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ABSTRACT

Investigating the performance of breakwaters during the failure process has recently been
mainly emphasized inside Japan. Performance can be evaluated through reliability design
methods based on the deformation level using parameters such as sliding. Although it has not
yet been completely applied to actual design due to the difficulties of considering all design
conditions, it is expected to become one of the essential design methodologies in the future.
Caisson breakwaters are among the most commonly constructed breakwaters, especially in
Japan. Sliding is their most frequent failure mode, and even though it is not allowed under
conventional design, caissons can maintain their functionality even if a limited amount of it
occurs. Breakwater caissons' performance during the failure process was investigated in this
study by developing a reliable design method to evaluate the effectiveness of introducing
horizontal plates to reduce the caissons' sliding motion. Such structure proposal was based on
the hypothesis that a horizontal plate located at the harborside could increase the water
constriction during the movement of the caisson, increasing the hydrodynamic response through
parameters such as the added mass and, consequently, decreasing the expected sliding distance
and expanding the structure's functionality.

Chapter 1 of this study provided a general background on vertical breakwaters along with the
problem statement, objectives, and research approach.

Chapter 2 examined documented vertical breakwater failures due to impulsive pressures and
reviewed and summarized fundamental and recent studies involving impulsive pressures from a
caisson design viewpoint, including prediction methods to estimate the maximum impact load
and existing models for wave loading and dynamics of caisson breakwaters.

Chapter 3 described the derivation of a model for caissons with horizontal plates (non-regular
caissons) and the methodology to estimate the hydrodynamic coefficients of the dynamic

response and the sliding for these structures.



Chapter 4 discussed the application of the models derived in Chapter 3. The influence of the
plate's geometric characteristics and arrangements on the pressures, the hydrodynamic
parameters added mass (constant added mass) and damping coefficient (memory effect
function), and the caisson's sliding were the objects of discussion. Assessments of the wave's
rising time and magnitude were also performed, showing their strong influence on the caisson
sliding.

Chapter 5 described the physical model tests for the impulsive wave generation, forces, and
motions of the caissons, both regular and with horizontal rear plates. A numerical calculation
was also conducted to investigate the reproducibility of the analytical method and the
experimental wave generation. The influence of the plates on the caisson's sliding during
physical tests was discussed, as well as the fit of the analytical models from further analysis of
the resultant data from the wave-induced caisson sliding tests.

The study concluded that the current models for regular caissons sliding should not be applied
to caissons with horizontal plates. The proposed model led to a good representation of the
physical phenomenon, and although an increment in the added mass was seen, its influence on
the sliding was reduced by the effect of the damping parameters. Furthermore, the horizontal
plates were found to affect the sliding of the caisson breakwaters. Their impact was positive for
plates at the surface, leading to sliding reductions, while the submersion negatively affected such
parameters. On the other hand, increments of the plate length also had a good effect, decreasing
the displacement of the caisson under the same conditions. However, their positive influence
decreased for plates over two-thirds of the water depth. These and other findings were
summarized in Chapter 6, responding to the research questions and providing recommendations

for future investigations on the topic.
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Chapter 1. INTRODUCTION



1.1 BACKGROUND

Climate change is leading to an increase in the frequency and intensity of natural disasters and
sea-level elevation, which threatens the stability of coastal protection structures. Furthermore,
recent disasters have exposed the catastrophic damage to the land and port facilities that the
destruction of such systems can cause. This fact implies that the loss of the structure's
functionality influences the extent of damage in the area to be protected. Hence, evaluating the
degree of functional deterioration of the structure at the time of failure (“performance at failure™)
is becoming essential.

Among coastal protection structures, vertical breakwaters have been widely utilized. Protecting
the coastline, ports, and harbors from wave impacts, as well as beaches and navigation channels
from sediment transport, are their most essential functions.
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Figure 1.1. Idealized typical section of a vertical breakwater. (Goda, 1985)

There are different types of breakwaters. Vertical breakwaters, in particular, are generally
composed of a superstructure usually formed by a deck and a parapet wall meant to reduce wave
overtopping, a substructure built out of caissons, and a low rubble mound foundation acting as a
buffer between the caisson and the seabed. An idealized typical section is shown in Figure 1.1,
while a distinction according to the ratio of mound height to water depth h, * (Allsop et al.,
1999) is resumed in Table 1-1. Caissons are open reinforced concrete boxes, and the larger ones

usually have partition walls, dividing them into inner cells to reduce the span length of the



external walls. The inner cells are filled with different materials such as sand, rubble and/or
concrete, which converts the caisson breakwaters into massive structures able to withstand and

reflect significant waves actions.

Table 1-1. Distinction of breakwater type (Allsop et al., 1999)

Composite Breakwater Rubble Mound Breakwater

Low Mound High Mound  With Crown Walls

Item Vertical Breakwater

Parameter h < 0.3 0.3 <hi <06 06<hi<09 hi > 0.9

In Japan, thanks to the large inventory of such structures over the years, sliding has been proved
as the prominent failure mode related to breakwater damage (Goda and Takagi, 2000). Also, due
to a combination of increases in sea level and wave height, sliding distances of caisson
breakwaters are expected to become five times greater than at present, according to Takagi et al.
(2011). Caisson (upright part of the breakwaters) can maintain their functionality even if a

limited amount of sliding occurs.

Table 1-2. Occurrence frequency of failure types of caisson breakwaters
(Goda and Takagi, 2000)

Most Failure type
Frequency
1 Sliding of the caisson.
2 Displacement of concrete blocks and large rubble stones armoring a

rubble foundation mound

3 Breakage and displacement of armor units in the energy-dissipating
mound in front of a caisson.

4 Rupture of front walls and other damage on concrete sections of a
caisson.
5 Failure in the foundation and subsoil




Sliding is not generally allowed under traditional breakwater design. Its stability has been
conventionally judged using safety factors, balancing external and resisting forces. However,
deformation parameters such as the sliding distance directly indicate their stability. Some
researchers have been proposing "deformation-based reliability” design methods, such as Aoki
et al. (1995). In (Shimosako and Takahashi, 2000), a Level 3 Reliability design method (three
levels of design methods for caisson breakwaters depending on the level of probabilistic concepts
are employed) is also proposed. Furthermore, from such a viewpoint, a structure with the same
failure limit may have different failure performance; thus, developing new structural shapes and
devices is also pursued to improve performance at the time of failure, i.e., extending
functionality.

From Figure 1.2 and Figure 1.3, the direct relation between breakwaters' loss of functionality
and damage to the land area can be easily seen. The images correspond to Kamaishi City and
Ofunato City in Iwate Prefecture, Japan. Those cities were affected by the 2011 Great East Japan
Tsunami.

In Figure 1.2, the white shapes represent the caissons' location after the tsunami. In the case of
Kamaishi City, some caissons from the north breakwater were displaced. The initial site can be
easily defined since other caissons remained there even after certain displacement. In the center,
where a straight white shape is displayed, caissons were not much affected. Similar behavior to
that of the north but less destructive is also observed in the south. However, the discontinued
black line in the Ofunato City image represents the initial location of the breakwater's caissons,
showing that all caissons were displaced from their original position. That has a direct influence
on the land damage seen in Figure 1.3. Among other factors, the tsunami impact on the land area

was reduced where caissons remained partly or mostly in closer locations.
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Figure 1.2. Breakwater damage in Kamaishi City (above) and Ofunato City (below) in Iwate
Prefecture, Japan. June 2011. (Tomita et al.,2012)

Figure 1.3. Damage from the tsunami inundation in Kamaishi City with a maximum runup
height of 11.7m (left) and Ofunato City with a maximum runup height of 10.9m (right) June
2011. (A. Suppasri et al.,2013)

The January 2024 earthquake and tsunami affecting the Noto peninsula in the southern part of
the Sea of Japan and another earthquake a few months later in June at the same location remind
us that the primary source of tsunamis and impulsive waves striking are more severe and

frequent.



Figure 1.4. Aerial view of lida Port before (left) and after (right) the damage to the eastern
breakwater. Red circles indicate the position of the loss of the east breakwater (Sato T., 2024).

lida Port in Suzu City was hit hard by the January earthquake measuring six on the Japanese
seismic intensity scale. According to some reports, the eastern breakwater suffered noticeable
damage due to the tsunami, as seen in Figure 1.4., leading to 4m wave heights that reached parts

of the city at the time of the disaster (Nikkei Crosstech, 2024).

Figure 1.5. Damage to the east breakwater in lida Port. Caisson collapsed and was submerged
in the water. (Sato T., 2024).

In the center part, sections of caissons collapsed or were submerged in water, and wave-
dissipating blocks were lost at the tip. Additionally, preliminary studies point out the breakwater
damage was caused by either large waves overtopping or sliding due to the strong waves' impact.

Interestingly, the last maintenance of the damaged areas was between 1980 and 1987, while the



zones where more recent maintenance back in 2016 was performed showed almost no damage.
Even though no tsunami warning was issued during the June event, a slight change in sea levels
was detected. Reconstruction works should consider the maintenance and optimization of the

current designs.

1.2 PROBLEM DEFINITION

Analysis of caisson breakwater failures, mainly in Japan and Europe (Takahashi et al., 2010),
identified caisson sliding due to impulsive wave pressure as one of the most critical failure
modes. On the other hand, the caisson’s shape is directly related to the dynamics of the
breakwater and its sliding distance against wave loads. Nevertheless, despite several theoretical
models for the dynamics of caisson breakwater having been developed using different
approaches, such as in (Aoki and Okube, 1995), (Shimosako et al., 2006), (Cuomo et al., 2011),
and (Cozzutto et al.,2019), most of them are aimed at regular caissons. When new shapes need
to be analyzed, the caisson dynamics are usually examined by physical tests. On this ground,
modeling the dynamic behavior of non-regular caisson breakwaters would optimize the check
for new structures before reaching experimental stages. That is the case of the rear horizontal
plates, which were first analyzed by Yoshihara (2019) under the hypothesis that the plate would
increase the inertial resistance of the structure. The plate addition showed a reduction of the
sliding distance of around 20%, but it employed the same model used for regular caissons

accounting only for the horizontal reaction forces.

Considering as much as possible the number of conditions is indispensable in modeling the
phenomena accurately. For example, vertical hydrodynamic forces (uplift forces) might reduce
the frictional resistant force, increasing sliding. Thus, the non-inclusion of the vertical force
might lead to an overestimation of the positive influence of the horizontal plate on the caisson

sliding reduction.



1.3 RESEARCH QUESTIONS

However, can the current simplified sliding models of regular caissons be applied when
introducing new shapes, such as caissons with rear horizontal plates (non-regular caissons)? If
the inertial resistance of the structure indeed increases due to the plates, what happens to the
hydrodynamic parameters, and how do they affect the sliding simulation? Additionally, to what
extent do the rear horizontal plates affect the total sliding of caissons, and what are the
particularities for each analysis approach (analytical, numerical, and experimental) regarding
such shapes?

The present research intends to contribute to the study of the caisson breakwaters' performance
during the failure process by developing a reliable design method and describing the
effectiveness of introducing horizontal plates to reduce the sliding motion of caissons. How does
the introduction of vertical hydrodynamic force influence the effectiveness of the plate, and
which plate length and submersion might be more efficient and practical to utilize, or if it is not
needed at all, are the main questions to answer in this study. Identifying improvements and future
research opportunities in caisson shape optimization will also expand the development of more
tenacious structures, reduce the amount of sliding and the loss of functionality as long as
possible, and achieve the final purpose of reducing damage to the coastal zones.

To respond to the above, a study on the effect of horizontal plates on the dynamic response and

sliding caisson breakwaters is carried out and documented in this dissertation.



1.4 RESEARCH APPROACH

The present research centers on the sliding distance as a direct deformation parameter of the
caisson's stability performance. As part of the fundamental research to enhance the accuracy of
caisson motion models, an improved sliding model for regular caissons based on the application
of the wavemaker theory and considering the uplift forces added to the system by the plates are
developed, expecting to provide a better assessment of the effect of this element on the caisson
sliding reduction. The model also includes using parameters related to the damping to account
for the energy dissipation due to the presence of the plate. A methodology is established and
applied to superficial and submerged single and multiple plates, simulating the dynamic behavior
of the new caisson shapes to analyze later the effect of the plate length and submersion depth on
the overall sliding of the structure. Furthermore, methods for a more practical, accessible, and
faster analysis are applied to solve the boundary problems and estimate the hydrodynamic
parameters since various shape variations might be studied in the future. Most of the models'
development and application are computed in MATLAB.

Additionally, small-scale physical experiments are carried out for the regular and non-regular
caisson shapes to confirm the response of the structures against impulsive waves generated by
an experimentally first-tested method for generating concentrated waves at targeted locations.
The sliding for each case is measured and compared in order to define the effect on the sliding
of the different configurations. The best designs are expected to make the structure more
tenacious, reduce the amount of sliding and the loss of functionality as much and long as
possible, and achieve the final purpose of reducing the damage to the coastal zones.

The general description of the dissertation structure is as follows:

Chapter 2 examines actual failures of breakwaters due to impulsive pressures, reviews studies

involving impulsive pressures from a caisson design viewpoint, their generation and estimation



formulas, and past research on time-series load and sliding models for the evaluation of caissons’
motion.

Chapter 3 describes the derivation of a model for caissons with horizontal plates (non-regular
caissons) and the methodology to estimate the hydrodynamic coefficients of the dynamic
response and the sliding for these structures.

Chapter 4 discusses the application of the models derived in Chapter 3. The influence of the plate
geometric characteristics and arrangements on the pressures, the hydrodynamic parameters
added mass (constant added mass) and damping coefficient (memory effect function), as well as
the sliding of the caisson, are the objects of discussion. A discussion of the effect of the wave
characteristics, such as rising time and magnitude, on the sliding is also included.

Chapter 5 describes the physical model tests for the impulsive wave generation, forces and
motions of the caissons, both regular and with horizontal rear plates. Numerical calculations are
also conducted to investigate the reproducibility of the analytical method and the experimental
wave generation. The influence of the plates on the sliding of the caisson during the physical
tests is discussed, as well as the fit of the analytical models from further analysis of the resultant
data from the wave-induced caisson sliding tests.

Chapter 6 summarizes the conclusions of the study, responding to the objectives and research

questions and providing recommendation points for future investigations on the topic.
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Chapter 2. LITERATURE REVIEW



OUTLINE

For the development of this study, fundamental and more recent research related to caisson
breakwater design is reviewed. Topics such as failure modes, documented vertical breakwater
failures, and existing models for dynamics of caisson breakwater and for the wave loads leading

to their failure are resumed in this chapter.

2.1 CAISSON BREAKWATERS. FAILURES

Most of the research related to caisson breakwater dynamics under wave loading focuses on
observing damaged and failed structures. Surveying different cases allows for investigating the
dynamics of the caissons by analyzing large data sets of responses from actual structures under
natural physical phenomena.

As Takahashi et al. (2000) stated, the total length of Japanese breakwaters exceeds 800 km, with
the major ones being caisson breakwaters, half of which are ordinary composite type and the
other half mostly caisson breakwaters covered with wave-dissipating concrete blocks
(Takahashi, 2000). This makes Japan the country with more breakwaters of this type, which,
along with its tendency to be impacted by natural phenomena, leads to considerable accumulated
knowledge and collected data on the behavior of such structures. Figure 2.1 displays a correlation
of chains of main tsunami damage in caisson composite breakwaters (Raby et al., 2015) based
on the manual of the National Institute for Land and Infrastructure Management (NILIM, 2013)

of the Ministry of Land, Infrastructure, Transport and Tourism (MLIT) of Japan.
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Figure 2.1. Correlation of chains of main tsunami damage in caisson composite breakwaters
(Raby et al., 2015) based on (NILIM, 2013)

One of the most referred to research documenting the breakwater failures outside Japan is that

by Franco (1991,1994) and Oumeraci (1994), summarizing the Italian experience between 1993

and 1991. The later included an extensive compilation of cases in Japan. In all cases, the collapse

was found to be due to unexpected high wave impact loading, resulting from the underestimation

of the design conditions and the wave breaking at the limited depth at the toe of the structure.

Goda (1974) reported and analyzed multiple historical sliding-induced failures of vertical

caisson breakwaters in Japan. At a similar time, Takahashi et al. (1993, 1998, 2000) discussed

punctual caisson failures in 1973 and 1991 as well as results from an extensive field survey of

Japanese breakwaters, later summarizing the caisson wall failures in the period 1977-1997, and
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also reported mayor failures taking place between 1983 and 1991. Goda and Takagi (2000) also
summarized failure modes of vertical caisson breakwaters over several decades. After 2011,
many reports and dedicated research, such as the one about the world record breakwater in
Kamaishi by T. Arikawa et al.(2012). In most of the study and among other findings, the authors
confirmed impulsive breaking wave pressure to be the leading cause of damage for caisson
breakwaters, together with the collision of concrete blocks against the caisson walls.
Additionally, they identified sliding of caissons and structural failures due to impulsive wave
pressure as the most important failure modes for caisson breakwaters installed on a steep

foreshore and subject to breaking wave attack.

2.2 CAISSON SLIDING MODELS

The concept of expected sliding distance (ESD) was proposed by Ito, Fujishima, and Kitatani
(1966) in their research on the stability of breakwaters as the statistical value given as an average
of caisson sliding distances (horizontal displacement) during the service lifetime of the caisson.
However, the value itself was not estimated since assessing the wave pressure precisely at the
time was difficult, hence the sliding distance. It was not until the Goda wave pressure formula
(Goda,1974) and its amendments by Takahashi, Tanimoto and Shimosako (1993,1994b) that
researchers started proposing models that consider calculating the sliding distance.

In Japan, Goda (1994) suggested modeling the dynamics of a composite breakwater as that of a
rigid body suspended on a system of mass and dual springs for rotational and horizontal motions
and using the momentum theory of impulsive breaking wave forces to estimate the sliding
distance of the superstructure. Shimosako et al. (1994) presented a model for the caisson motion

represented by Eq. (2.1) where Ma is the added mass, Fr is the frictional resistance force Fr =
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MW* — U (u been the friction coefficient, W the caisson weight, and U the uplift), and Fp is the

force related sliding velocity including the wave-making resistance force.

(% +Ma)% =P —Fy—Fp @1

P represents horizontal wave force but establishes that the effective force producing caisson's
sliding, that is the shear force at the caisson bottom F+ should be used instead of P in order to
include the effect of dynamic response of caisson since, although the magnitude of impulsive
pressure intensity is large, the shear force is significantly reduced due to the caisson's dynamic
response. Furthermore, if wave pressure is not impulsive, the shear force equals the horizontal
wave force (Shimosako et al., 1994). The study uses a triangular wave thrust for the analysis
(wave loads models will be discussed later in the next section). The forces acting on the caisson

when the sliding occurs are represented in Figure 2.2.
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Figure 2.2. Forces acting on the caisson in sliding. Based on (Shimosako et al.,1994)

However, the simplified sliding model of Shimosako et al. (1994) assumed that the added mass

Ma and Fp are small enough to be neglected, consequently, utilizing the below expression.

(%) %= Fp—ul — uw' 2.2)
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Aoki and Okube (1995) presented an arrangement as in Eq. (2.3) where M is the added mass, N
is the damping coefficient and Fs is the frictional force. The model not only did account for the
damping in the model, but adopted Cummins's (1962) impulsive response to express the damping

in function of time R as in Eq. (2.4) and not as a unique coefficient.

(m + M)¥ + Nx = F(t) — F; (2.3)

(m + M) + [, R(t — 1)x(t)dt = F(t) — F; (2.4)

Takahashi et al. (1994, 1998) investigated the dynamic response and the sliding through FEM
models and presented a more sophisticated model accounting for non-linearities and evaluating
cumulative sliding of caissons, but it was found to be complicated and time-consuming (Cuomo
etal., 2011). Thus, Shimosako and Takahashi (1999) presented a simplified model for estimating
the distance of caisson sliding S validated with data from small-scale physical model tests. It
contemplates the effective caisson weight W, friction coefficient uq , characteristics of the
triangular wave thrust: duration tq and peak value Fxmax, and the uplift Fymax exerted upon the

caisson bottom (Shimosako and Takahashi, 1999).

S = tczi (Fx,max_Fy,max + lvtdW)3 (Fx,max = Fymax + #dW)

- 2
ugme W (Fx,max - Fy,max )

(2.5)

The mentioned method was included in the performance-based design (Shimosako and
Takahashi, 1999) and reliability design (Goda and Takagi, 2000; Kim and Takayama, 2003)
methods for caisson breakwaters.

Models for the dynamics of caisson breakwaters have continuously improved, trying to
reproduce more features of the caisson dynamics. Sliding, tilting, and more and better
representations of the interaction structure-foundation have been gradually included since the
middle of last century. Nevertheless, more comprehensive research has been focusing on sliding,

especially since the introduction of performance-based reliability design proposals based on the
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expected sliding distance of caissons. However, most of the sliding models did not allow for the
representation of the effect of the variation in time of the loading. Among those alternative
models, one of the first ones from Loginov (1962 and 1969) is included in the Russian guidelines
for evaluating the loadings and their effects on maritime structures and compiled in Marinski
and Oumeraci (1992). The model combines swaying and rotating motions of the caisson in two
rocking motions around two separate centers (located respectively above and below the center
of gravity of the caisson) and neglects the effect of damping (Cuomo et al., 2011).

Takahashi et al. (1994) used a full-dynamic FEM to account for it, but it was not implemented
since it was not suitable for the performance design (Cuomo et al., 2011). The simplified models
for the dynamic behavior of caisson breakwaters developed by Oumeraci et al.(1992) and
improved by Oumeraci and Kortenhaus (1994) attempted to quantify the relative importance of
the applied dynamic load and the dynamics (mass, stiffness and damping) of the breakwater
(including the superstructure, its foundation soil and the surrounding water) on the overall
dynamic response of the system as a whole. The equation of motion in the study is as in Eq.(2.6),
where a dot denotes differentiation with respect to time, M, C and K are, respectively, the mass,
the damping and the stiffness matrixes at two degrees of freedom. The vector u is composed of

the displacement along x, and the rocking é.

M.ii(t) + C.u(t) + K.u(t) = F(t) (2.6)

M included horizontal and rotational hydrodynamic mass, while the damping coefficients were
obtained experimentally by means of pendulum tests on the caisson breakwater model (Oumeraci
etal. 1992). Cuomo et al. (2011) used a non-linear 3D model based on Oumeraci and Kortenhaus
(1994) and included a coupling between the dynamic response and the bearing capacity of the
soil. The model also considered the horizontal and rotational hydrodynamic mass as part of M,
while damping and stiffness were determined by expressions related to the properties of the soil

foundation.
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2.3  WAVE IMPACT MODELS

As stated in the revision of caisson breakwater failures, various studies identified sliding of
caissons and structural failures due to impulsive wave pressure as the most important failure

modes for caisson breakwaters. Thus, such wave types are reviewed in the present section.

2.3.1 Impulsive loads

An impulsive pressure is exerted on a vertical wall when an incident wave begins to break in
front of the wall and collides with it, having the wavefront almost vertical. The impinging wave
loses its forward momentum in the short time during which the collision takes place. The forward
momentum is converted into an impulse which is exerted on the vertical wall. This pressure may
rise to more than ten times the hydrostatic pressure corresponding to the wave height, though its
duration will be very short. Such an abnormally high breaking wave pressure is called an
impulsive (breaking wave) pressure (Goda, 2000). Two types of impulsive pressures are defined:
Wagner and Bagnold-type pressures. The former does not entrap an air layer, while the latter
does. The magnitude of impulsive pressure intensity is quite large, being several times the
ordinary wave pressure. However, the effective pressure for caisson sliding is greatly reduced
due to the caisson's dynamic response.

Furthermore, it is pointed out that the best countermeasure against impulsive pressures is the
design prevention of dangerous conditions by determining the impulsive pressure coefficients.
At the same time, other solutions currently involve using alternative breakwater structures, such
as a composite breakwater covered in front with wave-dissipating concrete blocks or perforated
wall caisson breakwaters. According to a study of impulsive pressures on a caisson of composite
breakwater by Shimosako et al. (1993) and after reviewing actual failures of composite
breakwaters due to impulsive pressures, the failure of the caisson due to impulsive pressure is

characterized by small but steady sliding of the caissons.
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Additionally and for easier general understanding, Figure 2.3 distinguishes between the impact
loads for which the load duration and time history are most relevant for the dynamic response of
the structure and which, therefore, need to be handled with special care and the pulsating wave
loads for which the expected response of the structure is such that quasi-static approaches might

apply (PROVERBS - Oumeraci et al., 1999).
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Figure 2.3. Distinction of loads type and approaches (PROVERBS - Oumeraci et al., 1999)

2.3.2 Time- series Wave Loads on Caisson Breakwaters

According to Takayama and Fujii (1991), the most influential uncertain factors in the caisson
motion simulations are the empirical formula of wave force and the friction factors used.
Therefore, besides utilizing a correct friction factor (0.6 being the accepted for concrete caisson
on rubble mounds), selecting the time-history load that better represents the study case is
primordial.

