Breakwater Without Horizontal Plate (l/h = 0)  

Conventional Method v/s Boundary-Point Selection Method (BPS) 

(fs=0.6, α=0.1, tp=0.5). 

 

4.1.3.2 For different plate lengths 

[This part of the subsection is an enhanced version of a previous work of the author (Fundora, 

2021) and Fundora and Aoki (2023)] 

In this subsection, the horizontal plate influence is analyzed by changing the ratio of plate 

length to water depth (l/h). Such analysis is made for the relations l/h = 0, 0.25, 0.5, 0.75, and 

1.0. The case l/h=0 corresponds to the regular caisson (without horizontal plate). Although in 

Figure 4.27, a dimensional displacement is shown for the model (B=10m, h=8m, d=2m) with 

the parameters expressed in the figure's caption, when comparing with other models in further 

subsections, the analysis will be made for dimensionless parameters.  
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Figure 4.27. Displacement and Velocity (left) and Maximum Displacement for (right)  

for l/h = 0:0.25:1 (fs=0.6, α=0.1, tp=0.5). 

 

For all l/h >0, the maximum displacement is inferior to the case without a plate l/h =0. Hence, 

it is correct to say that adding a horizontal plate reduces the caisson sliding. Furthermore, the 

behavior of the maximum sliding is to steadily decrease with increments of the plate length up 

to l=0.75h, to increase after, although not reaching the sliding of the no-plate case. Thus, when 

the plate becomes too long, reaching l=h, it starts working as an equalizer of the forces acting 

on the wall and the plate, as we saw in the independent analysis of the force components; thus, 

the sliding goes back to be similar that from the regular caisson.  

 
Figure 4.28. Displacement reduction for l/h = 0:0.25:1  

 

Velocity 

Displacement 
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Finally, the influence of the horizontal plate at the surface on the reduction of the caisson sliding 

against impulsive waves is minimal, with a maximum of 2% for l/h =0.75, as displayed in Figure 

4.28, where the displacement reduction with respect to the regular caisson is presented. 

 

4.1.3.3 For different submersion depth 

In this subsection, the influence of the horizontal plate submersion on the sliding is analyzed by 

changing the ratio of the plate submersion depth to the water depth (hs/h). Such analysis is made 

for the relations hs/h = 0:0.1:1, including hs/h=0.25 and 0.75. The case hs/h = 0 corresponds to 

the plate at the surface and  hs/h = 1 to the regular caisson (without horizontal plate). From the 

plate length analysis, a plate with length l=h/2  is selected and utilized for the submersion 

analysis. 

 
Figure 4.29. Dimensionless Sliding/Displacement for different  submersion depth. Single plate 

of l=h/2 

 

The minimum sliding is reached by a plate at the surface, starting to increase, reaching a 

maximum sliding at hs= 0.2h. From there, the sliding distance starts decreasing until reaching 

the displacement for a case without plate. The reason for this is that for the first part of the 

behavior, the fluid area gets reduced and so does their positive influence on reducing the sliding; 
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while for the second half, the combination effect of the fluid mass over the plate and the total 

added mass, counteract the uplift forces, thus the sliding reduces. Among the submerged 

locations, the displacement is slightly smaller while the plate is closest to the surface hs≤0.1h or 

to the bottom hs≤0.75h around. Nevertheless, only the plate at the surface or very close to it (less 

than 0.1h) reduces the sliding when compared with the regular caisson.  

 

Figure 4.30. Dimensional maximum sliding and velocity (left) and ratio related to the no-plate 

case for different submersion depths. Single plate of l=h/2 

Regarding motion velocity, the caisson velocity is minimum for the plate at the surface, doubling 

the sliding reduction rate with respect to the no-plate case. It sharply increases and remains 

constant from 0.4≤hs/h ≤0.7 when it starts decreasing again until reaching the no-plate case. 

Furthermore, for both sliding and velocity, plate locations at distances h/3 from the surface and 

the bottom drop with respect to their relative tendencies. This might respond that the positive 

effect on the sliding of the forces acting over and under the plate is more balanced at such 

locations. 

4.1.3.4 Influence of the use of vertical components on the sliding 

Although in Figure 4.27, a dimensional displacement is shown for the model (B=10m, h=8m, 

d=2m) with the parameters expressed in the figure's caption, the comparison analysis is made 
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for dimensionless parameters. From Figure 4.31, the sliding due to both cases (with and without 

vertical force) can be contrasted.  

 

Figure 4.31. Dimensionless displacement for the "only Fx" and "FxFz" cases. 

 

Compared with the only use of the horizontal forces "only Fx" {using Eq.(4.1) with only Mxx and 

Rxx i.e., dismissing Mzx and Rzx} and as in the conventional approach and in (Yoshihara, 2019), 

where such reduction in the sliding is crescendo for larger relation l/h until reaching almost 20%, 

the inclusion of the vertical force in the analysis gives more accurate results due to a broader 

representation of the phenomena. Excluding Mzx and Rzx leads to underestimating the sliding of 

the caisson and overestimating the horizontal plate's positive influence in reducing the sliding, 

especially for larger l/h ratios. 
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Figure 4.32. Dimensionless maximum displacement (left) and displacement reduction (right) 

for the "only Fx" and "FxFz" cases. 

 

Compared with the “only Fx” case, sliding becomes around 4%, 8%, 12% and 18% smaller for 

l/h=0.25, 0.50, 0.75 and 1, respectively. Finally, the real influence of the horizontal plate on the 

sliding of the breakwater caisson is minimal, with a maximum of 2%, as in Figure 4.32 (right). 

Hence, the conventional model dismissing vertical components of the forces in the sliding 

simulation is not applicable to caissons with horizontal plates. 

 

4.1.3.5 Influence of the use of the memory-effect function on the sliding 

The introduction of the memory-effect function in the sliding simulation is another difference 

from the conventional model for regular caissons. Thus, it is also analyzed in addition to the 

vertical components of the forces. In the figure below, the comparison of the results of the 

caisson’s motion equation as in the conventional model, utilizing only the added mass (real 

component of the forces), and as in the proposed model, utilizing both the added mass and the 

memory-effect function (imaginary component of the force expressed in time domain).  
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Figure 4.33. Influence of the inclusion of memory effect function on the sliding and velocity. 

As displayed in the figure, there is a significant variation of the sliding maximum distance, 

velocity, and effective time of the sliding. For the first part of the movement, there is not much 

variation. Such time is slightly higher than the rising time of the wave force (tp=0.5s in this case). 

The memory-effect function should be included in the sliding simulation of caisson with plates. 

Neglecting it overestimates the sliding by about 30%. Hence, the generalized model does not 

apply to it. 

4.1.3.6 Influence of the Wave Parameters: Rising Time and Force Magnitude 

The parameters of the wave force used in the simulation also have an important influence in the 

sliding simulation. For the case of impulsive waves, the representative parameters are the rising 

time and the force magnitude. The rising time is the time lapse from when the sliding starts i.e., 

when the wave force is higher than the static frictional force Fs (force needed to produce sliding), 

until the maximum wave force is reached. The force magnitude is the normalized relation of 

maximum wave force Fmax and the static frictional force Fs as below. 

𝛼 = (𝐹𝑚𝑎𝑥 - 𝐹𝑠)/ 𝐹𝑠 (4.2) 

Larger rising times of the impulsive wave tp  lead to smaller initial sliding but larger total sliding. 
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It translates into faster initial motions before reaching maximum velocity; after that, deceleration 

occurs at the same pace for all tp. Increasing rising times also increases the maximum velocity 

reached during the sliding; however, the sliding velocity itself (ratio of maximum sliding to 

maximum velocity) gets reduced. The sliding duration increases with increments of the rising 

time.  

On the other hand, higher force magnitude α directly translates to larger initial and total sliding. 

The relative increments of the sliding remain similar for all cases. Furthermore, increasing α also 

increases the maximum velocity reached during the sliding; however, α changes do not influence 

the sliding velocity or duration. 

 

Figure 4.34. Displacement and Velocity for wave rising time (left) and alpha (right) variation. 

 

4.1.4 Conclusions for the single plate case 

The analysis results confirmed that the presence of a single plate increases the added mass of the 

structure. When focusing on plate length, general added mass can grow up to 35% for plates at 

the surface with lengths up to water depth value h. In contrast, the general added mass starts 

decreasing with plate submersion, adversely influencing the sliding for submersion depths higher 

than 0.4h. On the other hand, the damping effect has a more significant influence on the sliding 

of plates located at submersion depths over 0.4h, with positive influences for the superficial 
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plates but also over depths higher than 0.75h and negative influences on the range 0.1h ≤hs<0.5h.  

An increase in the horizontal added mass as the plate becomes larger is corroborated, but it is 

also seen in the vertical added mass. Other parameters, such as damping coefficients, do not see 

much change in the horizontal direction, but they do in the vertical one. Such relations indicate 

that the longer the plate, the more equal the parameters at the vertical wall and the horizontal 

plate. Thus, the plate works as an equalizer for horizontal and vertical directions, which is 

reflected in the sliding calculations. 

The combined effect of the hydrodynamic parameters results in a reduction of the sliding for 

plates located at the surface, with a better impact for plate lengths between 50% and 75% of the 

water depth value. The positive effect of the hydrodynamic coefficients’ horizontal components 

on the sliding was drastically reduced by the vertical ones when such plates have lengths larger 

than 2/3 of the water depth. 

