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Abstract 

The presence of irregular breaking waves featuring the air bubbles effect is fundamental 

to the dynamics of shallow water waves, playing a critical role in dispersing wave 

energy, which is crucial for protecting coastlines and controlling erosion. As waves 

approach shallow waters, waves interact more intensely with the seabed, increasing 

turbulence and energy dissipation. Air bubble formation within breaking waves 

facilitates the conversion of wave energy into turbulent kinetic energy, reducing wave 

height and intensity. This process mitigates the impact of waves on coastal structures 

and shorelines. Moreover, breaking waves with air bubble effects significantly impact 

sediment transport, ecosystem functions, and wave-induced forces in shallow water 

environments. Accurate modeling of these phenomena is crucial for coastal 

management and resilient infrastructure design to preserve coastal ecosystems. 

This study focused on the role of air bubbles in energy dissipation within irregular 

waves, aiming to develop a precise model for calculating wave height and set-up during 

wave breaking. It employed parametric, representative, spectral, and probabilistic 

approaches to model irregular waves. The research explored the bubble entrainment 

under spilling and plunging breakers, emphasizing energy dissipation phenomena in 

unsteady wave dynamics. 

Chapter 1 of this study began by presenting the motivation for the research and 

providing a general background on the dynamics of air bubbles in breaking irregular 

waves. It then delved into a comprehensive literature review, identifying research gaps 

that lead to the problem statement, objectives, and research approach. 

Chapter 2 provided an experimental overview, detailing the procedures for data 

collection and data editing. It concluded with a discussion of multiple datasets collected 

from various sources. 

Chapter 3 elaborated on the development of an energy dissipation model for plunging 

and spilling breakers, integrating the influence of air bubbles using the parametric 

approach tailored for irregular waves. This model was developed by considering the 

concept of the fraction of breaking waves.  



 

 

iii 

 

Chapter 4 explained the adaptation of existing regular wave-breaking models with air 

bubble effects to irregular waves, resulting in the creation of new models using the 

representative approach. This method involved the direct transfer of regular wave 

parameters to characterize irregular wave behavior.  

Chapter 5 described the development of the energy dissipation model using the spectral 

approach, which integrated the concept of fraction of breaking waves with a Weibull 

distribution. 

Chapter 6 discussed the application of a probabilistic approach to formulating a new 

wave height distribution designed for plunging breaking waves owing to the air bubbles 

effect. Various wave height parameters were derived from this proposed distribution.  

Chapter 7 consolidated the study's findings by addressing the objectives and research 

questions, while also offering recommendations for future investigations in this field. 

Overall, this study focused on computing RMS and significant wave heights using 

developed models, numerically for irregular bathymetry and analytically for plane-

sloping bathymetry. Energy balance equations determined RMS and significant wave 

height calculations, while the momentum balance equation-controlled wave set-up 

dynamics. Validation of the models and distributions involved a comprehensive series 

of experiments, including large-scale, small-scale, and field experiments across various 

scenarios. Various error analyses indicated that the proposed models, particularly one 

among them, demonstrated superior performance with lower error indices in 

comparison to established models and experimental data.  
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General Introduction 

 General 

This introductory chapter initiates with the motivation behind the study, followed 

by an extensive examination of irregular breaking waves. Subsequently, a concise 

literature review is conducted to identify research gaps, culminating in the delineation 

of the study's objectives and methodology. Furthermore, the significance of this 

research is elucidated. Lastly, the abstract concludes with a brief overview of the 

dissertation structure, summarizing the subsequent chapters. 

 Motivation 

Located within a low-lying terrain and boasting an extensive coastal stretch (see 

Fig. 1.01), Bangladesh faces heightened susceptibility to cyclones and storm surges. 

Annually, the coastal areas of Bangladesh endure numerous cyclonic disturbances, 

presenting formidable risks to both human lives and essential infrastructure (see Table 

1.1).  

Figure 1.01: Coastal Map of Bangladesh. 
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The aftermath of these natural calamities often entails substantial loss of life and 

significant economic damage, encompassing the destruction of vital coastal assets such 

as residences, transportation networks, and agricultural fields. 

Table 1.1: Cyclones with the greatest destructive impact on Bangladesh (Alam, 

2023). 

Cyclone 

Name 
Year 

Wind Speed 

(km/h) 
Loss of Life 

Economic Impact 

(USD) 

Bhola 1970 185 300,000+ $86.4 million 

Gorky 1991 250 138,866 $1.5 billion 

Sidr 2007 240 3,447 $1.7 billion 

Aila 2009 120 190 $530 million 

Roanu 2016 120 26 $565 million 

Amphan 2020 240 118 $13.2 billion 

Yaas 2021 155 14 $500 million 

It is also noted that the inland coast, located away from the original coastline and often 

toward the middle of a country, is bordered by other land areas. Unlike coastal regions 

directly adjacent to the ocean, inland coasts have unique environmental conditions. 

Residents in these areas may face risks such as flooding during heavy rainfall or riverine 

flooding, particularly if they are near estuaries or rivers. On the other hand, an open 

coast refers to a shoreline directly exposed to the open ocean, lacking significant natural 

barriers like islands or peninsulas. These coasts are characterized by exposure to 

oceanic elements such as waves, tides, and currents, often experiencing increased wave 

activity and erosion compared to sheltered or protected coastal areas. 

The study of shallow water wave dynamics within the context of Bangladesh is 

paramount due to a confluence of critical factors. Bangladesh's coastal landscape, 

characterized by low-lying terrain, underscores its susceptibility to a host of coastal 

hazards, including cyclones, storm surges, and erosion. With densely populated coastal 

regions housing a significant portion of the country's populace, comprehending shallow 

water wave dynamics becomes imperative for not only predicting but also mitigating 

the adverse impacts of these hazards, thereby safeguarding lives, livelihoods, and 

essential infrastructure. Furthermore, Bangladesh's coastal zones harbor invaluable 

ecosystems such as mangroves, wetlands, and fisheries, serving as lifelines for millions 
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by providing indispensable resources and ecosystem services. The intricate interplay of 

shallow water wave dynamics profoundly influences sediment transport, water quality,  

and the formation of habitats within these ecosystems, underlining the need for a 

holistic understanding to drive sustainable management and conservation endeavors. In 

addition, Bangladesh faces heightened vulnerability to climate change, amplifying 

existing coastal risks through rising sea levels, heightened occurrences of extreme 

weather events, and shifting precipitation patterns. Shallow water wave dynamics 

emerge as pivotal factors shaping coastal morphology and responses to climate 

variability, dictating erosion rates, accretion processes, and the retreat of shorelines. 

This comprehension forms the bedrock for assessing vulnerability and crafting 

adaptation strategies aimed at minimizing risks. Lastly, Bangladesh's coastal regions 

contribute significantly to the nation's economy through key sectors such as fisheries, 

agriculture, tourism, and port operations. Shallow water wave dynamics exert a tangible 

influence on navigation, port activities, and the development of coastal infrastructure, 

thereby directly impacting economic productivity and livelihood opportunities. 

Therefore, the study of shallow water wave dynamics in Bangladesh holds immense 

importance for various aspects of coastal management and ecosystem preservation. By 

comprehensively understanding these dynamics, coastal hazards can be effectively 

addressed, adapt to climate change impacts, and foster sustainable development in 

coastal areas. This holistic approach is crucial for ensuring the safety of coastal 

communities, conserving vital ecosystems, and enhancing resilience in the face of 

environmental challenges. So, the research question emerges as outlined in the 

subsequent subsection. 

1.2.1 Research Question 

How do protect coastal people from natural disasters? 

In seeking the answer to this question, potential approaches for safeguarding coastal 

communities from natural disasters have been identified, including: 

1. Early warning systems: Implementation of early warning systems to provide 

timely alerts and evacuation procedures in the event of approaching hazards. 
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2. Awareness campaigns: Conduct awareness campaigns to educate residents 

about the risks associated with living in coastal areas and the necessary actions 

to take during emergencies. 

3. Natural defenses: Utilization of natural defenses, such as mangroves, dunes, 

and wetlands, to buffer against storm surges, erosion, and flooding. 

4. Land use planning: Implementation of land use planning measures to regulate 

development in vulnerable coastal zones, including restrictions on construction 

in high-risk areas and promoting resilient building practices. 

5. Coastal engineering: Deployment of coastal engineering solutions, such as 

seawalls, breakwaters, and beach nourishment, to mitigate the impacts of 

coastal hazards and stabilize shorelines. 

This research highlights coastal engineering as the key long-term solution for 

protecting coastal communities from natural disasters. While early warning systems, 

awareness campaigns, natural defenses, and land use planning are crucial for short-term 

preparedness, they may not offer sustainable protection against ongoing coastal threats. 

Coastal engineering provides durable infrastructure solutions capable of withstanding 

storms, erosion, and sea-level rise. By focusing on coastal engineering, this research 

aims to develop effective and sustainable approaches to safeguard coastal areas and 

enhance resilience to environmental challenges. 

 Background 

Life on Earth depends entirely on air and water, with our existence intricately 

intertwined with the surrounding environment. Various environmental challenges 

profoundly impact societies, encompassing weather patterns and escalating levels of 

carbon dioxide. Within the realm of coastal dynamics, the phenomenon of air bubble 

entrainment in irregular breaking waves assumes profound significance and complexity 

(see Fig. 1.02).  
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Figure 1.02: A picture of a real ocean wave (irregular wave with breaking) 

with air bubbles. 

When waves approach the coastline, their interaction with diverse bathymetry and 

coastal terrain leads to irregular breaking, fostering intricate dynamics among air, water, 

and waves. This process results in the entrainment of air bubbles into the water column, 

facilitated by turbulent mixing, wave breaking, and the presence of surfactants. The 

entrapment of air bubbles not only influences the dissipation of wave energy and the 

attenuation of wave height but also contributes to the formation of whitecaps and foam 

along coastal regions. Moreover, air bubble entrainment serves a crucial role in 

mediating gas exchange between the atmosphere and the ocean, thereby impacting 

fundamental processes like gas transfer and carbon cycling within coastal ecosystems.  

Hence, unravelling the underlying mechanisms governing air bubble entrainment in 

irregular breaking waves is imperative for gaining a comprehensive understanding of 

coastal dynamics and their broader environmental ramifications. In the subsequent 

subsections, significant topics pertinent to this subject have been thoroughly reviewed. 

1.3.1 Irregular Breaking Waves 

Irregular waves: Irregular waves in the ocean lack a consistent or uniform 

pattern in their shape, size, or timing. 

Breaking Waves: Breaking waves are oceanic waves that collapse or rupture upon 

nearing the shore or encountering shallow water (see Fig. 1.02). This event happens 
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when the wave crest becomes excessively steep, leading to the wave crest's forward 

movement surpassing the wave's velocity.  

Hence, irregular breaking waves are characterized by their irregular shape and their 

tendency to meet the conditions for breaking. Irregular breaking waves encompass 

mainly four types, distinguished by their irregular shapes and breaking behaviour. In 

Fig. 1.03 below, an overview of these types is provided. 

Figure 1.03: Various types of breaking waves (Diagrams & Pictures: Hedges, 

(2003)). 

Therefore, depending on the breaking process, another question arises: What are the 

primary factors contributing to the dissipation of energy in irregular breaking 

waves within the surf zone? 

In the pursuit of comprehending wave energy dissipation in the surf zone, several 

pivotal factors have been pinpointed. These encompass bottom topography, air bubble 

entrainment within breakers, sediment transport, and turbulence. The intricate 

interaction of these elements influences how wave energy is transferred and attenuated 

along coastal areas. This comprehension bears great significance for coastal engineers, 

researchers, and policymakers tasked with safeguarding against coastal hazards and 

conserving ecosystems. By delving into the mechanisms governing wave energy 
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dissipation, the capacity to anticipate and adjust to the dynamic coastal environment 

can be enhanced. Building upon the preceding discussion, a further inquiry emerges:  

How do calculate the energy of irregular breaking waves?  

To address this question, delving into a literature review is conducted in the following 

section. 