An example of a dimensionless time-series load applied by a breaking wave on the seaward face
of a vertical breakwater during physical experiments (Cuomo, 2007) is plotted in Figure 2.4

alongside a superimposed idealized load history. Non-dimensionalization of pressure and time
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is done by water density p, gravity acceleration constant g, and significant wave height Hs and

period Tm, respectively.
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Figure 2.4. Wave-impact history load recorded during physical model tests (Cuomo, 2007)

The load model simulates a triangular spike characterized by a maximum reached during loading
(Pmax), the time needed to get to Pmax from O called rising time (tr) and back to O the duration
time (tq). The grey-colored area is related to the impulse, which is the moment transferred to the
structure during the wave impact. Such impact is more violent, corresponding to shorter rising
times and vice versa. Furthermore, passing Pmax and before reaching 0, the force passes through
a lower magnitude (Pgs+) With slow variation and long duration compared to the impulse peak.

Following the pattern of the wave pressures, simplified time-series loads are proposed for use in
the evaluation of caisson breakwater displacements. Most simplified models then assume a
triangular time-history of wave thrust variation with a short duration. The existing load time

series in the reviewed literature are summarized in Table 2-1.
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Table 2-1. Summary of existing wave time-history loads for use in the dynamic analysis of

caisson breakwaters. A modified version of the summary by Cuomo et al.(2011)

—_

tr

Shimosako and
Takahashi (1999)

max {Fmax : ; (Fgst)sin (ZT—T t)} fort <t

T

max {Fpax (2 - ti) S (F gs+)sin (ZT—" t)} fortr<t<2t

Oumeraci et al.
(2001)

Reference Time series scheme | Time series equation
F
F, Tt
Lundgreen(1969) max{ ";ax [1 — COoS (t_)] ; 0}
T
t
F
meti fort<t
Goda (1994) " ,
. (Fgs+) . fort>1tg
~ Frax — fort<t
Oumeraci and K max ¢, '
Kortenhaus Fps (%) forty <t <ty
(1994) m_,, e
0 fort>1tg
F Fmaxé fort <ty
Shimosako et al. .
(1994) Fnax (2 = Z) for te <t <2t
t
0 for t > 2ty
F afs
Aoki and Okube Lt ks fort <t
(1995) T&_’ _ sy (1+2a)F, fort>t,
F
T (Fyee)sin (ZT—” t) for t > 2t,
. Fmaxé fort<t
tg—t
i \ Fr (t:_tr) for ty <t < tg
Fos+ for t>tq

For most of the equations in Table 2-1, parameters such as the quasi-static seaward force Fgs+

are determined by the original formulation of Goda’s method (Goda,1974) since it was proposed

for ordinary vertical breakwaters, while the estimation of the maximum wave force or impact
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maximum Fmax and the time components follows the formulation in each related reference. The
model by Shimosako and Takahashi (1999) is the most sophisticated and has been adopted in
Japan as a basis for the sliding caisson breakwater (Cuomo et al., 2011). However, small-scale
experimental investigations by Kim and Takayama (2004) highlighted that the time-history
model largely overestimates the wave force in the standing wave part of the Shimosako and
Takahashi model, while its estimation for the impulsive part comparatively agrees with the
experimental data. Thus, Oumeraci et al. (2001) simplified the standing part to a constant value.
Among the models, the proposed by Shimosako et al. (1994) includes impulsive and pulsating
(positive for landward and negative for seaward) forces, while Aoki and Okube’s (1995) is based
on the former, but it considers the sliding for all simulation cases. This is accounted for by
considering the starting point of the load time-series not for a null force but for the static frictional
force Fs, which is the load necessary to move the caisson considering its weight and the friction
coefficient between the caisson bottom and the foundation. It also utilizes a parameter a to
consider how much the maximum force exerted to the caisson exceeds the static frictional force.
The consideration of rising and duration time is then viewed from the reference.

For practical reasons, the triangular pulse described by the rise time t; and the total duration of
the force tq as discussed above, represents a reasonable choice since the triangular shape is
derived from the actual force history based on the equivalence of breaking wave momentum and
force impulse.

Furthermore, when doing small-scale experiments, some scaling problems in the impulsive part
of the wave are expected due to the possible compressions of air pockets and the impact of
breaker tongues, as well as due to the oscillations of air pockets or air scape in the quasi-static
part (PROVERBS - Oumeraci et al., 1999). This can partially be adjusted by using the

corrections in Figure 2.5.
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Figure 2.5. Physical processes involved in the wave load history and associated scaling
problems (PROVERBS - Oumeraci et al., 1999)

2.3.3  Prediction Methods for Wave Impact Loads on Vertical Walls

The maximum wave force is an essential parameter for wave models; thus, estimating its
magnitude has been at the center of research since the last century. Among the design methods
that include forces of the wave loading is Sainflou (1928) for the vertical wall without berm;
thus, no uplift is considered, but it is challenging to implement. Goda (1985), the most widely
used design method, considered pressures, forces and uplift. However, these two are related to
quasi-static waves.

Reviewed models accounting for impact waves started appearing in the early works of Hiroi
(1920), followed by Minikin (1963) that developed a prediction formula that has been proven to
be sometimes incorrect (Allsop et al., 1996) (PROVERBS - Oumeraci et al., 1999)
overestimating the wave force, but it is still recommended in the Coastal Engineering Manual

thus used in design practice in United States; while Takahashi et al. (1994) extended the Goda
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model to also described impact waves. Later, time-dependent approaches started to be developed
as in Oumeraci and Kortenhaus (1995), followed by amendments as part of the European
PROVERBS project (PRObabilistic design tools for VERtical Breakwaters)by McConnell
(1998), Hull and Mdiller(1998), and Vicinanza (1998).

The Goda formula was extended to include the incident wave direction (Tanimoto, 1976),
modification factors applicable to different vertical wall types, and impulsive pressure
coefficients (Takahashi et al., 1994). That and the whole prediction method by Goda (2020)
represent a landmark in the evolution of more developed approaches to assessing wave loads at
walls. It has been included in various international standards, including those in Japan. The
extension of coefficients and the notoriety are not covered here, but it is a necessary review.
Another prediction method for wave impact forces in vertical breakwaters included or
recommended in standards such as the British Standards (BS6349-1 and BS6349-2, 2000) is that
from Allsop et al. (1996) and Allsop and Vicinanza(1996) and which was also recommended by
Oumeraci (2001).

Table 2-2. Examples of wave impact forces used in standards.

Reference Expression for maximum impulsive pressure/force
N 101 d
Minikin (1963) Fy imp = Tngg LD—D(d + D)

3.134
Allsop and Vicinanza(1996) | f, ... = 15pgd? (%)

p _ pgCyHy”
I(max) — T
Goda (2000) g

FH,imp = 1sngb2 [*]

In Table 2-2, three examples of expressions used in predicting wave impact forces used in
international standards, as mentioned before, are showcased. In the Minikin formula, Hp and Lp

are the design wave height and length, respectively; D is the water depth at a distance Lp from
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the structure, and d is the water depth at the toe of the structure. For Allsop and Vicinanza's
expression, Hsi is the design wave height, and d is the water depth. Goda’s method relies on
several formulae with parameters and coefficients. However, Goda (2000) presents the Pjmax)
for the peak value of the impulsive pressure, where Hy and Cy, are the wave’s height and speed.
Data collected from small experiments where then used to determine a minimum value for the

impulsive duration of (zCp /g60), yielding to the expression with the asterisk.
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Chapter 3. ANALYTICAL STUDY: THEORETICAL DESCRIPTION
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OUTLINE

The initial approach followed in this study is the development of the analytical models
corresponding to the sliding of the new shape breakwaters: caissons with a single submerged
horizontal plate, including the particular case with the plate at the surface, and caissons with
multiple plates considering the variation of plate(s) lengths and submersion depths. In this
chapter, the fundaments of the theoretical framework used to build the models, such as linear
wave and wavemaker theories, sliding simulations for regular breakwater caissons, and methods
for boundary value problem solutions, are discussed first. The methodology to determine the
sliding for the different cases and the solution for the linear waves in each case are then
presented. The physical characteristics of those solutions, such as velocity potential, pressures,
forces, added masses, damping coefficients, and memory-effect functions used within it, are

derived, as well as the final sliding model for the study cases.

3.1 THEORETICAL BACKGROUND AND DESCRIPTION

The theoretical description of a methodology to determine the sliding for a breakwater with a
horizontal plate is displayed in this chapter by introducing and deriving velocity potential,
pressure, force, added mass, damping coefficient, and memory-effect function formulations. The
base theories and methods for applying the methodology [linear wave and wavemaker theories
and the sliding simulation for regular breakwater caissons introduced by Aoki et al. (1995)] are
presented as well. Furthermore, a practical method (Yoshida et al.,1990) called the Boundary-
Point Selection Method is introduced in the velocity potential calculations that simplify
analytical formulations and computing processing time. Applying such a method leads to the

analytical solution of the presented boundary value problem.

27



3.1.1 Linear Wave Theory

[Enhanced subsection based on the previous work of the author in Fundora (2021)]

Linear wave theory (L.W.T) is one of the simplest water wave theories introduced in the 19th
century due to the application of linearization techniques to the fluid governing equations and
boundary conditions, conveying a simplified version of them, and is still widely used. A list of
the simplifications and approximations can be summarized as: a) Constant water depth h, b)
Periodic waves with period T , ¢) Considerations restricted to the 2D vertical plane (X, z), d)
Neglection of viscous (and turbulent) stresses so the motion becomes irrotational. e)Assumption
that the wave height H is much smaller than the wavelength L .

Each of these assumptions contributes to simplifying the problem, but only the last two are
approximations (Svendsen, 2006). The resulting wave solution has been called “small amplitude
waves”, “infinitesimal waves”, “sinusoidal waves” or ‘linear waves”. The latter is used in this
study. In some fields, they are also referred to as “Airy waves” or “first-order Stokes waves”
because G.B. Airy(1845) derived the first expressions describing these waves, and G.G. Stokes
(1846) derived the higher-order theory.

The theory uses a potential flow (flows that can be described with the velocity potential)
approach to define the motion of waves on a fluid (water) surface and assumes an inviscid,
incompressible, and irrotational fluid flow. Here is a simple explanation of such an ideal fluid:
it is considered inviscid when its viscosity is zero, i.e., there is no internal friction or resistance
to flow; incompressible when it has constant density under different pressures, meaning that its
volume remains unchanged; and irrotational when there is no vorticity, i.e., the fluid particles do
not rotate around their axes and keep their movement orientation. These assumptions on the fluid
properties are significant since they allow for simplifying the mathematical description of the
fluid dynamics; potential functions can describe the flow, and governing equations can be

simplified.
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L.W.T is mainly limited to conditions where the wave height H is small compared to the water
depth h (in shallow waters) and to the wavelength L (in deep waters). The free surface elevation
n(x,?) is sinusoidal and a function of the horizontal position x and the time t. Such a water surface
profile is one of the desired final solutions. The (x,z) are cartesian coordinates with z=0 at the
still water level and positive upwards, and the sinusoidal progressive wave propagates in the
positive x-direction. A representation of essential wave characteristics is displayed in Figure 3.1.
Table 3-1 lists the wave parameters related to it and others necessary to determine the solution.

z

R

Bottom z=-h

Figure 3.1. Wave characteristics. Linear Wave Theory.

Table 3-1. Parameters related to linear wave theory and their symbols.

Parameter Symbol Parameter Symbol
Free water surface n(x,t) Wave amplitude a=H/2
Time t Wave height H
Velocity components uw Wave number k =2n/L
(x, z directions) Wavelength I
Velocity potential (2D) o(x,z,t) Wave frequency w=21/T
Fluid density p Wave period T
Gravitational acceleration g Mean water depth h
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Hydrodynamics fundamental equations are derived from the conservation laws of physics: mass,
momentum, and energy conservation. For example, Eg. (3.1) is the two-dimensional Laplace
equation or continuity equation for the cartesian system presented above. It expresses the
conservation of mass for potential flows and provides a partial differential equation as the

governing equation to be solved for the scalar function &, which is called velocity potential.

92d 9%
_|_

0x2 0z2

Vi =

=0 (3.1)

To understand the velocity potential more, let’s recall vector analysis. According to its formulae,
for an arbitrary scalar function @ (x, #), an identity of V' x P& = 0 (rot grad @ = 0) holds.
Therefore, if P'x u =0 is satisfied, the velocity vector u can be represented as u = V& in terms
of a scalar function @ (the velocity potential), and flows that can be described with the velocity
potential are referred to as potential flows. Introducing the velocity potential may initially seem
an unnecessary complication, but it is advantageous in mathematical development. The velocity
IS a vector quantity with three unknown scalar components, whereas the velocity potential is a
single scalar unknown from which all three velocity components may be computed (Kashiwagi,
2018). Thus, the solution of incompressible, inviscid, irrotational flow requires the solution of
Laplace’s equation for two dimensions as in EQ.(3.2), where u and w are the horizontal and
vertical velocity components, respectively.

du , ow 0 (3.2)

ax ' 9z
The flow is also determined by the boundary conditions. For this problem, the kinematic
condition at the bottom and the linearized kinematic and dynamic condition at the water surface
are as in Egs. (3.3), (3.4) and (3.5), respectively. For further details, including basic equations of
the wave theory and their derivation to linearized forms, as well as velocity potential

formulations, reference is made to Svendsen (2006).

30



L)
—=0 atz =—h (3-3)
0z
ad  an (3.4)
E = E at z = n

0D

E+gz=0 atz=rn (3-5)

The solution for the potential function (velocity potential and water surface elevation) satisfying

the two-dimension Laplace’s equation and subject to the boundary conditions is:

ag cosh k(z+h)

®d(x,z,t) = PR——— sin(kx — wt) (3.6)

n(x,t) = acos(kx — wt) (3.7)

The velocity potential and water surface elevation on the x-z vertical plane are usually utilized
in a complex form, as in Eq. (3.8) and Eq.(3.9). Furthermore, the solution to Eq.(3.9) is
meaningful as long as the wave number satisfies Eq. (3.10) denominated as the dispersion

relation.

n(x,t) = acos(kx — wt) = acos(—kx + wt)

— aei(—kx+wt) — ae—ikxeiwt (3.8)

d(x,z,t) = __ag coshk(z+h) e—ikxeiwt (3.9)
re iw coshkh

w? = gk tanh kh (3.10)

Once the velocity potential is known, velocity components of the flow u, w can be obtained from
the derivation of Laplace’s equation for irrotational flow. Moreover, by integrating the velocity
potential with the momentum equation for inviscid fluid as in Eq.(3.11), the unsteady Bernoulli
equation (3.12) is obtained. Finally, the pressure p equation (3.13) can be arranged from
Eq.(3.12) for more clarity. Bernoulli’s pressure equation is obtained from the conservation of
momentum.
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oD 1 5 p _ 2 _ .2 2 a_CDZ a_cpz (312)
E-I_Eq +;+gz—0 Whereq =u“+w _(6x) +(6z)

0P 1
p=—p5 —5pq’—gz (3.13)

3.1.2 Wavemaker Theory.

In the solution of boundary value problems of velocity potential, the most straightforward
application might be the wavemaker theory. Classical wavemaker theory assumes that the water
volume displaced by a board with sinusoidal motion in a 2D flume equals the crest volume of
the propagating wave. There are flap-type and piston-type wave generators, and the latter is used
in this study. For a piston-type wave generator (board) with a full stroke S, the water volume V
displaced by the board is expressed by Eq.(3.14), where /4 is the water depth. The water volume
elevated by the motion of a wave with height H and wave number k = 27a/L can be estimated by
Egs. (3.14) and (3.15).

.
S T

h

/WWAW%

Figure 3.2. Wave generation by a piston-type generator. Based on Galvin (1964)

V =Sh (3.14)
L
V=f0/2§sinkxdx=% (3.15)
H (3.16)
<= kh
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The ratio between wave height H and the stroke S as a function of kh can be obtained by equating
Egs. (3.14) and (3.15). Such relation implies that for large wave numbers kK, i.e., for short wave
periods T, larger wave heights are generated. The relation stated in Eq. (3.16) might appear
simple; however, it has many applications. Nonetheless, the problem arises when trying to obtain
an accurate value of H and when considering not only the progressive wave but also other

components.

3.1.2.1 Velocity Potential

The wavemaker theory is used in the resolution of boundary value problems of velocity potential.

The general equation of velocity potential is expressed by:

d(x,z,t) = p(x,z)e't (3.17)

The exact solution of the generated wave's velocity potential ¢ (x,z) is expressed as Eq.(3.18).
The first term of the equation is associated with a progressive wave (or propagating mode), and
the second term with a spatially decaying standing wave (or evanescent mode).
¢ = Acoshk (z + h)e~** + Z B,cosk, (z + h)e~kn* (3.18)
n=1
Where A and B, are unknown constants and k and k, are the wave numbers that satisfy the

relations in Eq.(3.19). The first equality is the linear dispersion relation. The wave numbers can

2
be obtained by rewriting Eq.(3.19) in a dimensionless form with the parameter w?h as in

Eq.(3.20) that yields to a direct or a Newton-Raphson iteration.

w? = gk tanh( kh) = —gk, tan( k,h) (3.19)
w?h
7 = kh tanh( kh) = —k, h tan( k,h) (3.20)

Considering the oscillating board located at x = 0, its motion is expressed by Eq.(3.21) and the

kinematic boundary condition on the board given by Eq.(3.22):
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§(z,6) = §H(2)et (3.21)

. d )
el@t = d—i = jwée'wt (3.22)

0xlx=
This indicates continuity of velocity and yields to:
_ikAcoshk (z + h) — z kB, cosk, (z + h) = iwéy(2) (3.23)
n=1
To obtain the expression of the unknown constants A and B,, orthogonality properties of
functions are utilized on the terms cosh k(z + h) and cos k, (z + h), respectively. For example,
A is determined by integrating Eq.(3.23) over the region —h <z <0 after multiplying

coshk(z + h).

0 0
—ikA f cosh?k(z + h)dz = icuf ¢o(2)coshk(z + h)dz (3.24)
-h -h

Thus,

2 ) f_oh ¢o(z)coshk(z + h)dz
Kk f_Oh cosh?2k(z + h)dz

4w
= T sinh2kh 1 Zkhf So(z)coshk(z + h)dz (3.25)
While for the evanescent mode waves, B, is given as:
i [ éo(2)cosk(z + h)dz
" kn f_Oh cos?k,(z + h)dz
= Ho f k,(z + h)d
= T smzkh+ 2k ) o@coskn(z z (3.26)

3.1.2.2 Hydrodynamic Forces Acting on the Wavemaker. Piston-Type Case

The dynamic wave pressure p, at the wavemaker (x=0) is
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a0
p at x=0

= _ipw¢|x=0 el®t

= —ipw[Acoshk (z + h) + Y=_, B,cosk,(z + h)] e'®* (3.27)

For the piston-type wavemaker, the displacement at the board is constant, so let’s consider
¢,(z) = d (=const.). Thus, from Eq. (3.25) and (3.26), 4 and B, are expressed by Egs. (3.28)

and (3.29), respectively.

A= do 4 inh kh

T T Ssinh2kh+2kh ko0 (3.28)
B - 4iw d . b
" T T Sin2kph + 2koh ey, R (3.29)

Considering the above, the wave force F acting on the board of the wavemaker can be derived

and rearranged as follows:

F = ]Opw(—l) dz

-n
— i do d 'hkhfo hk(z + h)d
= P9 \sinh2kh + 2kh k& D) SOV z

+i Ao d 'khfo k,(z + h)dz\ eiwt

2 5in 2knh + 2lenh foy SHfnlt | COSKnlZ Z1e

n:
=i do 4 inhkh L sinh kh
= TYY 0\ 5inh 2kh + 2kh kS sm

+§: o L Sinkgh — sinkyh| et

2 5in 2k + 2k Ky S nlt 3 S Ent( €
n=

.y simh’kh N i sin? kyh -
= —4ipw - e
PO % Vie2(sinh 2kh + 2kh) Z k.2 (sin 2k, h + 2k, h)

n=1

Fe —4pw sinh? kh
"~ k2(sinh2kh + 2kh)

in?k,h )
_4'02 St Kn (_wzdelwt)
n=1

(iwdei“’t)

k2 (sin 2kph + 2k, h)
(3.30)
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The latest arrangement allows visualizing the first (iwde'®") and second (—w?de'®") derivatives
of the board motion § . Furthermore, for easier visualization, the elements associated with them
are grouped and renamed as N and M. Those terms are called hydrodynamic parameters: the
“damping coefficient” and the “added mass”, Egs. (3.31) and (3.32) respectively. Hence, the
force F can simply be written as in Eq. (3.33), where the negative sign represents that it is a
reaction force. This form will be used for further derivations later in this chapter and the

following chapter.

_ 4pw sinh® kh

 k*(sinh 2kh + 2kh) (3.31)

M= i sin? k,h

= ap 27 .

£ ke (sin 2k, h + 2k,h) (3.32)

dé d*&

F=-N—-M—
dt dt? (3.33)

By using the dimensionless expression of the frequency in the dispersion equation, as in Eq.
(3.20), the dimensionless forms of N and M, as in Egs. (3.34) and (3.35), provide insights into

the physical meaning of such parameters and their application to the solution of real engineering

problems.
N 4 sinh? kh
pwh? — (kh)2(sinh 2kh + 2kh) (3.34)
M A i sin? k,h
ph? o] (knh)?(sin2k,h + 2k, h) (3.35)
Figure 3.3 displays the dimensionless damping coefficient pghz and dimensionless added mass

M . 2h . . .
on as functions of wT. In this case, the two sides of the wavemaker board are considered; thus,
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Figure 3.3. Dimensionless damping coefficient and added mass as functions of —h (Fundora,
g

2021)

When frequency tends to be infinite, the damping coefficient N(,_.) = 0. It is not a surprise
that the damping coefficient gets reduced to nullity. Since damping is the process of dissipating
the energy from the radiated waves, it is reasonable that after a stroke of the board, an immediate
damping process occurs, leading to a decrease in the amplitude of the oscillation until all the
energy due to the stroke is dissipated.

On the other hand, the added mass at an infinite frequency is M(,_) = 1.0855ph?. The
dimensionless value 1.0855 is obtained analytically by calculating the limit of the expression of
added mass from Eq. (3.35) when the frequency w tends to infinite. That value is considered as
the “constant added mass”, which hereafter will be related to the symbol M* . It is important to
note that the direct output of the limit calculation is 0.54275, but the two sides of the wavemaker
board are considered. This value corresponds to the 0.543 value first obtained by Cooker and
Peregrine (1990) in their solution derivation for the two-dimensional boundary-value problem

for water wave impact on a vertical wall. The term used in the mentioned study was ‘momentum
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length for a semi-infinite wave’ and the nominalization was not by the same dimensions or
properties as in this study, but it can be considered as an equivalent analysis.

Furthermore, following the dependence of the added mass to the geometry explained before, the
constant added mass of 1.0855 is related to the board's shape: a rectangular prism or a rectangle
in a two-dimensional analysis, in this case with a small width. However, from the second half of
the 1990s, the inclusion of the added mass or hydrodynamic mass in the sliding calculation was
extended by Oumeraci and Kortenhaus (1994). Aoki and Okube (1995) introduced the use of the
dimensionless value 1.0855 and were followed by Shimosako and Takahashi (1998,2000),
Miguel Esteban et al. (2007) and others. Before that, inertia was mainly considered only as the
relation of the caisson mass in water or experimentally determined.

Besides the theoretical calculation of the constant added mass, a numerical verification was
2
carried out in a previous study (Fundora, 2021). For example, for w?h =500, around @ =100 rad/s,

M= =1.0811159564, demonstrating the tendency to the theoretical value.

3.1.2.3 Hydrodynamic Forces Expressed in Time-Domain. Components: Added Mass and

Memory- Effect Function.

In section 3.1.2.2, the hydrodynamic force acting on the wave board (which can be applied to
vertical walls, i.e., vertical caissons) is expressed by the damping coefficient N and the added
mass M, both of which are given as the function of wave frequency w. However, when included
in systems with only time-dependent parameters, frequency-domain parameters may present
challenges. Thus, the translation to the time domain proves to be useful in such cases, which
accounts for numerous engineering problems.