  Regarding the sliding simulation, the critical influence of uplift forces and the importance of 

including the memory-effect function when elements such as plates are added to the caisson are 

corroborated. An underestimation of the sliding is obtained when dismissing the forces' vertical 

parameters; such underestimation increases with plate length reaching up to 20% for plate 

lengths equal to water depth. On the other hand, dismissing the memory-effect function leads to 

overestimating the maximum sliding of around 30%.  
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4.2 CAISSON WITH TWIN HORIZONTAL PLATES. COMPARISON 

The initial hypothesis of the influence of the water constriction in the increment of hydrodynamic 

coefficients, such as the added mass, was displayed in the previous section. However, it was also 

observed that another parameter, the damping coefficient, reduces the general positive effect on 

the sliding of the caisson. To investigate further, a twin plate arrangement is analyzed in the present 

section of the document, and a comparison with the single plate at the surface is made. 

 

Figure 4.35. Model representation of a caisson with twin plates.  

As Figure 4.35 shows, the model is similar to the one presented in section 4.1 but with a 

combination of a caisson with a submerged plate and another one at the surface. The latter was the 

best location from the single plate analysis; thus, the arrangement for the twin plates keeps one 

plate at the water surface and the second one is submerged at ½ of the water depth. Although 

different submersion depths can be analyzed using the present methodology, a single location is 

enough to validate the hypothesis for this section. Geometric characteristics of the caisson, water 

depth and properties of the medium remain as in section 4.1. 

4.2.1 Pressure analysis.  

After finding the solution for the velocity potential, the first parameter to be obtained is the 

pressure, which is an excellent indicator for visualizing the effect of the plates on the reactions 
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at the wall and plates. The values of pressures are complex numbers: the real part is related to 

the propagating mode (connected to the added mass obtention), and the imaginary part to the 

evanescent or decaying mode (connected to the damping coefficient). Selected values within the 

frequency range: ω* = 0.01, 1, 10, 100, for better visualization and analysis. The primary and 

extended approach when analyzing pressures, and consequently the forces, is made based on the 

real part of the complex argument. Figure 4.36 displays such components of the pressures at the 

wall (left) and the plates (right) for regions II and III, or 2 and 3, respectively. 

The pressure acting on the vertical wall has less variation in Region II (Px2) than in Region III 

(Px3), reaching the maximum values near the plate for both regions. In contrast, the pressure 

acting on the plates decreases as the distance from the wall to the analyzed point x increases, 

being larger near the wall and nearly half at the end of the plate. 

 

Figure 4.36. Pressure distribution acting on the wall (left) and the plates (right) per regions. 

 (Imaginary parts of complex arguments ignored) 

However, besides the conventional approach, this study approach is deeply based on 

incorporating the imaginary part due to its relation to the Damping Coefficient (N) and Memory-

effect Function. Thus, the following figures showcase complex arguments for the pressures in 

each region.  
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Figure 4.37. Pressure distribution acting on the wall (left) and the plates (right). (Full complex 

arguments) 

From Figure 4.37, larger values of the imaginary part (related to N) in the order of over 3 times 

the real part (related to M) of the arguments are seen. This gets translated to the forces (Figure 

4.38), although not the focus of this subsection, showcasing the significant impact of the 

Damping when compared with the Added Mass for the case of the double plate, reinforcing the 

conclusion from the preceding section.  

 

 

Figure 4.38. Forces distribution on the wall and the plates. (Full complex arguments) 
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The behavior observed in previous pictures is for ω* =0.1 (lower frequency). However, in  

Figure 4.39, analysis for the range ω* = 0.1, 1.0, 10 and 100 is made. In there, the prevalence of 

the imaginary part of the pressure is higher for lower frequencies (ω*<10). While for higher 

frequencies (ω *≥10), such influence becomes minimal. The average of the imaginary part is 

around 0 for all frequencies, while the average value of the real part is almost 0 for low 

frequencies but takes values different from 0 as the frequencies increase. 

 

 

Figure 4.39. Pressure distribution acting on the wall.  Influence of the frequency. 

In Figure 4.40, the pressure on the horizontal plates is represented. Larger pressure values are 

reached for larger frequencies. Furthermore, major variations in the pressure are seen in the half 

of the plate near the wall since the water is more constricted in that zone. It is evident that 
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pressures acting on the second half of the submerged plate (z = -hs) from regions II and II cancel 

each other; thus, that part of the plate reaches an equilibrium state. Being the pressures acting on 

the surface plate the main uplifting forces acting on the system. In the horizontal plate, the 

predominance of the imaginary part is also seen for low frequencies. While the real part grows 

in importance for larger frequencies (ω*≥10).  

Details for each frequency in Figure 4.39 and Figure 4.40 can be observed in the compendium 

in Figure 4.41 and Figure 4.42. 

 

Figure 4.40. Pressure distribution acting on the plates.  Influence of the frequency. 
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Figure 4.41. Pressure distribution acting on the wall (left) and the plates (right) for frequencies 

ω*=0.01 and 0.1. (Full complex arguments). Part 1 

 

 
Figure 4.42. Pressure distribution acting on the wall (left) and the plates (right) for frequencies 

ω*=0.01 and 0.1. (Full complex arguments). Part 2 
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Total pressure 

The following frequencies ω* = 0.1, 5, 10, 15, 20 are used to better compare the total horizontal 

and vertical pressures, providing a more stable step and easier visualization. The double plate 

generates a fluctuated pressure distribution on the wall, taking positive and negative values 

following that pattern. Real and Imaginary parts for the same water depth have opposite signs 

for larger frequencies ω* >5, and the same sign for ω*≤5, although smaller values. Less pressure 

variation is seen in Region II (0 ≤ z≤ -hs) since it is closer to the surface, while more variation is 

seen in Region III (-hs ≤ z ≤ -h), especially closer to the plate. Furthermore, less undulating 

behavior has been observed for the last 20% of the water depth, where the static water pressure 

due to depth is starting to become more influential. Minimum values are seen near the surface, 

and maximum values are seen under the submerged plate. 

 
Figure 4.43. Total horizontal (left) and vertical (right) pressure distribution for ω*=0.1, 5, 10, 

15, 20. Full complex arguments. Case: twin plates (z = 0, h/2) 

Conversely, the uplift pressures acting on the plates are smoother than the horizontal pressures. 

They illustrate a damped behavior that switches from one side of the spectrum (positive for the 

real part and negative for the imaginary part) in the areas near the wall to the other side for the 

rest of the plates’ length. After the switching, maximum values are reached around x/l=0.1 to 

then decrease stably as the distance from the wall to the analyzed point x increases, being larger 

near the wall and nearly half at the end of the plate.  
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Figure 4.44 shows details on each plate pressure distribution. The pressure on the submerged 

plate (z=-hs) became zero after x/l = 0.5, i.e., the second half of the plate. The imaginary part in 

both plates also becomes zero after x/l = 0.5. Being the pressures (real part) on the surface plate 

(z=0) the ones influencing the motion system in that area. While in the first half of the plates, 

pressures on both plates are to be considered. 

 

Figure 4.44. Pressure distribution acting on each plate for ω*=0.1, 5, 10, 15, 20. 

Full complex arguments. Case: twin plates (z = 0, h/2) 

 

Comparison with single plate case. 

When comparing the double-plate cases (Figure 4.44. Pressure distribution acting on each plate 

for ω*=0.1, 5, 10, 15, 20.) with the single plate (Figure 4.2), the pressure is still superior in the 

wall than in the plates. For the case of the double plates, the maximum horizontal pressure is 

about six times higher than the same for the single plate case, while the maximum vertical 

pressure is about 2.5 higher. Furthermore, the pressure distribution is remarkably wavy 

compared with the smooth distribution of the single plate case, where the presence of larger 

plates generated more even distributions. This is the opposite of what Ijima (1971) stated: that 

double plate pressure distributions to both directions were smoother than for a single plate. 
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However, the pressure distribution for the double-plate case was not displayed in the mentioned 

paper, and the plate was on the seaside, from where the incident wave was generated and 

impacted the wall. While in this research, the plate is on the harbor side, and the incident wave 

is on the seaside, while the analyzed “incident wave” in this study is a product of the movement 

of the caisson due to the impulsive incident wave. 

 Additionally, the vertical pressure distribution has less variation along the plates, with stable 

minimum values dropping after the third part of the plate length. In contrast, for the single plate, 

pressures almost linearly drop from the starting to the end point of the plate length. This shows 

more uniform distributions in the plates due to double plate arrangements. 

 

Retrieved Figure 4.2. Pressure distribution acting on the wall(left) and the plate(right) for 

different frequencies. Single plate at z=0. (Complex arguments)  

Analyzing the average pressures in Figure 4.45, the pressures are still superior (almost doubled) 

in the wall than in the plates. However, the pressures due to the double plate are higher than 

those due to a single plate at the surface, increasing proportionally to the frequency. On the other 

hand, pressures for the double-plate case increase at a higher ratio than the single-plate case. The 

vertical or uplift averaged pressure shows similar behavior to the horizontal pressure but with 

smaller values. Furthermore, the ratio  Pz/Px for the twin-plate case is lower than for a single 

plate.  



114 

 

 

Most researchers use average pressure (Ijima,1971) for the calculations; this means that the 

imaginary part is usually dismissed since their average values generally were almost zero. And 

that is true for regular caissons, where only a fluid analysis in the horizontal plane is done, and 

the ratio real/imaginary values is substantial. However, when analyzing plates, such a ratio gets 

drastically reduced. 

 

Figure 4.45. Averaged Pressure Distribution (Single-plate v/s Double-plate) 

 

4.2.2 Hydrodynamic parameter analysis  

The parameters added mass, damping coefficient, and memory-effect function in each region are 

analyzed in this subsection, as well as their total values and their horizontal and vertical 

components. Total values are the summation of the regions implied in each analysis. 