1.3.2 Literature Review 

In the realm of wave energy within the surf zone, researchers invest significant 

efforts in developing energy dissipation models. These models aim to quantify the 

mechanisms through which wave energy disperses in coastal environments. By 

scrutinizing factors such as wave-breaking patterns, bottom topography, turbulence, 

and vegetation presence, researchers construct mathematical models that simulate wave 

energy dissipation across time and space. In recent years, extensive research and 

experimentation have sought to enhance these models. Given the intricate nature of the 

wave-breaking process, all models for calculating energy dissipation rely on empirical 

or semi-empirical methods validated through experimental data. The majority of these 

models are grounded in three primary concepts: the bore concept, the stable energy 

concept, and the air bubble entrainment concept. Bore models, initially proposed by Le 

Mehaute, (1962), posited that the energy dissipation of broken waves mirrors that of a 

hydraulic jump. Subsequent versions by Battjes and Janssen, (1978) and Thornton and 

Guza, (1983) refined this approach. Dally et al., (1985) introduced an energy dissipation 

model based on stable energy, while Swift, (1993) and Rattanapitikon and Shibayama, 

(1998) further developed their models by incorporating this concept with modifications. 

Regarding the air bubbles concept, Hoque, (2002) pioneered an energy dissipation 

model that accounted for the influence of air bubbles on regular waves. Subsequent 

research has delved further into this concept, with various studies exploring its 

implications for regular waves, such as Hossain et al., (2022) proposed a wave 

distribution model considering the effect of air bubbles. The influence of air bubbles, 

turbulence, and bottom friction was investigated by Hoque et al., (2021). Additionally, 

Hoque et al., (2019) theoretically and experimentally explored the characteristics of 

wave height, wave set-up, and wave energy dissipation due to air bubbles in the surf 

zone. A concise overview of energy dissipation models is presented in Table 2. 
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Table 1.2: A short overview of the different energy dissipation models. 

Authors Models Const

raints 

Types Concepts 

Battjes and Jenssen, 

(1978) 𝐷 = 0.47
𝜌𝑔𝐻2

4𝑇
 

𝐻 & 𝜂̅ Regular Bore 

Thornton and Guza, 

(1983) 𝐷 = 0.67
𝜌𝑔𝐻3

4𝑇ℎ
 

𝐻 Regular, 

Irregular 

Bore 

Dally et al., (1985) 𝐷

= 0.15
𝜌𝑔𝑐𝑔

8ℎ
[𝐻2

−
4

25
ℎ2] 

𝐻 & 𝜂̅ Regular Stable 

energy 

Deigaard et al., (1991) 
𝐷 = 0.48

𝜌𝑔ℎ𝐻3

(4ℎ2 − 𝐻2)𝑇
 

𝐻 Regular Stable 

energy 

Rattanapitikon, (1998) 
𝐷 = 0.15

𝜌𝑔𝑐

8ℎ
[𝐻2 −

{ℎ𝑒
(−0.36−

1.25ℎ

√𝐿𝐻
)
}

2

]  

𝐻 Regular, 

Irregular 

Stable 

energy 

Rattanapitikon, (2003) 𝐷 = 0.15
𝜌𝑔𝑐𝑔

8ℎ
[𝐻2 −

{0.073𝐿𝑡𝑎𝑛ℎ(𝑘ℎ)}2]  

𝐻 Regular, 

Irregular 

Stable 

energy 

Hoque, (2002) 𝐷 = 𝛼𝜌𝑤𝑔𝑉𝑎𝑤𝑟  𝐻 & 𝜂̅ Regular Air bubble 

Hoque et al., (2019) 𝐷 = 𝛼𝜌𝑤𝑔
𝑦

2

𝑐0

(1−𝑐0)
𝑤𝑟  𝐻 & 𝜂̅ Regular Air bubble 

In Table 1.2, the models devised to incorporate the influence of air bubbles in the surf 

zone were specifically designed for regular breaking waves. However, it's widely 

recognized that wave breakers in irregular waves present a more complex scenario 

compared to those in regular waves. Irregular waves lack distinct breakpoints, and their 

energy dissipates over a broader expanse than regular waves. Consequently, the 

interaction between irregular waves and air entrainment in shallow water is a significant 

and intriguing phenomenon. Thus, the following research gap is identified for this study. 

1.3.3 Research Gap 

❖ Existing wave models in coastal engineering predominantly rely on bore and 

stable energy concepts, which are suitable for regular waves but may not be as 

effective for irregular waves. 
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❖ Many existing models in coastal engineering are inadequate in accurately 

calculating wave set-up. 

❖ Currently, there are no existing models that incorporate the air bubble concept 

to accurately simulate irregular waves. 

Now, the inquiry arises: How can formulate an energy dissipation model for 

irregular breaking waves that takes into account the influence of air bubbles? 

Following this, a succinct summary of the response to this question is presented in the 

subsequent section. 

1.3.4 Methodology 

In addressing the challenge of developing such a model, researchers have 

identified four main approaches: parametric, representative, spectral, and probabilistic 

(see Fig. 1.04). These approaches offer diverse perspectives on modeling the intricate 

dynamics of wave breaking in irregular conditions and can contribute to enhancing the 

comprehension of wave behavior in the surf zone. Following this, a brief summary of 

these methods is presented below: 
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(b) 

Figure 1.04: (a) Different approaches for constructing a model to dissipate energy 

from irregular breaking waves, (b) The fundamental differences among the methods 

in terms of wave height. 

Parametric approach  

The parametric approach characterizes the energy dissipation rate through time-

averaged parameters, focusing on the macroscopic characteristics of breaking waves 

and primarily predicting the transformation of the root-mean-square wave height. This 

method is particularly suitable when a detailed wave height distribution is unnecessary. 

Research on this approach can be divided into two categories based on assumptions 

regarding the probability density function (PDF) of wave height in the surf zone. The 

first category assumes the validity of the Rayleigh pdf in the surf zone, where the 

average energy dissipation rate is described by integrating the product of the energy 

dissipation of a single broken wave and the probability of breaking wave occurrence. 

The second category comprises a semi-analytical model that does not rely on 

assumptions about the pdf in the surf zone. In this model, the average energy dissipation 

rate is calculated by summing up the dissipation of each broken wave component and 
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dividing it by the total number of waves (Larson, 1995; Battjes and Janssen, 1978; 

Thornton and Guza, 1983; Baldock et al., 1998; Rattanapitikon and Shibayama, 1998).  

Representative wave approach 

 The representative wave approach is a method that entails the direct application 

of regular wave formulas to examine irregular waves, leveraging representative wave 

parameters (Rattanapitikon, 2008; Rattanapitikon et al., 2003). This approach is valued 

for its simplicity and straightforwardness, as it doesn't require making assumptions 

about the PDF of wave heights. By utilizing representative parameters, this approach 

provides a practical means of analyzing irregular wave behavior without delving into 

complex statistical considerations. 

Spectral approach 

 Underlying the spectral approach is the assumption that irregular wave trains 

encompass a diverse range of wave heights with varying frequencies, constituting what 

is known as the wave spectrum. This methodology involves decomposing the incident 

spectrum into multiple component waves. Subsequently, the propagation of each wave 

component is determined using an appropriate regular wave model. Through linear 

superposition, the wave spectrum at a specific location is obtained by aggregating the 

simulation results from all individual wave components (Izumiya and Horikawa, 1987; 

Isobe, 1987; Panchang et al., 1990; Grassa,1990). 

Probabilistic approach 

 The probabilistic approach primarily focuses on statistical analysis and 

involves studying the propagation of individual waves in the time domain. Initial 

individual waves can be obtained from irregular wave records or the PDF of wave 

height. These waves are subsequently propagated independently towards the shore 

using an appropriate regular wave model, with no interaction assumed between waves. 

By combining the simulation results of all individual waves, a new PDF can be 

constructed at the desired location. This method proves particularly useful when a 

detailed wave height distribution is required (Dally, 1990; Medez et al., 2004; Jadav 

and Chen, 2013; Hossain et al., 2022). 
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After an extensive literature review on energy dissipation calculation in the surf zone 

and methodologies for developing energy dissipation models, the objective has been 

defined in the subsequent section. 

 Research Objectives 

Main Objective: To develop the energy dissipation model considering the influence of 

air bubbles on irregular breaking waves. 

The provided flowchart displays the comprehensive objective of this study: 

 

 

 

 

 

Figure 1.05: Specific aim of the study. 

Utilizing the methodology outlined above (refer to Fig. 1.05), this study endeavors to 

formulate energy dissipation models applicable to both spilling and plunging breaking 

wave conditions. Subsequently, the developed models will be applied to uniform plane-

sloping bathymetry as well as irregular bathymetry. Additionally, a series of 

experiments has been planned to validate the efficacy of the developed models. 

 Research Significance  

The entrainment of air bubbles into irregular breaking waves is driven by a 

combination of turbulent mixing, wave breaking, and the presence of surfactants in the 

water. As irregular waves approach the coastline and interact with varying bathymetry 

and coastal features, they undergo breaking, generating turbulent vortices and eddies 

within the water column. These turbulent motions draw air from the atmosphere 

downward into the water, where it becomes incorporated into the breaking waves. 
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Moreover, surfactants present in the water, such as organic matter and dissolved gases, 

can influence this process by reducing the surface tension of the water. This reduction 

in surface tension facilitates the formation of air bubbles, which are then entrained into 

the water column during wave breaking. The entrainment of air bubbles has 

multifaceted effects, and the air bubble model is crucial in coastal engineering and wave 

dynamics for several key reasons: 

Energy dissipation calculation: The presence of air bubbles within breaking 

waves significantly impacts the dissipation of wave energy in the surf zone. 

Understanding the behavior of these bubbles is essential for accurately modeling energy 

dissipation processes. 

Wave dynamics: Air bubbles influence wave-breaking patterns and turbulence in 

the surf zone, affecting sediment transport, coastal erosion, and wave transformation. 

Incorporating air bubble dynamics into wave models enhances their predictive accuracy. 

Coastal hazard mitigation: Reliable wave models are vital for effective coastal 

hazard mitigation, including flood forecasting and shoreline protection. Accounting for 

air bubble effects in these models improves their ability to simulate wave behavior and 

enhance hazard assessment and management strategies. 

Environmental impact: Air bubble entrainment in breaking waves plays a 

significant role in gas exchange between the ocean and atmosphere, nutrient cycling, 

and pollutant distribution. Understanding the role of air bubbles in these processes is 

critical for evaluating and mitigating environmental impacts. 

Energy conversion: Utilizing the air bubble model can enhance the efficacy of 

wave energy converters in coastal areas by precisely forecasting the energy dissipation 

resulting from wave breaking. 

Sediment transport estimation: Incorporating air bubble effects on wave-induced 

turbulence, the model can supply more precise evaluations of sediment transport rates 

along coastlines. 
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Deeper insight into surf zone dynamics: By accurately predicting wave-breaking 

patterns and energy dissipation, the air bubble model deepens the understanding of the 

intricate dynamics within the surf zone. 

Optimized coastal structure design: Accurate modeling of wave energy 

dissipation facilitates the design of coastal structures better equipped to withstand 

extreme wave conditions, enhancing their resilience and functionality. 

Understanding the complexities of air bubble entrainment in irregular breaking waves 

is pivotal for coastal dynamics, marine ecology, and atmospheric chemistry. It bears 

significant implications for managing coastal environments and forecasting climate 

change impacts on coastal regions. In essence, the air bubble model enhances the 

understanding of coastal wave dynamics, fostering applications in engineering, hazard 

mitigation, and environmental preservation. 

Finally, the chapter concludes by providing a comprehensive overview of this 

dissertation in the following section. 

 Dissertation Structure 

This dissertation comprises seven chapters, arranged as follows: 

Chapter 1 lays out the motivation, background, and literature review concerning 

the energy dissipation model, encompassing various methodologies. It identifies 

research gaps, establishes objectives, and discusses the significance of this research. 

Additionally, this chapter provides a succinct introduction to the outline of each 

subsequent chapter. 