Then, if an arbitrary motion of the wavemaker board is considered as a succession of impulsive

displacements, time-domain hydrodynamic forces can be expressed as the sum of the reaction
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forces caused by the impulsive motion of that board. An analogy of using the impulse response
function in linear systems, as in Cummins (1962), is used for the below derivation.

Impulsive displacements A& taking place in small durations At are expressed as:

d§

=—At
dt

A (3.36)

In the period of Az, it is assumed that the fluid motion has a velocity potential & that is
proportional to v i.e., lP— being ¥ any function for now unknown. After the impulsive

movement, the water surface elevation induced by the impulsive displacement will decay and
finally be still. By taking the velocity potential of the decaying wave expressed as ¢A¢; if such
impulsive displacement is continuously generated, the velocity potential at the time t is defined
as in Eq.(3.37). In there, if t refers to the time at which the output is observed, = refers to the time

at which the input is applied.

d t d
®(x,z,t) =¢£+] (p(t—r)d—i(r)dr

dt (3.37)
The pressure is then given as:
Gl d*$ (' dp(t—r1)d¢
p(x,z,t) =—p—r-=—pp_3 T —(Ddr (338)
And the force F acting on the board is obtained by integrating the pressure at x=0.
0
F(t) = f p(—1)dz
—-h
(3.39)
6<p(t —1)dé
—pJ Fdz+ f [f —()dr dz
By letting the first and second terms be as in Eqgs. (3.40) and (3.41), respectively,
0
= — d
H=-r J_,fp ’ (3.40)
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B ? 9¢(t)
R(t)__pf_h ar Y (3.41)

The force in Eq.(3.39) yields to Eq.(3.42). The latter can also be expressed as in Eq.(3.43).

_oax dé

FO=-nge =) RE-Dg@d (3.42)
I B N ;

FO=-rgz- . R(D) g (¢ —Ddr (3.43)

The above equation is for an arbitrary motion; thus, if we consider a sinusoidal displacement,

& = de'®? can be substituted into it.

F = —pu(—w?d) — f R(7)(iwd)etDdr
0

= [—u(—wzd) — a)dJ R(7) sinwtdt — iwdj R(7) coswt drl elwt
0 0

= —(iwdei“’t)f R(7) coswtdrt
0

— (—a)zdei“’t) [.U - %LOOR(T) sin wt dtl
(3.44)

When recalling the force’s structure in Eq. (3.33), then N and M can also be expressed as:

oo

N(w) =f R(7) cos wtdrt
0

(3.45)
@ = [ RE@simard
w)=uUu—— T)SINwtdadrt
T 0 (3.46)
While applying the inverse Fourier transform to the above equations are as below:
R(t) 2 f OON (w) d
= — w)CoOSwWTart
TJ, (3.47)
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1 (o]
u=Mw) - JJ;) R(7)sinw'tdr (3.48)

The ' symbol is used to underline that o' and w are different. When o' tends to infinite, the

second term of the right-hand side of Eq.(3.48) becomes zero; thus it is proper to say that:

H = Mior=co) (3.49)

R(t) is referred to as the ‘memory-effect function’ or ‘retardation function’. While u is the
‘constant added mass’, which is not the function of @ and hereafter will be used the same symbol
from the previous section: M*. Aoki and Okube (1995) expressed the memory-effect function
of a regular breakwater not as a function of frequency w but of a term k as in Eq.(3.50) where
= kh. That is basically the rearrangement of Eq. (3.47) after substituting N(w) for the expression
of N in Eq. (3.34) to switch its dependence on frequency to the wave number k by introducing
the derivation of frequency from the dispersion relation. They also presented a linear
approximation, as seen in Eq.(3.51). The memory-effect function, as in Aoki and Okube (1995),
was later used by researchers such as Takagi and Shibayama (2006). The output of the two

versions can be seen in Figure 3.4.

4pgh (* tanh? k
R(t) = jo 7 Cos (\/K tanhk+/g/h t) dx (3.50)
R(t) = <2.17 — 1.146ﬁ t) pgh
h (3.51)

Furthermore, another relationship is observed: dimensionless memory-effect function for t=0 is

R(t+=gy = 2.1710, and the dimensionless added mass for infinite frequencies is M,y =

1.0855 for the case of regular caisson breakwaters.

* _ 1 * —
M{y oy = ER(t*=O) = 1.0855 (3.52)
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Figure 3.4. Dimensionless Memory- Effect Function

3.1.3 Wave forces

In Chapter 2, existing models for time-history wave loads on caisson breakwaters were discussed.
For this study, the wave force in time-domain F(t) is determined by a triangle-shaped profile
(Figure 3.5) used in Aoki and Okube (1995) for sliding calculation, which is similar to the model

introduced by Shimosako and Takahashi (1994).

F

>

xrnax

trnux

Figure 3.5. Diagrams for times series model of the wave force for sliding calculation and

displacement-velocity time series.
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The mathematical expression for the above model is as in Eqg. (3.53) where Fs is the static
frictional force (note that in the previous subsection, relation Fs = F¢ was already established), t
is time, tp the wave force rising time and & the wave force magnitude or rising coefficient.
Following the model representing the physical phenomena, the caisson will slide when the wave
force F exceeds the maximum static friction force Fs. Thus, the model at time t = 0 represents a
wave force equal to the static frictional force F(t=0) = Fs, and a maximum force Fmax achieved

at t = tp with a value shown in Eq.(3.54).

([ aF, \
! —t+E (0<st<t)
ro-1
L—gt +(1+2a)F, (¢, < t)J (3.53)
F(tp) = Epax = 1+ a)Fs (3.54)

Therefore, if Fs is known, the profile is determined using a (the wave force magnitude) as a
parameter. Furthermore, according to this figure, the maximum velocity vmax is obtained after
the peak on the wave force, close to t =2t, when F(t) is again lower than Fs but there is still
energy from the precedent movement. From there, it reduces until reaching zero, when the wave
force gets radically smaller with respect to Fs. At that point, sliding stops, and the maximum

value of displacement x is achieved.
3.1.4 Equation of motion for regular caissons

Accounting for the derivations in section 3.1.2, the motion of the wavemaker board is described
by Eq.(3.55). It follows Newton’s 2" law, in which m is the mass of the caisson, % term the
acceleration, and f the summatory of forces acting on the caisson, including terms such as the
added mass M and the velocity component Z—i with the damping coefficient N. By applying the
wavemaker theory to the breakwater caisson problem and using the memory-effect function, Eq.
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(3.56) serves as an alternative to Eq.(3.55) and where the lower limit in the integration -co can

be replaced by 0 when considering the wavemaker board (caisson) movement starting at t=0.

d*§ = d§

m+M)—5+N—=f (3.55)

dZE t df _
(m+ﬂ)ﬁ+f_ooR(t—T)E(T)dT—f (3.56)

Referring to the right-hand side of the above equations, the horizontal forces acting on the
caisson during the sliding motion are shown in Figure 3.6, where F is the wave force, Fr is the
frictional force, and Fr the resistance force. In this model, vertical forces such as the uplift forces
are dismissed. In the simplified model of Aoki and Okube (1995) and the one proposed by
Shimosako and Takahashi (2000), it is assumed that the friction coefficient takes a constant value
corresponding to both the static fs and the dynamic fr coefficients. Since fs = ff, the dynamic
frictional force Fs=f*W,y, and the static frictional force Fs=fs*W,, share the same value. That
consistent assumption is made and followed. Wy, is the weight of the structure in water and the

product of mw g, where my is the mass of the caisson in water and g is the acceleration of gravity.

.
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Figure 3.6. Forces acting on a vertical breakwater caisson (Aoki and Okube, 1995)

Consequently, Eq.(3.56) can be rewritten as Eq. (3.57) where m is the mass of the caisson, F(t)
is the wave force in the time-domain, and F+ is the frictional force. As it was explained before,

M, refers to the added mass force generated by the water surrounding the caisson due to its
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motion, and the integration term refers to the wave-making damping. Furthermore, considering
x the displacement or sliding, the terms x and X are their first and second derivative with
respect to time i.e., the motion’s velocity and acceleration, respectively. Accordingly, the sliding
distance of the caisson can be calculated by numerically integrating the below equation twice

with respect to time.

t

(m + My,)% + f R(t —D)x(D)dr = F(t) — Fy (3.57)
: :

Substituting the wave time-history load in Eq. (3.57), the motion equation can be rewritten as

below, and it is the final form used in this study for vertical breakwaters with regular caissons.

( t
afst—mwg (OStStp)
P

R, (t —1)x(t)dt = "
afs (

2 ——) myg  (t, <t)
tp

t

(mg + M5)X + f
0

(3.58)

An example configuration with the characteristics and properties as in Aoki and Okube (1995)
and Yoshihara (2019) is tested to obtain concrete values. The solution to the motion equation is

shown in Figure 3.7.

Table 3-2. Geometrical characteristics and properties of an example configuration for the

analytical model.

Characteristics /

_ Symbol Value
Properties
Water depth h 8m
Caisson width B 6m
Freeboard d 2m
Friction coef. f, fs 0.6
Rising time tp 0.5s
Wave force coef. a 0.1
Water density p 1000 kg/ m3
Concrete density pe 2150 kg/ m3
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Figure 3.7 Displacement and velocity of the wavemaker board/caisson (for a=0.1, t,=0.5,
f=f=0.6)
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3.2 MODEL DESCRIPTION AND GENERAL METHODOLOGY

The models used in the theoretical study represent caissons with horizontal plates on the harbor
side. The derivation of the models is made to allow investigation of the effect of submerged
horizontal plates on the performance of a vertical breakwater during the failure process by
simulating the caisson sliding under impulsive wave loads. The analysis cases include caissons
with a single plate at the surface, a single submerged plate, and twin plates with diverse plate
lengths and arrangements that attend to submersion depth. A semi-analytical model developed
by the author (Fundora and Aoki, 2023 and 2024) based on the piston-type wavemaker theory to
estimate the hydrodynamic characteristics due to the fluid-structure interaction and simulate the

sliding of the geometries object of study.

3.2.1 Caisson with A Submerged Horizontal Plate.

The structure consists of a semi-submerged caisson of width B and freeboard d, with a rear
submerged horizontal plate of longitude /, as shown in Figure 3.8. In this study, the horizontal
axis is at the sea surface level, and the vertical axis corresponds to the rear wall of the caisson.

The seabed is considered parallel to the sea surface; thus, the water depth 4 is constant.

Z
Sea B Harbor
side ' ’ side
dI e/ r e o X
= Pc T N — 1
F /.q_R ‘bu by ]
—_— w /A Region1l | 2|%s
FH‘ 17X o /E = = /:—Y
— - .
p / i 1 -~ h
po L w7 r Dy
egion / 1 i 1 Resion TV
f f}r l fof j egion egion ‘

JTT7 77777 27777777777 77777 7777777
Figure 3.8. Model representation of a caisson with a submerged horizontal plate.(Fundora and

Aoki, 2024)
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The fluid is divided into four sub-domains with different velocity potentials ®. For the analysis,
F: wave force, Fg: horizontal reaction force, V: vertical reaction force, and Fy: frictional force;
m: caisson mass, W: caisson weight, and h,: submerged depth. General materials properties are
given by the hydrodynamic and static frictional coefficients f and f;, respectively, water density

p, and concrete density pc.

3.2.2 Caisson with Twin Plates

The initial hypothesis of the influence of water constriction on incrementing hydrodynamic
coefficients, such as added mass, was presented before. Nevertheless, to further investigate the
effects of the added mass, but also the damping on the general sliding of the caisson, a twin plate

arrangement model is also derived.

3
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Figure 3.9. Model representation of a caisson with twin plates.

The twin plates arrangement keeps one plate at the water surface and the second one is
submerged at !4 of the water depth. Although different submersion depth can be analyzed with
the derived model and methodology, a single location is enough to validate the hypothesis for

this section. Water depth and properties of the medium remain, as in the case with a single plate.



3.2.3 Methodology

A semi-analytical model for the sliding simulation of caissons with submerged plates, which
includes the special case of a plate at the surface (Fundora and Aoki, 2023) and twin plates, is
developed based on the linear wavemaker theory (Dean and Dalrymple, 1984) and potential

theory the sliding calculation method from Aoki and Okube (1995).

Inputs: Model dimensions and properties (B, h, d, g, p, p ),

Sections (z) and iterations (m, n, r),
Frequency (@) range

Input: Horizontal plate length (/) e )
Submersion depth (h,)
Velocity Potential (@) <---------------- | Repeat for each

E frequency ()

Pressure (P)

|

Reaction Forces on the Breakwater's
Vertical Wall (F,,) and Horizontal Plate (F,)

| el -

Repeat for different
Addeq Mass (Mx)f and M) and ] plate submersion (h,)
Damping Coefficients (V,, and N_)

|

Constant Added Mass (Mxxw and szw) and
Memory-effect Function (R, and R )

________________________

|

Wave Force (F)) and Friction Force (F s F)

A\ 4

Inputs: Time series model of the wave force (a, f, tp) E

Output: Sliding (x) |77 77777777 :

Figure 3.10. Sliding Calculation Flow (Fundora and Aoki, 2024)
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The Boundary Point Selection method (BPSM) (Fundora and Aoki, 2023; Yoshida et al., 1990)
is used to solve the boundary problem of the fluid-structure interaction. The simulation model
includes vertical forces (represented by the vertical added mass M, and the memory-effect
function R;y). Initially, the caisson sliding simulation is performed using the same parameters
from previous studies to validate the model with the solutions by the conventional potential
method for a regular caisson (Yoshihara, 2019) and a caisson with a horizontal plate of different
lengths (Fundora and Aoki, 2023). Simulations for different plate lengths and submersion depths

are performed using a MATLAB code written to solve the theoretical formulations.

3.3 GOVERNING EQUATIONS. BOUNDARY AND CONTINUITY CONDITIONS.

Determining the velocity potential in each region is the starting point of the methodology.
According to wave theory, its general form is expressed as Eq.(3.59), where ¢; is a superposition
of the progressive wave and the decaying wave (evanescent mode wave), o is frequency, f is

time, and subscript j = I, I, I1I, IV indicates the regions of the model.

D;(x,2,t) = §;(x,2)e'" (3.59)

3.3.1 Caisson with A Submerged Horizontal Plate

For the model of the caisson with a submerged horizontal plate, Region I is the free surface in
the seaside of the caisson, Region II is the fluid area behind the harborside wall within the water
surface and the submerged plate, Region III is the fluid area between the submerged plate and
the seabed, while Region IV is the harborside area located after the plate. This model can also
be applied to a plate at the surface by making A, equal to zero and dismissing Region II in the

analysis.
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3.3.1.1 Boundary and Continuity Conditions

Linked to the analytical derivation of the velocity potentials and the solution of the boundary
problem itself, the boundary and continuity conditions must first be stated. Based on the
wavemaker theory (Dean and Dalrymple, 1984), the "sinusoidal motion™ of the breakwater is
given by Eq.(3.60) as the vertical boundary condition considering d(constant) = &,(z) where
&, is the initial deformation or displacement. The horizontal conditions at the bottom and the
plate are presented by Eq.(3.61) while the continuity or Laplace’s equation for the regions is
expressed in Eq.(3.62). Furthermore, regions Il and 111 share a physical boundary with region 1V
at x=I. Thus, accounting for the continuity of the horizontal fluid velocities and the wave
pressure fluctuations due to continuities of mass and energy flux through the boundary is
required and expressed by Egs. (3.63), (3.64), (3.65) and (3.66). This is a resume of the boundary
and continuity condition; nonetheless, each region's particularities will be described in the

following subsections.

e, A
H—lwd, x=—B(@{=101)x=0G=I1I1) (3.60)
a¢; L o o
& 0; z=—-hy,(G=1LI11); z=—h (G=11I) (3.61)
o%¢; 0%¢;
32 + Froa 0 ; G=ILI1I,IV) (3.62)
¢pull,z) (0=2z2=—hy) (3.63)
bl z) =
¢Ill(ll Z) (—hs A _h) (364)
dpu(l, 2)
I (l,z) 0% (0222 —h) (3.65)
ax ) 0pm(lz)
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3.3.1.2 Velocity potential and boundary condition in Region |

The general form of the velocity potential in Region I is expressed as:

®y(x,2,t) = Py(x,2)e'"* (3.67)

where ¢; is a superposition of the progressive wave and the decaying wave (evanescent mode
wave). The caisson width B is added since the axis origin is in the shoreward surface of the
breakwater.
¢1(x,z) = A% coshk (z + h)e*+B) 4 Z BY*cosk,, (z + h)e*n(x+B)
n=1 (3.68)

A'™ and BL} are unknown coefficients, while k and k,, are eigenvalues determined by the
expressions below where the first equality is the dispersion relation. The subscript and
superscript j refer to the region's notation, although in regions I and IV it will not be utilized
since the region's height coincides with the water depth A. Thus, for simplicity, h; = hyy = h

and k! = k'V = k.

w”h; j j j ;
L= kntanhklhy = —klhytanklhy G =1ILIY)

(3.69)

The "sinusoidal motion" of the breakwater is given by Eq. (3.70) as the vertical boundary

condition, with &g as the initial deformation/displacement.

a¢l(_Bt Z)

ox = iwéy(2) at x=-B (3.70)

Substituting Eq.(3.68) into Eq.(3.70) and taking the consideration &y(z) = d constant, the

following expression is obtained.

ikA™ coshk (z + h) + z k, B+ cosk, (z + h) = iwd 3.71)

n=1
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3.3.1.3 Velocity potential in the region over the horizontal plate (I1): x </

The general form of the velocity potential for the region over the plate is expressed as:
Py (x, z,t) = Py (x, 2)e'" (3.72)

The terms of ¢y, are similar to the ones in Eq.(3.68) but with the axis origin in the shoreward
surface of the breakwater and with the particular of using h;; = hg as water depth. Additionally,
an extra term is included, representing the form of the wave moving as a response to the x-
movement (a sort of reflection). Notice that although the general form is alike, the coefficients
are different. A~and A" are complex constants representing the incident and reflected waves,

respectively. B, and B, represent the evanescent mode of such waves which vanish at x = oo.

¢u(x,z) = A~ cosh k' (z + hy) e "'* + Z By cos kil (z + hy) e k¥

n=1

[ee]
+ A* cosh k! (z + hy) e + Z B cosk!(z + hy;) ekn*

(3.73)
n=1
The governing equation and boundary conditions are:
02 02
bu + $u —0
dx2  0z2 (3.74)
dpn
¢
Thus, substituting Eq. (3.73) in Eq.(3.75), the following expression is obtained.
—ik"A~coshk™ (z + h;;)
+ Z —klIBycosk!l(z + hy) + ik At coshk™ (z + hyp)
n=1
+ z kI B*cosk!! (z + hy) = iwd
~= (3.77)
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3.3.1.4 Velocity potential in the region under the horizontal plate (111): x <

The general form of the velocity potential is expressed as:

Dy (x, z,t) = py(x, z)e™t

(3.78)
The governing equation and boundary conditions are:
ik ik

¢ n b —0
dx? 022 (3.79)

0pm

¢

W 0 at z=—hand z = —hs (3.81)

To obtain the general form of @ iz, which satisfies the above equation, Fourier cosine expansion

with respect to z is used as below. Note that m is the series terms, and it is not related to the same

symbol used as mass of the caisson.

1 - m

D)= )+ > §
dmx,z) = o ¢o (x hyy m=1¢m 111 (3.82)

where ?ﬁmm (x) is given as in Eq.(3.83).

~ III —hs mnm
bm (x) = f ¢ (x,z) cos—(z+h)dz ; (m=0,12,..)
—h hin (3.83)

The value of z is taken globally, i.e., measured from the water surface, and the governing

equation should be satisfied at the region boundaries. Notice that hzr= h-hs, which can be used

. . . . . . ~ 1 . .
to simplify the calculations. Next, to derive the differential equation for ¢b,, (x), Fourier cosine

transform is applied to Eq.(3.79).

For the first term,
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2bm
cos— (z+ h)dz
'f—h ax h’lll

axz f ¢III COSE (Z + h)dZ

~ 1

_d*p,
© dx? (3.84)

For the second term,

~hs 92y
cos — (Z + h)dz
";h aZZ hu[

cos—(z+h) —sin—(z+h)dz

_[6¢111 hs _I_f s dpy mm
0z hyi n 9z hy hyy

mrm

= —sm— (z+ h)]
[¢HI e

—hs

() cosp
- COS— Z Z
. h'III h'III

j b cos — (Z + h)dz

huny
m = I
- <h) P (3.85)
Thus, Eq.(3.79) yields the following ordinary differential equation for ¢,,,:

2+ HI

d ()bm mnm 2 ~ 111
—(— =0 ; =0172,..
dxz <h111) ¢m (m ) (3.86)

And the general solution to the above equation are Eqs.(3.87) and (3.88) where C,, Do, Cin, D

(m=0, 1, 2, ...) are unknown coefficients.

$o ' (x) = Co+ Dox ; (m=0) (3.87)

. III_C cosh—x+ D,, smh—x ; (m=1,23,..)

huin hin (3.88)
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Substituting the preceding terms in Eq. (3.82), the general solution of ¢y is as below:

1
b (x,z) = h—(Co + Dyx)
111

2 mmn
+— Z {(C cosh—x + D,, sinh— ) cos— (z + h)}
hin — i hyp b (3.89)

Then, the application of the vertical boundary condition expressed by Eq.(3.80) yields to:

_+—ZD cos—(z+h)—lwd
by i ™ hyy huir (3.90)

3.3.1.5 Velocity potential in the region after the horizontal plate (IV): x > |

Region IV is located after the horizontal plate. The velocity potential @y (x, z,t) = ¢y (x, z)e'®t
in the region / < x has the same structure as Eq.(3.68), except that the origin of the x-axis is
shifted by /. Thus, ¢y is expressed as:

¢ (x,z) = E~ coshk(z + h) e”**~D 4 Z F~ cosk.(z + h) e krx=D
=1 (3.91)

Where E-and F; (r=1, 2, ...) are unknown coefficients. Note that a similar equation with a
different origin was used in Region I; Since Region IV shares a physical boundary with regions
IT and III, the method and solution for the coefficients E- and Fy will be explained in the

following subsection.

3.3.1.6 Final Analytical Expression for the Boundary-value Problem
As stated in the previous subsection, Region IV shares a physical boundary with regions II and
III in x=I. Thus, accounting for the continuity of the horizontal fluid velocities and the wave
pressure fluctuations due to mass and energy flux continuities through the boundary is required.
Furthermore, determining the final solution of the velocity potential for each region is linked.

The undetermined coefficients of the velocity potential of each region are determined by the
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continuity conditions for the velocity potential and its derivative at the boundary surface of the
adjacent regions. Continuity conditions at the boundary x=I/ (depending on the case) were
described in Egs. (3.63), (3.64), (3.65) and (3.66).

For the analysis, the plate thickness has been disregarded. The cross-section dimensions and
mass of the plate are considered infinitesimal inferior to one of the caissons. Furthermore, this
is a useful and common simplification when considering analytical solutions. It allows the
analysis to focus on the essential behavior of the system without being deterred by the details of
individual element thicknesses. By doing so, arriving at more manageable and insightful results

is often the output.

Boundary between regions Il and IV: Substituting Eqs.(3.73) and (3.91) into the conditions

on(l,z) = ¢y(l, z) and ad)gil’z) = a¢,(;,;l,z) in Egs. (3.63) and (3.65), respectively, the follow

relationships are obtained for (—hg < z < 0).

A~ coshk"(z + hy;) ekl 4 Z By cos ki (z + hyy) ek

n=1

[ee]
+ A* cosh k! (z + hy) e + Z B coskl(z + hy;) eknt

n=1

= E~ coshk(z+ h) + z E; cosk,(z+ h)
=1 (3.92)

—ik'T A~ coshk™ (z + hy)e " 4+ Z —k!'B> cosk!(z + hy)e
n=1

+ ik"A*coshk! (z + hy)etk"!

IIl

+ Z kIBYcoskll (z + h;)en
n=1

— _ikE~coshk(z + h) + Z —k, F cos k(2 + h)
et (3.93)

Boundary between regions Il and IV: Substituting Egs.(3.89) and (3.91) into the conditions
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o, z) = prv(l, z) and 6¢>1(1;:l,z) = 6¢1(;;:l,z) in Eqgs.(3.64) and (3.66), respectively, the follow

relationships are obtained for (—h < z < —hy).

oo

1 2 mmn .. mm mm
—(Cy + Dyl) + — z {(Cm coshh—l + D, smhh—l) cos—(z + h)}

hIII hlll 111 111 hIII
m=1

= E~ coshk(z+ h) + Z E; cosk,(z+ h)
o1 (3.94)

Do | 2 i{(c inh—~] 4+ D hmnl)mn T +h)}
e e sinn — cosn— —COS— \Z
hIII hIII m hIII m h’III hIII h’III

m=1

— —ikE~ coshk(z + h) + z ki F cos k(2 + )
n=1 (3.95)
Final equation system: By assembling and arranging the equations derived in this section, the

below system of equations is finally presented.