Mxx = MxxII + MxxIII (4.3) 

Mzx = MzxII(z=0) + MzxII(z=-hs) + MzxIII(z=-hs) (4.4) 

Nxx = NxxII + NxxIII (4.5) 

Nzx = NzxII(z=0) + NzxII(z=-hs) + NzxIII(z=-hs) (4.6) 
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Some of the components of the above equations have opposite signs, mainly the following 

vertical components such as Mzx
II

(z=0), Mzx
III

(z=-hs), Mzx
II

(z=0) and Mzx
III

(z=-hs). However, for the 

most straightforward comparison of the values, it was considered the same sign, disregarding 

region or direction. 

 

Figure 4.46. Dimensionless Added Mass and Damping Coef. at the vertical Wall (x=0) [left] 

and at the plates (z=0, -hs) [right] in Regions II and III. 

 

From the dimensionless added mass at the wall (although both regions have the same boundary 

conditions and water column length), the added mass acting on the wall for Region II is larger 

than that of Region III. It is a fact that the hydrostatic pressure is lower in Region II due to a 

lower location, but due to the wave-induced effect, the hydrodynamic pressure tends to be higher 

at the surface, which translates to the added mass. 

When analyzing the plates, [Mz
II (z=0) and Mz

III] and [Nz
II (z=0) and Nz

III] are similar, indicating 

that similar values of uplift forces act on both plates. The added mass in Region III of the 

submerged plate (z=- hs) is higher than in Region II. This aligns with the higher pressures 

generated under the submerged plate, although the two regions have the same water column 

length and boundary conditions. On the other hand, the damping under the submerged plate 
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( Nz
III) reaches 0 values and stabilizes from lower frequencies than over the plate Region II [Nz

II 

(z = -hs)].  

For low frequencies, Mz slightly declines in most cases, then recovers, increases, and follows the 

typical asymptotic behavior. The lower peak is more noticeable in the Mz acting over the 

submerged plate (Region II-Mz2). This behavior is not seen in the total Mtotal = Mxx + f * Mzx. 

Note that Mx and Mxx are used indistinctly, representing the added mass produced in the 

horizontal direction due to the horizontal movement of the caisson. The same applies for Mz and 

Mzx, but in this case, they are the added mass produced in the vertical direction due to the 

horizontal movement of the caisson. This use of the subscript is also used with the damping 

coefficient and the memory-effect function. The total value of the parameter in the wall and the 

plate are the summation of their components from each region.  

 

Figure 4.47. Dimensionless Added Mass and Damping Coef. (single and twin plate cases) 

The relation Mx > Mz remains for the double plate analysis, Mx doubling the initial value of Mz 

for low frequencies and a tendency to triple the asymptotic value at infinite frequency. Both 

curves' behavior follows a similar tendency as in the single plate case. For a comparison with the 

case of the single plate, Figure 4.47 includes the hydrodynamic parameters for such case as 
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discontinuous lines. As expected, the values of added mass are higher for the double plate since 

the water constriction increases, while the damping coefficient has a steeper decline since more 

solid boundaries act as flow stabilizers. Additionally, a fundamental analysis based on the added 

mass relationship is performed to visualize the best arrangement. In Figure 4.48, for easier 

comparison, it was considered a positive sign for Mzx; thus, the relation Mxx+fs*Mzx derives to 

Mxx-f*Mzx. The same is applied to the Damping Coefficient and Memory-effect function. 

 

Table 4-4. Directional Added Mass Relationships for none, single and double plates.  

Case Mxx Mzx Mzx/Mxx Mxx-fs*Mzx % Increment 

0 plate 1.085 - - 1.085 - 

1 plate (z=0) 1.475 0.271 0.184 1.312 20.9 

2 plates (z=0, h/2) 2.316 0.7659 0.331 1.856 71.0 

 
Figure 4.48. Total Dimensionless Added Mass and Damping Coef. (single and twin plate cases) 

Total added mass M is higher for the two plate arrangement, with a total increment over the 

single plate case of around 40%, and 70% with respect to a regular caisson. On the other hand, 

the total damping coefficient N is smaller in the range 1<ω*<30 approximately, although the 

values near 0 remain the same. The area under the curve is reduced too, i.e., R(t) is expected to 

have smaller values. 
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The memory-effect function in each direction (Figure 4.49 - left) is presented below. The 

horizontal memory-effect function Rxx* has higher values at each time step than the vertical Rzx*, 

while also having a slower damped effect. Note that although the components have the same sign 

for better visualization, Rzx* has negative values according to the sign convention based on the 

direction of the implicated forces. Hence, the total dimensionless memory effect function Rxx* -

fRzx* is in Figure 4.49 (right), showing a low value and a damped behavior in the range 0<t*<3 

while reaching 0 around t*=15. 

 

Figure 4.49. Horizontal and vertical (left) and total (right) dimensionless memory-effect 

function for twin plates. 

 

Figure 4.50. Total Dimensionless Memory-effect function (single, twin and no plate cases). 
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For a single plate with length l=h/2 located at the surface, the maximum value of the relation 

Rxx-fs*Rzx [R*(0) = 2.5] was not inferior to the case without a plate with R*(0) = 2.17 (see Figure 

4.50).  However, the total Dimensionless Memory-effect Function for two plates is almost zero 

R*(0) = 0.07. The small values for damping coefficients and memory-effect function in twin 

plates should not be a surprise since they are the result of a more considerable influence in the 

system reducing or preventing the wave oscillation and promptly dissipating the generated wave 

due to the caisson motion. 

One conclusion derived from the analysis of the hydrodynamic coefficients would be that, since 

the memory-effect function is almost zero for all-time spam, the two-plate sliding simulation 

mostly depends on the Added Mass. And, although that is the case, larger added mass doesn’t 

necessarily lead to a sliding reduction, as we already observed in the single plate case, if the 

damping coefficient doesn’t positively affect that reduction. This could be preliminary predicted 

when larger R*(0) values are seen.  

4.2.3 Sliding 

The solutions to the motion equation for the double plate are displayed in Figure 4.51, as well as 

for the single plate at the surface and regular caisson for comparison. The double plate 

arrangement has a larger motion duration than the single and no-plate cases. The maximum 

velocity is slightly higher than the single plate and lower than the no-plate caisson and is reached 

later than both. More importantly, the sliding is higher than the single plate and the regular 

caisson for 11% and 7%, respectively. This can be explained by recalling the statement in the 

preceding section: two-plate sliding calculation is primarily dependent on the added mass since 

the memory-effect function was mainly null. It is similar to removing the latter from the motion 

equation, leading to an increment of the total sliding, which aligns with the conclusions from 

subsection 4.1.3.5 about the influence of the inclusion or simplification of the memory-effect 
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function in the motion equation. Basically, the displacements are higher when dismissing R(t), 

which is almost zero in the two-plate case naturally.  

Nevertheless, as previously stated, larger added mass increases the hydrodynamic resistance, so 

why does the double plate have a larger displacement and there is no sliding reduction? This is 

due to the importance or weight of each hydrodynamic parameter: added mass and memory-

effect function.  To understand it better, a simple ratio of M∞* and R*(0) for the three cases in 

Figure 4.51: no plate, simple plate and double plate is presented in Table 4-5. 

 

Figure 4.51. Total dimensionless memory effect function (single, twin and no plate cases). 

Table 4-5. Ratio of values of M* and R(0) 

 

M* 0-plate 1-plate 2-plate  R*(0) 0-plate 1-plate 2-plate 

0-plate -1- 1.24 1.65  0-plate -1- 1.29 0.03 

1-plate 0.85 -1- 1.33  1-plate 0.78 -1- 0.03 

2-plate 0.6 0.75 -1-  2-plate 31 40 -1- 

 

The ratio is column/row of the tables: e.g. 0.6 is the result of M*(0-plate) / M*(2-plate). Values 

between 0.5 and 2 show variances of 100% within the same parameter comparison; this is seen 

in M*. However, comparative values far from that range display an unbalanced relation within 
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the parameter, as seen in the R*(0) ratios related to the double plate. Similar values show a 

relative balance when comparing the two parameters: M* and R*(0), but disproportional 

differences display unbalance. That is the case again for the twin plate: although the ratios are 

similar for others, e.g., for 1-plate / 0-plate, the M* ratio is 1.24, and R*(0) ratio is 1.29; for the 

double plate, it is far different, e.g. for 1-plate / 2-plate is 0.75 for M* ratio and 40 for the R*(0) 

ratio. 

4.2.4 Conclusions for the double plate 

The double plate arrangement conveys higher pressures acting on the wall and the plates, while 

more uniform distributions are seen on the plate but less on the wall. Furthermore, it increases 

the added mass of the structure; however, it drastically reduces the memory effect, which led to 

an increase in the sliding of 11% and 7% compared to those for the single plate and the regular 

caisson, respectively. This confirmed that an increase in the added mass does not lead to smaller 

displacement. 
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4.3 CHAPTER CONCLUSIONS 

In this chapter, an analysis of the pressures and the hydrodynamic coefficients is performed for 

caissons with horizontal plates. Their changes according to the location, length, submersion, and 

number of plates are estimated and analyzed in order to define their influence on the sliding for 

such geometries. Such parameters are calculated by applying the simulation models and methods 

described in Chapter 2. 

The Boundary-Point Selection Method (BPSM) was applied with excellent results in finding 

solutions for boundary problems related to breakwaters with horizontal plates. Its application 

simplifies formulations and reduces computing and programming time. However, it is limited to 

geometries where the fluid regions have constant water depth. Additionally, aspects related to 

the application of the Boundary Point Selection method were highlighted, such as the increment 

of selection points for submersion depths smaller than 25% of water depth to avoid unstable or 

error results. 