Chapter 2 examines a series of experimental inquiries concerning both regular 

and irregular waves. It encompasses detailed discussions on the wave tank 

specifications, equipment, and setup procedures. Additionally, it elucidates the process 

of collecting raw data and transforming it into irregular wave data using the zero-up 

crossing method and irregular waves formula. Furthermore, the chapter addresses the 

collection of numerous datasets from external sources, providing comprehensive 

insights into the research methodology employed. 
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Chapter 3 delves into the parametric wave approach, aiming to devise a novel 

energy dissipation model considering the influence of air bubbles on plunging and 

spilling breaking waves. This model incorporates the phenomenon of the ' probability 

of fraction of breaking wave'. The energy balance equation was utilized to compute the 

root mean square (RMS) wave height, while wave set-up calculation relied on the 

momentum balance equation. The FFD technique was utilized to solve the developed 

model for irregular bathymetry, while analytical solutions were derived for plane-

sloping bathymetry.  At the end of the chapter, an error analysis was conducted to 

compare the proposed model with other existing models using experimental data. The 

validation process involved a comprehensive range of test scenarios, encompassing 

small-scale, large-scale, and experimental field data.  

In Chapter 4, the representative wave approach is explored to devise two novel 

energy dissipation models tailored for calculating RMS wave height (Hrms) and set-up, 

while considering the impact of air bubbles. Firstly, two established regular wave 

models were studied. Subsequently, in the pursuit to extend these models to irregular 

waves, two novel energy dissipation models denoted M-I and M-II were developed. 

While M-I provided an analytical solution applicable to uniformly plane-sloping 

beaches, the absence of an analytical solution for irregular bathymetry led us to employ 

the forward finite difference technique for both spilling and plunging breakers. Despite 

the absence of an analytical solution for M-II, applied the same numerical technique to 

address this scenario. Finally, a comprehensive error analysis was conducted of the 

results with existing models, utilizing different experimental data.  

Chapter 5, the spectral approach is delved into, aiming to devise two innovative 

energy dissipation models for computing spectral significant wave height (Hmo) and set-

up, considering the influence of air bubbles. Initially, two existing regular wave models 

are scrutinized. Subsequently, leveraging the concept of the fraction of breaking waves, 

formulated two new energy dissipation models labeled as M-I and M-II. Spectral 

significant wave height computation relied on energy balance equations, while wave 

set-up determination employed momentum balance equations. The developed models 

are solved using the forward finite difference technique for both spilling and plunging 

breakers. Finally, conducted a comparative error analysis (P20, RMSRE, and BSS) of 
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the present models with other models using the author's experimental data, and data 

collected from other sources at the end of this chapter.  

Chapter 6 explores the probabilistic approach, commencing with a review of 

various shallow water wave height distribution models. Subsequently, a novel PDF and 

corresponding Cumulative Distribution Function (CDF) are introduced for plunging 

breaking waves, considering the influence of air bubbles. The chapter further elaborates 

on the derivation of several key statistical parameters from the newly proposed 

distribution. Additionally, the relationship between the void fraction and the decay 

coefficient of the distribution is examined, revealing a proportional correlation, while 

an inverse-proportional relationship is observed between the scale parameter and the 

decay coefficient. Moreover, the interrelation between the decay coefficient and scale 

parameter transforms the distribution into a one-parameter distribution. Finally, at the 

conclusion of the chapter, an error analysis, including RMSRE, P10, and P20, was 

performed to validate the proposed model against other models using experimental data. 

Lastly, Chapter 7 encapsulates the findings and conclusions drawn from this 

research endeavor. It also outlines further research needs pertaining to air bubble 

entrainment into breaking waves and highlights the limitations of this investigation, 

along with recommendations for addressing them. 
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CHAPTER 2 

Experiment and Data Collection 

2.1 Abstract 

This chapter presents an overview of the experimental setup, equipment 

configuration, wave conditions, and data editing procedures employed in the study. 

Additionally, to enhance the accuracy of the developed models, data from other authors 

were also collected, and a concise description of these datasets is provided. Through a 

comprehensive examination of the experimental framework, including the 

instrumentation and environmental conditions, this chapter lays the foundation for the 

subsequent analysis and interpretation of results. 

2.2 Experiment and Setup 

2.2.1 Wave Flume 

Between November 2nd and 12th, 2023, experiments were conducted at the wave 

flume located in the S2 building of the Graduate School of Osaka University, Japan. 

The primary objective of these experiments was to investigate the dynamics of cross-

shore hydrodynamics and air bubble behavior within breaking waves. The experimental 

setup comprised a compact wave tank measuring 20 meters in length, 0.7 meters in 

width, and 1.0 meters in depth. The following Table 2.1 provides a concise overview 

of the flume. 

Table 2.1: A short summary of the flume. 

Flume structure Plexiglas and metal frame 

Slope Equipment Wood and Steel 

Length 20 m 

Width 0.70 m 

Height 1 m 

Absorber 3 m 

Wave Maker Piston Type 

Slope Start  12 m 
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The flume was positioned horizontally, with glass panels serving as sidewalls along the 

breaking zone, supported by a metal frame. Additionally, a 5-meter-long sloping beach 

profile, constructed from wood and steel with a slope ratio of 1/10, was attached to the 

flume. 

2.2.2 Instrument and Wave Generation 

Data were collected using capacitance-type wave gauges positioned at 9 cross-

shore locations to measure water surface elevation (see Fig. 2.01). These gauges 

underwent daily calibration by adjusting the water level in the wave flume to establish 

a linear relationship between wave amplitude and output voltage. Throughout the 

experiment, the beach remained stationary. Both regular and irregular waves were 

generated, with the study comprising three key tests, including two under irregular 

wave conditions. 

For the generation of irregular waves, the author employed the JONSWAP spectrum 

proposed by Hasselmann et al. (1973), with a spectral width parameter set to 3.3. The 

experimental campaign consisted of 24 cases, with incident spectral wave heights 

ranging from 6.8 cm to 9.30 cm. Spectral peak periods varied between 1.72 s and 1.19 

s. The water depth was consistently set at 30 cm for all cases.  

 

 

 

 

 

Figure 2.01: A schematic diagram (2-D) of the experiment. 
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2.3 Data Editing 

An abbreviated overview of the data editing process is depicted in Fig. 2.02 (a). 

Initially, the data was recorded in voltage form, reflecting the measurements obtained 

from the capacitance-type wave gauges. To facilitate analysis and interpretation, a 

conversion process was employed, utilizing the calibration coefficient to transform the 

voltage readings into corresponding measurements in centimeters (cm). Following this 

conversion, the zero-up crossing method, a commonly used technique in wave analysis, 

was applied. This method enabled the extraction of individual wave heights and periods 

from the converted data, thereby providing essential parameters for further analysis (see 

an example in Fig. 2.02 (b)). 

  

                      (a)                          (b) 

Figure 2.02: Illustration of the data editing process, comprising two main steps: (a) 

Converting the recorded data into individual wave heights and periods, and (b) 

presenting an example of the converted wave heights and periods. 

2.3.1 Conversion to Irregular Waves Parameters 

 Transforming individual wave parameters into irregular wave parameters is a 

pivotal aspect of wave analysis and comprehension. Individual parameters like wave 

height, period, and direction provide valuable insights into specific waves within a 

dataset. However, to accurately characterize the overall wave climate, it's essential to 
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transform these parameters into irregular wave parameters such as significant wave 

height and significant wave period. This conversion process is crucial for facilitating a 

more comprehensive assessment of wave conditions, empowering researchers and 

engineers to evaluate wave energy, climate trends, and design criteria for marine 

structures and coastal protection measures. In this study, the following formulas (S. A. 

Hughes, 1993; Bosboom and Stive, 2023) were applied to convert individual wave 

parameters into irregular wave parameters, as illustrated in an example at the top of Fig. 

2.02 (b). 

Mean Wave Height: 

𝐻̅ =
1

𝑁
∑ 𝐻𝑖,

𝑁
𝑖=1              (2.01) 

Root-mean-square (RMS) Wave Height: 

𝐻𝑟𝑚𝑠 = √
1

𝑁
∑ 𝐻𝑖

2𝑁
𝑖=1 ,             (2.02) 

Significant Wave Height: 

𝐻1
3⁄ = average height of the highest 1/3 of the waves   

          (2.03) 

Mean Wave Period: 

𝑇̅ =
1

𝑁
∑ 𝑇𝑖

𝑁
𝑖=1 ,             (2.04) 

Root-mean-square (RMS) Wave Period: 

                                   𝑇𝑟𝑚𝑠 = √
1

𝑁
∑ 𝑇𝑖

2𝑁
𝑖=1 ,                                (2.05) 

Significant Wave Period: 

                                  𝑇1
3⁄ = average period of the highest 1/3 of the waves     

                    (2.06) 

Set-down: 

𝜂̅ = −
1

16

𝐻2

ℎ
,             (2.07) 
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Set-down at breaking point: 

𝜂̅𝑏 = −
1

16
𝛾𝐻𝑏,                        (2.08) 

Set-up: 

𝜂̅ = 𝜂̅𝑏 +
3

8
𝛾2(ℎ𝑏 − ℎ),           (2.09) 

Set-down at shore: 

𝜂̅𝑠ℎ𝑜𝑟𝑒 = 𝜂̅𝑏 +
3

8
𝛾𝐻𝑏,            (2.10) 

where 𝑁 is the total number of waves in the record, 𝐻 is the individual wave height, 𝑇 

is the individual wave period, 𝛾 =
𝐻𝑏

ℎ𝑏
 is the wave-breaking index, 𝐻𝑏 is the breaking 

point wave height, ℎ is the still water depth and ℎ𝑏  is the breaking point still water 

depth. 

2.4 Collected Other Experimental Data 

The collected data is classified into three categories: small-scale (SS), large-scale 

(LS), and field experimental data (FE) which covers a wide range of wave and bottom 

topography conditions. Table 2.2 provides a summary of the gathered laboratory data. 

The following section covers a brief description of the collected data sets: 

Table 2.2: A concise overview of the wave height data collected from different 

experimental settings, encompassing SS, LS, and FE. 

Data Sources Acronym Beach Types Data Types 

Ting, (2001) Ti-01 Plane SS 

Smith and Seabergh, (2001) SS-01 
Barred and 

Plane 
SS 

Grasmeijer and Rijn, (1999) GR-99 Sandy SS 

Sultan, (1995) Su-95 Plane SS 

Smith and Kraus, (1990) SK-90 
Barred and 

Plane 
SS 

Hurue, (1990) Hu-90 Plane SS 

Dette et al., (2002) DPN-02 Sandy LS 

Roelvink and Reniers, (1995) RR-95 Sandy LS 
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Kraus and Smith, (1994) KS-94 Sandy LS 

Smith et al., (1993) SLK-93 Sandy FE 

Kraus et al., (1989) KGR-89 Sandy FE 

Thornton and Guza, (1986) TG-86 Sandy FE 

2.4.1 Small-Scale Data 

A study was conducted by Ting, (2001) to explore wave and turbulence velocities 

within a broad-banded irregular wave in the surf zone. The research was carried out in 

a wave flume measuring 37 meters in length, 0.91 meters in width, and 1.22 meters in 

depth. The flume featured a 1/35 slope, and a false bottom made of marine plywood 

was used to simulate a plane beach. Irregular waves were generated using the TMA 

spectrum (Bouws et al., 1985), with a spectral peak period of 2.0 seconds, an RMS 

wave height of 0.106 meters, and a spectral width parameter of 3.3. Resistance-type 

wave gauges were deployed to measure water surface elevations at seven cross-shore 

positions. 

Smith and Seabergh, (2001) experimented in the 3D Idealized Inlet Laboratory, 

employing a steady ebb current to investigate wave breaking on a current through 

physical-model measurements. The study encompassed both regular and irregular 

waves. The experimental tank was 99 m in length, 46 m in width, and 0.6 m in depth. 

Waves were generated using the Texel, Marsen, and Arsloe (TMA) spectral form, as 

proposed by Bouws et al. (1985), with a gamma value of 3.30. The wave conditions 

included zero moment wave heights of 3.7 cm and 5.5 cm, and peak spectral periods of 

0.7 s and 1.4 s. A total of eleven wave gauges were strategically positioned to measure 

water surface elevations accurately. 