For-h, <z <0:

(A_e—ik”l + A+eik”l)coshk" (z + hyp) ®
b = b
atx=1

Ref. to Eq.(3.92)

(00]
+ Z (Bye kil 4+ Brekiycoskll (z + hy))
n=1

= E~ coshk(z+ h) + ZF; cosk,(z+ h)

r=1
(—A‘e‘ik”l + A+eik"l)ik”coshk” (z+ hyp) )
0 0¢u _9¢w
+ Z(—Bge"‘gl + B ek WYk coskl! (z + hyp) 0x ox
n=1 atx=1

— _ikE~ coshk(z + h) + z k. E cosk,(z + h) Ref. to Eq. (3.93)

r=1
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(=A™ + AY)ik" coshk™ (z + hy) (I1I)

atx=1
+ Z (=B + B}) k!l cosk!! (z + b)) = iwd ”
n=1 a—x" = iwd

Ref. to Eq. (3.77)

For—h <z < —hy:

[o¢]

2 |AY/
(Co+ D) ++— Z {(C cosh l+ D, smh l) cos+— (z + hm)} av)
h1 hunr hypr hinr hiir b = iy
_ o atx=1
=FE coshk(z+ h) + Z F, cosk,.(z+ h)
= Ref. to Eq. (3.94)
Do | 2 i{(c h) 4 D,, coshr l)mﬂ Mz +h )} ¥
—+— sinh — cosh—1)—-cos z
hIII hIII = hIII hIII h’III hIII m a¢”] — a¢]V
0x 0x
— —ikE~ coshk(z +h) + z k. F- cosk,(z + h) atx =1
Ref. to Eq.(3.95)
(VD
—+—ZD cos—(z+h ) = iwd B
hyr - ™ hyy hyy 111 atx=0
0
o

Ref. to Eq.(3.90)

Where A~, At and E~ are the complex constants which represent the incident, reflected and
transmitted waves, respectively. B,;, B, and F~ represent the evanescent mode of such waves
which vanish at x = o. On the other hand, Cy, C,,, Dy and D,,, are complex constants to be
determined by applying a numerical method to solve the boundary problem, which will be

discussed in the upcoming section.
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3.3.2 Caisson with Twin Horizontal Plates

The velocity potential for the caisson with twin plates follows the general form for the velocity

potential defined by Eq.(3.59), where ¢; is a superposition of the progressive wave and the

decaying wave (evanescent mode wave), and subscript j = I, II, III, I'V indicates the regions of
the model. For this case: Region I is the free surface in the seaside of the caisson, Region II is
the fluid area within the plate at the surface and the submerged plate, Region III is the fluid area
between the submerged plate and the seabed, while Region IV is the harborside area located after

the plate.

3.3.2.1 Boundary and Continuity Conditions.

According to the wavemaker theory explained in the previous sections, the condition of
movement of the caisson is defined by the boundary at the caisson walls as in Eq.(3.60), while
the conditions at the bottom and under and above the plate are shown in Eq.(3.96). Laplace
equation for the regions is defined in Eg. (3.62), and the continuity conditions in the horizontal

plane between regions are expressed from Eqg. (3.63) to Eq. (3.66).

0¢; Ref. t
ﬂ=iwd;x=—B(j=1);x=0(j=11,m) et
0x Eq.(3.60)
0¢; . . .
i 0; z=0(=IDz=—-h,(j=11,1II); z=—h (j=1II) (3.96)
92¢; 0% Ref. to
= s G=11111,1
ox? = 0z? 030 MLIV) Eq.(3.62)
Ref. to
$pullLlz) (0=z=—hy)
Eq.(3.
bl z) = q-(3-63)
¢ml,z) (—hs=z=-h) Eq.(3.64)
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0pu(l, 2) Ref. to

0L 2) _ dx (0222 ~hs) Eq.(3.64)
ox dpm(l 2) (—h. >z > —h)
— c>z> Eq.(3.65)

3.3.2.2 Final Analytical Expression for the Boundary-value Problem

The derivation of the velocity potential for Regions I and I11 remains the same as in section 0. In
contrast, the new Region II has the same conditions as Region III; thus, the velocity potential is
defined as in Region III as well. Please notice that in this case, the unknown coefficients have
the superscript j as a note that they are not the same values.

Then, for all 0 >z > -k, the system of equations is determined by Egs. (3.97), (3.98) and (3.99),
where j=I1I, II] representing Regions II and III for a total of six general expressions. Notice that
z is globally measured from water surface to seabed even if is within the expression of velocity
potential for a region with water depth smaller than the overall water depth. Furthermore,
parameters in Region IV are not defined with superscripts since they match the ones related to

total free surface water depth.

hlj(C{) + D{)l) hzmz:l (C]m coshmh—jtl + D, sinh% l) cos mh_jr (z+h)) :jji)l
_ < (I and IV)
=E coshk(z+ h) + Z F, cosk,(z+ h)
z Ei (C’ smh—l+ D] cosh—l)ycos—(z+h) G99
h j et h; h; h; atx=1
(IT'and V)
= —ikE~ coshk(z + h) + Z —k,F; cosk,(z+ h)
n=1
D’ 2\ _ (3.99)
— h_z m—cos—](z+h) iwd atx =0
" (III and
VI)
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3.4 SOLUTION OF THE BOUNDARY-VALUE PROBLEM. BOUNDARY-POINT

SELECTION METHOD

[Enhanced subsection based on the previous work of the author in Fundora (2021) and Fundora

and Aoki (2023)]

The Boundary Point Selection Method BPSM (Yoshida et al., 1990) is used to solve the velocity
potential in each region (Fundora and Aoki, 2023, 2024), i.e., determine the values of the
unknowns presented in the preceding section: A=, A*, B, B;f, Cy, Dy, Cyp, Dy, E~ and E~. The
examples of unknowns and equations in this subsection refer to the single submerged plate as a
reference, but it can also be applied to the twin plates model. The application of the method
replaces integral and differential calculus with solutions expressed as algebraic equations. By
specifying that the potential equations for the regions with shared boundaries and their
derivatives hold (converge) on the calculation points, a linear relational expression with respect
to the unknown coefficients is obtained, allowing the determination of the value for such
coefficients.

The potential connection method, regional division method, or collocation method (it has been
diversely named) was one of the leading analysis methods for the boundary value problem of
waves, according to ljimaetal. (1971). It is due to some advantages that will be explained further
in this section that it has been used by researchers such as the same ljima et al. (1971), Black et
al. (1971), Goda et al. (1976), Mcluver (1986), Wu and Liu (1988), and Yoshida et al. (1989) for
the wave-proofing function of coastal structures and the analysis of floating structures.

For the practical application of the BPSM, the physical boundary x = | is divided into sections,
a point within each section is selected (see a representation in Figure 3.8), and the six main
equations of the system resumed in subsections are set to be satisfied in those points: Egs. (3.92),

(3.93) and (3.77) for (0 = z = —h,) and Egs. (3.94), (3.95) and (3.90) for (—hy, = z = —h).
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Each selected point (z) gets associated the number of initial equations and several unknowns
depending on the maximum value of m, n and r, i.e., series term truncation in ¢y, ¢y and ¢yy,
respectively. The truncation is such that the number of final equations obtained along the water
depth hj matches the number of final unknowns, leading to the solution of the equation system.
From applying the method to submerged plates, the following relations arise n + m =r-1and n
+ m + 2 = Zy + Ziu, where Z; is the total number of points selected in a region. However,
although such relations should hold for all-natural n, m and r, errors or unstable solutions are
obtained for some combinations. Thus, the best approach has been proven by applying n = Z; -
1, m=2Zmn-1and r = Zv-1. This is consistent with Yoshida et al. (1990), who concluded that:
“(...) if the number of series terms in each region is taken as the number of calculation points on
the boundary, the square error is the smallest and a good solution is obtained; adding that it is
enough to take a series term corresponding to the number of calculation points determined by
the interval”.

When applying the BPS method, taking the initial or/and final point of a section is also possible,
and it does not constitute a problem in this initial setup. However, in Yoshida et al. (1990),
different arrangements were tested for various problems (Figure 3.11). Also, although results
were the same in almost all cases, taking initial points when others submerged in-line structures
were analyzed (case A-2) outputted inaccurate results. Thus, since the inclusion of submerged
structures is planned in this study's further stages, stable results for such variations and inclusions
are needed. Then, the midpoints are taken for analysis.

Additionally, to test the influence of the number of selected points (Z) on the accuracy and
suitability of the method, the analysis was made for a different number of points
(Z=10,20,30,40,80). As expected, a higher number of Zs led to more accurate values (compared

with the respective analytical solution). However, in cases where the section's length became a
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number with infinite or repeating decimal (e.g., Z=30 with a section length of 0.266), the solution
was inaccurate. That adds another recommendation: Section's length & Q repeating decimal.

v Py P )

Al A-2 A-3 B-1 B-2 B-3

Figure 3.11. Arrangement of calculation points in the point selection method for an isolated

plate and a submerged wall. (Yoshida et al., 1990)

Although it is reasonable to think that applying a more significant number of selected z, m, n
and r will better approximate the exact solution of the velocity potentials ¢; this practice leads
to unstable and inaccurate solutions. However, selecting many points is unnecessary since
relatively small ratios of the section's length to the water's depth hs/ h and (h- hs)/h, such as 1/10

or 1/20, lead to accurate solutions.

Y 0.531607

Mxx - ANALYTIC
1.8F Nzz - ANALYTIC ]
Mxx - BPS (z=10)
16 Nxx - BPS (z=10) |
Mxx - BPS (z=20)
14l Nxx - BPS (z=20) | |
Mxx - BPS (z=40) — .
Nxx - BPS (z=40) Y 0.526786

i
o Y 0.531405
Y 0.530513 |

. X
b ¥ 0.00855298

Y 0.000802073
« Y 0.000297714

0 2‘0 4‘0 6‘0 8‘0 100 v 0.0002 |
w2h/g
Figure 3.12. Comparison between the solutions by conventional and by BPS method in region

[11 (1=0). (Fundora, 2021)
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An example of its suitability and accuracy is that the BPSM solutions in Region I of the study
case match the conventional (analytical) method solutions. Low Root Mean Square errors RMSE
indicating good fits, especially for Ziv > 20, can be seen in Figure 3.12. Comparisons are made
with the conventional method applied in Aoki et al.(1995) for Region | and with solutions in
Yoshihara (2019) for Region Il (case 1/h=0, I/h=0.0001, i.e., | = 1cm for the case of h=8m).

More so, in analyzing R-squared errors, values of approximately 1 are the rule as in Table 3-3,
which implies an almost perfect match or prediction. Even though the suitability and accuracy
of the method are initially tested in Region I and 11 (for =0, noticed in that area, the conventional
analysis is easy; thus, the application of the BPSM is not particularly necessary. On the other
hand, the traditional method is tedious and difficult in Region I, Il and 1V due to evaluating the
integrals related to the eigenfunctions. Therefore, in those regions, the BPS method became

helpful and practical.

Table 3-3. RMSE and R-squared for solutions applying BPSM with different points number

(2) in Region I and Il (I/h=0). Comparison with results by the conventional method. (Fundora,

2021)
RMSE R? RMSE R2
z M« Nk My N M Nxx M Ny
10 — 2.E-03 3.E-03 0.99996 0.99998 = 2.E-03 5.E-04 0.99996 1.00000
20 3 5.E-04 3.E-04 1.00000 1.00000 & 2.E-04 3.E-04 1.00000 1.00000
40 © 9E-05 7.E-05 100000 1.00000 & 5.E-05 3.E-04 1.00000 1.00000
80 @ 2E-05 1.E-05 1.00000 1.00000 @& 9.E-05 3.E-04 1.00000 1.00000

In general, the application of the method leads to a good match with analytical solutions. The
advantages include simplifying the theoretical formulations and computer programming, lower
computer memory required for the numerical calculation, and short calculation time. However,
this method is limited to cases where the flow area can be divided into rectangular shapes. That
is a disadvantage if compared to the finite difference (FDM), boundary element (BEM), or finite

element (FEM) methods.
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An admissible error of 1.E-03 is settled; thus, the analysis for the cases of study is made by
applying the BPSM with 20 sections or points (Z=20), i.e., Ziv = 20, while Z;; and Z;;; will
depend on the submersion depth hs. The previous statements apply to the caisson with the plate
at the surface and to single submerged plates at more than ¥ of the total water depth. For the
case of single submerged plates with small submersion depths, the application of the method
does not yield a solution. The reason is that the BPSM is basically a numerical technique; thus,
when there is low free water surface depth on top, there is a smaller number of calculation points
in that region over the plate and fewer series terms, making it more difficult to the whole system
to converge a solution for the number of unknowns. Accordingly, a total of 40 points (Ziv = 40)
will be used for the cases where the plate is located over such depth. This effect is not seen in
the no-free surfaces, i.e., region under the plate, since the boundary conditions determine a more
stable flux. There, the governing equations are derived so that the terms within the series are not
directly frequency dependent, which translates to no wave number values in the velocity
potential equations under the plate.

Furthermore, to simplify the procedure, the initial deformation d in the equation system is
selected as unitarian, i.e., d = 1. This means that the obtained coefficients and results are divided
by d. When not working dimensionless, to get the real value of the coefficients, the values
obtained directly from the application of the method (elements with superscript ‘calc’) should
be multiplied by d. (A = dA® B, = dB,%, C, = dCo®, Do = dDo%, Cn = dCn®, Diy = dDi?).
Resuming the main recommendations for the application of the method:

a) Selecting sections’ midpoints as calculation points to avoid inconsistent results. b) Taking the
number of series terms in each region as the number of calculation points on the region boundary.
¢) Avoiding sections' length with repeating decimal values. d) Using ratios of section's length to

water's depth hs/ h, such as 1/10 or 1/20, that, although relatively small, lead to accurate
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solutions. e) Redefining the sections’ length to h /40 for regions over the plate with free water

surface around a quarter of the water depth and a small number of calculation points.
3.5 PRESSURE, FORCES AND HYDRODYNAMIC COEFFICIENTS.

If the boundary-value problem is solved, the velocity potential for each region is obtained; thus,
physical properties such as pressure and forces can be derived from it. From the latter's

breakdown, the hydrodynamic coefficient can be obtained and used in the sliding simulation.

3.5.1.1 Pressures and Forces
The general expression for the pressure in the regions of the model applying Eq. (3.59) for the
velocity potential @;(x,z,t) = ¢;(x,z)e'" is defined by Eq.(3.100). Since the solution for
velocity potential derived in sections 3.3 and 3.4 is ¢y ), then the general expression for the
pressure is given by Eq.(3.101). The sign implies the direction of the acting pressure.
Considering for the horizontal pressure acting on the wall, a negative value in the direction
against the movement as a reaction, and for the vertical pressure on the plate: negative upwards

and positive downwards.

0P;(x,2,t) d¢(x,z)e'" . iwt
Piat) = =P~ 57 = P~ ;" —ipwdj(xz)e (3.100)
Pjxz) = TiPWPj(xz) (3.101)
0
E __ = _ dz
xxl(x— B) J—hp( B.z) (3.102)
0
11 —
Fx |(x=0) B f—hsp”(o'z)dz (3.103)
—hg
111 —
Fex |(x=0) = J_h Pini o )42 (3.104)
l
j — | pi j=
o PR fo P onpydx i =111 (3.109)
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Accordingly, and as an example, the pressure for Region 111 under the horizontal plate at the
surface can be expressed as Eq.(3.106). Thus, the pressure acting horizontally on the vertical
wall (x=0) and the pressure acting vertically below the horizontal plate (z=0) is determined by

Egs. (3.107) and (3.108), respectively.

. 1
Pii(x,z) = —lpw {_h (Co + Dol)
11

Con coshZ | + D smh—l) cos — (z +h )] twt
hm Z [( b b b 111 (3.106)

ipw mm .
Piioz) = —7—1Co + 2 Z Cmcos——(z + hyyy) (et
' hu - h (3.107)
ipw mm .. mm
Prico,z) = — 57— |(Co + Dox) + 2 z ( Cpcosh—x + D, sinh— x)cosmm | e'®*
hu | = h h (3.108)

Accordingly, the force acting on the vertical wall (x=0) can be expressed as Eq.(3.109) and
since m € N, sinmm = 0, thus the second term of the sum is canceled, yielding to Eq.(3.110).
On the other hand, Egs. (3.111) and (3.112) define the forces acting below the horizontal plate

at the surface.

0 2 o
Fy = —j P,z = ipw <CO — —m 1nmn)e

Tod m (3.109)
Ey = ipwCoe'®t (3.110)

l
R (3.111)

0

Fa=| ipw(cz+1012) 200 om (i 1+D RZl -1

e = 7 (Col +5 Do p- [msm A (cos A )]cosmm| e (3'112)

The above derivation for the case of a caisson with a single plate at the surface proves useful

as an explanation. However, there are other cases with all the regions involved in the analysis
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and the derivation can become overwhelming. That’s when the numerical techniques become
handy. The application of the BPSM yields to the numerical obtention of the unknown
coefficient of the velocity potentials. Therefore, directly inputting the expressions of the velocity
potential in the general equations for pressures and forces, recalling the values for the coefficients
now known and doing the mathematical integrations over the limits for each region proves to be

more efficient without further derivations.

3.5.1.2 Hydrodynamic coefficients: Added Mass, Damping Coefficient and Memory-effect

Function.

Added Mass and Damping Coefficient

The force expression in Eq.(3.33) displays the direct relation between additional mass M and
damping coefficient N with acceleration and velocity, respectively. Accordingly, since § =
de'®t | it is possible to obtain the additional mass M by dividing the Real part of the force by
w?d; while the division of the Imaginary part of the force value by -dw yields to the damping

coefficient N.

df dzf Ref to
F=-N—-M—
de  dt Eq.(3.33)
s . ;
o = lwde (3.113)
ﬂ _ _wzdeiwt
ac (3.114)

Equivalent to the final derivation of the unknown coefficient in the velocity potential
equations, as stated at the end of subsection 3.4, from the direct application of the BPSM using
d =1, the final values of the force are F=F¢°*d. Thus, in practical calculations of added mass M
and damping N coefficients, the value of a real d is eliminated, and the analysis is made with the

real and imaginary parts of Fcalc,
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calc
M=RE oy =Rl (3.115)

w?d w?
__Im(F) . __ Im(Fcale)
N = — 1.e. N = — (3.116)

Memory-effect Function

For the derivation of the memory-effect function R(t), or its dimensionless equivalent, let’s
first recall the equation for the memory-effect function from Eq.(3.47) reflecting the effect of
the caisson's initial motion on the fluid force after a time t, to see the direct dependence on the

damping coefficient.

2 o Ref. to

R(t) = —j N(w) cos wt dt
TJo Eq.(3.47)

Thus, two approaches can be utilized for its derivation: one based on the values of N(w) itself
or directly substituting the expression of its curve. In the first approach, the N values for each
frequency e obtained in the previous steps are used to calculate the exact value of R(t). However,
the values for the integration are limited by the frequency range utilized. This can be solved by
using a wide range of frequencies; in this study, values of dimensionless frequency w* = [0,100]
provided a good match. For the second approach, a fitting curve tool is utilized to represent and
predict the behavior of N(®) and obtain the expression of its curve. The damping coefficient

curves follow the representation of Gaussian functions. Thus, such a fitting curve is used. The

general expression can be seen in Eq.(3.117).

n

F@ =Y ae o G117)

1

Where an represents the height of the curve's peak, bn the position of the center of the peak, cn the
standard deviation, e the Euler's number, and x the integer (in this case, the frequency). The

advantages of this approach are that it covers infinite values of N(w) and represents less workload
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for the process, while the con is that fitting curves are approximations, although with minimal
errors. Therefore, the latest approach will be used. The fitting curve tool embedded in MATLAB

will be used with this end.

Total Hydrodynamic Coefficients
Furthermore, although independent values will be analyzed to understand the physical
phenomenon, the total value of the hydrodynamic parameters will be utilized for the practical

solution and defined as below.

I 11

M(w)total — z Mxx + fz sz (3.118)
j=1 j=1
Moototal — al,llrio M(w)total (3.119)
11 11
N(w)total — z Nxx + fE Nxz (3.120)
j=1 j=1
2 [o9]
R(t)total = ;f N(w)tt cos wt dt (3.121)
0

3.6 SLIDING

The sliding model is an idealized 2D lumped system with one degree of freedom: horizontal
translation. The equation describing the motion of a regular breakwater (without a horizontal
plate) was defined as (m + M) + fOtR(t — 0)x(1)dt = F(t) — Fy in subsection 3.1.4. Such
expression was used to determine the sliding of the caisson taking constant added mass My, as
1.0855ph°. Furthermore, many researchers also dismissed the parameters related to the motion
velocity for that geometry. Besides, even considering the full expression, only My and Ny for

R, were used, as shown in Eq.(3.122), since vertical forces were dismissed in the analysis.
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t

(m+ M3)x + f Ry (t —D)x(7)dt = F(t) — Ff
0

(3.122)

However, with the addition of the horizontal plate, uplift or vertical forces are more influential
in the system, and the friction force is not constant. Thus, Mz« and N-R« from those forces are
introduced in the motion equation as part of the friction force. In the case of the regular caisson,
the frictional force is equal to Fg = fy * W,,. That force for the caisson with the horizontal plate

is expressed by Eq.(3.123), whereas the uplift force V' is given by Eq.(3.124).

Fr = f;(W,, — V) (3.123)
V= My %+ Nyt (3.124)
Fr = fi(myg + M % + Ny¥) (3.125)

Substituting the above equations into Eq.(3.122), the final expression for the motion is defined
below. Therefore, our final parameter of interest, the displacement (x term), can be obtained in
a time range by solving Eq.(3.126) employing a numerical solver that applies the Runge-Kutta
technique to solve the system of differential equations.

(3.126)

t
(mq + M2, — M2 + f [Rex(t = ) — fiRyx(t — DH(@)dr =
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Chapter 4. ANALYTICAL STUDY: PRACTICAL

IMPLEMENTATION AND DISCUSSION.
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OUTLINE

A practical implementation and results analysis of the theoretical development derived in
Chapter 3 is conducted in the following chapter to investigate the effect of horizontal plates on
the performance of a vertical breakwater during the failure process by simulating the caisson
sliding under impulsive wave loads. It includes outputs and discussion on pressure distributions,
hydrodynamic coefficients (added mass, damping coefficient and memory effect function), and
caisson sliding due to different arrangements of plates according to location, length, and
submersion depth. The analysis is mainly divided into cases of caissons with a single horizontal
plate (at the water surface and submerged) and with twin plates, including the comparison with
the results from the absence of a plate (typical vertical caisson) with the objective of determining

differences on models results and effectiveness of the different arrangements.

4.1 CAISSON WITH A SINGLE HORIZONTAL PLATE. COMPARISON

The effect of the single horizontal plate on the estimation of the hydrodynamic characteristics
due to fluid-structure interaction and sliding of caissons with a single plate is presented and
analyzed in this subsection. The first focus is on the influence of the plate length, which is
analyzed for caisson with a single plate at the surface. Using the latter's best performances, the
plate's submersion depth is then analyzed. All the analyses include the comparison with the
regular caisson (without plate).

The model described in Chapter 3, representing a breakwater with a single horizontal plate, is
used for the analysis. The length of the plate is initially tested on the plate at the surface, where
a more extensive water body is compressed. Four lengths of the plate will be analyzed based on

the ratio ‘plate length’ to ‘water depth’ I/h =0, 0.25, 0.5, 0.75 and 1. The ratio I/h = 0 corresponds
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to the case of regular caisson (without plate). For the plate submersion analysis, another three
submersion depths are added, and the following ratio of ‘submersion depth’ to ‘water depth’ hs/h
from 0 to 1 with a step of 0.1 including the locations hs = 0.25h and hs = 0.75h. For the
submersion analysis, the ratio hs/h = 0 corresponds to a selected case from the plate length

analysis and hs/h =1 to a regular caisson (without plate). Refer to Figure 4.1.