Following the main findings in this chapter regarding pressures: a) Reasonable distributions 

according to the boundary conditions were obtained b) The horizontal plates affect the pressure 

distribution on the caisson, mostly bringing more uniform distributions at the wall for the case 

of the single plate and at the plates for the twin-plate case as well as higher pressure values, 

especially for the double plate, although with more variations on the wall distribution c) 

Regarding the plate length, the role of the plate as a pressure equalizer is confirmed: when plates’ 

length tends to be equal to the water depth, the plate starts functioning as a pressure equalizer. 

c) The ratio of the imaginary to the real part of the pressure complex values varies according to 

the different plate arrangements; thus, its influence should not be dismissed when analyzing 

annexation elements such as horizontal plates since their geometry resists the forces acting in 

that direction.  
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The analysis results confirmed the critical influence of uplift forces on the sliding calculations, 

as well as the importance of including the memory-effect function on it. Excluding the first one 

leads to overestimating the horizontal plate's positive influence in reducing the sliding, especially 

for large l/h ratios. Dismissing the latter overestimates the maximum sliding distance. 

The double plate analysis confirmed the increments of the added mass; however, it also showed 

a drastic reduction of the memory effect, which led to an increase in sliding. This confirmed that 

an increase in the added mass does not lead to smaller displacement and that the memory-effect 

function plays an important role in the sliding simulation under impulsive wave loads, which has 

been underestimated. Additionally, a relation in which shapes with larger damping coefficients, 

on the other hand, with added mass increments, induce better structure performance. 

Furthermore, for a preliminary prediction of better performance, i.e., a reduction of the sliding 

distances, analysis based only on the Added Mass is not enough; instead, also searching for 

sections with larger values of memory effect focusing on larger values of R*(t=0) should be 

included. 
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Chapter 5. EXPERIMENTAL STUDY 
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OUTLINE 

As part of the study of the influence of the horizontal plates in the sliding of breakwaters 

caissons, wave flume experiments are carried out at Osaka University’s Hydraulic Laboratory 

indoor facilities, measuring the horizontal sliding distance of a vertical breakwater in 1:20 scale 

with rear horizontal plates due to impulsive waves higher than design. The cases subject to study 

are caissons with a single submerged horizontal plate, including the special case with the plate 

at the surface, and caissons with multiple plates considering the variation of plate(s) lengths and 

submersion depths. 

The methodology covers the wave generation of an impulsive wave at a target location, 

measurements of the wave force acting on the caisson, and the sliding due to the wave impact. 

The analysis is based on the data recorded from wave height gauges and load sensors for the 

time series of the wave elevation and forces acting on the caisson, respectively, while 

displacement is obtained by image analysis.  

Throughout, we seek to experimentally reproduce the impulsive wave generation using the 

Aoki-Koga method and estimate the characteristics of the wave forces acting on the structure. 

More importantly, it is also pursued to clarify the effect of the horizontal plate’s length and 

submersion on the sliding of breakwater caissons, as well as confirming the fit of the sliding 

analytical models presented in chapters 3 and 4 to the experimental results. 
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5.1 EXPERIMENTAL SET-UP AND TEST CONDITIONS 

The physical model experiments are conducted in the two-dimensional wave flume of the 

Hydraulic Laboratory of Osaka University. The wave flume is 20m long, 0.7m wide and 1m 

deep. It is equipped with a piston-type generator at one of its ends, able to generate both regular 

and irregular waves, and it will be used for the generation of the single impulsive waves 

necessary for this study. At the terminal end, a wave-absorbing surface is located as an artificial 

beach that minimizes the waves' reflection reaching the flume's end. 

As shown in the side view of the experimental set-up’s sketch, up to six wave gauges are located 

to measure the wave height at each location and time duration of the impulsive wave: one at the 

front face of the structure, another three in front, and two after it. Furthermore, two video cameras 

are located over and at the side of the target locations to capture the movement of the caisson, 

which is later measured using video analysis tools.  

 

Figure 5.1. Sketch of the experimental set-up 

5.1.1 Caisson Model 

The geometrical characteristics and properties of the prototype used in the analytical study and 

the 1:20 scale model to be used in the experimental study are displayed in Table 5-1. The length 

of the model was taken to cover the width of the wave flume, sparing 2cm at each side to allow 

the collocation of the beams for plate adjustment and avoid the silicone-like bottom-wall joints 

of the flume that could affect the sliding due to different friction factors. 
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Table 5-1. Geometrical characteristics and properties of the prototype and the model 

Geometric Characteristics / Properties Symbol Prototype Model Scale 1:20 

Caisson length (orthogonal to wave direction)  L -1- m 0.66 m 

Caisson width  (in wave direction) B 6 m 0.3 m 

Caisson height H 10 m 0.5 m 

Freeboard d 2 m 0.1 m 

Water depth at the wall h 8 m 0.4 m 

Water density ρ 1030 kg/m3 1000 kg/m3 

Material density  ρc 2100 kg/m3 1585 kg/m3 

Gravity acceleration g 9.8 m/s2 9.8 m/s2 

Volume V 60 m3 0.099 m3 

Mass M 126000 Kg/m 75.4-138 kg 

 

A box of 300x660x500mm made of clear plexiglass of 10mm thickness represents the caisson 

model, filled with coarse white sand until reaching the desired mass. Two metallic beams are 

added to the sides of the box at 0, 10, 20 and 30 cm from the water surface according to the case, 

while wood panels of 65 x 10, 20, 30 and 40 cm are attached to the beams simulating the 

horizontal plates. 

          

Figure 5.2. Caisson Model: Isometric of the model (left) and side view of the plate 

configurations (row). 

Unit: mm 
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Eleven configurations are tested in terms of plate length and submersion, including a no-plate 

case, represented in Figure 5.2 and summarized below. 

Table 5-2. Summary of Test Cases 

No. Case Name Plate Submersion Depth (hs) Plate Length (l) 

1 HS0_PL0 

0 cm 

0 cm 

2 HS0_PL10 10 cm 

3 HS0_PL20 20 cm 

4 HS0_PL30 30 cm 

5 HS0_PL40 40 cm 

6 HS10_PL20 
10 cm 

20 cm 

7 HS10_PL30 30 cm 

8 HS20_PL20 
20 cm 

20 cm 

9 HS20_PL30 30 cm 

10 HS30_PL20 
30 cm 

20 cm 

11 HS30_PL30 30 cm 

 

5.1.2 Friction Test 

The caisson exerts resistance force induced in part by the friction force between the caisson's 

bottom surface and the flume's surface. Such resistance force should be estimated for the 

practical design. The frictional force can be simply predicted through the friction factor. Hence, 

a coefficient of friction test is conducted, which determines “the resisting force tangential to the 

interface between two bodies when, under the action of external force, one body moves or tends 

to move relative to the other,” according to the ASTM standard G-40. 

A wire is attached to the empty caisson model and initially pulled to prevent loosening. For the 

test, the caisson model is pulled until displacement is reached. The tensile force is measured with 

a Newton scale, and the maximum value reached that generated the start of the movement is 

selected. 
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Figure 5.3. Newton scale used for measuring friction force. 

The pulling model tests were repeated ten times in the same condition, taking into consideration 

that manual pulling may introduce more errors. The average value of the measured tensile forces 

was employed as the value of static frictional force in the calculation of the friction factor as in 

Eq.(2.1), where Fs, m and g represent the tensile force of the wire, the empty caisson mass, and 

the gravitational acceleration, respectively. 

 𝑓𝑠 = 𝐹𝑠/(𝑚𝑔)  (5.1) 

Tensile forces ranged between 27.1N and 30N. Since the empty caisson has a mass of 7.9kg, the 

design friction factor between the caisson made of plexiglass and the surface of the flume bottom 

made of aluminum under wet conditions is 0.37. This value is close to the expected range of 

[0.4~0.5] from the closest conditions in the bibliography for steel and plexiglass under lubricated 

conditions.  

5.2 WAVE GENERATION. 

The wave generation system consists of a hydraulic system, which gives a vertical wave board a 

horizontal translational movement through a piston. The position of the board is controlled by 

an electric signal from the wave function or multifunction generator (WFG). The digital record 
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of the signal is converted to an analog electric signal which is fed to the WFG under the arbitrary 

waveform (ARB). The voltage amplitude of the electric signal is adjusted to 10V, which is the 

maximum for the multifunction generator, and another 4.5V are added to the input gain of the 

operation panel of the wave generator.  

 

Figure 5.4. Multifunction Generator  WF1973/WF1974 (left), operation panel of wave 

generator (center) and piston-board station at one end of the wave flume (right). 

 

The impulsive waves are most related to caisson sliding. However, the generation of a single 

concentrated wave at a predetermined location in a flume is not an easy task. Related research 

has been done in the naval engineering field by Omatsu (1978, 2009) and in the civil engineering 

field by Usui et al. (2016, 2017), but with some limitations for its easy application in wave 

flumes. Aoki and Koga (2021) presented a method for generating concentrated waves of arbitrary 

waveform at arbitrary locations in a channel. The method is intended for wave flumes with a 

piston-type wave maker and is based on linear systems using frequency and impulsive response 

functions from linear wavemaker theory. The research was analytically presented and verified 

numerically but not experimentally. Thus, initial tests are done to confirm it and implement the 

method in this study. 
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5.2.1 Wave-making Signal 

Estimating the motion of the wavemaker board starts by defining the desired waveform η (X, t) 

or water level fluctuation at a target position x = X in the wave channel. This function is Fourier 

transformed and the result is substituted in the frequency response function [Eq.(5.2)], yielding 

to the obtention of the Fourier transform of the wavemaker (WM)’s board motion. Finally, by 

inverse Fourier transforming the latter, the time series of the board motion is obtained.  