At the Laboratory of Fluid Mechanics at Delft University of Technology, Grasmeijer 

and Rijn, (1999) experimented using a flume that measured 45 meters in length, 0.8 

meters in width, and 1.0 meters in depth. The flume was equipped with a remote-

controlled rail-guided transport system. To generate irregular waves, the JONSWAP 

spectrum (Hasselmann et al., 1973) was used, with a peak spectral period of 2.3 seconds 

(± 0.2 seconds). Two test series, labeled Series B1 and B2, were carried out, with root-

mean-square wave heights of 0.113 meters and 0.1134 meters, respectively. 
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An experiment was conducted by Sultan, (1995) in a two-dimensional wave tank with 

a sloping beach attachment on one side. Water surface elevation was measured 

extensively at 12 cross-shore locations throughout the wave tank using resistance-type 

wave gauges. Irregular waves were generated based on the Bretschneider–Mitsuyasu 

spectrum (Bretschneider, 1968; Mitsuyasu, 1970), with an incident root-mean-square 

wave height of 0.074 meters and a wave period of 1.4 seconds. 

Hurue, (1990) experimented to investigate wave as well as undertow celerity on a 

uniform plane-sloping beach. The experiment was conducted in a small-scale wave 

flume measuring 17 meters in length and 0.5 meters in width. The beach featured a 

uniform slope of 1/20 with a smooth bottom. Irregular waves were generated based on 

the Bretschneider–Mitsuyasu spectrum (Bretschneider, 1968; Mitsuyasu, 1970), with 

an incident root-mean-square wave height of 0.064 meters and a wave period of 1.26 

seconds. Water surface elevations were measured at seven cross-shore locations using 

a capacitance-style gauge. 

An experiment by Smith and Kraus (1990) was conducted in a small wave flume 

measuring 45.70 meters in length, 0.46 meters in width, and 0.91 meters in depth, to 

examine the macro-features of breaking waves over bars and artificial reefs. The study 

employed both regular and irregular waves, with 12 trials dedicated to the irregular 

waves. For the plane beach and bar configurations, three irregular wave conditions were 

set up. The JONSWAP spectrum (Hasselmann et al., 1973) was used to generate the 

irregular waves, featuring a spectral width parameter of 3.3 and peak wave periods of 

1.07 seconds, 1.56 seconds, and 1.75 seconds. The incident root-mean-square wave 

heights were 0.085 meters, 0.106 meters, and 0.099 meters, respectively. Water surface 

elevations were recorded using resistance-type wave gauges at eight cross-shore 

locations. 

2.4.2 Large-Scale Data 

As part of the SAFE project from 1998, Dette et al., (2002) experimented to 

advance design techniques and assess performance for beach nourishment. This study 

included four main actions, one of which was performed in a large-scale wave flume. 

In this experiment, a 250-meter sandy beach was established within a wave tank 

measuring 300 meters in length, 5 meters in width, and 7 meters in depth. The 
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experiment was organized into two primary phases, with Phase I (cases A, B, C, and 

H) focusing on examining beach profile changes with various slope adjustments. Bruun, 

(1954) technique was tapped to apply the equilibrium beach form (𝑑 = 0.12𝑥
2

3). In the 

second phase of the experiment, the sediment transport behavior of mounds, both with 

and without structural support, was investigated in cases D, E, F, and G. Irregular waves 

were generated using the TMA spectrum (Bouws et al., 1985). The experiments were 

conducted under both normal and storm-wave conditions. Water surface elevations 

were measured at 27 cross-shore locations using resistance-type wave gauges along a 

175-meter stretch of the wave tank barrier, with a slope ranging from 0.010 to 0.018. 

Roelvink & Reniers, (1995) experimented to accumulate data to validate the energy 

dissipation model. In the sandy beach wave flume experiment, a total of 95 cases were 

completed, resulting in 923 data points. The spectral peak periods varied from 3.0 to 

12.0 seconds, with the spectral width parameter around 3.3, and the incident RMS wave 

height ranged between 0.5 and 0.7 meters. Water surface elevations were recorded at 

ten cross-shore locations using resistance-type wave gauges. 

Between August 5 and 13, 1992, Kraus and Smith, (1994) conducted the SUPERTANK 

data collection project at Oregon State University to examine cross-shore 

hydrodynamics and sediment transport processes. The experiment utilized a large wave 

tank that was 104 meters long, 3.7 meters wide, and 4.6 meters deep, featuring a 76-

meter-long sandy beach profile. Both regular and irregular waves were generated 

during the experiment. A total of 20 primary tests were conducted, with 14 of these 

tests focusing on irregular wave conditions. The TMA spectrum (Bouws et al., 1985) 

was used to create the irregular wave conditions. In total, 128 cases involving wave and 

beach conditions were performed, yielding 2047 wave records. The incident RMS wave 

heights ranged from 0.14 to 0.71 meters, while the spectral peak periods varied from 

3.0 to 10.0 seconds, and the spectral width parameter ranged between 3.3 (broad-

banded spectra) and 100 (narrow-banded spectra). Water surface elevations were 

measured using resistance-type wave gauges at 16 cross-shore locations. 

2.4.3 Field Data 

The DELILAH field data collection project, led by Smith et al., (1993), was 

conducted on a long sandy barrier island beach at the U.S. Army Engineer Waterways 
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Experiment Station in Duck, North Carolina, from October 1 to 19, 1990. On October 

14, measurements were taken to estimate parameters such as RMS wave height, average 

longshore velocity, and average wave setup. Data on wave paths and peak wave periods 

were gathered using an 8-meter array, which captured 8 different instances 

corresponding to 8 specific periods. The results showed RMS wave heights between 

0.65 and 0.94 meters and peak wave periods ranging from 9.7 to 12 seconds.  

In September and October 1985, the DUCK85 field data collection project, led by Kraus 

et al., (1989), focused on gathering data near Duck, North Carolina, on the Outer Banks 

barrier islands. Measurements were taken for 12 instances associated with 8 specific 

wave periods at the array. The collected data showed RMS wave heights ranging from 

0.23 to 0.86 meters and peak periods between 9 and 15.3 seconds. 

Between January 30 and February 23, 1980, an experiment led by Thornton and Guza, 

(1986) was conducted to collect field data on wave hydrodynamics at Leadbetter Beach 

in Santa Barbara, California. The study measured the nearshore slope, which varied 

from 0.03 to 0.06, with RMS wave heights ranging from 0.29 to 0.61 meters and peak 

wave frequencies from 0.063 to 0.09 per second. 

2.4.4 Wave Set-Up Data 

For the wave set-up experimental data, Raubenheimer et al., (2001); Stive, 

(1985); and Battjes and Janssen, (1978) experiments were contemplated. A short 

explanation of the tests is shown in Table 2.3. 

Table 2.3: A summary of the wave collected set-up data. 

Data Sources Acronym Beach Types Data Types 

Raubenheimer et al., (2001) RGS-01 Sandy FE 

Stive, (1985) St-85 Plane SS 

Battjes and Janssen, (1978) BJ-78 Plane SS 

From September to November 1997, Raubenheimer et al. (2001) conducted an 

experiment to collect field data on a sandy beach along the Atlantic Ocean near Duck, 

North Carolina, USA. Data were gathered during both high-tide and low-tide conditions. 

Beach profiles were measured at 11 cross-shore locations using resistance-type wave 
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gauges. On September 13, they recorded wave heights ranging from 0.27 to 1.1 meters, 

wave setup from -0.05 to 0.1 meters during low tide, and wave heights from 0.5 to 1.2 

meters, wave setup from -0.05 to 0.05 meters during high tide. 

An experiment was conducted by Stive, (1985) to validate a random wave-breaking 

model, using a uniform plane sloping coast with a slope of 1:40. The wave tank used 

for the experiment measured 55 meters in length, 1.0 meters in width, and 1.0 meters 

in depth. Random waves were generated by piston-type wavemakers, with initial RMS 

wave heights of 0.14 meters, a peak period of 1.58 seconds, and a wave steepness of 

0.038. 

At the Fluid Mechanics Laboratory, Civil Engineering Department, Delft University of 

Technology, Battjes and Janssen, (1978) conducted an experiment using a wave tank 

measuring 45 meters in length, 0.8 meters in width, and 1 meter in depth. The setup 

included a hydraulically focused random-wave maker and featured two beach profiles: 

one with a slope of 1:20 and another with an ideal bar-trough shape, incorporating two 

plane slopes (1/20) and a 4.4-meter-long plane slope (1/40) towards the shoreline. The 

tests conducted in this setup recorded deep water RMS wave heights between 0.113 

and 0.157 meters, with frequencies ranging from 0.407 to 0.544 Hz. 

2.5 Conclusion 

 In conclusion, this chapter meticulously outlined the experimental setup, 

equipment configuration, and data editing procedures utilized in the study, alongside a 

detailed overview of the wave conditions. Furthermore, the incorporation of additional 

datasets from other authors was aimed at bolstering the accuracy of the models 

developed in this study. The thorough examination of the experimental framework, 

encompassing instrumentation and environmental factors, establishes a robust 

foundation for the subsequent analysis and interpretation of results. 
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CHAPTER 3 

Parametric modeling of energy dissipation for irregular 

breaking waves with air bubbles 

3.1 Abstract 

In this chapter, an irregular energy dissipation model for both plunging and 

spilling breaker waves has been developed based on the influence of air bubbles. This 

model applies the probability of wave breaking to its formulation. It has been solved 

numerically for irregular beaches and analytically for beaches with a plane slope. The 

root mean square (RMS) wave height and wave setup are determined using energy and 

momentum balance equations, respectively. Validation of the model involved testing 

across numerous scenarios, including small-scale, large-scale, and field data 

experiments. The results demonstrate that this model produces lower normalized RMS 

errors (NRMSE) in predicting RMS wave height and wave setup compared to other 

models and various types of experimental data. 

3.2 Introduction 

To address various coastal engineering challenges, such as the design of coastal 

structures and the analysis of beach erosion, accurate information on wave 

characteristics in the surf zone is essential. As waves approach the shore, they increase 

in height and decrease in wavelength until they break. At the point of breaking, air 

bubbles are introduced into the water (see Fig. 3.01), converting the wave's energy into 

turbulence and heat, which leads to a reduction in wave height as it moves toward the 

shore. Irregular breaking waves are more complex than regular ones; unlike regular 

waves, irregular waves lack distinct breakpoints. Typically, the largest waves break 

farther from the shore (Rattanapitikon and Shibayama, 1998). Consequently, irregular 

waves dissipate energy over a broader area compared to regular waves. This 

phenomenon, involving both irregular waves and air bubble entrainment in shallow 

water, is crucial for understanding wave behavior in the surf zone. Accurate assessment 

of wave loading on coastal structures, sediment transport, wave setup, wave run-up, 

and wave overtopping requires a focus on the area where waves break. 
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(i)                           (ii) 

(iii)  (iv)    

Figure 3.01: (i) Photograph of a real water wave entrained by air bubbles for 

plunging breakers, (ii) Photograph of a real water wave entrained by air bubbles for 

spilling breakers, (iii) Surface wave transmission sketch on the irregular beach for 

plunging breakers, and (iv) A sketch of surface wave transmission on the irregular 

beach for spilling breakers. 

In recent years, significant advancements have been made in improving energy 

dissipation models for wave-breaking processes. Given the complexity of wave 

breaking, most models rely on empirical or semi-empirical methods validated by 

experimental data. These models are generally based on three primary concepts: the 

bore concept, the stable energy concept, and the air bubbles entrainment concept. The 

bore concept, initially introduced by Le Mehaute, (1962), posits that the energy 

dissipation of broken waves is equivalent to that of a hydraulic jump. Battjes and 

Janssen, (1978) and Thornton and Guza, (1983) developed variations of this model to 

account for this effect. The stable energy concept was proposed by Dally et al. (1985), 

and models incorporating this concept were further refined by Swift, (1993) and 
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Rattanapitikon and Shibayama, (1998), who made additional modifications to include 

various effects. 