X
Sea side B = 6m ! Imax = 8m Harbor side
1=
(o]
N\ o I’h = [0:0.25:1] v
/ ToIIIICIIIT ] ——
&
p T | -
< hs/l hs/h=[0:0.25:1]
p m, W, p, hs/ hs/h=[0.1:0.1:0.9]
7
R R R R R R IR R LR

AN A A ANANCANANANA. 22, \\/\\ A A A A A AT AT AN AN

Figure 4.1. Representation of the single plate model with the cases of analysis for plate length

and submersion depth.

A dimensional analysis is made based on the purpose of obtaining concrete values. The model
dimensions and properties, as well as the initial parameters for the sliding calculations,

correspond to those used for the BPS method in Chapter 3, but are reminded below.

h=8m B=6m d=2m p=1000kg/m?

pc = 2150kg/m®  f=f=06 @=0.1 t,=0.5s

where p and p. are water and concrete density, respectively; a the wave force magnitude; fs and
f the static and dynamic frictional coefficient, respectively; and t, the time instant where the
maximum external force Fmax is reached. However, a dimensionless analysis is made as a rule
for easier comparisons. The parameters to be used and their dimensionless expressions are

displayed in Table 4-1.
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Table 4-1. Parameters related to linear wave theory and dimensionless expressions.

Parameter Symbol | Dimensionless expression
m
Mass m m :W
Weight W w* = W
= ~ ph?g
. X
Displacement X X' = m
i * g . * g . * g
Time t t_ﬁt,tp—\/%tp,r—ﬁr
h h
Frequency ® w'=w—; w=w |-
g g
M
Added Mass M M* = —
ph?
Damping Coefficient N N= N N = @)
amping Coefficien = ; N(w*)* =
pIng pwh? p[gh?
. R(t)
Memory-effect Function R R(t*) = —=
pgh

Note: In the analysis below, w* is referring to the form wzg

4.1.1 Pressure Analysis
The frequency range for applying the methodology is o* = [0 - 100]. While the estimation for
the hydrodynamic parameters is o* ->c0. However, in order to easily observe and understand the
pressure behavior on the plate and the caisson wall, a reduced number of frequencies will be
used for the pressure distribution comparison, that is the case of o* = [0.1, 5, 10, 15, 20]. The
geometric range of analysis is along all water depth z = [0~1]h and all the plate lengths for each
case x = [0~1]l. Furthermore, the analysis will include comparisons taking into account the

complex value of the pressure, as well as only the real component to better define the behavior.

Single plate at the surface (Plate Submersion: hs=0. Plate length: 1/h=0.5)
(Real and imaginary components of the pressures)
The pressure distribution on the wall (Figure 4.2 - left) displays more uniformity for lower

frequencies. Higher values of pressure correspond to higher frequencies. Furthermore, the
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Imaginary part (related to damping) is more relevant for small frequencies and tends to zero for

higher frequencies.

v T u.5
[ ZZ g
-0.1 I | 7::::::::"
| e e e e e e ——————
-0.2 | -+ —_eee - = =
0.3
0.4+ ‘ 1 0.5
)
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! N
| Px-real (w*=0.1) Px-imag (w =0.1)| | & i
06 Px-real (W*=5) — — —Px-imag (w*=5) -1
07 Px-real (w*=10) — — —Px-imag (w*=10)
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Figure 4.2. Pressure distribution acting on the wall(left) and the plate(right) for different
frequencies. Single plate at z=0. (Complex arguments)

The pressure distribution under the plate (Figure 4.2 - right) exhibits more significant pressures
near the wall while tending to 0 when reaching the plate tip. The imaginary part slightly increases
near the tip; this is related to the fact that in that zone, there are more effects related to the
damping process due to the change of boundary conditions, so the impact of the fluid in the

region behind the plate affects it more.

Submerged Plate (Plate Submersion: hs=0.5. Plate length: 1/h=0.5)

(Real and imaginary components of the pressures)

The overall pressure distribution on the wall (Figure 4.3) is interrupted due to the plate and
variates due to the different boundary conditions. The distribution over the plate corresponds to
the ones for a monolithic caisson (no plate-free surface). An almost uniform distribution is seen
under the plate with higher pressure values than the upper region (more than double).

Additionally, the imaginary part of the pressures is more representative near the surface.
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Figure 4.3. Pressure distribution acting on the wall for different frequencies.

Single plate at z=h/2. (Complex argument)

The pressure distribution on the plate (region I1) and under it (region I11) and the total pressure

are seen in Figure 4.4. When analyzing the horizontal distribution on the wall (per region), the

pressures under the plate double the pressures over it, presenting a more linear distribution. The

pressures over the plate are slightly higher near the wall and show a sort of parabolic behavior,

increasing at the tip (without reaching those at x=0).
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Figure 4.4. Pressure distribution acting on the plate(right) for different frequencies total(right)

and per region (left). Single plate of I=h/2 at z=h/2. (Real arguments only)
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The pressures over the plate are slightly higher near the wall and show a sort of parabolic
behavior, increasing at the tip (without reaching those at x=0). The addition of the influence of
both regions shows the total horizontal distribution on the plate (Figure 4.4- right). In there,
larger pressures due to higher frequencies are confirmed, and pressures tend to be 0 for areas

near the tip, although it does not reach 0 at the tip as the case with the plate at the surface due to

a mix of hydrodynamic phenomena in that area.

For different plate length (Plate Submersion: hs=0. Plate length: I/h=0, 0.5, 1).

(Only real component of the pressures)

The pressure distribution on the wall for different plate lengths (Figure 4.5 — left) exhibits that
longer plates produce higher pressures but also more uniform distributions on the back wall. The
pressure distribution under the plate displays that longer plates result in higher uplift pressures

and more significant pressures due to higher frequencies. Furthermore, the length does not

influence the tendency to 0 at the tip.
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Figure 4.5. Pressure distribution acting on the wall(left) and the plate(right) for different

frequencies. Single plate at z=0. (Real arguments only)
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For different submersion depth (Plate Submersion: hs=0, 0.5, 1. Plate length: 1/h=0.5)
(Only real component of the pressures)

When analyzing the pressures on the structure, it is confirmed that the plate produces higher
pressures along the wall of the region under it. Still, its submersion also makes the pressure
distribution uniform on the wall and less steep along the plate. Figure 4.6 (left and right) share
the same legend and show only the real part of the pressure values. The negative sign in Px
represents the direction against the movement, while P; represents the uplift direction. Higher
pressures are reached for hs= 0 (plate at the surface), while higher pressure values correspond to
higher frequencies in both cases. Maximum horizontal pressures (Px™®) occur at the bottom of
the wall, and vertical ones (P;™®) at the beginning of the plate. Px™® increases for a submerged
plate. Additionally, P,™® increases for low frequencies and decreases for higher ones Pressures

at the plate tip increase due to the confluence of diverse regions flows in that zone.

_Pz/pgh

-1.5 -2 0 0.2 0.4 0.6 0.8 1

0.5 0 -0.5 -1
Px/pgh N

Figure 4.6. Total pressure distribution acting on the wall (left) and the plate(right) for different

submersion depths and frequencies. Single plate of I=h/2 at z=(0, h/2, h). (Real arguments

only)
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4.1.2 Hydrodynamic Parameters Analyses.
In most cases, in order to understand the phenomena, the parameters in each region (II over the
plate and III under the plate) will be analyzed, as well as their total values at the wall (with
subscript xx) and at the plate (with subscript zx). As mentioned, the total values are the

summation of the regions implied in each analysis, which translates to the expressions below.

Myx = MxxI + MxxII + MxxIII
My = sz“ + sz“I

Nyx = NxxI + NxxII + NxxIII

Nz = Nzx“ +Nzx|“

4.1.2.1 Added Mass

Besides the investigation in each region, the added mass and damping coefficients study is

divided into their variation according to different plate lengths and submersion depths.

For different plate lengths

[This part of the subsection is an enhanced version of a previous work of the author (Fundora,
2021) and Fundora and Aoki (2023)]

The plate length is analyzed for the plate at the surface hs= 0 and for plate lengths | = [0:0.25:1]h,
including the case where the cases | = 0 or I/ h=0 corresponds to the no-plate case.

It is evident that the added mass, both horizontal Mxx and vertical Mz, increases as the horizontal
plate becomes larger, and in all cases, the behavior becomes asymptotic to a particular value (see
Table 4-2). The value of My refers to the parameter in region Ill, noticing that region Il is
eliminated from the model when the plate is at the surface, as is the case. To obtain that value of

added mass when the frequency tends to be infinite, i.e., constant added mass M* (M4, and
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n-1
M3,); the limit of the curves' expressions is determined in the form M® = lim (p"w—) For

w—00 \qrw™1

the curve's expressions, MATLAB's fitting curve tool is used.
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Figure 4.7. Total Dimensionless Added Mass (Mxxand Myy).

Furthermore, Figure 4.8 displays that the horizontal My~ and vertical M," added mass, as
well as the ratio between them, behave relatively linearly with the variation of the plate length.
However, the importance of the later Mx" over My increases with plate length; thus, larger

plates equalize the parameters in both directions.

Table 4-2. Dimensionless My, and M3, for different I/h.

I/h I\/IXXOO I\/lZXOO I\/lZXOO / I\/IXXOO
0 1.085 0 0
0.25 1.240 0.0839 0.067
0.5 1.475 0.2712 0.183
0.75 1.722 0.5311 0.308
1 1.972 0.8562 0.434
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Figure 4.8. Dimensionless Constant Added Mass My, and M35, (left) and ratio M3, /M3, (right)
for different plate lengths.

For different submersion depth

The submersion depths for the analysis are hs = [0:0.1:1]h, including the cases hs = 0.25h and
0.75h, where the cases hs = 0 and hs =h corresponds to the plate at the surface and no-plate case,
respectively.

In Figure 4.9, the dimensionless values for the added mass acting on the wall in regions 11 (left
figure) and I11 (right figure) are reflected. Figure 4.10 presents the added mass acting on the plate
for the same regions. In region Il, the added mass acting on the wall increases with plate
submersion heading to the value of a regular caisson, although it has an initial slight reduction
for plates in the range 0<hs<0.2h, while the one acting on the plate increases steadily. As
expected, region III’s horizontal added mass decreases with the submersion of the plate and at a
faster rate than the increments of region Il. In contrast, the vertical added mass decreases for
plates located in the range hs<0.4h and starts recovering for hs>0.4h, although without reaching
the initial value. This behavior responds to the larger fluid at the first locations and the narrowing

depth for the latter.
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Figure 4.9. Dimensionless Added Mass on the Wall per region: over the wall -Region |1 (left)

and under the plate -Region I11 (right) for different submersion depth. Single plate of 1=h/2
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Figure 4.10. Dimensionless Added Mass on the Plate per region: over the wall -Region 11 (left)

and under the plate -Region Il (right) for different submersion depths. Single plate of I=h/2

The convolution of the related regions results in the total values for the horizontal (including
region 1) and vertical added mas acting on the walls and the plate are presented in Figure 4.11.
From there, and the resume in

Figure 4.12, it is evident that the total horizontal added mass My~ (left) reaches its higher value
with the plate located at the surface and steadily decreases with the plate submersion since the
volume of constricted fluid is reduced. The vertical added mass Mx" (right) also decreases with

plate submersion; however, when comparing with the plate at the surface, the added mass of the

latter has lower values than plates with O<hs< 0.3h.
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Figure 4.11. Total Dimensionless Added Mass on the Walls (left) and on the Plate (right) for
different submersion depth. Single plate of 1=h/2
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Figure 4.12. Dimensionless Constant Added Mass (0*=100): Horizontal in regions I and
I1(left), Vertical in regions | and Il (middle) and Total(right) for different submersion depths.
Single plate of I=h/2

4.1.2.2 Damping Coefficient

For different plate lengths

The horizontal damping coefficient Nxx suffers minimal variations, although the cases with a
plate slightly differ from the case without it. However, the vertical damping coefficient N
variation is more noticeable due to differences in the plate length. Larger plates induce higher
damping. Furthermore, Nz takes values closest to Nxx as the plate length increases. Yet, all
graphs became asymptotic to 0, implying almost no influence of the damping coefficient when

the frequency tends to be infinite.
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Figure 4.13. Dimensionless Damping Coefficient (Nxx and Mx")

For different submersion depth

As well as with the added mass, an analysis for the influence of the submersion depth in the
damping coefficient is made. In the below figures, general values for the damping coefficient are
displayed on the left side, while a focus on a lower range of frequencies for each case is presented
for better visualization on the right side. Horizontal damping over the plates reaches larger values
and for a broader range than under the plate. Furthermore, their values are higher than those from
the vertical damping. The latter in the region under the plate reaches 0 values for half of the
frequency range compared to the parameter over the plate. Additionally, while submersion
increases, tighter patterns show the similar behavior of plates closer to the bottom and a more
noticeable variation for the plates higher than the water depth. The total values accounting for

all implicated regions are seen in Figure 4.18.
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Figure 4.14. Dimensionless Damping Coefficients on the Wall over the Plate - Region 11 for
different submersion depths. General (left) and zoomed (right). Single plate of I1=h/2
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Figure 4.15. Dimensionless Damping Coefficients on the Wall under the Plate - Region |11 for
different submersion depths. General (left) and zoomed (right). Single plate of I1=h/2
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Figure 4.16. Dimensionless Damping Coefficients over the Plate - Region Il for different
submersion depths. General (left) and zoomed (right). Single plate of 1=h/2
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Figure 4.17. Dimensionless Damping Coefficients under the Plate - Region 111 for different
submersion depths. General (left) and zoomed (right). Single plate of I=h/2

The total horizontal damping behaves similarly for all cases, with a more noticeable difference
of the plate at the surface with higher values and more influence along the frequency range. More
variations are seen for plates closer to the surface since the stability produced by the plate and
volumes of fluid over it get reduced. A smaller water depth with a free surface brings variations
to the parameter. Furthermore, the application of the methodology when the difference of region

depths is wider also influences it. In general, as closer to the surface, the values start emulating

more those from the plate at the surface.
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Figure 4.18. Total Dimensionless Damping Coefficients on the Wall (left) and the Plate(right)
for different submersion depths. Single plate of I=h/2
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4.1.2.3 Memory- Effect Function

The memory-effect function for different plate lengths is shown below. However, the parameter
in each region is not displayed since its calculation is a function of the result of the total Damping

coefficient. Hence, the submersion influence is discussed in subsection 4.1.2.4.

For different plate lengths

In Figure 4.19, a damped sinusoidal behavior for R*(t*) is confirmed, with higher values in
time frames near the impact of the external force. From there, it decays exponentially and then
damped. Thus, the parameter is analyzed in a time frame where its influence is more significant:

0 t*<s.

4+
\ Rxx*(lh=0)  — — - Rzx*(//h=0.25)
3 Rxx* — — —Rxx*(I/h=0.25) Rzx*(/h=0.50) |
\ Rxx*(I/h=0.50) —-—-~ Rzx*(/h=0.75)
% Rxx*(1/h=0.75) Rzx*(I/h=1)
S Rxx*(I/h=1)
x
%
o3 S Ny, S ! ST SSU—
()]}
j=
2
bed
N ok
N2
-3
4 I 1 1 L
0 1 4 5

2 gi)12°
Figure 4.19. Dimensionless Memory-effect Function acting on the Wall (Rx*) and the
Plate(Rx*) for different plate lengths. Single plate at z=0.

There is a similar overall behavior among the I/h ratios for R},. However, it differs from the
curve of the breakwater without a horizontal plate for times near t, with values of R, around 1.8
times higher than a regular caisson. The above reveals that Rxx function changes depending on
the horizontal plate's presence. A more significant variation is observed in the Vertical Memory-

effect Function R;,. The damping tendency is still seen but with differences in the amplitude.
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Unlike R}, divergences between R;, for different I/h ratios are seen, showing the influence of
the plate variation on the R;,. Additionally, disregarding shape variations, R* becomes 0 in the
range between t* = (2.2~2.3). As for their influence on the sliding, there is not much variation if
using a linear approximation as in Aoki et al. (1995), although not the same, or a higher-degree

polynomial function for Ry,. Contrarily, linear approximations are impossible to use for R;,,

therefore, high-degree polynomial functions are used.

4.1.2.4 Total hydrodynamic parameters. (M, N, R)xx + f(M,N,R)x

For the sliding calculation, within the equation of motion, horizontal and vertical parameters are
related in the form (M3 — fM3y") and (Ry,— fR;,). Hence, such form will be arithmetically
obtained, and the curve fitting will be done to the result of it and not to the individual parameters
of M3, M35, Ry, or R;,. Note that independent memory-effect functions in each direction will

not be determined since (Ry,— fR;,) curves are a direct function of (N3,— fN3).
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Figure 4.20. Screenshot of the curve fitting tool in MATLAB
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Figure 4.20 shows a screenshot of the curve fitting tool in MATLAB used to determine the
expressions for added mass used in the constant added mass calculations, and it is also
implemented for the expressions of the damping coefficient used in the memory-effect
calculation and its function expression directly used in the equation of motion to derive the
sliding distance.

For the Added Mass analysis, the difference between utilizing independent parameters or the
complete expressions My, + fM3; is displayed in Table 4-3, where such a difference represents
an error of 0.3%, which is small and admissible. What appears within the brackets represents the

function to which the curve fitting is applied and the limit @—>0 is calculated for.

Table 4-3. Differences on calculations results using independent or complete expressions of

added mass My, + fM3;

hS/h [MXXOO] [MZXOO] [Mxxw] + f[szoo] [I\/Ix)(DO + szxw] leference %

0.25 1.342  -0.3081 1.15714 1.161 0.00386 0.3325
0.5 1.188  -0.2139 1.05966 1.063 0.00334 0.3142
0.75 1112 -0.1248 1.03712 1.04 0.00288 0.2769

For the Memory Effect function analysis, there is almost no change overall except for a
difference observed for t<0.1s in the dimensional analysis. The largest difference is seen in
Figure 4.21 for hs/h=0.25, but still with a squared error of 0.998. This is an error already obtained
in the Rxx fitting that it is dragged to the Ryx +f Rax.

The influence of using the direct output of the forms (M3 + fM3y") and (Ry.+ fR;,) reduce
errors introduced on the multiple approximations and calculations for each independent
parameter, simplify the procedure within the methodology, and consequently decrease the
analysis time. Furthermore, after checking the use of reduced and general equations for R(t), the

changes were minimal. This is related to the fact that the displacement time is short, so the part
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of the graph that passes the 0 axis is not used, and that part is well-fitted on the general curve.

However, to be more accurate, we will continue using the fitting curve to the R(t = 0-5s).

%104 Dimensional «104 Dimensional
T T T T T T T T T T

T
Rx-0.6Rz
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T T T
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Rx-0.6Rz-v2 | -

=025
=025
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t t

Figure 4.21. Results of the curve fitting using independent or complete expressions of memory-
effect functions Ry, + fR

Added Mass Myx - f M

Plates located at hs/h<0.4 have larger Added Mass relationships than a caisson without plate.
According to this parameter, those cases are initially expected to behave better, while it might
be unreasonable to locate plates at lower locations since performance will be poorer than the
regular case (no plate). The case hs/h = 0 (plate at the surface) still has a larger Added Mass, and
it is expected to behave better than all cases. The Constant Added Mass derived from the curves

is also displayed in Figure 4.22(right).
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Figure 4.22. Relationship Myy" + fMzy" (left) and Dimensionless Constant Added Mass (right)
for different submersion depths. Single plate of I1=h/2.
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Memory-effect function Ryx - f Rx:

As mentioned before, the Memory-effect function in the time domain is based on the damping
coefficient in the frequency domain. Thus, the dimensionless relation Ny« - f N is displayed in
Figure 4.23(left), while the output for the memory-effect function is provided on the right side
of the figure. The memory-effect functions for submerged plates follow a similar tendency:
maximum at t*=0 with a fast damp reaching 0 in a range between t*=[1.91~2.95]. The effective
time for the damping primarily decreases with plate submersion, with higher effective time for
hs =0.1h and shorter times for regular caissons and out of the pattern hs=0. The dimensionless

memory effect function’s maximum (Ro") and its integral are shown in Figure 4.24.

1.5 3 T T
Nx-fsNz(hs/h=0) R*(hs/h=0)
Nx-fsNz(hs/h=0.10) R*(hs/h=0.10)
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Figure 4.23. Horizontal and Vertical relationship for Dimensionless Damping Coefficients Nyy -
f Nz (left) and Dimensionless Memory-effect Function Ry - fRx (right). Single plate of 1=h/2
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Figure 4.24. Dimensionless Memory-effect Function (left) and Integral of the Dimensionless
Memory-effect Function (right). Single plate of I1=h/2.
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Furthermore, their ratio with respect to the values for the no-plate case, including the constant
added mass from a previous analysis, is gathered in Figure 4.25 for better visualization. Based
on the above figure, and when comparing with the regular caisson, larger added masses are
obtained for submersion depth hs < 0.4h. The behavior is to decrease with submersion and
slightly recover after hs > 0.75h. The memory-effect functions have lower integral values
(component used within the motion equation) for hs <0.25h, while similar values to the no-plate
case are seen for hs>0.2h, although slightly higher for hs >0.25h. The behavior is to have a
minimum value for the plate at the surface, increasing up to around hs=0.2, 0.25h and remaining
stable.

On the other hand, a quick look at the dimensionless memory-effect function’s maximum (Ro")
shows a reduction tendency when decreasing the submersion depth, with similar ratios than the
regular caisson for the submersions under half of the water depth, but a sudden increment for the
plate at the surface. A general reading is that regarding the added mass and the memory-effect
function, while one increases, the other decreases, and vice versa; thus, their effect might get
outweighed. The only case where this doesn’t happen is at the surface. This is expected to be
reflected in the output of sliding calculations. slightly higher values are at hs>0.75h; those locate

at 0.1h > hs >0.5h have lower values.

—a— M, M, h=1) | |
—&— Ry"R"(hh=1)

Int. R¥/R*(h_/h=1) |1
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08t | =

0.75 . : ‘ . . : . ‘
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hS/h
Figure 4.25. Ratio of Dimensionless Constant Added Mass and Memory-effect Function
parameters related to the No-plate case for different submersion depths. Single plate of I=h/2.
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4.1.3 Sliding

The process to determine the sliding of a breakwater with a horizontal plate is described in
section 2.3.10 of Chapter 3. Sliding depends on the Wave Force F(t), the Frictional Force Ft, the
Added Mass at infinite frequency (M*), and the Memory-effect Function R.

The mentioned procedure adapts and modifies the method introduced by Aoki et al. (1995) in
"Simulation of the sliding of the breakwaters upright part” (in Japanese). The model includes
vertical hydrodynamic forces (see EQ.2.102) and utilizes eight and nine-degree polynomial

functions to describe the Memory-effect Function R instead of the linear approximation.

t

t
afsmwgt—; (0 <t< tp)l

(g + M2+ FMENE + [ (Rt =)+ fiRe (& — D} (D = b Ref. to
0 a_t) . < (3.126)
kozfsmwgS _E H tJ
For generalization, Eq.(3.126) is dimensionless expressed as in Eq.(4.1)
t* )
(mg" + My" + M) + j [Rox (6" = T°) + fsRyy (¢" —T9)] x*(z)d7”
0
4.1)

afs(mw*g)% (O <t*< tp*)

afs;(m,*g) (2 — é) (tp* < t*)

4.1.3.1 Sliding reproducibility

Sliding due to the implementation of equations Eq.(4.1) to the model introduced in section 4.1
is compared with the sliding obtained by the method used in Aoki et al. (1995). The same
parameters were used. Furthermore, an 8-degree polynomial is employed as Memory-Effect
Function in the BPS case instead of the linear approximation in the conventional case. Fig.3-12
displays such a comparison.

Variation is minor, in the order of 3E-04 for general sliding and 0.000566m ~ 0.6mm for the

value of maximum sliding, implying a good agreement and confirming the reproducibility of
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both displacement and velocity. Furthermore, it is irrelevant for regular caisson (without
horizontal plate) if the exact expression of the Memory-Effect Function is used as a high-order
polynomial function or a linear approximation. However, this is not the case when determining
the vertical component, as it was introduced in section 3.5; thus, the high-order polynomial

functions will be used in all cases.

0.1 T T T
— X (I=0) conventional RMSE (X) = 0.00026m
V (I=0) conventional R2 = 1
— X (I=0) BPS
0.08 | V (1=0) BPS
® 0.06
E
>
S
< 0.04
0.02 |
0 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

t(s)
Figure 4.26. Displacement and Velocity for Breakwater Without Horizontal Plate (I/h = 0)
Conventional Method v/s Boundary-Point Selection Method (BPS)
(fs=0.6, a=0.1, t,=0.5).