 𝜂∗(𝜔) = ℎ∗(𝜔) 𝜉∗(𝜔)  (5.2) 

Furthermore, the waveform resulting from the wavemaker board motion can be verified by 

applying the impulsive response function [Eq.(5.3)] to it. 

 𝜂(𝑋, 𝑡) = ∫ ℎ(𝑡)𝜉(𝑡 − 𝜏)𝑑𝜏
∞

−∞
   (5.3) 

This calculation flow is presented in Figure 5.5, where η stands for water elevation, x for the 

position, ω for frequency, t for time, ξ for board motion, and h for the response functions.  

 

 

 

 

 

 

Figure 5.5. Calculation flow for wave-making signals.  

(English reproduction of the calculation flow in Aoki and Koga (2021) 
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The method can be applied to both constant and variable water depths. For our case study, the 

caisson is located directly on the bottom of the wave flume; thus, it is a case of constant water 

depth. More details of the derivations within the method for generating concentrated waves of 

arbitrary waveform at arbitrary locations in a channel can be found in Aoki and Koga (2021). 

The Aoki-Koga method is applied to obtain an impulsive wave with the initial below 

characteristics. These characteristics are higher than those for the design wave since we aim to 

produce sliding, i.e., structure failure. 

Table 5-3. Initial characteristics for the wave-making signal 

CHARACTERISTICS  

Waveform Triangular 

Distance from the board 10 m 

Water depth 0.4 m 

Wave elevation 0.1 m 

Period    1 s 

Rising time 0.5 s 

 

 

Figure 5.6. Wave-making signal. Case: h=0.4m, X=10m, η(10)=0.1m, t=0.5s. 



133 

 

 

The wavemaker board motion should follow then the function presented in Figure 5.6Figure 5.6. 

Wave-making signal. Case: h=0.4m, X=10m, η(10)=0.1m, t=0.5s. where a clear sinusoidal 

movement with increments of period and amplitude is seen up to the last and larger stroke. The 

direct output of the method application goes from 10s to 50s; however, in order to achieve a 

smooth return to the initial position and reduce strain on the wavemaker, 10 seconds are added 

at the end of the signal with a lineal return to zero, and another 10 seconds at the starting point 

of rest. The digital record of the signal is converted to an analog electric signal which is fed to 

the WFG under the arbitrary waveform (ARB). The wave height is determined by the 

amplification WFG.  The voltage amplitude of the electric signal is adjusted to 10V, which is 

the maximum for the multifunction generator, and an input gain of 4.5 is used in the operation 

panel of the wave generator. The sampling rate of the water elevation was of 0.001 second 

(1kHz). 

5.2.2 Results 

Figure 5.7 shows the time series wave elevation for the target location (x=10m). However, a 

doble wave is seen with a ηmax = 8.9cm; thus, neither a unique wave nor the expected elevation 

is reached at 10m from the wavemaker board. Nevertheless, it also indicates that the targeted 

characteristics can be obtained a few centimeters later. Hence, a series of locations in the range 

of 10m to 10.6m were tested, being the later the final location also matching with the video 

recording requirements. 

 

Figure 5.7. Wave-making signal. WG-5 at x=10m. Case: h=0.4m, X=10m, η(10)=0.1m, t=0.5s. 
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From Figure 5.8, it is evident that the concentrated wave is the overlapping of multiple frequency 

waves along the wave flume just before the target location until a unique wave is obtained there 

(in this study, it is around 25cm after the expected location). This behavior was also seen for a 

case with X=9m, where the target wave characteristics were obtained at x=9.25m. 

 

Figure 5.8. Wave-making signal for all wave gauges. Especial case of  WG-5 at x=10.25m.  

Case: h=0.4m, X=10m, η(10)=0.1m, t=0.5s. 

 

A wave height of  9.991m and a 0.97s period measured from the test agreed very well with the 

target design values (10m and 1s, respectively). Thus, it can be concluded that the generated 

waves are both geometrically and dynamically similar to the target produced by the Aoki-Koga 

method. 

5.2.3 Variation of the wavemaker board movement 

Due to the variation in the target location, the actual board motion is measured using a video 

analysis tool to experimentally verify whether its motion corresponds to the one obtained based 

on the linear wave theory and the generation of the desired water level fluctuation. Figure 5.8 
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shows the ‘Calculated’ and ‘Measured’ representing the calculated board motion sent as an 

electric signal and the actual observed motion of the board.   

 

Figure 5.9. Wavemaker board motion 

Case: h=0.4m, X=10m, η(10)=0.1m, t=0.5s. 

 

There is a minimum phase variation at the lower frequencies, but generally, there is not much 

change in the phase. The actual motion of the wavemaker plate has a lower amplitude than the 

signal input from the theoretical calculations, with a maximum variation of  8.2%. The phase is 

slightly displaced for higher motion frequencies but the same for most of the rest, i.e., higher 

amplitude with a margin of error of R2=0.9938, MSE= 5.35e-05 and the RMSE=7.3e-03. The 

wavemaker piston cannot replicate high-frequency movements due to the mechanical nature of 

the device. Hence, according to the experimental results, the concentrated wave will be reached 

around 25 cm after the theoretical target location, mainly due to variations in the wavemaker 

board motion. 

Table 5-4. Statistics of the motion of the wavemaker. (Measured vs. Calculated) 

 
Measured (M) Calculated (C) M-C 

Maximum displacement (cm)  11.8  12.3 -0.5 

Minimum displacement (cm) -16.2 -18.0  1.8 

Maximum amplitude (cm)  27.9   30.3 -2.4 
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5.2.4 Numerical simulation 

The wave signal generation method can be applied to numerical wave tanks. Hence, since a 

variation in the target location has been seen in the physical experiments, a numerical simulation 

would be a faster way to determine the actual target location before reaching the experimental 

stages. The numerical study is done in CADMAS-SURF (SUper Roller Flume for Computer 

Aided Design of MAritime Structure), a free-surface flow simulator based on the volume of fluid 

(VOF) method studied and developed by the Study Group on Application of Numerical Wave 

Motion to Wave Resistant Design of Waterways to replace conventional hydraulic model 

experiments with CFD-based numerical calculations. 

5.2.4.1 Basic Equations and Free Surface 

The numerical wave flume is based on the continuity equations of continuity for a two-

dimensional incompressible fluid and the modified Navier-Stokes formulations. Details of the 

theoretical description and discretization process of the governing equations are given in the 

CADMAS-Surf manual book (2001). 

𝜕𝛾𝑥𝑢

𝜕𝑥
+
𝜕𝛾𝑧𝑤

𝜕𝑧
= 0  (5.4) 
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(5.6) 

where t is the time, x, z are the horizontal and vertical coordinates, respectively, u, w are the 

horizontal and vertical velocities, respectively, νe is the molecular kinematic viscosity, γv is the 

porosity, γx, γz are the horizontal and vertical sectional transform ratios, respectively, p is the 

pressure, ρ is the mass density of the fluid, and g is the acceleration due to gravity. 

The coefficients of λυ , λx , λz  in  Eqs.(5.4), (5.5) and (5.6) are: 
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 𝜆𝑣 = 𝛾𝑣 + (1 − 𝛾𝑣)𝐶𝑀  (5.7) 

 𝜆𝑥 = 𝛾𝑥 + (1 − 𝛾𝑥)𝐶𝑀  (5.8) 

  𝜆𝑧 = 𝛾𝑧 + (1 − 𝛾𝑧)𝐶𝑀  (5.9) 

While Rx and Rz are the horizontal and vertical drag forces defined below, and where CD is the 

drag coefficient and Δx, Δz are the horizontal and vertical mesh sizes for the numerical 

simulation, respectively. 

 𝑅𝑥 =
1

2

𝐶𝐷

Δ𝑥
(1 − 𝛾𝑥)𝑢√𝑢2 + 𝑤2  (5.10) 

 𝑅𝑧 =
1

2

𝐶𝐷

Δz
(1 − 𝛾𝑧)𝑤√𝑢2 +𝑤2  (5.11) 

 

For the fluid-free surface, the Volume of Fluid method (Hirt, 1981) is applied, and the transfer 

diffusion equation F is shown below. 

 𝛾𝑣
𝜕𝐹

𝜕𝑡
+
𝜕𝛾𝑥𝑢𝐹

𝜕𝑥
+
𝜕𝛾𝑧𝑤𝐹

𝜕𝑧
= 0  (5.12) 

 

5.2.4.2 Simulation Outline and Results 

The numerical wave tank is 20m long, 1m wide and 1m deep. The region is divided into 0.02m 

cells in the x and y axes and 0.1m in the y axis. A setup for piston-type wave generation is made 

using the IB method to incorporate the board's motion and considering the moving boundary by 

including geometry and time series displacement. The board is located 1m from the start of the 

flume and setups for wave absorption are set at both ends of the flume. Gauges are located along 

the wave tank every 0.1m for wave elevation, including the location of the structure, and the 

latter includes pressure and velocity measurements. The calculation time is set for 40 seconds, 

and the time step is set for 0.001s (higher time steps led to fluid instabilities). 
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Figure 5.10. Diagram of the analysis model 

Both the ‘computed’ time series of the board movement and the actual motion of the board 

‘measured’ during the experiments are incorporated in the simulations. The wave elevations due 

to each are displayed in Figure 5.11.  

 

Figure 5.11. Wave elevation due to computed and measured wavemaker board motion. 