In contrast, the air bubble concept focuses on air bubble entrainment and its significant 

impact on energy dissipation in the surf zone, a topic explored by various researchers 

(Cox and Shin, 2003; Hwung et al., 1993; Mori et al., 2007). Blenkinsopp and Chaplin 

(2007) examined the time-varying distribution of air bubbles in different types of 

breaking waves in the laboratory, finding that void fractions can dissipate up to 14% of 

wave energy. Hossain et al., (2022) introduced a wave distribution model that 

incorporates the effects of air bubbles. Hoque et al., (2021) studied the combined effects 

of air bubbles, turbulence, and bottom friction, while Hoque et al., (2019) conducted 

both theoretical and experimental investigations into the characteristics of wave height, 

wave setup, and energy dissipation due to air bubbles in the surf zone. Horikawa and 

Kuo, (1966) identified entrained bubbles as a key factor in wave energy dissipation, 

especially in the initial stages of breaking. Führboter, (1970) observed a significant 

reduction in wave height and energy in the surf zone linked to the presence of air 

bubbles. Theoretical reviews of void fraction distributions during wave breaking were 

conducted by Thorpe, (1982). Hoque and Aoki, (2014) analyzed the impact of void 

fraction on plunging breaking waves, with their findings supported by experimental 

data. 

Although various models have been developed to estimate wave height and wave setup 

in the surf zone, there remains a gap in models that simultaneously account for wave 

height and wave setup attenuation due to air bubbles. While there is a solid 

understanding of air entrainment in breaking waves, research on the role of void 

fraction in the surf zone is limited. Furthermore, most existing models focus on regular 

waves, with a notable lack of models addressing irregular waves and their 

hydrodynamics, particularly in relation to the attenuation effects of air bubbles. This 

research aims to fill this gap by developing an energy dissipation model for irregular 

waves that incorporates the influence of air bubbles and provides accurate estimates of 

RMS wave height and wave setup. 
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3.3 Theoretical Approaches 

3.3.1 Energy Balance Equation (Governing Equation) 

To determine how wave height changes across the shore, the one-dimensional 

energy conservation equation can be expressed as: (Battjes and Janssen, 1978; Thornton 

and Guza, 1983): 

 
𝜕𝐸𝑐𝑔

𝜕𝑥
= −𝐷,                         (3.01) 

where 𝑐𝑔 stands for the group celerity, which is used for shallow water as: 𝑐𝑔 = 𝑐 =

√𝑔ℎ, c is the wave celerity, 𝑔 stands for the gravitational acceleration, h stands for 

water depth, E stands for the energy of the wave train and D is the amount of energy 

dissipation caused by wave breaking, which is zero outside the surf zone area. The study 

does not account for energy dissipation due to bottom friction, and all considerations 

are based on linear wave theory. For irregular waves, the wave energy can be described 

by the following equation: 

𝐸 =
1

8
𝜌𝑔 ∫ 𝐻2𝑃(𝐻)𝑑𝐻

∞

0
=

1

8
𝜌𝑔𝐻𝑟𝑚𝑠

2 ,             (3.02) 

where ρ is the density of water, 𝑔 stands for the gravitational acceleration, 𝐻 is the 

individual wave height of a wave train, 𝐻𝑟𝑚𝑠 represents the RMS wave height of a wave 

train and 𝑃(𝐻)  represents the PDF (probability density function) of the Rayleigh 

distribution. 

3.3.1.1 Model formulation owing to air bubble 

Energy dissipation due to wave breaking in an irregular wave train is highly complex. 

Therefore, Roelvink (1993) proposed that the rate of energy dissipation per unit area, 

𝐷, for an irregular wave train can be expressed as the product of two components: 

𝐷 = 𝑄𝑏𝐷𝑎𝑖𝑟 ,                  (3.03) 

where 𝑄𝑏  meant for the fraction of all breaking waves and 𝐷𝑎𝑖𝑟  energy dissipation 

owing to the effect of air bubbles. 
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3.3.1.2 Probability of wave breaking 

As waves approach shallow water, they break due to various mechanisms, 

including interactions with the wave and bottom slope, as well as effects from currents 

or wind. Determining the exact location and nature of wave breaking is challenging, 

contributing to the complexity of the phenomenon. In this regard, Thornton and Guza, 

(1983) suggested that the probability of wave heights at the point of breaking can be 

represented by weighting the Rayleigh distribution for all waves in a wave train. This 

approach allows for the calculation of energy dissipation in breaking waves using the 

following formulation: 

𝑃𝑏𝑟𝑘 = 𝑊(𝐻)𝑃(𝐻),                 (3.04) 

where 𝑊(𝐻)  is the weighting function which must be less than or equal to 1 to 

strengthen 𝑃𝑏𝑟𝑘 ≤ 𝑃(𝐻)  in agreement that 𝑃𝑏𝑟𝑘  be the subset of the probability 

distribution P(H) for all waves (breaking and non-breaking). Therefore, the fraction of 

the breaking waves (𝑄𝑏)  can be composed as follows: 

𝑄𝑏 = ∫ 𝑃𝑏𝑟𝑘𝑑𝐻
∞

0
,                (3.05) 

where 𝑄𝑏 → 0 as ℎ → ∞, and 𝑄𝑏 → 1 as ℎ → 0 inside the surf region (where all the 

waves are broken). 

Considering the contribution of Thronton and Guza’s, (1983) weighting function 

Kuriyama, (1997), validated and suggested a modified weighting function which is 

written as follows: 

 𝑊(𝐻) = (
𝐻𝑟𝑚𝑠

𝛾ℎ
)

2

[1 − 𝑒
−(

𝐻

𝛾ℎ
)

2

] ≤ 1,              (3.06) 

where 𝐻𝑟𝑚𝑠 represents the RMS wave height of a wave train, h is the water depth and 

𝛾 is the arbitary coefficient and its value is approximately 0.42 (Thronton and Guza 

1983). 

Merging Eqs. (3.04), (3.05), and (3.06) that gives: 
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𝑄𝑏 = ∫ (
𝐻𝑟𝑚𝑠

𝛾ℎ
)

2

[1 − 𝑒
−(

𝐻

𝛾ℎ
)

2

] 𝑃(𝐻)𝑑𝐻,
∞

0
             (3.07) 

where 𝑃(𝐻) is the PDF of Rayleigh distribution. 

3.3.1.3 Air bubble model (Hoque et al., 2019) 

In shallow water, waves break and generate numerous air bubbles that contribute to the 

dispersion of wave energy (Fig. 3.01). Taking this into account, Hoque et al., (2019) 

proposed a model for regular wave breaking, which is formulated as follows: 

𝐷𝑎𝑖𝑟 = 𝛼𝜌𝑤𝑔
𝑦

2

𝑐0

(1−𝑐0)
𝑤𝑟 ,                                                                        (3.08) 

where y, , 𝑐0, 𝜌𝑤 and wr link to the penetration depth, a free parameter, void fraction, 

density of water, and air bubble's rising velocity.  

3.3.1.4 Formulation of the new model for spilling wave breakers 

To formulate a new model for irregular wave energy dissipation, Eqs. (3.03), 

(3.07), and (3.08) must be integrated, yielding: 

𝐷 = ∫ 𝛼𝜌𝑤𝑔
𝑦

2

𝐶0

(1−𝐶0)
𝑤𝑟

∞

0
(

𝐻𝑟𝑚𝑠

𝛾ℎ
)

2

[1 − 𝑒
−(

𝐻

𝛾ℎ
)

2

] 𝑃(𝐻)𝑑𝐻.           (3.09) 

Linking to Fuhrboter, (1970) conditions, for spilling breaking waves, the penetration 

depth, y can be written as: 𝑦 ∝ 𝐻(𝑥) = 𝑘1 ∗ 𝐻(𝑥), where k1 stands for the similarity 

constant, 𝐻 is the individual wave height and x is the horizontal distance towards the 

shoreline. Reworking Eq. (3.09) that gives: 

𝐷 = ∫ 𝛼𝜌𝑤𝑔
𝑘1𝐻(𝑥)

2

𝐶0

(1−𝐶0)
𝑤𝑟

∞

0
(

𝐻𝑟𝑚𝑠

𝛾ℎ
)

2

[1 − 𝑒
−(

𝐻

𝛾ℎ
)

2

]
2𝐻

𝐻𝑟𝑚𝑠
2 𝑒

−(
𝐻

𝐻𝑟𝑚𝑠
)

2

𝑑𝐻.        (3.10) 

Simplification (see detail in Appendix A), yields: 

𝐷 =
3√𝜋

8

𝜌𝑤𝑘1𝑔𝑐0𝛼𝑤𝑟

(1−𝑐0)𝛾4

𝐻𝑟𝑚𝑠
5

ℎ4 .                (3.11) 
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This is the new irregular wave energy dissipation model owing to the air bubbles effect 

for spilling breakers. The next section will address solving this equation under different 

bathymetric conditions. 

3.3.1.4.1 Solution for plane sloping beach 

For obtaining an analytical solution of Eq. (3.11), wave transmission in shallow 

water is considered, specifically on a constant plane sloping beach, where the water 

depth varies by way of ℎ = 𝑥𝑡𝑎𝑛𝜃, where 𝜃 stands for the slope of the beach. Now, 

recall the Eq. (3.01) with E and D illustrated by the Eqs. (3.02) and (3.11) as follows: 

1

8
𝜌𝑤𝑔

𝑑

𝑑𝑥
𝐻𝑟𝑚𝑠

2 √𝑔ℎ = −
3√𝜋

8

𝜌𝑤𝑘1𝑔𝑐0𝛼𝑤𝑟

(1−𝑐0)𝛾4

𝐻𝑟𝑚𝑠
5

ℎ4 .               (3.12) 

Initiating 𝑌 = 𝐻𝑟𝑚𝑠
2 √ℎ and  ℎ = 𝑥𝑡𝑎𝑛𝜃 into the Eq. (3.12), which yields 

𝑑𝑌

𝑑ℎ
= −𝐴

𝑌
5

2⁄

ℎ
21
4

,                                                                    (3.13) 

where 𝐴 =
3√𝜋

𝑡𝑎𝑛𝜃

𝑘1𝑐0𝛼𝑤𝑟

√𝑔(1−𝑐0)𝛾4 is the arbitrary constant. 

Once integrated, Eq. (3.13) gives: 

−𝑌−(3
2⁄ ) =  

1

𝑎
ℎ−

17

4 + 𝑐𝑜𝑛𝑠𝑡.,                 (3.14) 

where 𝑎 =
17

6𝐴
. 

The offshore boundary condition is defined where the shallow water theory is 

applicable as follows: 

𝑌 = 𝑌0 = 𝐻0
2√ℎ0,  at  ℎ0 ≤

𝐿

20
.             (3.15) 

To find the value of integrating const., employing the offshore boundary condition that 

yields: 

𝑌 = 𝑎
2

3⁄ (ℎ−
17

4 − 𝑎𝑌0

−(3
2⁄ )

− ℎ0

−
17

4 )

−(2
3⁄ )

.                        (3.16) 
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After some simplifications, the following equation is found in terms of 𝐻𝑟𝑚𝑠: 

𝐻𝑟𝑚𝑠 = 𝑎
1

3⁄ ℎ
7

6⁄ {1 − ℎ
17

4 (ℎ0

−
17

4 −
𝑎

𝑌0

3
2⁄
)}

−(1
3⁄ )

.            (3.17) 

If ℎ → 0,  Eq. (3.17) becomes: 

𝐻𝑟𝑚𝑠 ≅ 𝑎
1

3⁄ ℎ
7

6⁄ .                           (3.18) 

This indicates that within the inner surf zone, the RMS wave height is related to the 

water depth, taking into account the effect of air bubbles. This finding aligns with the 

observations of Thornton and Guza, (1983).  

3.3.1.4.2 Solution for irregular bathymetry 

Obtaining an analytical solution for the above model is challenging, especially 

for irregular water depths. Therefore, emphasis is placed on the numerical scheme 

adopted to solve the model. In this context, the x-axis is oriented in the direction of the 

shore for analysis. The study area has been parted into grids, each one with a Δx space 

in the x-path (Fig. 3.02).  

 

 

 

 

 

 

 

Figure 3.02: A sketch of the solving technique for the irregular beach. 