4.1.3.2 For different plate lengths
[This part of the subsection is an enhanced version of a previous work of the author (Fundora,
2021) and Fundora and Aoki (2023)]

In this subsection, the horizontal plate influence is analyzed by changing the ratio of plate
length to water depth (I/h). Such analysis is made for the relations I/h = 0, 0.25, 0.5, 0.75, and
1.0. The case 1/h=0 corresponds to the regular caisson (without horizontal plate). Although in
Figure 4.27, a dimensional displacement is shown for the model (B=10m, h=8m, d=2m) with
the parameters expressed in the figure's caption, when comparing with other models in further

subsections, the analysis will be made for dimensionless parameters.
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Figure 4.27. Displacement and Velocity (left) and Maximum Displacement for (right)

for I/h = 0:0.25:1 (fs=0.6, 0=0.1,

tp:0.5) .

For all I/h >0, the maximum displacement is inferior to the case without a plate I/h =0. Hence,

it is correct to say that adding a horizontal plate reduces the caisson sliding. Furthermore, the

behavior of the maximum sliding is to steadily decrease with increments of the plate length up

to 1=0.75h, to increase after, although not reaching the sliding of the no-plate case. Thus, when

the plate becomes too long, reaching I=h, it starts working as an equalizer of the forces acting

on the wall and the plate, as we saw in the independent analysis of the force components; thus,

the sliding goes back to be similar that from the regular caisson.
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Figure 4.28. Displacement reduction for I/h = 0:0.25:1
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Finally, the influence of the horizontal plate at the surface on the reduction of the caisson sliding
against impulsive waves is minimal, with a maximum of 2% for I/h =0.75, as displayed in Figure

4.28, where the displacement reduction with respect to the regular caisson is presented.

4.1.3.3 For different submersion depth

In this subsection, the influence of the horizontal plate submersion on the sliding is analyzed by
changing the ratio of the plate submersion depth to the water depth (hs/h). Such analysis is made
for the relations hs/h = 0:0.1:1, including hs/n=0.25 and 0.75. The case hs/h = 0 corresponds to
the plate at the surface and hs/h = 1 to the regular caisson (without horizontal plate). From the
plate length analysis, a plate with length 1=h/2 is selected and utilized for the submersion

analysis.
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Figure 4.29. Dimensionless Sliding/Displacement for different submersion depth. Single plate
of 1=h/2
The minimum sliding is reached by a plate at the surface, starting to increase, reaching a
maximum sliding at hs= 0.2h. From there, the sliding distance starts decreasing until reaching

the displacement for a case without plate. The reason for this is that for the first part of the

behavior, the fluid area gets reduced and so does their positive influence on reducing the sliding;
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while for the second half, the combination effect of the fluid mass over the plate and the total
added mass, counteract the uplift forces, thus the sliding reduces. Among the submerged
locations, the displacement is slightly smaller while the plate is closest to the surface hs<0.1h or
to the bottom hs<0.75h around. Nevertheless, only the plate at the surface or very close to it (less

than 0.1h) reduces the sliding when compared with the regular caisson.
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Figure 4.30. Dimensional maximum sliding and velocity (left) and ratio related to the no-plate
case for different submersion depths. Single plate of I=h/2

Regarding motion velocity, the caisson velocity is minimum for the plate at the surface, doubling
the sliding reduction rate with respect to the no-plate case. It sharply increases and remains
constant from 0.4<hs/h <0.7 when it starts decreasing again until reaching the no-plate case.
Furthermore, for both sliding and velocity, plate locations at distances h/3 from the surface and
the bottom drop with respect to their relative tendencies. This might respond that the positive

effect on the sliding of the forces acting over and under the plate is more balanced at such

locations.

4.1.3.4 Influence of the use of vertical components on the sliding

Although in Figure 4.27, a dimensional displacement is shown for the model (B=10m, h=8m,

d=2m) with the parameters expressed in the figure's caption, the comparison analysis is made
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for dimensionless parameters. From Figure 4.31, the sliding due to both cases (with and without

vertical force) can be contrasted.
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Figure 4.31. Dimensionless displacement for the "only Fx" and "FxFz" cases.

Compared with the only use of the horizontal forces "only Fx" {using Eq.(4.1) with only Mxy and
Rxx I.€., dismissing M« and Ry} and as in the conventional approach and in (Yoshihara, 2019),
where such reduction in the sliding is crescendo for larger relation I/h until reaching almost 20%,
the inclusion of the vertical force in the analysis gives more accurate results due to a broader
representation of the phenomena. Excluding Mzx and Rz leads to underestimating the sliding of
the caisson and overestimating the horizontal plate's positive influence in reducing the sliding,

especially for larger I/h ratios.
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Figure 4.32. Dimensionless maximum displacement (left) and displacement reduction (right)

for the "only Fx" and "FxFz" cases.

Compared with the “only Fx” case, sliding becomes around 4%, 8%, 12% and 18% smaller for
I/h=0.25, 0.50, 0.75 and 1, respectively. Finally, the real influence of the horizontal plate on the
sliding of the breakwater caisson is minimal, with a maximum of 2%, as in Figure 4.32 (right).
Hence, the conventional model dismissing vertical components of the forces in the sliding

simulation is not applicable to caissons with horizontal plates.

4.1.3.5 Influence of the use of the memory-effect function on the sliding

The introduction of the memory-effect function in the sliding simulation is another difference
from the conventional model for regular caissons. Thus, it is also analyzed in addition to the
vertical components of the forces. In the figure below, the comparison of the results of the
caisson’s motion equation as in the conventional model, utilizing only the added mass (real
component of the forces), and as in the proposed model, utilizing both the added mass and the

memory-effect function (imaginary component of the force expressed in time domain).
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Figure 4.33. Influence of the inclusion of memory effect function on the sliding and velocity.
As displayed in the figure, there is a significant variation of the sliding maximum distance,
velocity, and effective time of the sliding. For the first part of the movement, there is not much
variation. Such time is slightly higher than the rising time of the wave force (tp=0.5s in this case).
The memory-effect function should be included in the sliding simulation of caisson with plates.
Neglecting it overestimates the sliding by about 30%. Hence, the generalized model does not

apply to it.
4.1.3.6 Influence of the Wave Parameters: Rising Time and Force Magnitude

The parameters of the wave force used in the simulation also have an important influence in the
sliding simulation. For the case of impulsive waves, the representative parameters are the rising
time and the force magnitude. The rising time is the time lapse from when the sliding starts i.e.,
when the wave force is higher than the static frictional force Fs (force needed to produce sliding),
until the maximum wave force is reached. The force magnitude is the normalized relation of

maximum wave force Fmax and the static frictional force Fs as below.
a = (Fmax B Es)/ F; (4-2)

Larger rising times of the impulsive wave t, lead to smaller initial sliding but larger total sliding.
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It translates into faster initial motions before reaching maximum velocity; after that, deceleration
occurs at the same pace for all t,. Increasing rising times also increases the maximum velocity
reached during the sliding; however, the sliding velocity itself (ratio of maximum sliding to
maximum velocity) gets reduced. The sliding duration increases with increments of the rising
time.

On the other hand, higher force magnitude a directly translates to larger initial and total sliding.
The relative increments of the sliding remain similar for all cases. Furthermore, increasing « also
increases the maximum velocity reached during the sliding; however, a changes do not influence

the sliding velocity or duration.
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Figure 4.34. Displacement and Velocity for wave rising time (left) and alpha (right) variation.

4.1.4 Conclusions for the single plate case

The analysis results confirmed that the presence of a single plate increases the added mass of the
structure. When focusing on plate length, general added mass can grow up to 35% for plates at
the surface with lengths up to water depth value h. In contrast, the general added mass starts
decreasing with plate submersion, adversely influencing the sliding for submersion depths higher
than 0.4h. On the other hand, the damping effect has a more significant influence on the sliding

of plates located at submersion depths over 0.4h, with positive influences for the superficial
103



plates but also over depths higher than 0.75h and negative influences on the range 0.1h <hs<0.5h.
An increase in the horizontal added mass as the plate becomes larger is corroborated, but it is
also seen in the vertical added mass. Other parameters, such as damping coefficients, do not see
much change in the horizontal direction, but they do in the vertical one. Such relations indicate
that the longer the plate, the more equal the parameters at the vertical wall and the horizontal
plate. Thus, the plate works as an equalizer for horizontal and vertical directions, which is
reflected in the sliding calculations.

The combined effect of the hydrodynamic parameters results in a reduction of the sliding for
plates located at the surface, with a better impact for plate lengths between 50% and 75% of the
water depth value. The positive effect of the hydrodynamic coefficients’ horizontal components
on the sliding was drastically reduced by the vertical ones when such plates have lengths larger
than 2/3 of the water depth.

Regarding the sliding simulation, the critical influence of uplift forces and the importance of
including the memory-effect function when elements such as plates are added to the caisson are
corroborated. An underestimation of the sliding is obtained when dismissing the forces' vertical
parameters; such underestimation increases with plate length reaching up to 20% for plate
lengths equal to water depth. On the other hand, dismissing the memory-effect function leads to

overestimating the maximum sliding of around 30%.
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4.2 CAISSON WITH TWIN HORIZONTAL PLATES. COMPARISON

The initial hypothesis of the influence of the water constriction in the increment of hydrodynamic
coefficients, such as the added mass, was displayed in the previous section. However, it was also
observed that another parameter, the damping coefficient, reduces the general positive effect on
the sliding of the caisson. To investigate further, a twin plate arrangement is analyzed in the present

section of the document, and a comparison with the single plate at the surface is made.
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Figure 4.35. Model representation of a caisson with twin plates.

As Figure 4.35 shows, the model is similar to the one presented in section 4.1 but with a
combination of a caisson with a submerged plate and another one at the surface. The latter was the
best location from the single plate analysis; thus, the arrangement for the twin plates keeps one
plate at the water surface and the second one is submerged at 'z of the water depth. Although
different submersion depths can be analyzed using the present methodology, a single location is
enough to validate the hypothesis for this section. Geometric characteristics of the caisson, water

depth and properties of the medium remain as in section 4.1.

4.2.1 Pressure analysis.

After finding the solution for the velocity potential, the first parameter to be obtained is the

pressure, which is an excellent indicator for visualizing the effect of the plates on the reactions
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at the wall and plates. The values of pressures are complex numbers: the real part is related to
the propagating mode (connected to the added mass obtention), and the imaginary part to the
evanescent or decaying mode (connected to the damping coefficient). Selected values within the
frequency range: w* = 0.01, 1, 10, 100, for better visualization and analysis. The primary and
extended approach when analyzing pressures, and consequently the forces, is made based on the
real part of the complex argument. Figure 4.36 displays such components of the pressures at the
wall (left) and the plates (right) for regions Il and 11, or 2 and 3, respectively.

The pressure acting on the vertical wall has less variation in Region Il (Px2) than in Region Il
(Px3), reaching the maximum values near the plate for both regions. In contrast, the pressure
acting on the plates decreases as the distance from the wall to the analyzed point x increases,

being larger near the wall and nearly half at the end of the plate.
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Figure 4.36. Pressure distribution acting on the wall (left) and the plates (right) per regions.

(Imaginary parts of complex arguments ignored)

However, besides the conventional approach, this study approach is deeply based on
incorporating the imaginary part due to its relation to the Damping Coefficient (N) and Memory-
effect Function. Thus, the following figures showcase complex arguments for the pressures in

each region.
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Figure 4.37. Pressure distribution acting on the wall (left) and the plates (right). (Full complex

From Figure 4.37, larger values of the imaginary part (related to N) in the order of over 3 times
the real part (related to M) of the arguments are seen. This gets translated to the forces (Figure
4.38), although not the focus of this subsection, showcasing the significant impact of the

Damping when compared with the Added Mass for the case of the double plate, reinforcing the

conclusion from the preceding section.
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Figure 4.38. Forces distribution on the wall and the plates. (Full complex arguments)
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The behavior observed in previous pictures is for * =0.1 (lower frequency). However, in
Figure 4.39, analysis for the range w* = 0.1, 1.0, 10 and 100 is made. In there, the prevalence of
the imaginary part of the pressure is higher for lower frequencies (w*<10). While for higher
frequencies (@ *>10), such influence becomes minimal. The average of the imaginary part is
around O for all frequencies, while the average value of the real part is almost O for low
frequencies but takes values different from 0 as the frequencies increase.

Pressure Distribution / Vertical wall(x=0) z=[0;-h]

0 | <|//
0.2 - .
o4l —M )
<
N
-0.6 - n
Px-real (w*=0.1)
-0.8 - Px-real (w*=1) 7
Px-real (w*=10)
Px-real (w*=100)
A I | —— T | |
-60 -50 -40 -30 -20 -10 0 10 20

z/h

Px-imag (w*=0.1)
Px-imag (w*=1)
Px-imag (w*=10)
Px-imag (w*=100)

P/rogh

Figure 4.39. Pressure distribution acting on the wall. Influence of the frequency.

In Figure 4.40, the pressure on the horizontal plates is represented. Larger pressure values are
reached for larger frequencies. Furthermore, major variations in the pressure are seen in the half

of the plate near the wall since the water is more constricted in that zone. It is evident that
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pressures acting on the second half of the submerged plate (z = -hs) from regions Il and Il cancel
each other; thus, that part of the plate reaches an equilibrium state. Being the pressures acting on
the surface plate the main uplifting forces acting on the system. In the horizontal plate, the
predominance of the imaginary part is also seen for low frequencies. While the real part grows
in importance for larger frequencies (@ *>10).

Details for each frequency in Figure 4.39 and Figure 4.40 can be observed in the compendium

in Figure 4.41 and Figure 4.42.
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Figure 4.41. Pressure distribution acting on the wall (left) and the plates (right) for frequencies

®*=0.01 and 0.1. (Full complex arguments). Part 1
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Figure 4.42. Pressure distribution acting on the wall (left) and the plates (right) for frequencies
®*=0.01 and 0.1. (Full complex arguments). Part 2
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Total pressure

The following frequencies w* = 0.1, 5, 10, 15, 20 are used to better compare the total horizontal
and vertical pressures, providing a more stable step and easier visualization. The double plate
generates a fluctuated pressure distribution on the wall, taking positive and negative values
following that pattern. Real and Imaginary parts for the same water depth have opposite signs
for larger frequencies w* >5, and the same sign for @ *<5, although smaller values. Less pressure
variation is seen in Region 11 (0 < z< -hs) since it is closer to the surface, while more variation is
seen in Region Il (-hs < z < -h), especially closer to the plate. Furthermore, less undulating
behavior has been observed for the last 20% of the water depth, where the static water pressure
due to depth is starting to become more influential. Minimum values are seen near the surface,

and maximum values are seen under the submerged plate.
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Figure 4.43. Total horizontal (left) and vertical (right) pressure distribution for *=0.1, 5, 10,
15, 20. Full complex arguments. Case: twin plates (z = 0, h/2)

Conversely, the uplift pressures acting on the plates are smoother than the horizontal pressures.
They illustrate a damped behavior that switches from one side of the spectrum (positive for the
real part and negative for the imaginary part) in the areas near the wall to the other side for the
rest of the plates’ length. After the switching, maximum values are reached around x/1=0.1 to
then decrease stably as the distance from the wall to the analyzed point x increases, being larger

near the wall and nearly half at the end of the plate.
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Figure 4.44 shows details on each plate pressure distribution. The pressure on the submerged
plate (z=-hs) became zero after x/I = 0.5, i.e., the second half of the plate. The imaginary part in
both plates also becomes zero after x/I = 0.5. Being the pressures (real part) on the surface plate
(z=0) the ones influencing the motion system in that area. While in the first half of the plates,

pressures on both plates are to be considered.
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Figure 4.44. Pressure distribution acting on each plate for ®*=0.1, 5, 10, 15, 20.

Full complex arguments. Case: twin plates (z = 0, h/2)

Comparison with single plate case.

When comparing the double-plate cases (Figure 4.44. Pressure distribution acting on each plate
for o*=0.1, 5, 10, 15, 20.) with the single plate (Figure 4.2), the pressure is still superior in the
wall than in the plates. For the case of the double plates, the maximum horizontal pressure is
about six times higher than the same for the single plate case, while the maximum vertical
pressure is about 2.5 higher. Furthermore, the pressure distribution is remarkably wavy
compared with the smooth distribution of the single plate case, where the presence of larger
plates generated more even distributions. This is the opposite of what Ijima (1971) stated: that

double plate pressure distributions to both directions were smoother than for a single plate.
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However, the pressure distribution for the double-plate case was not displayed in the mentioned
paper, and the plate was on the seaside, from where the incident wave was generated and
impacted the wall. While in this research, the plate is on the harbor side, and the incident wave
is on the seaside, while the analyzed “incident wave” in this study is a product of the movement
of the caisson due to the impulsive incident wave.

Additionally, the vertical pressure distribution has less variation along the plates, with stable
minimum values dropping after the third part of the plate length. In contrast, for the single plate,
pressures almost linearly drop from the starting to the end point of the plate length. This shows

more uniform distributions in the plates due to double plate arrangements.
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Retrieved Figure 4.2. Pressure distribution acting on the wall(left) and the plate(right) for
different frequencies. Single plate at z=0. (Complex arguments)

Analyzing the average pressures in Figure 4.45, the pressures are still superior (almost doubled)
in the wall than in the plates. However, the pressures due to the double plate are higher than
those due to a single plate at the surface, increasing proportionally to the frequency. On the other
hand, pressures for the double-plate case increase at a higher ratio than the single-plate case. The
vertical or uplift averaged pressure shows similar behavior to the horizontal pressure but with
smaller values. Furthermore, the ratio Pz/Px for the twin-plate case is lower than for a single

plate.
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Most researchers use average pressure (ljima,1971) for the calculations; this means that the

imaginary part is usually dismissed since their average values generally were almost zero. And

that is true for regular caissons, where only a fluid analysis in the horizontal plane is done, and

the ratio real/imaginary values is substantial. However, when analyzing plates, such a ratio gets

drastically reduced.
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Figure 4.45. Averaged Pressure Distribution (Single-plate v/s Double-plate)

4.2.2 Hydrodynamic parameter analysis

The parameters added mass, damping coefficient, and memory-effect function in each region are

analyzed in this subsection, as well as their total values and their horizontal and vertical

components. Total values are the summation of the regions implied in each analysis.

Mix = Mt + M1

My = Mo (z=0) + Mox"(z=-h

Nix = N + N

5) + ]l[ZX][] zZ= _bs)

Nox = Npxllz=0) + Np!l(z=hs) + N (z=hs)
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Some of the components of the above equations have opposite signs, mainly the following
vertical components such as Mz'z=0), Mz"'(z=-hy), Mz (z=0) and Mx"'(z=-h). However, for the
most straightforward comparison of the values, it was considered the same sign, disregarding

region or direction.

T
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147 Nx2* | 1.4 Nz2(z=0)*
Mx3* Mz2(z=-hs)*
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Figure 4.46. Dimensionless Added Mass and Damping Coef. at the vertical Wall (x=0) [left]
and at the plates (z=0, -4) [right] in Regions II and III.

From the dimensionless added mass at the wall (although both regions have the same boundary
conditions and water column length), the added mass acting on the wall for Region II is larger
than that of Region III. It is a fact that the hydrostatic pressure is lower in Region II due to a
lower location, but due to the wave-induced effect, the hydrodynamic pressure tends to be higher
at the surface, which translates to the added mass.

When analyzing the plates, [M;" (z=0) and M;""] and [N/ (z=0) and N;/"'] are similar, indicating
that similar values of uplift forces act on both plates. The added mass in Region Ill of the
submerged plate (z=- hs) is higher than in Region Il. This aligns with the higher pressures
generated under the submerged plate, although the two regions have the same water column

length and boundary conditions. On the other hand, the damping under the submerged plate
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( N reaches 0 values and stabilizes from lower frequencies than over the plate Region II [N/
(z =-hs)].

For low frequencies, M; slightly declines in most cases, then recovers, increases, and follows the
typical asymptotic behavior. The lower peak is more noticeable in the M, acting over the
submerged plate (Region 11-Mz2). This behavior is not seen in the total Miotai = Myx + f * Myx.
Note that My and Mxx are used indistinctly, representing the added mass produced in the
horizontal direction due to the horizontal movement of the caisson. The same applies for M; and
Mgz, but in this case, they are the added mass produced in the vertical direction due to the
horizontal movement of the caisson. This use of the subscript is also used with the damping
coefficient and the memory-effect function. The total value of the parameter in the wall and the

plate are the summation of their components from each region.

5 T T T T T T

Mx*(2 plates) Mz*(2 plates) | |
a5 s Mx*(1 plate) —-—-— Mz*(1 plate)
4t Nx*(2 plates) Nz*(2 plates) | |
***** Nx*(1 plate) Nz*(1 plate)

M/ph? & N/(p*w*h?)

0 é 1 ‘0 1 I5 2I0 2‘5 3‘0 3I5 46 4‘5 50

Figure 4.47. Dimensionless Added Mass and Damping Coef. (single and twin plate cases)
The relation My > M remains for the double plate analysis, Mx doubling the initial value of M;
for low frequencies and a tendency to triple the asymptotic value at infinite frequency. Both

curves' behavior follows a similar tendency as in the single plate case. For a comparison with the

case of the single plate, Figure 4.47 includes the hydrodynamic parameters for such case as
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discontinuous lines. As expected, the values of added mass are higher for the double plate since
the water constriction increases, while the damping coefficient has a steeper decline since more
solid boundaries act as flow stabilizers. Additionally, a fundamental analysis based on the added
mass relationship is performed to visualize the best arrangement. In Figure 4.48, for easier
comparison, it was considered a positive sign for Myy; thus, the relation Myy+fs*Myx derives to

Myx-T*Max. The same is applied to the Damping Coefficient and Memory-effect function.

Table 4-4. Directional Added Mass Relationships for none, single and double plates.

Case Mxx Mzx  Mzx/IMxx Mxx-fs*Mzx % Increment
0 plate 1.085 - - 1.085 -
1 plate (z=0) 1475 0.271 0.184 1.312 20.9
2 plates (z=0, h/2) | 2.316 0.7659  0.331 1.856 71.0
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T T
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Figure 4.48. Total Dimensionless Added Mass and Damping Coef. (single and twin plate cases)

Total added mass M is higher for the two plate arrangement, with a total increment over the

single plate case of around 40%, and 70% with respect to a regular caisson. On the other hand,

the total damping coefficient N is smaller in the range 1<®*<30 approximately, although the

values near 0 remain the same. The area under the curve is reduced too, i.e., R(?) is expected to

have smaller values.
117



The memory-effect function in each direction (Figure 4.49 - left) is presented below. The
horizontal memory-effect function R+ has higher values at each time step than the vertical R+,
while also having a slower damped effect. Note that although the components have the same sign
for better visualization, R has negative values according to the sign convention based on the
direction of the implicated forces. Hence, the total dimensionless memory effect function Ry« -
SR+ is in Figure 4.49 (right), showing a low value and a damped behavior in the range 0<t*<3

while reaching 0 around t*=15.

Fooe®-2 plates
012 Rzx*-2 plates

Rxx*-stzx* (2 plates)

ROS0"

0 5 10 15 20 25
tr *
t

Figure 4.49. Horizontal and vertical (left) and total (right) dimensionless memory-effect

function for twin plates.
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Figure 4.50. Total Dimensionless Memory-effect function (single, twin and no plate cases).
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For a single plate with length /=h/2 located at the surface, the maximum value of the relation
Ryx-fs*Rzx [R*(0) = 2.5] was not inferior to the case without a plate with R*(0) =2.17 (see Figure
4.50). However, the total Dimensionless Memory-eftect Function for two plates is almost zero
R*(0) = 0.07. The small values for damping coefficients and memory-effect function in twin
plates should not be a surprise since they are the result of a more considerable influence in the
system reducing or preventing the wave oscillation and promptly dissipating the generated wave
due to the caisson motion.

One conclusion derived from the analysis of the hydrodynamic coefficients would be that, since
the memory-effect function is almost zero for all-time spam, the two-plate sliding simulation
mostly depends on the Added Mass. And, although that is the case, larger added mass doesn’t
necessarily lead to a sliding reduction, as we already observed in the single plate case, if the
damping coefficient doesn’t positively affect that reduction. This could be preliminary predicted

when larger R*(0) values are seen.