CADMAS simulation 

Contrary to what was observed in the experiments, the concentrated wave is obtained at the target 

location for both board time series displacements. The difference in the wave generator motion 

does not affect the wave phase, but it does affect the maximum wave heights. As expected, the 
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wave height at the target location is lower for the ‘measured’ board motion since the latter has a 

smaller amplitude. 

Table 5-5. Maximum wave elevation attending to wavemaker motions.  

(Computed vs. Measured board motion) 

WG 

location 

Using board motion 

(Computed) [cm] 

Using board motion 

(Measured) [cm] 
M-C [cm] 

9 m 11.34 9.79 -1.55 

10 m 11.04 9.36 -1.68 

10.24 m   9.49 8.11 -1.38 

11 m   6.75 6.27 -0.47 

 

Concerning the design wave height, the ‘computed’ board motion leads to an overestimation of 

the wave height by 1cm, while the ‘measured’ underestimates it by 0.4cm. It is expected that the 

wave due to the ‘measured’ board motion is lower than due to the ‘computed’ one since the 

amplitude of the former is lower than the latter. 

On the other hand, the overestimation of the wave elevation in the numerical simulation using 

the ‘calculated’ board motion is consistent with the results in the method description by Aoki 

and Koga (2021). In the study, the waveforms of the calculated values with the linear theory 

generally correspond to the results of CADMAS. They are decided to be of sufficient use for the 

concentrated waves of arbitrary waveforms. However, variations on the wave elevation with 

respect to the design value were obtained in the range from 0.5cm to 5cm. For short duration 

times to, the maximum value of the water level was difficult to reproduce. This is seen in Figure 

5.12, where for to = 0.5s, the set value po = 0.2m is not reached even for linear theory, partly due 

to the lack of time for the wave to grow. On the other hand, when to = 2.0s, the maximum value 

of the water level is slightly large, and the onset of the water level is somewhat faster, probably 

due to the nonlinearity of the waves. 
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Figure 5.12. Wave elevation for different wave times. Aoki and Koga (2021) 

As explained before, not obtaining the exact maximum wave elevation with the predetermined 

electric signal during physical tests can be resolved by adjusting the input gain, which increases 

the amplitude without phase variations. Thus, the obtention of waveform and close values for 

the maximum wave elevation is enough for the study. The time series of the wave elevations due 

to CADMAS simulation and the physical test are displayed in Figure 5.13 and Figure 5.14, 

respectively. It shows that the diverse waveforms during the physical tests are obtained at 

locations centimeters after the theoretical and numerical target. Table 5-6 shows the maximum 

wave elevation for each case. 

Table 5-6. Maximum wave elevation at different locations. (CADMAS vs. Experiments) 

WG location 

CADMAS (Measured) 

[cm] 

Experiments 

 [cm] 

CADMAS – Exp. 

[cm] 

8.6 m 9.43 7.71 1.72 

9.6 m 9.98 7.94 2.04 

10 m 9.36 8.51 0.85 

10.25 m 8.26 9.99 1.73 

11.6 m 5.92 4.56 1.36 
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Figure 5.13. Time series of wave elevation. CADMAS simulation with real WM board motion 

 

Figure 5.14. Time series of wave elevation. Experimental results. 

Furthermore, when analyzing changes in the rising time of the wave, the first observation is that 

board movement needs to replicate a more extensive range of low-frequency movements, which, 

as we concluded in the previous subsection, is difficult for the generation mechanism. Thus, the 

experimental output is expected to not completely match the predicted wave elevation. 

 

Figure 5.15. Board displacement for various rising times (h=0.4m, X=10m, ηmax=0.1m) 
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Additionally, higher rising times require larger amplitude strokes according. A special note about 

the parameter rising time to and the employed symbology: to was the total wave period in the 

Aoki and Koga (2021) study and not the rising time. For the triangular waveform, the rising time 

is half of the total wave period. As a result of the variation of the rising time, although a 

distinctive unique wave is observed at the target location for all cases, rising times outside of 

t0=0.5s lead to more unstable water level elevation and different phases. (Figure 5.16-below). 

The instability is also observed in wave gauges closer to the wave board (Figure 5.16-above) for 

larger rising times.  

 

Figure 5.16. Time series of wave elevation for different wave rising times. Experimental test. 

Another difference from the linear theory is that although rising times should theoretically 

generate higher wave height (Figure 5.12), the physical test shows that the maximum wave 

elevation gets drastically reduced.  Then, rising times of 0.5s or wave period 1s are the best 

adjusted to the target waveform. The best relationship between wave height, target location and 

rising time must be tested and selected for configurations other than the one used in this study. 

Numerical tests are first recommended until a stable waveform and close wave height values are 

obtained, and later, the latter is adjusted during the physical test. 
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5.3 WAVE FORCE TEST 

In Chapter 2, existing models for time-history wave loads on caisson breakwaters were discussed. 

Such models are used for the analytical determination of the sliding. In this study, the wave force 

in time-domain F(t) is determined by a triangle-shaped profile that needs two critical parameters: 

the static frictional force Fs, which is possible to determine with the weight of the structure and 

the friction coefficient and the maximum wave force acting on the wall Fmax. The procedure and 

results of experimentally determining the latter are described in this subsection. 

The actual time series of the wave force acting on the wall of the caisson is determined 

experimentally by utilizing a mock structure of 300x220x500mm (Figure 5.17), which 

corresponds to 1/3 of the length of the caisson model to be used in the sliding test and measuring 

the forces. Such reduction is done to better comply with the measurement instruments' load-rated 

capacity. The sampling rate of the forces was of 0.001 second (1kHz). 

The model is made of wood, and a load sensor is attached to its upper face. A gap of 1cm between 

the model and the flume bottom is left since the direct location on the bottom leads to error 

measurements by the sensor. The six components of the translational force (Fxyz) and the moment 

of force (Mxyz) are detected by the strain gauge, although only the Fx component in the direction 

of the impulsive wave is representative in this study. According to the supplier, the built-in 

transducer and digital processing make it less susceptible to noise and enable compact 

measurement. However, another factor is that direct contact with the impulsive wave interrupts 

the measurement. 
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Figure 5.17. Caisson model used in the wave force test. 

The natural frequency of the structure is initially determined in dry conditions (without water in 

the flume) by a simple bump test. The caisson is gently struck with a hammer in the direction of 

the wave, and the sensor measures the impact forces, which are later used to create time histories. 

A Fast Fourier Transform (FFT) analysis is applied to the time series, and the corresponding 

spectral representation is extracted. An illustrative example of the results related to the rocking 

motion of the caisson subject to the impact is given in Figure 5.18, showing the time series (left) 

and the corresponding spectral representation. 

  

Figure 5.18. Time series (left) and power spectral density for hammer exciting source. 
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Two resonance peaks correspond to two modes of natural frequency; a well-defined peak is seen 

at 28 Hz, taking this value as the natural frequency of the structure to analyze the wave-induced 

vibration response. 

The figure below shows an example of the time series of the wave force acting on the wall under 

wet conditions (wave flume with 0.4m of water depth). Two defined peaks are seen at 22Hz and 

60Hz,  related to the structural mode of the wave-induced vibration responses and the component 

of the oscillatory frequency alternating current in supplied from outlet, respectively. For all the 

measurements, the time series is shortly interrupted for 0.2 seconds when the overtopping water 

reaches the sensor. This happens after the impulsive peak; thus, it doesn’t affect the measurement 

of the maximum force. Considering the structure's natural frequencies, the time series of the 

wave forces are denoised from where a maximum value is obtained, 48N, the maximum wave 

force Fmax. This value is for the mock caisson with a 22cm length; thus, the maximum value in 

the figure is then extrapolated to the full length of the caisson (66cm) as shown in Table 5-7. 

  

Figure 5.19. Time series (left) and power spectral density for impulsive wave exciting source. 

 

 

Table 5-7. Model and force characteristics from the experiments. 
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Characteristics Symbol and Units Quantity 

Frictional coefficient fs 0.37 

Caisson mass M    [kg] 113  

Caisson mass in water Mw   [kg] 79.2 

Structure weight in water W = (M-Mw)*g    [N] 331 

Static Frictional Force Fs = fsW    [N] 123  

Maximum wave force Fmax   [N] 144 

Magnitude wave force α = (Fmax - Fs )/ Fs 0.17 

Force rising and declining time t1, t2  [s] 0.7s, 0.3s 

The impact horizontal forces over the vertical face measured during the physical model test are 

lower when compared with values from some methods for predicting wave impact forces on 

vertical breakwaters (Allsop and Vicinanza, 1996) (British Standard, 2000) presented in Chapter 

2 of this study. For example, using the recommendation from British Standard to a water depth 

of 0.4m, the impact force should be around 67 N for 0.1m of wave height, representing over 

40 % of our measured value, and 48N for 0.09m matching the measured force but not reaching 

the wave height. It is important to notice that most of these values are for preliminary designs, 

have empirical values, most of them obtained from large-scale or prototype experiments, and are 

focused on actual structure dimensions. Thus, the scale factor plays an important role when 

comparing with these prediction methods.  

Based on the model characteristics and its static frictional force, the rising time related to the 

sliding (the time from when the caisson starts moving because the wave force is higher than the 

frictional static force to the moment when the maximum wave force is achieved) is about 0.005s. 

Taking into account the scale of the experiments, a 0.0025s  would be an estimated value; 

however, all impulsive wave characteristics are not necessarily scalable. The magnitude of the 
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wave force is 0.17. Furthermore, these two parameters are strictly bound to each other for 

physical reasons and thus should not be assumed to be independent. 

 

5.4 SLIDING TEST 

The main objective of the physical experiments is to determine the displacement of the caisson 

with the different plate arrangements. Thus, a sliding test is done after selecting the impulsive 

wave set-up. 