Substituting the Eqs. (3.02) and (3.11) in Eq. (3.01) that yields: 

j 1j j 2  x M-1 M

Irregular  each

To be  alculatedPrimary Point Grid Spacing

S L
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𝑑

𝑑𝑥
(𝐻𝑟𝑚𝑠

2 √ℎ) = −𝐴1
𝐻𝑟𝑚𝑠

5

ℎ4
,                (3.19) 

where  𝐴1 =
3√𝜋

√𝑔

𝑘1𝑐0𝛼𝑤𝑟

(1−𝑐0)𝛾4 is the arbitrary constant. 

The left-hand side of Eq. (3.19) is discretized using the forward finite difference scheme 

along the x-direction. For the right-hand side, a central difference scheme is applied to 

each parameter, resulting in: 

(𝐻𝑟𝑚𝑠
2 √ℎ)

𝑘+1
−(𝐻𝑟𝑚𝑠

2 √ℎ)
𝑘

∆𝑥
= −𝐴1

(𝐻𝑟𝑚𝑠
5 )

𝑘

ℎ𝑘
4 .              (3.20) 

Simplification, yields: 

(𝐻𝑟𝑚𝑠)𝑘+1 = √
(𝐻𝑟𝑚𝑠

2 √ℎ)
𝑘

−
𝐴1∆𝑥(𝐻𝑟𝑚𝑠

5 )𝑘

ℎ𝑘
4

(√ℎ)
𝑘+1

.              (3.21) 

In Eq. (3.21), since all parameters are known, calculating the improved RMS wave 

height is straightforward. 

3.3.1.5 Formulation of the new model for plunging wave breakers 

Corresponding to Fuhrboter, (1970) condition, for plunging breaking wave, y can 

be written as: 𝑦 ∝ 𝐻𝑏 = 𝑐𝑜𝑛𝑠𝑡, where 𝐻𝑏 is the individual breaking wave height and it 

can be written as follows (Thornton and Guza, 1983):  

𝐻𝑏 = ℎ𝛾,                  (3.22) 

where 𝛾 is the arbitrary constant. 

Using Eq. (3.22) to rewrite Eq. (3.09), the following expression is obtained: 

𝐷 = ∫ 𝛼𝜌𝑤𝑔
ℎ𝛾

2

𝐶0

(1−𝐶0)
𝑤𝑟

∞

0
(

𝐻𝑟𝑚𝑠

𝛾ℎ
)

2

[1 − 𝑒
−(

𝐻

𝛾ℎ
)

2

]
2𝐻

𝐻𝑟𝑚𝑠
2 𝑒

−(
𝐻

𝐻𝑟𝑚𝑠
)

2

𝑑𝐻.         (3.23) 

Upon simplification of Eq. (3.23), the following expression is derived (see detail in 

Appendix B): 

𝐷 =
1

2

𝜌𝑤𝑔𝑐0𝛼𝑤𝑟

(1−𝑐0)𝛾3

𝐻𝑟𝑚𝑠
4

ℎ3
.                            (3.24) 
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This is the new irregular wave energy dissipation model for plunging breakers owing 

to the effect of air bubbles. In the subsequent section, the aim is to solve Eq. (3.24) by 

considering various bathymetric conditions. 

3.3.1.5.1 Solution for plane sloping beach 

For plunging breaking waves, to derive an analytical solution for Eq. (3.24), wave 

propagation in shallow water is specifically considered, typically on a uniform plane 

sloping shore, where the water depth differs as ℎ = 𝑥𝑡𝑎𝑛𝜃, where 𝜃 denotes the slope 

of the shore. Recall the Eq. (3.01) with E and D demonstrated by the Eqs. (3.02) along 

with (3.24) as follows: 

𝑑

𝑑𝑥
(𝐻𝑟𝑚𝑠

2 √ℎ) = −
4

√𝑔

𝑐0𝛼𝑤𝑟

(1−𝑐0)𝛾3

𝐻𝑟𝑚𝑠
4

ℎ3
.                            (3.25) 

Commencing 𝑌 = 𝐻𝑟𝑚𝑠
2 √ℎ and  ℎ = 𝑥𝑡𝑎𝑛𝜃 into the Eq. (3.25), which generates: 

𝑑𝑌

𝑑ℎ
= −𝐴2

𝑌2

ℎ4,                                                                    (3.26) 

where 𝐴2 =
4

𝑡𝑎𝑛𝜃

𝑐0𝛼𝑤𝑟

√𝑔(1−𝑐0)𝛾3 is defined as the arbitrary constant. 

Next, integrate, Eq. (3.26), which supplies: 

−𝑌−1 =  
1

𝑏
ℎ−3 + 𝑐𝑜𝑛𝑠𝑡.,                             (3.27) 

where 𝑏 =
3

𝐴2
. 

Now, the offshore boundary must be specified where the shallow water approximation 

is satisfied as follows:   

𝑌 = 𝑌0 = 𝐻0
2√ℎ0,   at ℎ0 ≤

𝐿

20
.              (3.28) 

To obtain the value of integrating const., applying the outer boundary condition which 

gives the complete solution of Y as follows: 

𝑌 = 𝑏(ℎ−3 − 𝑏𝑌0
−1 − ℎ0

−3)−1 .                   (3.29) 
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Now, simplifying the above equation and shifting back in terms of 𝐻𝑟𝑚𝑠 , which 

supplies:  

𝐻𝑟𝑚𝑠 = 𝑏
1

2⁄ ℎ
5

4⁄ {1 − ℎ3 (
1

ℎ0
3 −

𝑎

𝑌0
)}

−(1
2⁄ )

.             (3.30) 

When the depth turns very shallow (asymptotic case), Eq. (3.30) becomes: 

𝐻𝑟𝑚𝑠 ≅ 𝑏
1

2⁄ ℎ
5

4⁄ ,                 (3.31) 

which tells that in the inward surf region, the RMS wave height is stated in terms of the 

water depth combined with the air bubbles effect. This result is like the spilling 

breaker’s outcome except for the constant. 

3.3.1.5.2 Solution for irregular bathymetry 

Finding an analytical solution for the above model becomes challenging when 

dealing with irregular beach profiles. Thus, the emphasis shifts towards utilizing 

numerical methods to solve the model. In this concern, the x-axis focuses on the 

direction of the shoreline. The research area is divided into grids, every grid put up with 

Δx spacing in the x-path (Fig. 3.02). Switching the Eqs. (3.02) and (3.24) in Eq. (3.01) 

and reorganizing the result returns: 

𝑑

𝑑𝑥
(𝐻𝑟𝑚𝑠

2 √ℎ) = −𝐴3
𝐻𝑟𝑚𝑠

4

ℎ3 ,                (3.32) 

where  𝐴3 =
4

√𝑔

𝑐0𝛼𝑤𝑟

(1−𝑐0)𝛾3
 is defined as the arbitrary constant. 

Now, the left side of Eq. (3.32) is discretized in the x-path by the forward finite 

difference scheme, with the central difference scheme used for every quantity resting 

on the later side, which takes the lead to as follows: 

(𝐻𝑟𝑚𝑠
2 √ℎ)

𝑗+1
−(𝐻𝑟𝑚𝑠

2 √ℎ)
𝑗

∆𝑥
= −𝐴3

(𝐻𝑟𝑚𝑠
4 )

𝑗

ℎ𝑗
3 .              (3.33) 

After simplification, Eq. (3.33) might be written as follows: 
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(𝐻𝑟𝑚𝑠)𝑗+1 = √
(𝐻𝑟𝑚𝑠

2 √ℎ)
𝑗
−

𝐴3∆𝑥(𝐻𝑟𝑚𝑠
4 )𝑗

ℎ𝑗
3

(√ℎ)
𝑗+1

.              (3.34) 

Now, every single parameter on the right-hand side of Eq. (3.34) is known. Therefore, 

the RMS wave height can be easily calculated using this equation. 

3.3.2 Momentum Balance Equation 

As waves shoal and break toward the shore, the momentum flux becomes 

concentrated and counteracts the effects on the water surface. This impact, which 

exceeds that of radiation stress, becomes more pronounced with decreasing water depth. 

To clearly demonstrate this effect, it is essential to observe the wave-induced setup and 

set-down of the average water level. Therefore, the gradient of the time- and depth-

averaged cross-shore wave momentum flux is theoretically related to the cross-shore 

pressure gradient associated with the average wave setup (Longuet-Higgins and Stewart, 

1964). This is written down as follows: 

𝑑𝜂̅

𝑑𝑥
+

1

𝜌𝑤𝑔(ℎ+𝜂̅)

𝑑𝑆𝑥𝑥

𝑑𝑥
= 0,                (3.35) 

where 𝜂̅  is the wave set-up, 𝜌𝑤  is the density of the water, g is the gravitational 

acceleration, h is the water depth and 𝑆𝑥𝑥 is the radiation stress along the x-axis. 

However, Hoque et al., (2019, 2021) modified this equation considering the air bubbles 

effect which is written as follows: 

𝑑𝜂̅
′

𝑑𝑥
= −

1

𝜌𝑤𝑔𝑀

𝑑𝑆𝑥𝑥́

𝑑𝑥
+

𝑁

𝑀

𝑑𝑦

𝑑𝑥
−

𝑃

𝑀

𝑑ℎ

𝑑𝑥
 ,               (3.36) 

where 𝜂̅′is the wave set-up entrained by the air bubbles, 𝑀 = (ℎ + 𝜂̅) − 𝑐0𝜂̅ −
𝑐0𝑦

2
 , 

 𝑁 =
𝑐0𝜂̅

2
+

𝑐0𝑦

3
 , 𝑃 = 𝑐0𝜂̅ +

𝑐0𝑦

2
 and 

 𝑆𝑥𝑥
́ =

1

8

𝜌𝑤𝐻2𝜎2

𝑠𝑖𝑛ℎ2𝑘ℎ
{(𝑦 − 2𝑐0𝑦 − 𝑐0ℎ) (

∆ℎ

𝑦
) + 2ℎ − 𝑐0

𝑦

2
− (1 − 𝑐0)

𝑠𝑖𝑛ℎ2𝑘ℎ

2𝑘
+

𝑐0

2𝑘

(1−𝑐𝑜𝑠ℎ2𝑘ℎ)

2𝑘𝑦
} + 𝜌𝑤𝑐0

2𝑤𝑟
2𝑦 (

4−3𝑐0

12
) + 𝐸

1−𝑐0

2
 is the radiation stress including the air 

bubbles effect. 
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Now, for irregular waves assume that the Rayleigh distribution (narrow-banded in 

frequency) is followed by wave heights (Longuet-Higgins, 1952), so that all individual 

waves have nearly the same group velocity and period. Therefore, the Eq. (3.36) can be 

written for spilling breaking wave ( 𝑦 ∝ 𝐻(𝑥) = 𝑘1 ∗ 𝐻(𝑥)),  as follows: 

𝑑𝜂̅
′

𝑑𝑥
= −

1

𝜌𝑤𝑔𝐿

𝑑𝑆𝑥𝑥

′′

𝑑𝑥
+

𝑄

𝐿

𝑑𝑦

𝑑𝑥
−

𝑅

𝐿

𝑑ℎ

𝑑𝑥
,               (3.37) 

where  𝐿 = (ℎ + 𝜂̅) − 𝑐0𝜂̅ −
𝑘1𝑐0√𝜋

4
𝐻𝑟𝑚𝑠  , 𝑄 =

𝑘1𝑐0𝜂̅

2
+

𝑐0√𝜋

6
𝐻𝑟𝑚𝑠  , 𝑅 = 𝑐0𝜂̅ +

𝑘1𝑐0√𝜋

4
𝐻𝑟𝑚𝑠  and 𝑆𝑥𝑥

′′
=

1

8
𝜌𝑤𝑔𝐻𝑟𝑚𝑠

2 {
3

2
− (

2𝑐0
2−𝑐0

2−2𝑐0
)} +

𝑐0
2𝑤𝑟

2𝜌𝑤𝑘1√𝜋

2
(

4−3𝑐0

12
) 𝐻𝑟𝑚𝑠 

(Applying shallow water approximation). 