4.2.3 Sliding

The solutions to the motion equation for the double plate are displayed in Figure 4.51, as well as
for the single plate at the surface and regular caisson for comparison. The double plate
arrangement has a larger motion duration than the single and no-plate cases. The maximum
velocity is slightly higher than the single plate and lower than the no-plate caisson and is reached
later than both. More importantly, the sliding is higher than the single plate and the regular
caisson for 11% and 7%, respectively. This can be explained by recalling the statement in the
preceding section: two-plate sliding calculation is primarily dependent on the added mass since
the memory-effect function was mainly null. It is similar to removing the latter from the motion
equation, leading to an increment of the total sliding, which aligns with the conclusions from

subsection 4.1.3.5 about the influence of the inclusion or simplification of the memory-effect
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function in the motion equation. Basically, the displacements are higher when dismissing R(z),
which is almost zero in the two-plate case naturally.

Nevertheless, as previously stated, larger added mass increases the hydrodynamic resistance, so
why does the double plate have a larger displacement and there is no sliding reduction? This is
due to the importance or weight of each hydrodynamic parameter: added mass and memory-
effect function. To understand it better, a simple ratio of M.* and R*(0) for the three cases in

Figure 4.51: no plate, simple plate and double plate is presented in Table 4-5.

012 F T T T T T
Displacement(2 plates) Velocity(2 plates)
= = =Displacement(1 plate) = = =Velocity(1 plate)
01 L Displacement(0 plate) = =«=s====== Velocity(0 plate)

0.02 -

Figure 4.51. Total dimensionless memory effect function (single, twin and no plate cases).

Table 4-5. Ratio of values of M* and R(0)

M* 0-plate  1-plate  2-plate R*(0) 0-plate  1-plate  2-plate
O-plate -1- 1.24 1.65 O-plate -1- 1.29 0.03
1-plate 0.85 -1- 1.33 1-plate 0.78 -1- 0.03
2-plate 0.6 0.75 -1- 2-plate 31 40 -1-

The ratio is column/row of the tables: e.g. 0.6 is the result of M*(0-plate) / M*(2-plate). Values
between 0.5 and 2 show variances of 100% within the same parameter comparison; this is seen

in M*. However, comparative values far from that range display an unbalanced relation within

120



the parameter, as seen in the R*(0) ratios related to the double plate. Similar values show a
relative balance when comparing the two parameters: M* and R*(0), but disproportional
differences display unbalance. That is the case again for the twin plate: although the ratios are
similar for others, e.g., for 1-plate / O-plate, the M* ratio is 1.24, and R*(0) ratio is 1.29; for the
double plate, it is far different, e.g. for 1-plate / 2-plate is 0.75 for M* ratio and 40 for the R*(0)

ratio.

4.2.4 Conclusions for the double plate

The double plate arrangement conveys higher pressures acting on the wall and the plates, while
more uniform distributions are seen on the plate but less on the wall. Furthermore, it increases
the added mass of the structure; however, it drastically reduces the memory effect, which led to
an increase in the sliding of 11% and 7% compared to those for the single plate and the regular
caisson, respectively. This confirmed that an increase in the added mass does not lead to smaller

displacement.
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4.3 CHAPTER CONCLUSIONS

In this chapter, an analysis of the pressures and the hydrodynamic coefficients is performed for
caissons with horizontal plates. Their changes according to the location, length, submersion, and
number of plates are estimated and analyzed in order to define their influence on the sliding for
such geometries. Such parameters are calculated by applying the simulation models and methods
described in Chapter 2.

The Boundary-Point Selection Method (BPSM) was applied with excellent results in finding
solutions for boundary problems related to breakwaters with horizontal plates. Its application
simplifies formulations and reduces computing and programming time. However, it is limited to
geometries where the fluid regions have constant water depth. Additionally, aspects related to
the application of the Boundary Point Selection method were highlighted, such as the increment
of selection points for submersion depths smaller than 25% of water depth to avoid unstable or
error results.

Following the main findings in this chapter regarding pressures: a) Reasonable distributions
according to the boundary conditions were obtained b) The horizontal plates affect the pressure
distribution on the caisson, mostly bringing more uniform distributions at the wall for the case
of the single plate and at the plates for the twin-plate case as well as higher pressure values,
especially for the double plate, although with more variations on the wall distribution c)
Regarding the plate length, the role of the plate as a pressure equalizer is confirmed: when plates’
length tends to be equal to the water depth, the plate starts functioning as a pressure equalizer.
¢) The ratio of the imaginary to the real part of the pressure complex values varies according to
the different plate arrangements; thus, its influence should not be dismissed when analyzing
annexation elements such as horizontal plates since their geometry resists the forces acting in

that direction.
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The analysis results confirmed the critical influence of uplift forces on the sliding calculations,
as well as the importance of including the memory-effect function on it. Excluding the first one
leads to overestimating the horizontal plate's positive influence in reducing the sliding, especially
for large I/h ratios. Dismissing the latter overestimates the maximum sliding distance.

The double plate analysis confirmed the increments of the added mass; however, it also showed
a drastic reduction of the memory effect, which led to an increase in sliding. This confirmed that
an increase in the added mass does not lead to smaller displacement and that the memory-effect
function plays an important role in the sliding simulation under impulsive wave loads, which has
been underestimated. Additionally, a relation in which shapes with larger damping coefficients,
on the other hand, with added mass increments, induce better structure performance.
Furthermore, for a preliminary prediction of better performance, i.e., a reduction of the sliding
distances, analysis based only on the Added Mass is not enough; instead, also searching for
sections with larger values of memory effect focusing on larger values of R*(t=0) should be

included.
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Chapter 5. EXPERIMENTAL STUDY

124



OUTLINE

As part of the study of the influence of the horizontal plates in the sliding of breakwaters
caissons, wave flume experiments are carried out at Osaka University’s Hydraulic Laboratory
indoor facilities, measuring the horizontal sliding distance of a vertical breakwater in 1:20 scale
with rear horizontal plates due to impulsive waves higher than design. The cases subject to study
are caissons with a single submerged horizontal plate, including the special case with the plate
at the surface, and caissons with multiple plates considering the variation of plate(s) lengths and
submersion depths.

The methodology covers the wave generation of an impulsive wave at a target location,
measurements of the wave force acting on the caisson, and the sliding due to the wave impact.
The analysis is based on the data recorded from wave height gauges and load sensors for the
time series of the wave elevation and forces acting on the caisson, respectively, while
displacement is obtained by image analysis.

Throughout, we seek to experimentally reproduce the impulsive wave generation using the
Aoki-Koga method and estimate the characteristics of the wave forces acting on the structure.
More importantly, it is also pursued to clarify the effect of the horizontal plate’s length and
submersion on the sliding of breakwater caissons, as well as confirming the fit of the sliding

analytical models presented in chapters 3 and 4 to the experimental results.
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5.1 EXPERIMENTAL SET-UP AND TEST CONDITIONS

The physical model experiments are conducted in the two-dimensional wave flume of the
Hydraulic Laboratory of Osaka University. The wave flume is 20m long, 0.7m wide and 1m
deep. It is equipped with a piston-type generator at one of its ends, able to generate both regular
and irregular waves, and it will be used for the generation of the single impulsive waves
necessary for this study. At the terminal end, a wave-absorbing surface is located as an artificial
beach that minimizes the waves' reflection reaching the flume's end.

As shown in the side view of the experimental set-up’s sketch, up to six wave gauges are located
to measure the wave height at each location and time duration of the impulsive wave: one at the
front face of the structure, another three in front, and two after it. Furthermore, two video cameras
are located over and at the side of the target locations to capture the movement of the caisson,

which is later measured using video analysis tools.

. Piston-type
Wave absorbing WG-6  WG-S WG4 WG3 WG WG-1 wavemaker
surface I
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v N =
- =
3 V
X
Jnit: m 9.0 e L0 o 10 10 . 10 42545525 30 . 14
) 30 — 6.05 (63. 5.3. 5.05) kI 925 (9. 10, 10.25) o L4
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Figure 5.1. Sketch of the experimental set-up

511 Caisson Model

The geometrical characteristics and properties of the prototype used in the analytical study and
the 1:20 scale model to be used in the experimental study are displayed in Table 5-1. The length
of the model was taken to cover the width of the wave flume, sparing 2cm at each side to allow
the collocation of the beams for plate adjustment and avoid the silicone-like bottom-wall joints

of the flume that could affect the sliding due to different friction factors.
126



Table 5-1. Geometrical characteristics and properties of the prototype and the model

Geometric Characteristics / Properties Symbol Prototype Model Scale 1:20
Caisson length (orthogonal to wave direction) L -1-m 0.66 m
Caisson width (in wave direction) B 6m 0.3 m
Caisson height H 10 m 0.5 m
Freeboard d 2m 0.1 m
Water depth at the wall h 8m 0.4 m
Water density p 1030 kg/m? 1000 kg/m3
Material density Pe 2100 kg/m?® 1585 kg/m?
Gravity acceleration g 9.8 m/s? 9.8 m/s?
Volume \% 60 m? 0.099 m3
Mass M 126000 Kg/m 75.4-138 kg

A box of 300x660x500mm made of clear plexiglass of 10mm thickness represents the caisson

model, filled with coarse white sand until reaching the desired mass. Two metallic beams are

added to the sides of the box at 0, 10, 20 and 30 cm from the water surface according to the case,

while wood panels of 65 x 10, 20, 30 and 40 cm are attached to the beams simulating the

horizontal plates.

Figure 5.2. Caisson Model: Isometric of the model (left) and side view of the plate

configurations (row).
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 1=[0:10:40]cm
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hs =[0:10:30]cm
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Eleven configurations are tested in terms of plate length and submersion, including a no-plate

case, represented in Figure 5.2 and summarized below.

Table 5-2. Summary of Test Cases

No. | Case Name | Plate Submersion Depth (hs) | Plate Length (1)
1 HSO PLO 0cm
2 | HSO_PL10 10 cm
3 | HSO_PL20 Ocm 20 cm
4 | HSO_PL30 30cm
5 | HSO PL40 40 cm
6 | HS10 PL20 20 cm

10 cm
7 | HS10_PL30 30cm
8 | HS20_PL20 20 cm
20cm
9 | HS20 PL30 30cm

10 | HS30_PL20 20 cm

30cm

11 | HS30_PL30 30cm

5.1.2 Friction Test

The caisson exerts resistance force induced in part by the friction force between the caisson's
bottom surface and the flume's surface. Such resistance force should be estimated for the
practical design. The frictional force can be simply predicted through the friction factor. Hence,
a coefficient of friction test is conducted, which determines “the resisting force tangential to the
interface between two bodies when, under the action of external force, one body moves or tends
to move relative to the other,” according to the ASTM standard G-40.

A wire is attached to the empty caisson model and initially pulled to prevent loosening. For the
test, the caisson model is pulled until displacement is reached. The tensile force is measured with
a Newton scale, and the maximum value reached that generated the start of the movement is

selected.
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450+

400us

Figure 5.3. Newton scale used for measuring friction force.

The pulling model tests were repeated ten times in the same condition, taking into consideration
that manual pulling may introduce more errors. The average value of the measured tensile forces
was employed as the value of static frictional force in the calculation of the friction factor as in
Eq.(2.1), where Fs, m and g represent the tensile force of the wire, the empty caisson mass, and

the gravitational acceleration, respectively.

fs = K/(mg) (5.1

Tensile forces ranged between 27.1N and 30N. Since the empty caisson has a mass of 7.9kg, the
design friction factor between the caisson made of plexiglass and the surface of the flume bottom
made of aluminum under wet conditions is 0.37. This value is close to the expected range of
[0.4~0.5] from the closest conditions in the bibliography for steel and plexiglass under lubricated

conditions.

5.2 WAVE GENERATION.

The wave generation system consists of a hydraulic system, which gives a vertical wave board a
horizontal translational movement through a piston. The position of the board is controlled by

an electric signal from the wave function or multifunction generator (WFG). The digital record
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of the signal is converted to an analog electric signal which is fed to the WFG under the arbitrary
waveform (ARB). The voltage amplitude of the electric signal is adjusted to 10V, which is the
maximum for the multifunction generator, and another 4.5V are added to the input gain of the

operation panel of the wave generator.

Figure 5.4. Multifunction Generator WF1973/WF1974 (left), operation panel of wave

generator (center) and piston-board station at one end of the wave flume (right).

The impulsive waves are most related to caisson sliding. However, the generation of a single
concentrated wave at a predetermined location in a flume is not an easy task. Related research
has been done in the naval engineering field by Omatsu (1978, 2009) and in the civil engineering
field by Usui et al. (2016, 2017), but with some limitations for its easy application in wave
flumes. Aoki and Koga (2021) presented a method for generating concentrated waves of arbitrary
waveform at arbitrary locations in a channel. The method is intended for wave flumes with a
piston-type wave maker and is based on linear systems using frequency and impulsive response
functions from linear wavemaker theory. The research was analytically presented and verified
numerically but not experimentally. Thus, initial tests are done to confirm it and implement the

method in this study.
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5.2.1  Wave-making Signal

Estimating the motion of the wavemaker board starts by defining the desired waveform 5 (X, t)
or water level fluctuation at a target position x = X in the wave channel. This function is Fourier
transformed and the result is substituted in the frequency response function [Eq.(5.2)], yielding
to the obtention of the Fourier transform of the wavemaker (WM)’s board motion. Finally, by

inverse Fourier transforming the latter, the time series of the board motion is obtained.

n"(w) = h"(w) & (w) (52)

Furthermore, the waveform resulting from the wavemaker board motion can be verified by

applying the impulsive response function [Eq.(5.3)] to it.

n(X,t) = [~ h(®)E(t - t)dr (5.3)

This calculation flow is presented in Figure 5.5, where # stands for water elevation, x for the

position, @ for frequency, ¢ for time, & for board motion, and 4 for the response functions.

Time domain Frequency domain
calculation calculation
Fourier
@ Waveform 4 (X, 9 of the transform ©® Fourier transformed of

v

water level fluctuation to be
generated at the target position x

water level variation #* (X w).

Impulse response _ Frquency response
function h(z) -— function h*(w)
Eq. (5.3) Eq. (5.2)
O Time series of the WM €@ Fourier transform of the
board’s motion &(2) > ) WM board’s motion {*(w)
Fourier
inverse

Figure 5.5. Calculation flow for wave-making signals.

(English reproduction of the calculation flow in Aoki and Koga (2021)
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The method can be applied to both constant and variable water depths. For our case study, the
caisson is located directly on the bottom of the wave flume; thus, it is a case of constant water
depth. More details of the derivations within the method for generating concentrated waves of
arbitrary waveform at arbitrary locations in a channel can be found in Aoki and Koga (2021).

The Aoki-Koga method is applied to obtain an impulsive wave with the initial below
characteristics. These characteristics are higher than those for the design wave since we aim to

produce sliding, i.e., structure failure.

Table 5-3. Initial characteristics for the wave-making signal

CHARACTERISTICS

Waveform Triangular
Distance from the board 10 m
Water depth 04m
Wave elevation 0.1m
Period ls
Rising time 05s

0.15

0.1
£ 005
=
=
2
= 0
=}
2
270.05
g
g - ” Calculated
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-0.15

-0.2

t(s)

Figure 5.6. Wave-making signal. Case: h=0.4m, X=10m, #(10)=0.1m, t=0.5s.
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The wavemaker board motion should follow then the function presented in Figure 5.6Figure 5.6.
Wave-making signal. Case: h=0.4m, X=10m, #(10)=0.1m, t=0.5s. where a clear sinusoidal
movement with increments of period and amplitude is seen up to the last and larger stroke. The
direct output of the method application goes from 10s to 50s; however, in order to achieve a
smooth return to the initial position and reduce strain on the wavemaker, 10 seconds are added
at the end of the signal with a lineal return to zero, and another 10 seconds at the starting point
of rest. The digital record of the signal is converted to an analog electric signal which is fed to
the WFG under the arbitrary waveform (ARB). The wave height is determined by the
amplification WFG. The voltage amplitude of the electric signal is adjusted to 10V, which is
the maximum for the multifunction generator, and an input gain of 4.5 is used in the operation
panel of the wave generator. The sampling rate of the water elevation was of 0.001 second

(1kHz).

5.2.2 Results

Figure 5.7 shows the time series wave elevation for the target location (x=10m). However, a
doble wave is seen with a ymax = 8.9cm; thus, neither a unique wave nor the expected elevation
is reached at 10m from the wavemaker board. Nevertheless, it also indicates that the targeted
characteristics can be obtained a few centimeters later. Hence, a series of locations in the range
of 10m to 10.6m were tested, being the later the final location also matching with the video

recording requirements.

WG-5 (X=10m)

n(cm)
2]

l

[} 5 10 15 20 25 30 3 40 45
1(s)

Figure 5.7. Wave-making signal. WG-5 at x=10m. Case: h=0.4m, X=10m, #(10)=0.1m, t=0.5s.
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From Figure 5.8, it is evident that the concentrated wave is the overlapping of multiple frequency
waves along the wave flume just before the target location until a unique wave is obtained there
(in this study, it is around 25cm after the expected location). This behavior was also seen for a

case with X=9m, where the target wave characteristics were obtained at x=9.25m.
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Figure 5.8. Wave-making signal for all wave gauges. Especial case of WG-5 at x=10.25m.
Case: h=0.4m, X=10m, #(10)=0.1m, t=0.5s.

A wave height of 9.991m and a 0.97s period measured from the test agreed very well with the
target design values (10m and 1s, respectively). Thus, it can be concluded that the generated

waves are both geometrically and dynamically similar to the target produced by the Aoki-Koga

method.

5.2.3  Variation of the wavemaker board movement
Due to the variation in the target location, the actual board motion is measured using a video
analysis tool to experimentally verify whether its motion corresponds to the one obtained based

on the linear wave theory and the generation of the desired water level fluctuation. Figure 5.8
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shows the ‘Calculated’ and ‘Measured’ representing the calculated board motion sent as an
electric signal and the actual observed motion of the board.
0.15
0.1
0.05
50 60

-0.05

Calculated

Wavemaker motion X(m)

-0.1
——Measured

-0.15

-0.2

tls)

Figure 5.9. Wavemaker board motion
Case: h=0.4m, X=10m, #(10)=0.1m, t=0.5s.

There is a minimum phase variation at the lower frequencies, but generally, there is not much
change in the phase. The actual motion of the wavemaker plate has a lower amplitude than the
signal input from the theoretical calculations, with a maximum variation of 8.2%. The phase is
slightly displaced for higher motion frequencies but the same for most of the rest, i.e., higher
amplitude with a margin of error of R?=0.9938, MSE= 5.35¢-05 and the RMSE=7.3e-03. The
wavemaker piston cannot replicate high-frequency movements due to the mechanical nature of
the device. Hence, according to the experimental results, the concentrated wave will be reached
around 25 cm after the theoretical target location, mainly due to variations in the wavemaker
board motion.

Table 5-4. Statistics of the motion of the wavemaker. (Measured vs. Calculated)

Measured (M) | Calculated (C) | M-C
Maximum displacement (cm) 11.8 12.3 -0.5
Minimum displacement (cm) -16.2 -18.0 1.8
Maximum amplitude (cm) 27.9 30.3 -2.4
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5.2.4 Numerical simulation

The wave signal generation method can be applied to numerical wave tanks. Hence, since a
variation in the target location has been seen in the physical experiments, a numerical simulation
would be a faster way to determine the actual target location before reaching the experimental
stages. The numerical study is done in CADMAS-SURF (SUper Roller Flume for Computer
Aided Design of MAritime Structure), a free-surface flow simulator based on the volume of fluid
(VOF) method studied and developed by the Study Group on Application of Numerical Wave
Motion to Wave Resistant Design of Waterways to replace conventional hydraulic model

experiments with CFD-based numerical calculations.

5.2.4.1 Basic Equations and Free Surface

The numerical wave flume is based on the continuity equations of continuity for a two-
dimensional incompressible fluid and the modified Navier-Stokes formulations. Details of the
theoretical description and discretization process of the governing equations are given in the

CADMAS-Surf manual book (2001).

ety M = (5.4)
et e S ()] e (] o
Av;+‘”"”w+m§¥:‘%gz ax[yx e( +ZZ)]+az[yﬂe( %)]_Rz_y”g (5.6)

where t is the time, X, z are the horizontal and vertical coordinates, respectively, u, w are the
horizontal and vertical velocities, respectively, ve is the molecular kinematic viscosity, yv is the
porosity, yx, y. are the horizontal and vertical sectional transform ratios, respectively, p is the
pressure, p is the mass density of the fluid, and g is the acceleration due to gravity.

The coefficients of 4, , 4x , 4; in Egs.(5.4), (5.5) and (5.6) are:
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Ay =V + (1 - Vv)CM (5.7)

Ay =Vx t (1 - Vx)CM (5.8)

/12 =Yz + (1 - )/Z)CM (59)

While Ry and R; are the horizontal and vertical drag forces defined below, and where Cp is the

drag coefficient and 4x, Az are the horizontal and vertical mesh sizes for the numerical

simulation, respectively.

1CD (1 —youvu? +w? (5.10)
R,=-= CD 2 (1 - y)wVuZ + w? (5.11)

For the fluid-free surface, the Volume of Fluid method (Hirt, 1981) is applied, and the transfer
diffusion equation F is shown below.

0y uF = O0yzwF
"at+ ax + 0z

=0 (5.12)

5.2.4.2 Simulation Outline and Results

The numerical wave tank is 20m long, 1m wide and 1m deep. The region is divided into 0.02m
cells in the x and y axes and 0.1m in the y axis. A setup for piston-type wave generation is made
using the IB method to incorporate the board's motion and considering the moving boundary by
including geometry and time series displacement. The board is located 1m from the start of the
flume and setups for wave absorption are set at both ends of the flume. Gauges are located along
the wave tank every 0.1m for wave elevation, including the location of the structure, and the
latter includes pressure and velocity measurements. The calculation time is set for 40 seconds,

and the time step is set for 0.001s (higher time steps led to fluid instabilities).
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Figure 5.10. Diagram of the analysis model

Both the ‘computed’ time series of the board movement and the actual motion of the board

‘measured’ during the experiments are incorporated in the simulations. The wave elevations due

to each are displayed in Figure 5.11.
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Figure 5.11. Wave elevation due to computed and measured wavemaker board motion.
CADMAS simulation

Contrary to what was observed in the experiments, the concentrated wave is obtained at the target

location for both board time series displacements. The difference in the wave generator motion

does not affect the wave phase, but it does affect the maximum wave heights. As expected, the
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wave height at the target location is lower for the ‘measured’ board motion since the latter has a

smaller amplitude.

Table 5-5. Maximum wave elevation attending to wavemaker motions.

(Computed vs. Measured board motion)

WG Using board motion Using board motion
. M-C [cm]
location (Computed) [cm] (Measured) [cm]
9m 11.34 9.79 -1.55
10 m 11.04 9.36 -1.68
10.24 m 9.49 8.11 -1.38
11m 6.75 6.27 -0.47

Concerning the design wave height, the ‘computed’ board motion leads to an overestimation of
the wave height by 1cm, while the ‘measured’ underestimates it by 0.4cm. It is expected that the
wave due to the ‘measured’ board motion is lower than due to the ‘computed’ one since the
amplitude of the former is lower than the latter.

On the other hand, the overestimation of the wave elevation in the numerical simulation using
the ‘calculated’ board motion is consistent with the results in the method description by Aoki
and Koga (2021). In the study, the waveforms of the calculated values with the linear theory
generally correspond to the results of CADMAS. They are decided to be of sufficient use for the
concentrated waves of arbitrary waveforms. However, variations on the wave elevation with
respect to the design value were obtained in the range from 0.5cm to 5¢cm. For short duration
times to, the maximum value of the water level was difficult to reproduce. This is seen in Figure
5.12, where for t, = 0.5s, the set value po = 0.2m is not reached even for linear theory, partly due
to the lack of time for the wave to grow. On the other hand, when t, = 2.0s, the maximum value
of the water level is slightly large, and the onset of the water level is somewhat faster, probably

due to the nonlinearity of the waves.
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Figure 5.12. Wave elevation for different wave times. Aoki and Koga (2021)

As explained before, not obtaining the exact maximum wave elevation with the predetermined

electric signal during physical tests can be resolved by adjusting the input gain, which increases

the amplitude without phase variations. Thus, the obtention of waveform and close values for

the maximum wave elevation is enough for the study. The time series of the wave elevations due

to CADMAS simulation and the physical test are displayed in Figure 5.13 and Figure 5.14,

respectively. It shows that the diverse waveforms during the physical tests are obtained at

locations centimeters after the theoretical and numerical target. Table 5-6 shows the maximum

wave elevation for each case.