5.4.1 Procedure 

The structure model: a box of 300x660x500mm made of plexiglass filled with coarse white sand 

is located in the flume at 10.25m of the wavemaker board with its larger dimension parallelly 

facing the board. A 2cm gap is left at each side to add the beams sustaining the horizontal plates 

and to avoid the silicone-like bottom-wall joints of the flume that can affect the sliding due to 

different friction factors. 

Initial test runs of the impulsive waves are done to ensure the structure's displacement and adjust 

the structure's mass through the incorporation or removal of the fill material for a stable sliding, 

proceeding to the sliding tests for each case. A three- and five-time average is taken from each 

test's results, dismissing the cases where rotation or no movement is seen.  

One of the problems encountered when performing tests in the wave tank was the reflection 

process going on between the metallic generation board and the caisson. Thus, a continuous 

wave cycle was not followed, and a one-by-one concentrated wave was generated with a gap of 

5 minutes to allow the surface stabilization. On occasions, that time was increased due to the 

repositioning of the caisson during the sliding test. 



148 

 

 

Video images are recorded during each test to obtain the displacement of the structure. The video 

image processing was done using Dipp-Motion V from Digital Image Technology (DITECT). It 

is a 2D motion analysis software based on normalized cross-correlation, binarization of 

grayscale, HLS color (hue, saturation, and lightness), and checker-marker tracking. More 

information can be found in the technical documentation on the official website of DITECT 

Corporation. 

The sliding experiment was repeated with the same parameters: 0.4m water depth, 0.1m 

maximum wave height, 1s wave period, and 0.5s rising time in two locations at x=10.25m and 

x=9.25m, ‘Experimental 1’ and ‘Experimental 2’, respectively. In the former location, only the 

plate length influence was tested; while in the latter, the submersion plate was added to the 

testing. 

5.4.2 Results 

Plate length 

Table 5-8. Location of caisson with a plate at the surface at the beginning (ti) and end (tf) of the 

motion. shows screenshots of representative videos for the first sliding test of the caisson with 

rear plates at the surface. For this case, the ratios plate length to water depth l/h = 0, 0.5, 0.75, 1  

are tested corresponding to plate lengths l = 0, 20cm, 30cm and 40 cm, respectively. The ratio 

l/h=0.25 was initially dismissed in this test since it had a small influence on the analytical 

analysis. The initial and final positions can be seen in the second and third rows. From the visual 

analysis, it is already evident the sliding reduction is higher for the cases HS0_PL20 (l/h = 0.5) 

and HS0_PL30 (l/h = 0.75) when compared with HS0_PL20 (l/h = 0). The time series of the 

caisson sliding for each ratio l/h plate are gathered in Figure 5.23. A correlation adjustment has 

been made to the time series since they are collected from videos manually taken and the initial 
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time for each recording was not necessarily the same.  Correlation was made taken the beginning 

of the displacement.  

Table 5-8. Location of caisson with a plate at the surface at the beginning (ti) and end (tf) of 

the motion. Plate length:0,0.2,0.3,0.4m 

 Case: HS0_PL0 

Plate length = 0m 

Case: HS0_PL20 

Plate length = 0.2m 

Case: HS0_PL30 

Plate length = 0.3m 

Case: HS0_PL40 

Plate length = 0.4m 

ti 

    

tf 

    

 

 

Figure 5.20. Time series of the caisson sliding with different plate lengths ((Experimental 1) 

All the plate lengths led to a reduction of the maximum displacement. It is also evident that the 

lower values are related to the plate length l = 0.75h; the case with l = 0.5h also has a low 

displacement compared to the non-plate case. While the one with the longest tested plate (l = h) 
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has larger sliding than the l = 0.5h and l = 0.75h, the maximum sliding is actually closer to the 

regular caisson. The measurements of displacement and the estimated velocity related to it are 

shown in Figure 5.21. The 20 cm and 30 cm-plate caissons have slower movement under the 

impact of the impulsive wave: the sliding time-lapse is lower, and the maximum velocities are 

smaller than those from the no-plate and 40 cm-plate caissons. This behavior would translate to 

more stable caisson motions.  

   

Figure 5.21. Time series of the caisson sliding and velocity for different  l/h (Experimental 1) 

 

Figure 5.21 displays the final displacement, i.e., from the start to the end of the motion. However, 

the maximum sliding does not always necessarily match with the final sliding in vertical 
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caissons, as shown in Figure 5.22, where the time series for a slightly lower-mass caisson during 

the second test was recorded. The caisson moves in the direction of the wave reaching a 

maximum point, and after that, it moves slightly in the opposite direction until it stops, which is 

the latest sliding. This is due to the dynamic response of the structure and the wave overtopping, 

which leads to hydrodynamic forces acting on the back wall and pushing the structure in the 

seaside direction.  

 

Figure 5.22. Sliding time series for a lower caisson mass. (Experimental 2) 

 

A caisson mass was considered to avoid such conditions for the plate length and submersion 

tests. This does not yield to rocking movement in the current set-up. Still, in conditions with a 

rubble foundation, the back and forward movements affect the arrangement of the foundation 

particles, eventually leading to faster instabilities and other types of failure, such as foundation 

failures. 

Sliding reduction based on the final positioning of the caisson is compiled below for the two 

experimental tests. As expected, in both cases (Experimental 1 and 2), all the plate lengths led 

to a reduction in the sliding. For the first case, the sliding reduces with increments of the plate 

length up to 30 cm (l/h = 0.75) and from there has a drastic change, increasing the sliding for the 

case 40 cm ( l/h = 1), although not reaching the displacement by the non-plate caisson (l/h = 0). 
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The second test shows the same reduction behavior, but before the drop in sliding reduction for 

the 40 cm plate (l/h = 0), there is a slight 1% reduction from l/h = 0.5 and 0.75. That differentiates 

from the first test with a 7% increment between l/h = 0.5 and 0.75 cases.  

 

Figure 5.23. Final sliding of caisson according to plate length variation. 

 

Furthermore, when the measured incident force and experimental geometric characteristics are 

used as input in the analytical model, the sliding reduction due to the plate length is represented 

as the blue points. The behavior is similar with increments up to l/h = 0.75 and dropped reduction 

for l/h = 1. However, the analytical model mostly shows smaller values than the experiments. 

This is related in principle to the non-linearity of the physical phenomenon and the 

hydrodynamic response of the physical model itself, which includes factors that are impossible 

to cover entirely by the analytical model, including trapped air, etc. 

Plate submersion. 

The 20 cm plate was selected for the plate submersion analysis based on the results of the plate 

length analysis both from the analytical model and the experimental test. Both 20 and 30-cm 

plate caisson had similar behavior, with the latter slightly higher than the former. Thus, the 

shorter plate is selected from an economic and design viewpoint. Table 5-9 shows screenshots 
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of representative videos for the first sliding test of the caisson with rear plates at the surface. For 

this case, the ratios of submersion depth to water depth hs/h = 0, 0.2, 0.25, 0.5 and 0.75  are 

tested corresponding to plate length l = 20cm.  

Table 5-9. Location of caisson with a submerged plate at the beginning (ti) and end (tf) of 

the motion. Plate length:0.2m 

 
Case: HS0_PL20 

Depth = 0m 

Case: HS08_PL20 

Case: HS10_PL20 

Depth = 0.08, 0.1m 

Case: HS20_PL20 

Depth = 0.2m 

Case: HS30_PL20 

Depth = 0.3m 

ti 

    

tf 

    

 

The values of final displacements for each relationship hs/h are gathered in Figure 5.24. In 

general, the sliding reduction gets affected when the plate is submerged, turning from the positive 

influence of the plate at the surface to a negative impact. Thus, submerged plates lead to an 

increment in the caisson sliding.  

The test outputs for plates with 20 cm length (PL20) show that the sliding has a maximum peak 

the ratio of submersion depth to water depth hs/h = 0.25 and gets linearly reduced in the range 

for hs/h < 0.25. A drop on the sliding occurs for hs/h =0.5 to later increase at hs/h = 0.75 again 

and decrease until the plate is at the bottom, which is the no-plate condition. The 30 cm plate 
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(PL30) is examined and added to the graph below to check the previous variable behavior. The 

PL30 test confirmed the behavior for hs/h < 0.25, but for hs/h =0.5, a larger displacement is seen. 

It is valid to point out that it is more compatible with what to expect from the phenomenon. 

 

Figure 5.24. Final sliding of caisson according to plate length variation. 

 

 

5.5 CHAPTER CONCLUSIONS 

During the experimental investigation of breakwater caissons with rear plates, an impulsive wave 

was satisfactorily generated by using the method in Aoki and Koga (2021). The target waveform 

is reached around 25cm after the target location. The amplitude of the wave maker motion is 

reduced in the signal transmission. Still, according to the analysis in the numerical wave flume, 

this is not the reason for the location displacement. The numerical model replicates waveform 

and location from the analytical model but slightly overestimates the wave height. When 

applying the method, not for a replica of an actual wave but for models with variations for testing 

rising times, it is recommended to previously do perform an analysis in a numerical wave flume, 

adjusting the relationship of wave height and rising time to prevent waveform instabilities.  
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The addition of the rear plate with lengths up to water depth value positively reduced the sliding 

when located at the surface. The sliding reduction went as far as 39% for a plate length l=0.75h. 