For plunging breaking waves (𝑦 ∝ 𝐻𝑏 = 𝑐𝑜𝑛𝑠𝑡), the Eq. (3.37) is the same, but the 

parameters are like as: 

𝐿 = (ℎ + 𝜂̅) − 𝑐0𝜂̅ −
𝑐0𝛾

2
ℎ, 𝑄 =

𝑐0𝜂̅

2
+

𝑐0𝛾

3
ℎ , 𝑅 = 𝑐0𝜂̅ +

𝑐0𝛾

2
ℎ and  

𝑆𝑥𝑥

′′
=

1

8
𝜌𝑤𝑔𝐻𝑟𝑚𝑠

2 {
3

2
− (

2𝑐0
2−𝑐0

2−2𝑐0
)} + (4 − 3𝑐0)

𝑐0
2𝑤𝑟

2𝜌𝑤𝛾

12
ℎ   (Applying shallow water 

approximation). 

3.3.2.1 Numerical Solution of the momentum balance equation 

It has been seen that Eq. (3.37) is non-linear, so it is not easy to obtain a 

systematic solution. Therefore, the same methodology is applied in Eq. (3.37), and the 

result yields: 

𝜂̅𝑗+1 = 𝜂̅𝑗 −
1

𝜌𝑤𝑔𝐿
(𝑆

𝑥𝑥(𝑗+1)

′′
− 𝑆

𝑥𝑥(𝑗)

′′
) +

𝑄

𝐿
(𝑦𝑗+1 − 𝑦𝑗) −

𝑅

𝐿
(ℎ𝑗+1 − ℎ𝑗).          (3.38) 

Now, Using the shallow water linear approximation (kh ≪ 1) in radiation stress term 

and later Führboter, (1970) article regarding penetration depth, Eq. (3.38) reformulated 

as follows: 

For spilling breaking waves (𝑦 ∝ 𝐻(𝑥) = 𝑘1𝐻(𝑥)): 
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𝜂̅𝑗+1 = 𝜂̅𝑗 −
3

16𝐿
(𝐻𝑟𝑚𝑠(𝑗+1)

2 − 𝐻𝑟𝑚𝑠(𝑗)
2 ) + (

2𝑐0
2−𝑐0

8𝐿(2−2𝑐0)
) (𝐻𝑟𝑚𝑠(𝑗+1)

2 − 𝐻𝑟𝑚𝑠(𝑗)
2 ) − (4 −

3𝑐0)
𝑐0

2𝑤𝑟
2𝑘1√𝜋

24𝑔𝐿
(𝐻𝑟𝑚𝑠(𝑗+1) − 𝐻𝑟𝑚𝑠(𝑗)) +

𝑄𝑘1

𝐿
(𝐻𝑟𝑚𝑠(𝑗+1) − 𝐻𝑟𝑚𝑠(𝑗)) −

𝑅

𝐿
(ℎ𝑗+1 − ℎ𝑗).   

        (3.39) 

For plunging breaking wave (𝑦 ∝ 𝐻𝑏 = 𝑐𝑜𝑛𝑠𝑡.): 

𝜂̅𝑗+1 = 𝜂̅𝑗 −
3

16𝐿
(𝐻𝑟𝑚𝑠(𝑗+1)

2 − 𝐻𝑟𝑚𝑠(𝑗)
2 ) + (

2𝑐0
2−𝑐0

8𝐿(2−2𝑐0)
) (𝐻𝑟𝑚𝑠(𝑗+1)

2 − 𝐻𝑟𝑚𝑠(𝑗)
2 ) − (4 −

3𝑐0)
𝑐0

2𝑤𝑟
2𝛾

24𝑔𝐿
(ℎ𝑗+1 − ℎ𝑗) +

𝑄𝛾

𝐿
(ℎ𝑗+1 − ℎ𝑗) −

𝑅

𝐿
(ℎ𝑗+1 − ℎ𝑗).            (3.40) 

Now, all the parameters on the right side of both the Eqs. (3.39) and (3.40) are known. 

Hence, it is easy to compute the wave set-up from these equations. 

3.4 Collected Data 

Tables 2.2 and 2.3 in Chapter 2 provide a comprehensive summary of the collected 

datasets, offering concise descriptions of the data for wave height and set-up. The 

datasets are classified into three categories: small-scale, large-scale, and field data, 

covering a range of wave and bottom topography conditions. To validate the accuracy 

and effectiveness of the current model, the datasets were employed during the 

validation process. 

3.5 Results And Validations 

3.5.1 Boundary Conditions 

To properly run the model for a specific situation, two boundary conditions must 

be defined: the seaward boundary and the coastline boundary. The required parameters 

at the seaward boundary include (1) the incident RMS wave height and water depth, (2) 

the beach profile, and (3) the wave period. Additionally, the incident set-down is needed 

for calculating wave set-up. To prevent infinite wave heights, previous calculations at 

the coastline have usually assumed a water depth close to zero. 
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3.5.2 Identification of Wave Breaking and Breaker Types 

Considering an irregular wave propagating over a beach profile, as illustrated in 

Fig. 3.01, the wave energy and RMS wave height diminish as the waves approach the 

shoreline and begin to break. Thus, it is essential to determine the point where wave 

breaking starts. In this context, Thornton and Guza's (1983) recommendation is relevant, 

as follows:  

𝐻𝑟𝑚𝑠,𝑏 = 𝛾ℎ,                                                                                                (3.41) 

where 𝐻𝑟𝑚𝑠,𝑏 is the RMS wave height at the breaking point, h is the water depth and 𝛾 

is an arbitrary constant. 

The breaker types are found in the Battjes, (1974) surf similarity parameter (𝜁𝑏) that 

can be written as follows: 

𝜁𝑏 < 0.4,        for spilling breakers 

0.4 ≤ 𝜁𝑏 < 2.0,     for plunging breakers                    (3.42) 

𝜁𝑏 ≥ 2.0,                  for surging or collapsing breakers          

where 𝜁𝑏 were found from the following equation 

𝜁𝑏 =
𝑡𝑎𝑛𝛼

√
𝐻𝑟𝑚𝑠,𝑏

𝐿0

.                  (3.43) 

In Eq. (3.43), 𝐿0 stands for deep-water wavelength and 𝑡𝑎𝑛𝛼 is the beach slope. 

3.5.3 Comparison of RMS Wave Height and Set-Up with Different 

Experimental Data and Models 

Calculating RMS wave height and wave set-up begins with identifying the 

breaker types using the initial parameters along with Eqs. (3.42) and (3.43). For plane-

sloping beaches, Eq. (3.18) is employed for spilling breakers, and Eq. (3.31) for 

plunging breakers after confirming the breaker types. In the case of irregular sloping 

beaches, Eq. (3.21) is used for spilling breakers, while Eq. (3.34) applies to plunging 

breakers. Finally, wave set-up for both spilling and plunging breakers is calculated 



 

 

63 

 

using equations (3.39) and (3.40), respectively.  The void fraction was set between 0.14 

- 0.16 for spilling breaking waves and 0.17 - 0.18 for plunging breaking waves in the 

computation that was suggested by some investigators (Hoque and Aoki, 2005; Huang 

et al., 2009). For the calculation, the grid size (Δx) was set to be equal length of the 

measured RMS wave height, except Δx is greater than 5m. Also, to compute 𝐻𝑟𝑚𝑠 ad 

𝜂̅; α, and k1 were set to 0.82 and 0.56, respectively, as recommended by Hossain et al., 

(2022). 

(a) (b) 

(c) (d) 

(e) (f) 
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(g) (h) 

Figure 3.03: RMS wave height comparison of the present model with various 

small-scale experimental data sets ((a), (b), and (c) for SK-90; (d) for Hu-90; (e) for 

Su-95; (f), and (g) for GR-99; and (h) for Ti-01) and models (TG-83 and Ro-93), 

including different beaches. 

Results from this model were evaluated against small-scale experimental data from 

various researchers and established models, specifically Ro-93 (Roelvink, 1993) and 

TG-83 (Thornton and Guza, 1983), as shown in Fig. 3.03. The findings indicated that 

the majority of the data and the established models (Ro-93 and TG-83) closely matched 

the current model's results. Notably, the model exhibited strong concordance with 

experimental data, particularly on plane-sloping beaches and on steep slopes near 

narrow-crested bars, aligning with the observations made by Smith and Kraus, (1990) 

and Grasmeijer and Rijn, (1999). However, the model was less effective in accurately 

predicting RMS wave heights in proximity to the shoreline. 

(a) (b) 
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(c) (d) 

(e) (f) 

(g) (h) 

Figure 3.04: RMS wave height comparison of the present model with various 

large-scale experimental data ((a), (b), (c), and (d) for KS-94; (e), and (f) for RR-95; 

and (g), and (h) for DPN-02) and models (TG-83 and Ro-93), including different 

beaches. 
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(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

Figure 3.05: RMS wave height comparison of the present model with various 

Field data ((a), and (b) for TG-86; (c), (d), (e), and (f) for KGR-89; and (g), and (h) 

for SLK-93) and models (TG-83 and Ro-93), including different beaches. 
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The present model was compared with large-scale experimental data from various 

authors and models, such as Ro-93 and TG-83 (see Table 2.2 in Chapter 2), as depicted 

in Fig. 3.04. This analysis shows a strong agreement in calculating RMS wave heights. 

The model performed exceptionally well with the datasets from Kraus and Smith, 

(1994) and Roelvink and Reniers, (1995). Nonetheless, inconsistencies were observed 

in the breaking point when compared to the findings of Dette et al. (1998), which could 

be due to the data being collected during stormy wave environments. 

Fig. 3.05, presents a comparison between the current model and field data sets collected 

from various sources, including models such as Ro-93 and TG-83 (refer to Table 2.2 in 

Chapter 2). The current model shows strong performance with the data from Smith et 

al. (1993) and Kraus et al. (1989). However, some variation is observed near the 

shoreline when analyzing the data from Thornton and Guza, (1986). 

Lastly, Fig. 3.06 illustrates a comparison of wave set-ups, highlighting the overall 

performance of the current model in calculating these values. The model demonstrates 

strong agreement with the experimental data from Stive, (1985) and Battjes and Janssen, 

(1978).  

(a) (b) 

(c) (d) 

Figure 3.06: Wave set-up comparisons of the present model with a variety of 

experimental data ((a), for BJ-78; (b), for St-85; and (c), & (d) for RGS-01). 
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However, some discrepancies are noted at the onset of the breaking point, indicating 

areas for potential improvement in the model's accuracy. In the case of the experimental 

data from Raubenheimer et al. (2001), the model tends to overestimate results slightly. 

Nonetheless, the overall wave set-up results from the current model are comparable to 

those of Hoque et al. (2019). The following section will illustrate the overall 

performance of the model by presenting the normalized RMS error across all cases 

evaluated. 

3.5.4 Error Analysis 

This section quantifies the error using the normalized root mean square error (NRMSE), 

which serves as a general indicator of model performance. According to Jadhav and 

Chen, (2013), the NRMSE can be expressed as follows: 

𝑁𝑅𝑀𝑆𝐸 = √1

𝑛
∑ (

(𝐻𝑟𝑚𝑠)𝑐,𝑗

(𝐻𝑟𝑚𝑠)𝑜,𝑗
− 1)

2
𝑛
𝑗=1 ,              (3.44) 

where n stands for the total number of wave data points, (𝐻𝑟𝑚𝑠)𝑐,𝑗 is the computed 

RMS wave height, and (𝐻𝑟𝑚𝑠)𝑜,𝑗 denotes the observed RMS wave height, respectively. 

The NRMSE values for the current model are summarized in Tables 3.1 and 3.2, which 

correspond to RMS wave height and wave set-up, respectively. For the prediction of 

Hrms, the average NRMSE for small-scale experimental data is 11.49%, slightly 

exceeding the 7.09% observed for large-scale experimental data. This difference 

indicates that the current model is influenced by a minor scale influence.  

Table 3.1: A summary of NRMSE for the RMS wave height. 