Table 5-6. Maximum wave elevation at different locations. (CADMAS vs. Experiments)

CADMAS (Measured) Experiments CADMAS — Exp.
WG location [cm] [cm] [cm]
8.6m 9.43 7.71 1.72
9.6m 9.98 7.94 2.04
10 m 9.36 8.51 0.85
10.25m 8.26 9.99 1.73
11.6 m 5.92 4.56 1.36
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Figure 5.13. Time series of wave elevation. CADMAS simulation with real WM board motion
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Figure 5.14. Time series of wave elevation. Experimental results.

Furthermore, when analyzing changes in the rising time of the wave, the first observation is that
board movement needs to replicate a more extensive range of low-frequency movements, which,
as we concluded in the previous subsection, is difficult for the generation mechanism. Thus, the

experimental output is expected to not completely match the predicted wave elevation.
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Figure 5.15. Board displacement for various rising times (h=0.4m, X=10m, #max=0.1m)
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Additionally, higher rising times require larger amplitude strokes according. A special note about
the parameter rising time t, and the employed symbology: t, was the total wave period in the
Aoki and Koga (2021) study and not the rising time. For the triangular waveform, the rising time
is half of the total wave period. As a result of the variation of the rising time, although a
distinctive unique wave is observed at the target location for all cases, rising times outside of
to=0.5s lead to more unstable water level elevation and different phases. (Figure 5.16-below).
The instability is also observed in wave gauges closer to the wave board (Figure 5.16-above) for

larger rising times.
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Figure 5.16. Time series of wave elevation for different wave rising times. Experimental test.

Another difference from the linear theory is that although rising times should theoretically
generate higher wave height (Figure 5.12), the physical test shows that the maximum wave
elevation gets drastically reduced. Then, rising times of 0.5s or wave period 1s are the best
adjusted to the target waveform. The best relationship between wave height, target location and
rising time must be tested and selected for configurations other than the one used in this study.
Numerical tests are first recommended until a stable waveform and close wave height values are

obtained, and later, the latter is adjusted during the physical test.

142



5.3 WAVE FORCE TEST

In Chapter 2, existing models for time-history wave loads on caisson breakwaters were discussed.
Such models are used for the analytical determination of the sliding. In this study, the wave force
in time-domain F(t) is determined by a triangle-shaped profile that needs two critical parameters:
the static frictional force Fs, which is possible to determine with the weight of the structure and
the friction coefficient and the maximum wave force acting on the wall Fmax. The procedure and
results of experimentally determining the latter are described in this subsection.

The actual time series of the wave force acting on the wall of the caisson is determined
experimentally by utilizing a mock structure of 300x220x500mm (Figure 5.17), which
corresponds to 1/3 of the length of the caisson model to be used in the sliding test and measuring
the forces. Such reduction is done to better comply with the measurement instruments' load-rated
capacity. The sampling rate of the forces was of 0.001 second (1kHz).

The model is made of wood, and a load sensor is attached to its upper face. A gap of 1cm between
the model and the flume bottom is left since the direct location on the bottom leads to error
measurements by the sensor. The six components of the translational force (Fxy) and the moment
of force (Myy;) are detected by the strain gauge, although only the Fx component in the direction
of the impulsive wave is representative in this study. According to the supplier, the built-in
transducer and digital processing make it less susceptible to noise and enable compact
measurement. However, another factor is that direct contact with the impulsive wave interrupts

the measurement.
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Figure 5.17. Caisson model used in the wave force test.

The natural frequency of the structure is initially determined in dry conditions (without water in
the flume) by a simple bump test. The caisson is gently struck with a hammer in the direction of
the wave, and the sensor measures the impact forces, which are later used to create time histories.
A Fast Fourier Transform (FFT) analysis is applied to the time series, and the corresponding
spectral representation is extracted. An illustrative example of the results related to the rocking
motion of the caisson subject to the impact is given in Figure 5.18, showing the time series (left)

and the corresponding spectral representation.
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Figure 5.18. Time series (left) and power spectral density for hammer exciting source.
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Two resonance peaks correspond to two modes of natural frequency; a well-defined peak is seen
at 28 Hz, taking this value as the natural frequency of the structure to analyze the wave-induced
vibration response.

The figure below shows an example of the time series of the wave force acting on the wall under
wet conditions (wave flume with 0.4m of water depth). Two defined peaks are seen at 22Hz and
60Hz, related to the structural mode of the wave-induced vibration responses and the component
of the oscillatory frequency alternating current in supplied from outlet, respectively. For all the
measurements, the time series is shortly interrupted for 0.2 seconds when the overtopping water
reaches the sensor. This happens after the impulsive peak; thus, it doesn’t affect the measurement
of the maximum force. Considering the structure's natural frequencies, the time series of the
wave forces are denoised from where a maximum value is obtained, 48N, the maximum wave
force Fmax. This value is for the mock caisson with a 22cm length; thus, the maximum value in

the figure is then extrapolated to the full length of the caisson (66cm) as shown in Table 5-7.
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Figure 5.19. Time series (left) and power spectral density for impulsive wave exciting source.

Table 5-7. Model and force characteristics from the experiments.
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Characteristics Symbol and Units Quantity
Frictional coefficient fs 0.37
Caisson mass M [kg] 113
Caisson mass in water Mw [kg] 79.2
Structure weight in water W= (M-Mw)*g [N] 331
Static Frictional Force Fs=fW [N] 123
Maximum wave force Fmax [N] 144
Magnitude wave force o= (Fmax - Fs )/ Fs 0.17
Force rising and declining time t1, t2 [s] 0.7s,0.3s

The impact horizontal forces over the vertical face measured during the physical model test are
lower when compared with values from some methods for predicting wave impact forces on
vertical breakwaters (Allsop and Vicinanza, 1996) (British Standard, 2000) presented in Chapter
2 of this study. For example, using the recommendation from British Standard to a water depth
of 0.4m, the impact force should be around 67 N for 0.1m of wave height, representing over
40 % of our measured value, and 48N for 0.09m matching the measured force but not reaching
the wave height. It is important to notice that most of these values are for preliminary designs,
have empirical values, most of them obtained from large-scale or prototype experiments, and are
focused on actual structure dimensions. Thus, the scale factor plays an important role when
comparing with these prediction methods.

Based on the model characteristics and its static frictional force, the rising time related to the
sliding (the time from when the caisson starts moving because the wave force is higher than the
frictional static force to the moment when the maximum wave force is achieved) is about 0.005s.
Taking into account the scale of the experiments, a 0.0025s would be an estimated value;

however, all impulsive wave characteristics are not necessarily scalable. The magnitude of the
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wave force is 0.17. Furthermore, these two parameters are strictly bound to each other for

physical reasons and thus should not be assumed to be independent.

5.4  SLIDING TEST

The main objective of the physical experiments is to determine the displacement of the caisson
with the different plate arrangements. Thus, a sliding test is done after selecting the impulsive

wave set-up.

54.1 Procedure

The structure model: a box of 300x660x500mm made of plexiglass filled with coarse white sand
is located in the flume at 10.25m of the wavemaker board with its larger dimension parallelly
facing the board. A 2cm gap is left at each side to add the beams sustaining the horizontal plates
and to avoid the silicone-like bottom-wall joints of the flume that can affect the sliding due to
different friction factors.

Initial test runs of the impulsive waves are done to ensure the structure's displacement and adjust
the structure's mass through the incorporation or removal of the fill material for a stable sliding,
proceeding to the sliding tests for each case. A three- and five-time average is taken from each
test's results, dismissing the cases where rotation or no movement is seen.

One of the problems encountered when performing tests in the wave tank was the reflection
process going on between the metallic generation board and the caisson. Thus, a continuous
wave cycle was not followed, and a one-by-one concentrated wave was generated with a gap of
5 minutes to allow the surface stabilization. On occasions, that time was increased due to the

repositioning of the caisson during the sliding test.
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Video images are recorded during each test to obtain the displacement of the structure. The video
image processing was done using Dipp-Motion V from Digital Image Technology (DITECT). It
is a 2D motion analysis software based on normalized cross-correlation, binarization of
grayscale, HLS color (hue, saturation, and lightness), and checker-marker tracking. More
information can be found in the technical documentation on the official website of DITECT
Corporation.

The sliding experiment was repeated with the same parameters: 0.4m water depth, 0.1m
maximum wave height, 1s wave period, and 0.5s rising time in two locations at x=10.25m and
x=9.25m, ‘Experimental 1’ and ‘Experimental 2°, respectively. In the former location, only the

plate length influence was tested; while in the latter, the submersion plate was added to the

testing.
54.2  Results
Plate length

Table 5-8. Location of caisson with a plate at the surface at the beginning (ti) and end (tf) of the
motion. shows screenshots of representative videos for the first sliding test of the caisson with
rear plates at the surface. For this case, the ratios plate length to water depth I/h =0, 0.5, 0.75, 1
are tested corresponding to plate lengths | = 0, 20cm, 30cm and 40 cm, respectively. The ratio
I/h=0.25 was initially dismissed in this test since it had a small influence on the analytical
analysis. The initial and final positions can be seen in the second and third rows. From the visual
analysis, it is already evident the sliding reduction is higher for the cases HSO_PL20 (I/h = 0.5)
and HSO_PL30 (I/h = 0.75) when compared with HSO_PL20 (I/h = 0). The time series of the
caisson sliding for each ratio I/h plate are gathered in Figure 5.23. A correlation adjustment has

been made to the time series since they are collected from videos manually taken and the initial
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time for each recording was not necessarily the same. Correlation was made taken the beginning

of the displacement.

Table 5-8. Location of caisson with a plate at the surface at the beginning (t;) and end (tr) of
the motion. Plate length:0,0.2,0.3,0.4m

Case: HSO_PLO
Plate length = Om

Case: HSO_PL20 Case: HSO_PL30 Case: HSO_PL40
Plate length =0.2m  Plate length =0.3m  Plate length = 0.4m

2.5

1.5

Sliding (cm)

0.5
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—0—1=30cm
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Figure 5.20. Time series of the caisson sliding with different plate lengths ((Experimental 1)

All the plate lengths led to a reduction of the maximum displacement. It is also evident that the

lower values are related to the plate length | = 0.75h; the case with | = 0.5h also has a low

displacement compared to the non-plate case. While the one with the longest tested plate (I = h)
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has larger sliding than the | = 0.5h and | = 0.75h, the maximum sliding is actually closer to the
regular caisson. The measurements of displacement and the estimated velocity related to it are
shown in Figure 5.21. The 20 cm and 30 cm-plate caissons have slower movement under the
impact of the impulsive wave: the sliding time-lapse is lower, and the maximum velocities are
smaller than those from the no-plate and 40 cm-plate caissons. This behavior would translate to

more stable caisson motions.
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Figure 5.21. Time series of the caisson sliding and velocity for different I/h (Experimental 1)

Figure 5.21 displays the final displacement, i.e., from the start to the end of the motion. However,

the maximum sliding does not always necessarily match with the final sliding in vertical
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caissons, as shown in Figure 5.22, where the time series for a slightly lower-mass caisson during
the second test was recorded. The caisson moves in the direction of the wave reaching a
maximum point, and after that, it moves slightly in the opposite direction until it stops, which is
the latest sliding. This is due to the dynamic response of the structure and the wave overtopping,
which leads to hydrodynamic forces acting on the back wall and pushing the structure in the
seaside direction.
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33 335 34 34.5
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Figure 5.22. Sliding time series for a lower caisson mass. (Experimental 2)

A caisson mass was considered to avoid such conditions for the plate length and submersion
tests. This does not yield to rocking movement in the current set-up. Still, in conditions with a
rubble foundation, the back and forward movements affect the arrangement of the foundation
particles, eventually leading to faster instabilities and other types of failure, such as foundation
failures.

Sliding reduction based on the final positioning of the caisson is compiled below for the two
experimental tests. As expected, in both cases (Experimental 1 and 2), all the plate lengths led
to a reduction in the sliding. For the first case, the sliding reduces with increments of the plate
length up to 30 cm (I/h = 0.75) and from there has a drastic change, increasing the sliding for the

case 40 cm ( I/h = 1), although not reaching the displacement by the non-plate caisson (I/h = 0).
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The second test shows the same reduction behavior, but before the drop in sliding reduction for
the 40 cm plate (I/h = 0), there is a slight 1% reduction from I/h = 0.5 and 0.75. That differentiates
from the first test with a 7% increment between I/h = 0.5 and 0.75 cases.
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Figure 5.23. Final sliding of caisson according to plate length variation.

Furthermore, when the measured incident force and experimental geometric characteristics are
used as input in the analytical model, the sliding reduction due to the plate length is represented
as the blue points. The behavior is similar with increments up to I/h = 0.75 and dropped reduction
for I/h = 1. However, the analytical model mostly shows smaller values than the experiments.
This is related in principle to the non-linearity of the physical phenomenon and the
hydrodynamic response of the physical model itself, which includes factors that are impossible

to cover entirely by the analytical model, including trapped air, etc.

Plate submersion.

The 20 cm plate was selected for the plate submersion analysis based on the results of the plate
length analysis both from the analytical model and the experimental test. Both 20 and 30-cm
plate caisson had similar behavior, with the latter slightly higher than the former. Thus, the

shorter plate is selected from an economic and design viewpoint. Table 5-9 shows screenshots
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of representative videos for the first sliding test of the caisson with rear plates at the surface. For

this case, the ratios of submersion depth to water depth hs/h = 0, 0.2, 0.25, 0.5 and 0.75 are

tested corresponding to plate length | = 20cm.

Table 5-9. Location of caisson with a submerged plate at the beginning (t;) and end (tr) of

the motion. Plate length:0.2m

Case: HS08 _PL20

Case: HSO_PL20 Case: HS20 PL20 Case: HS30_PL20
Case: HS10_PL20

Depth = 0m Depth =0.2m Depth =0.3m
Depth = 0.08, 0.1m

ti

tr

The values of final displacements for each relationship hs/h are gathered in Figure 5.24. In

general, the sliding reduction gets affected when the plate is submerged, turning from the positive

influence of the plate at the surface to a negative impact. Thus, submerged plates lead to an

increment in the caisson sliding.

The test outputs for plates with 20 cm length (PL20) show that the sliding has a maximum peak

the ratio of submersion depth to water depth hs/h = 0.25 and gets linearly reduced in the range

for hs/h < 0.25. A drop on the sliding occurs for hs/h =0.5 to later increase at hs/h = 0.75 again

and decrease until the plate is at the bottom, which is the no-plate condition. The 30 cm plate

153



(PL30) is examined and added to the graph below to check the previous variable behavior. The
PL30 test confirmed the behavior for hs/h < 0.25, but for hs/h =0.5, a larger displacement is seen.

It is valid to point out that it is more compatible with what to expect from the phenomenon.
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Figure 5.24. Final sliding of caisson according to plate length variation.

5.5 CHAPTER CONCLUSIONS

During the experimental investigation of breakwater caissons with rear plates, an impulsive wave
was satisfactorily generated by using the method in Aoki and Koga (2021). The target waveform
is reached around 25cm after the target location. The amplitude of the wave maker motion is
reduced in the signal transmission. Still, according to the analysis in the numerical wave flume,
this is not the reason for the location displacement. The numerical model replicates waveform
and location from the analytical model but slightly overestimates the wave height. When
applying the method, not for a replica of an actual wave but for models with variations for testing
rising times, it is recommended to previously do perform an analysis in a numerical wave flume,

adjusting the relationship of wave height and rising time to prevent waveform instabilities.
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The addition of the rear plate with lengths up to water depth value positively reduced the sliding
when located at the surface. The sliding reduction went as far as 39% for a plate length 1=0.75h.
Longer plates led to smaller sliding as far as the plate length was smaller than 2/3 of the water
depth. After that point, the sliding reduction drastically diminished. The sliding values for plate
length 1=0.5h and 1=0.75h are similar, although the former is higher than the latter; thus, the
shorter of those two might be better used for practical use. Furthermore, the submersion of the
plate, contrary to the length, had a negative effect on the sliding. All cases of plate submersion
hs>0.1h led to larger sliding than no-plate caisson cases. Both behaviors, regarding the influence

of plate length and submersion, correspond to those from the application of the analytical study.
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Chapter 6. CONCLUSIONS
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OUTLINE

This chapter summarizes the conclusions of this study based on the findings in Chapter 4 and
Chapter 5, which are related to the analytical and experimental models for the investigation of
caisson breakwaters, their dynamic response, and their sliding against impulsive waves,

respectively.

CONCLUSIONS OF THE ANALYTICAL MODEL

As part of the basic research to enhance the accuracy of caisson motion models, an improved
sliding model for regular caissons based on the application of the wavemaker theory and
considering the hydrodynamic uplift forces added to the system by the plates was developed,
providing a better assessment of the effect of this element on the caisson sliding reduction. The
model includes using parameters related to the damping to account for the energy dissipation
due to the presence of the plate. The caisson dynamics are modeled using a time-step numerical
method to solve the equations of motion for a rigid body numerically.

A methodology is established and applied to superficial and submerged single and multiple
plates, simulating the dynamic behavior of the new caisson shapes to analyze later the effect of
the plate length and submersion depth on the overall sliding of the structure, which proved to be,
along the methods and techniques within it, more practical, accessible and faster. The Boundary-
Point Selection Method (BPSM) was applied with excellent results in finding solutions for
boundary problems related to breakwaters with horizontal plates. Its application simplifies
formulations and reduces programming and computing time. However, it is limited to geometries

where the fluid regions have constant water depth. Additionally, aspects related to applying the
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Boundary Point Selection method were highlighted, such as the increment of selection points for
submersion depths smaller than 25% of water depth to avoid unstable or error results.
Following the main findings regarding the pressures: a) Reasonable distributions according to
the boundary conditions were obtained b) The horizontal plates affect the pressure distribution
on the caisson, mostly bringing more uniform distributions at the wall for the case of the single
plate and at the plates for the twin-plate case; as well as higher pressure values, especially for
the double plate, although with more variations on the wall distribution ¢) Regarding the plate
length, the role of the plate as a pressure equalizer is confirmed: when plates’ length tends to be
equal to the water depth, the plate starts functioning as a pressure equalizer. c) The ratio of the
imaginary to the real part of the pressure complex values varies according to the different plate
arrangements; thus, its influence should not be dismissed when analyzing annexation elements
such as horizontal plates since their geometry resists the forces acting in that direction.

The analysis results confirmed the critical influence of uplift forces on the sliding calculations,
as well as the importance of including the memory-effect function on it. Excluding the first one
leads to overestimating the horizontal plate's positive influence in reducing the sliding, especially
for large I/h ratios. While dismissing the latter, it overestimates the maximum sliding distance.
The double plate analysis confirmed the increments of the added mass; however, it also showed
a drastic reduction of the memory effect, which led to an increase in sliding. This confirmed that
an increase in the added mass does not lead to smaller displacement and that the memory-effect
function plays an important role in the sliding simulation under impulsive wave loads, which has
been underestimated. Additionally, a relation in which shapes with larger damping coefficients
and added mass increments induce better structure performance. Furthermore, for a preliminary
prediction of better performance, i.e., a reduction of the sliding distances, analysis based only on
the Added Mass is not enough; instead, also searching for sections with larger values of memory

effect focusing on larger values of R*(t=0) should be included.
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A general conclusion from the preceding findings is that the analytical model for caissons with
plates should not be simplified up to the point of the conventional models used for regular
caissons since they underestimate the sliding of this structure and lead to fictional preliminary

assumptions of great responses.

CONCLUSIONS OF THE EXPERIMENTAL MODEL

Small-scale laboratory experiments were carried out for the impulsive wave generation, forces,
and the motion of a caisson, both regular and with horizontal rear plates. A numerical calculation
in CADMAS-SURF was also conducted to investigate the reproducibility of the analytical
method and the experimental wave generation. The influence of the plates on the sliding of the
caisson during the physical tests was discussed.

During the experimental investigation, impulsive waves were satisfactorily generated by using
the Aoki and Koga (2021) method. The target waveform was reached around 25cm after the
target location from the analytical model. The amplitude of the wave maker motion was reduced
in the signal transmission, but according to an analysis of a numerical wave flume, that was not
the reason for the location displacement. The numerical model replicates wave form and location
using the analytical model but slightly overestimates the wave height. When applying the
method, not for a replica of an actual wave but for models with variations for testing rising times,
it is recommended to previously do perform an analysis in a numerical wave flume, adjusting
the relationship of wave height and rising time to prevent waveform instabilities. Furthermore,
scale effects probed to be limitations in the physical modeling because it was impossible to
satisfy all scaling parameters. At the same time, the numerical model, although not directly
affected by it, had some parameters introduced indirectly through modeling assumptions but with
less influence on the final output.

Finally, the addition of the rear plate with lengths up to the water depth value positively reduced
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the sliding when located at the surface. Longer plates led to smaller sliding as far as the plate
length was smaller than 2/3 of the water depth. After that point, the sliding reduction drastically
diminished. The sliding values for plate lengths in the range 1=0.5h to 1=0.75h were similar,
although the former was higher than the latter; thus, from practical use, the shorter of those two
might be better used. Furthermore, the submersion of the plate, contrary to the length, had a

negative effect on the sliding, leading to larger sliding than no-plate caisson cases.

LIMITATIONS AND RECOMMENDATIONS

The presented analytical model can be applied to determine the hydrodynamic parameters and
sliding of multiple shapes in other to preliminary determine best performance. However, the use
of the boundary point selection method for the velocity potential calculation is restricted to
shapes where the fluid in each region has constant water depth. For geometries not complying
with this condition, the velocity potential can be calculated with the conventional approach; and
follow the rest of the present methodology to determine the hydrodynamic parameters and
sliding.

The experimental analysis showed that the analytical model was correct predicting the best
shapes. However, the quantitative influence of the plate on the sliding reduction was different
from the experiments and the analytical model with the experimental parameters when compared
with the initial analytical model. This is mainly due to the differences in the parameters,
properties and characteristics: mainly the friction coefficients, wave force rising time and
magnitude. A sensitive analysis of the multiple combinations of the variability of such
parameters is not included in this part of the study. Proceeding with it is expected to provide a

better understanding of the quantitative effect of the plate based on such parameter’s variability.
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Additionally, the experimental sliding tests at this scale within a flume led to an adjustment of
materials and reduced workability. Carrying similar experiments in a basin will increase the
workability for the repositioning of the caisson, the addition and change of plates u other
annexation elements, as well as location variation of measurement devices. It would also allow
to utilize materials with properties closer to the prototypes: concrete caissons, concrete bottoms
that are not damaged by the friction with the caisson, sand or gravel over it during the sliding.
The scale in the physical experimental was exact for the caisson dimensions, not the case for the
density since the material were different as well as further mass reduction to secure a
representative sliding under a wave with limited overtopping. to be measured with the current
camera (providing 30 frames per second). A further reduction of the scale is not recommendable
since, although the caisson dimensions can be directly scalable and reduced, scaling all the wave
parameters is practically impossible, and can introduce larger errors. Larger scales, i.e., larger
models would lead to results closer to real wave and structure performance.

The analytical model did not consider wave overtopping; thus, the generated wave was designed
for a maximum wave elevation equal to the caisson freeboard. However, some overtopping was
observed during the physical test, a representation of the natural behavior associated to impulsive
waves impacting structures. Including the overtopping in future models will be a better
representation of the phenomena. It will also contribute to provide insights on the influence of
the plate on other process such as foundation’s erosion that can occur in the harborside of the
caisson due to such overtopping, leading to other failures. From the visual inspection during the
physical tests, a positive impact can be expected since the possible erosion will be produced far

from the back toe of the caisson.
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GENERALS

The analytical models reproduce the behavior shown in the experiments well. They can be used
in determining the sliding and hydrodynamic coefficients, such as added mass and damping
coefficient, of the different shapes of caissons as far as the fluid regions formed by such geometry
have constant water depth. The models allow a preliminary fast estimation of caisson geometries
leading to better performance under wave impact and the reduction of extended resourceful
physical experiments to the best shapes. Best approximations of the actual behavior will be
obtained from the model by utilizing accurate input data, especially those related to the wave
characteristics.

Physical models also performed according to the central hypothesis of the improved performance
due to the fluid constriction. In the physical test, only the sliding and external forces were
measured; thus, it is recommended to extend the measurements to pressure distributions and
reaction forces, improving the phenomena' analysis and utilizing more accurate input data for
the analytical models.

Besides particular differences due to the approaches used and the limitations of each study, both
concluded that horizontal plates affect the sliding of caisson breakwaters. The impact is positive
for plates located at the surface since sliding reductions are seen for these arrangements, while
the submersion negatively impacts the parameter. On the other hand, increments of the plate
length also had a good effect, decreasing the displacement of the caisson under the same
conditions and with an optimal plate length between half and two-thirds of the water depth.
Furthermore, the positive influence of the plate length started to decrease for plates longer than

two-thirds of the water depth.
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