Longer plates led to smaller sliding as far as the plate length was smaller than 2/3 of the water 

depth. After that point, the sliding reduction drastically diminished. The sliding values for plate 

length l=0.5h and l=0.75h are similar, although the former is higher than the latter; thus, the 

shorter of those two might be better used for practical use.  Furthermore, the submersion of the 

plate, contrary to the length, had a negative effect on the sliding. All cases of plate submersion 

hs>0.1h led to larger sliding than no-plate caisson cases. Both behaviors, regarding the influence 

of plate length and submersion, correspond to those from the application of the analytical study. 

 

 

 



156 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 6. CONCLUSIONS 



157 

 

OUTLINE 

This chapter summarizes the conclusions of this study based on the findings in Chapter 4  and 

Chapter 5, which are related to the analytical and experimental models for the investigation of 

caisson breakwaters, their dynamic response, and their sliding against impulsive waves, 

respectively. 

 

CONCLUSIONS OF THE ANALYTICAL MODEL 

As part of the basic research to enhance the accuracy of caisson motion models, an improved 

sliding model for regular caissons based on the application of the wavemaker theory and 

considering the hydrodynamic uplift forces added to the system by the plates was developed, 

providing a better assessment of the effect of this element on the caisson sliding reduction. The 

model includes using parameters related to the damping to account for the energy dissipation 

due to the presence of the plate. The caisson dynamics are modeled using a time-step numerical 

method to solve the equations of motion for a rigid body numerically.  

A methodology is established and applied to superficial and submerged single and multiple 

plates, simulating the dynamic behavior of the new caisson shapes to analyze later the effect of 

the plate length and submersion depth on the overall sliding of the structure, which proved to be, 

along the methods and techniques within it, more practical, accessible and faster. The Boundary-

Point Selection Method (BPSM) was applied with excellent results in finding solutions for 

boundary problems related to breakwaters with horizontal plates. Its application simplifies 

formulations and reduces programming and computing time. However, it is limited to geometries 

where the fluid regions have constant water depth. Additionally, aspects related to applying the 
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Boundary Point Selection method were highlighted, such as the increment of selection points for 

submersion depths smaller than 25% of water depth to avoid unstable or error results. 

Following the main findings regarding the pressures: a) Reasonable distributions according to 

the boundary conditions were obtained b) The horizontal plates affect the pressure distribution 

on the caisson, mostly bringing more uniform distributions at the wall for the case of the single 

plate and at the plates for the twin-plate case; as well as higher pressure values, especially for 

the double plate, although with more variations on the wall distribution c) Regarding the plate 

length, the role of the plate as a pressure equalizer is confirmed: when plates’ length tends to be 

equal to the water depth, the plate starts functioning as a pressure equalizer. c) The ratio of the 

imaginary to the real part of the pressure complex values varies according to the different plate 

arrangements; thus, its influence should not be dismissed when analyzing annexation elements 

such as horizontal plates since their geometry resists the forces acting in that direction.  

The analysis results confirmed the critical influence of uplift forces on the sliding calculations, 

as well as the importance of including the memory-effect function on it. Excluding the first one 

leads to overestimating the horizontal plate's positive influence in reducing the sliding, especially 

for large l/h ratios. While dismissing the latter, it overestimates the maximum sliding distance. 

 The double plate analysis confirmed the increments of the added mass; however, it also showed 

a drastic reduction of the memory effect, which led to an increase in sliding. This confirmed that 

an increase in the added mass does not lead to smaller displacement and that the memory-effect 

function plays an important role in the sliding simulation under impulsive wave loads, which has 

been underestimated. Additionally, a relation in which shapes with larger damping coefficients 

and added mass increments induce better structure performance. Furthermore, for a preliminary 

prediction of better performance, i.e., a reduction of the sliding distances, analysis based only on 

the Added Mass is not enough; instead, also searching for sections with larger values of memory 

effect focusing on larger values of R*(t=0) should be included. 
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A general conclusion from the preceding findings is that the analytical model for caissons with 

plates should not be simplified up to the point of the conventional models used for regular 

caissons since they underestimate the sliding of this structure and lead to fictional preliminary 

assumptions of great responses.  

CONCLUSIONS OF THE EXPERIMENTAL MODEL 

Small-scale laboratory experiments were carried out for the impulsive wave generation, forces, 

and the motion of a caisson, both regular and with horizontal rear plates. A numerical calculation 

in CADMAS-SURF was also conducted to investigate the reproducibility of the analytical 

method and the experimental wave generation. The influence of the plates on the sliding of the 

caisson during the physical tests was discussed. 

During the experimental investigation, impulsive waves were satisfactorily generated by using 

the Aoki and Koga (2021) method. The target waveform was reached around 25cm after the 

target location from the analytical model. The amplitude of the wave maker motion was reduced 

in the signal transmission, but according to an analysis of a numerical wave flume, that was not 

the reason for the location displacement. The numerical model replicates wave form and location 

using the analytical model but slightly overestimates the wave height. When applying the 

method, not for a replica of an actual wave but for models with variations for testing rising times, 

it is recommended to previously do perform an analysis in a numerical wave flume, adjusting 

the relationship of wave height and rising time to prevent waveform instabilities. Furthermore, 

scale effects probed to be limitations in the physical modeling because it was impossible to 

satisfy all scaling parameters. At the same time, the numerical model, although not directly 

affected by it, had some parameters introduced indirectly through modeling assumptions but with 

less influence on the final output.  

Finally, the addition of the rear plate with lengths up to the water depth value positively reduced 



160 

 

 

the sliding when located at the surface. Longer plates led to smaller sliding as far as the plate 

length was smaller than 2/3 of the water depth. After that point, the sliding reduction drastically 

diminished. The sliding values for plate lengths in the range  l=0.5h to l=0.75h were similar, 

although the former was higher than the latter; thus, from practical use, the shorter of those two 

might be better used.  Furthermore, the submersion of the plate, contrary to the length, had a 

negative effect on the sliding, leading to larger sliding than no-plate caisson cases.  

 

LIMITATIONS AND RECOMMENDATIONS 

The presented analytical model can be applied to determine the hydrodynamic parameters and 

sliding of multiple shapes in other to preliminary determine best performance. However, the use 

of the boundary point selection method for the velocity potential calculation is restricted to 

shapes where the fluid in each region has constant water depth. For geometries not complying 

with this condition, the velocity potential can be calculated with the conventional approach; and 

follow the rest of the present methodology to determine the hydrodynamic parameters and 

sliding. 

The experimental analysis showed that the analytical model was correct predicting the best 

shapes. However, the quantitative influence of the plate on the sliding reduction was different 

from the experiments and the analytical model with the experimental parameters when compared 

with the initial analytical model. This is mainly due to the differences in the parameters, 

properties and characteristics: mainly the friction coefficients, wave force rising time and 

magnitude. A sensitive analysis of the multiple combinations of the variability of such 

parameters is not included in this part of the study. Proceeding with it is expected to provide a 

better understanding of the quantitative effect of the plate based on such parameter’s variability. 
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Additionally, the experimental sliding tests at this scale within a flume led to an adjustment of 

materials and reduced workability. Carrying similar experiments in a basin will increase the 

workability for the repositioning of the caisson, the addition and change of plates u other 

annexation elements, as well as location variation of measurement devices. It would also allow 

to utilize materials with properties closer to the prototypes: concrete caissons, concrete bottoms 

that are not damaged by the friction with the caisson, sand or gravel over it during the sliding.  

The scale in the physical experimental was exact for the caisson dimensions, not the case for the 

density since the material were different as well as further  mass reduction to secure a 

representative sliding  under a wave with limited overtopping. to be measured with the current 

camera (providing  30 frames per second). A further reduction of the scale is not recommendable 

since, although the caisson dimensions can be directly scalable and reduced, scaling all the wave 

parameters is practically impossible, and  can introduce larger errors. Larger scales, i.e., larger 

models would lead to results closer to real wave and structure performance. 

The analytical model did not consider wave overtopping; thus, the generated wave was designed 

for a maximum wave elevation equal to the caisson freeboard. However, some overtopping was 

observed during the physical test, a representation of the natural behavior associated to impulsive 

waves impacting structures. Including the overtopping in future models will be a better 

representation of the phenomena. It will also contribute to provide insights on the influence of 

the plate on other process such as foundation’s erosion that can occur in the harborside of the 

caisson due to such overtopping, leading to other failures. From the visual inspection during the 

physical tests, a positive impact can be expected since the possible erosion will be produced far 

from the back toe of the caisson.  
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 GENERALS 

The analytical models reproduce the behavior shown in the experiments well. They can be used 

in determining the sliding and hydrodynamic coefficients, such as added mass and damping 

coefficient, of the different shapes of caissons as far as the fluid regions formed by such geometry 

have constant water depth. The models allow a preliminary fast estimation of caisson geometries 

leading to better performance under wave impact and the reduction of extended resourceful 

physical experiments to the best shapes. Best approximations of the actual behavior will be 

obtained from the model by utilizing accurate input data, especially those related to the wave 

characteristics. 

Physical models also performed according to the central hypothesis of the improved performance 

due to the fluid constriction. In the physical test, only the sliding and external forces were 

measured; thus, it is recommended to extend the measurements to pressure distributions and 

reaction forces, improving the phenomena' analysis and utilizing more accurate input data for 

the analytical models.  

 Besides particular differences due to the approaches used and the limitations of each study, both 

concluded that horizontal plates affect the sliding of caisson breakwaters. The impact is positive 

for plates located at the surface since sliding reductions are seen for these arrangements, while 

the submersion negatively impacts the parameter. On the other hand, increments of the plate 

length also had a good effect, decreasing the displacement of the caisson under the same 

conditions and with an optimal plate length between half and two-thirds of the water depth. 

Furthermore, the positive influence of the plate length started to decrease for plates longer than 

two-thirds of the water depth. 
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