Data 

sources 

NRMSE of Present 

model, TG-83, & Ro-

93 (%) 

Data 

Types 

Avr. NRMSE of 

Present model, TG-

83, & Ro-93 

(scale %) 

Avr. NRMSE 

of Present 

model, TG-83, 

& Ro-93 (%) 

Ti-01 19.25, 20.72 & 21.93 SS 

11.49, 12.09 & 13.24 
9.49, 10.28, & 

11.21 

GR-99 5.53, 5.89 & 6.21 SS 

Su-95 12.84, 13.27 & 15.96 SS 

SK-90 11.02, 11.52 & 12.93 SS 

Hu-90 15.76, 16.41 & 16.86 SS 

DPN-02 5.96, 6.31 & 6.98 LS 
7.09, 7.41 & 7.97 

RR-95 13.48, 13.73 & 14.91 LS 
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Increasing the number of data points from small-scale experiments could help reduce 

the error. In contrast, the model shows reasonable performance with an average 

NRMSE of 9.90% for field data. The present model achieves an average NRMSE of 

9.49%, which is an improvement over the average NRMSEs of other models, such as 

Ro-93 and TG-83, which are 10.28% and 11.21%, respectively. Regarding wave set-

up, the current model's NRMSE of 13.37% suggests that it slightly underestimates the 

values compared to Hrms. 

Table 3.2: A summary of NRMSE for wave set-up. 

Data Sources NRMSE (%) Data Type Average NRMSE (%) 

RGS-01 17.21 FE 

13.37 St-85 9.26 SS 

BJ-78 9.82 SS 

Fig. 3.07, the model is judged to three key types of collected data sets and other 

established models for RMS wave height (Fig. 3.07(i)) and wave set-up (Fig. 3.07(ii)), 

which reveal that the whole model performance is very good for predicting RMS wave 

height and good for predicting wave set-up (Rattanapitikon, 2008). 

                    (i)                     (ii) 

Figure 3.07: NRMSE variation of the present model with various experimental 

data sets and models: (i) RMS wave height, and (ii) Wave set-up. 

 

KS-94 4.47,  4.79  &  4.99 LS 

SLK-93 12.86. 14.86 & 16.28 FE  

9.90, 11.34 & 12.41 

 

KGR-89 8.58, 9.87 & 10.74 FE 

TG-86 9.61, 10.76 & 11.89 FE 
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3.6 Conclusions 

This chapter presents a novel energy dissipation model for spilling and plunging 

breaking waves, which is utilized to calculate RMS wave height and wave set-up 

through the energy balance equation and momentum flux conservation law. The model 

builds upon the air bubbles model for regular breaking waves proposed by Hoque et al. 

(2019) and incorporates the concepts of breaking wave fractions introduced by 

Thornton and Guza, (1983). To identify breaking waves and classify breaker types, the 

modified Miche, (1944) breaking criterion and Battjes, (1974) surf similarity parameter 

are employed. The model's validity is demonstrated through various wave and bottom 

geography configurations, alongside small-scale, large-scale, and field experimental 

data from multiple authors and established models, including Ro-93 and TG-83. In most 

cases, the computed RMS wave heights closely matched experimental data, performing 

better than the Ro-93 and TG-83 models, although some discrepancies were noted near 

the shoreline. The model effectively computes wave set-up, with notable performance 

except near the breaking point. It was found that void fractions of 17% to 18% for 

plunging breakers and 14% to 16% for spilling breakers contribute to wave energy 

dissipation in irregular waves, aligning closely with the findings of Hoque and Aoki, 

(2005). The average NRMSE for calculating RMS wave height with this model is 

9.49%, outperforming the TG-83 model at 10.28% and the Ro-93 model at 11.21%, 

indicating a strong correlation with experimental data. Additionally, the average 

NRMSE for wave set-up is 13.37%, suggesting that the model is effective for predicting 

wave set-up. Despite some inconsistencies near the coastline, the model demonstrates 

robust capabilities in simulating RMS wave height and set-up across a wide range of 

wave conditions and coastal profiles due to the effects of shoaling and wave breaking. 
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CHAPTER 4 

Estimation of Air-Bubble-Induced Wave Height and Set-up 

using Representative Wave Approach  

4.1 Abstract 

This study has explored the potential of modeling wave height and set-up in the 

surf zone using the representative wave method influenced by air bubbles in irregular 

waves. Two existing wave-breaking models, incorporating air bubble effects, have been 

adapted and modified to develop new models for irregular wave-breaking. These 

models have been designed to calculate root mean square (RMS) wave height and wave 

set-up based on energy flux and momentum conservation laws. Model I has been solved 

analytically for plane-sloped beaches and numerically for irregularly sloped beaches, 

addressing spilling and plunging breakers separately. Model II has been solved 

numerically for both slope types and breaking conditions. The modified models have 

been calibrated and validated using extensive experimental data from large-scale, 

small-scale, and field experiments. Results have indicated that the modified models are 

highly accurate in computing wave heights and set-ups, with Model I outperforming 

Model II in terms of accuracy for RMS wave height and set-up calculations in irregular 

waves. 

4.2 Introduction 

Precise information on wave behavior in the surf zone is essential for many 

coastal engineering tasks, such as designing coastal structures and analyzing beach 

changes. In shallow water regions, waves break due to the bottom slope, causing many 

air bubbles to enter the water near the breaking point, as depicted in Fig. 4.01. This 

makes the interaction between air bubbles and the flow fields of broken waves more 

complex. Additionally, energy from this location is converted into turbulence and heat, 

reducing the wave height as waves approach the shore. Accurate measurements of 

sediment transport capacity, wave set-up, wave run-up, sound generation, and 
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overtopping are crucial for effective coastal management, necessitating a focus on the 

wave-breaking region. 

 

 

 

 

 

 

 

Figure 4.01: A picture of a real ocean wave with air bubbles 

Recent research and experimentation have extensively focused on improving energy 

dissipation models. Given the complexity of wave breaking, researchers have 

developed models grounded in three main concepts: the bore model, the stable energy 

model, and the entrainment of air bubbles model to calculate wave energy. 

Earlier, numerous scholars (Koga 1982; Lamarre and Melville 1991; Cox and Shin 

2003; Mori, Suzuki, and Kakuno 2007; Hoque et al. 2021; Wu 1988; Blenkinsopp and 

Chaplin 2011; Hossain, Rahman, and Hoque 2022; Shi, Wüthrich, and Chanson 2023; 

Horikawa and Kuo 1966; Hoque 2002; Hoque and Aoki 2014; Hoque et al. 2019) have 

investigated the occurrence of air bubbles enhancing attuned in breaking waves and the 

various effects (containing gas interactions, the transfer of wave energy, the carriage of 

sediment, and the creation of sound) in the surf zone. Additionally, Hoque, (2002) 

developed an energy dissipation model that accounts for the influence of air bubbles, 

proposing that the void fraction changes rapidly and significantly with variations in 

water depth within the surf zone, following an exponential pattern. In a subsequent 

study, Hoque and Aoki, (2014) explored the effects of air bubbles on plunging breaking 

waves and introduced a model to calculate wave height and set-up in the surf zone. 

Similarly, Hoque et al. (2019) presented a model that incorporates the impact of air 

bubbles, based on the idea that the void fraction—the proportion of the water column 
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occupied by air bubbles—experiences significant and rapid changes with fluctuations 

in water depth, following a linear trend. Further investigations by Hoque et al. (2021) 

examined the roles of air bubbles, turbulence, and bottom friction, leading to the 

proposal of an energy dissipation model aimed at accurately calculating wave height 

and set-up. 

While these models addressed the effects of air bubbles in the surf zone, they were 

primarily designed for regular breaking waves. It is well established that wave breaking 

in irregular waves is more complex than in regular waves, and distinct breakpoints for 

irregular waves are often not identified. Additionally, irregular waves distribute energy 

over a much broader area compared to regular waves. As a result, the interaction of 

irregular waves in shallow water, along with the entrainment of air, presents a 

significant and intriguing phenomenon. This raises the question: how can we develop 

an energy dissipation model for irregular breaking waves that take into account the 

effects of air bubbles? 

In the quest to develop an energy dissipation model for wave breakers in irregular 

waves, researchers have identified four main approaches: representative, spectral, 

probabilistic, and parametric. Each of these methods provides a unique perspective on 

modeling the complex dynamics of wave breaking in irregular conditions and can 

contribute to a deeper understanding of wave behavior in the surf zone. Among the 

above-mentioned approaches, the representative wave method uses regular wave 

formulas to analyze irregular waves, utilizing specific representative wave parameters 

for this analysis (e.g., Hrms, Hs, and Hm0). This approach offers advantages due to its 

simplicity and straightforwardness, as it does not necessitate any assumptions about the 

probability density function (PDF) of wave heights. Energy dissipation in irregular 

wave trains occurs over a much larger area compared to regular waves since the tallest 

waves in irregular trains often break at greater distances from the shore. This difference 

can lead to inaccuracies in surf zone predictions when using regular wave models 

(Rattanapitikon and Shibayama, 1998). However, recent research has demonstrated that 

the representative wave approach can effectively calculate the transformation of RMS 

wave height by integrating an appropriate coefficient into an energy dissipation model 

(Nuntakamol and Rattanapitikon, 2011; Rattanapitikon, 2008; Rattanapitikon et al., 

2003). 
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While some models have been developed to assess wave height and set-up in shallow 

water using air entrainment phenomena, none have specifically addressed irregular 

waves through the representative wave approach. This study seeks to address this gap 

by creating a suitable energy dissipation model that accounts for the effects of air 

bubbles on wave breakers in irregular waves, allowing for accurate calculations of RMS 

wave height and set-up using this method. 

4.3 Mathematical Formulation 

The governing equation for this study is the energy balance equation, formulated for 

the average energy flux in a one-dimensional context within an irregular wave train, as 

follows (Rattanapitikon 2008): 

𝜕(𝐸𝑐𝑔𝑝̅̅ ̅̅ ̅̅ ̅)

𝜕𝑥
= −𝐷,̅                   (4.01) 

where 𝐸 is the energy, 𝑐𝑔𝑝 is the group velocity, 𝐸𝑐𝑔𝑝
̅̅ ̅̅ ̅̅  is the average of 𝐸𝑐𝑔𝑝, x is the 

horizontal distance toward the coastline and 𝐷̅  represents the average energy 

dissipation of the wave train. 

In general, the average energy flux of an irregular wave train can be represented within 

the framework of linear wave theory as follows (Rattanapitikon 2008): 

𝐸𝑐𝑔𝑝
̅̅ ̅̅ ̅̅  =

∑ (𝐸𝑗𝑐𝑔𝑝,𝑗)𝑛
𝑗=1

𝑛
=

𝜌𝑤𝑔

8

∑ 𝐻𝑗
2𝑐𝑔𝑝,𝑗

𝑛
𝑗=1

𝑛
,              (4.02) 

where 𝜌𝑤  is the density of water, 𝑔  is the gravitational acceleration, Hj is the jth 

individual wave height, 𝑐𝑔𝑝,𝑗 remains jth individual group velocity, and n is the total 

waves in the wave train. 

For simplification, the analysis assumes wave heights follow a Rayleigh distribution, 

suggesting that the waves are narrow-band in frequency. This leads to each wave having 

a nearly identical period and group velocity. Consequently, Eq. (4.02) can be rewritten 

as follows: 

𝐸𝑐𝑔𝑝
̅̅ ̅̅ ̅̅ =

𝜌𝑤𝑔𝑐𝑔𝑝

8

∑ 𝐻𝑗
2𝑛

𝑗=1

𝑛
.                (4.03) 
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It is well known that  √
∑ 𝐻𝑗

2𝑛
𝑗=1

𝑛
= 𝐻𝑟𝑚𝑠; thus, Eq. (4.03) can be converted into: 

𝐸𝑐𝑔𝑝
̅̅ ̅̅ ̅̅ =

𝜌𝑤𝑔𝑐𝑔𝑝

8
𝐻𝑟𝑚𝑠

2 .                 (4.04) 

Now, Eq. (4.01) can be written as follows: 

𝜌𝑤𝑔

8

𝜕(𝐻𝑟𝑚𝑠
2 𝑐𝑔𝑝)

𝜕𝑥
= −𝐷.̅                      (4.05) 

By substituting the formula for energy dissipation 𝐷̅ and solving from the seaward 

boundary to the coastline, the changes in RMS wave height can be determined using 

the conservation equation (Eq. (4.05)). The main challenge lies in calculating the value 

of 𝐷̅ for breakers in irregular waves. To address this, two regular wave models of air 

bubbles are reviewed in the following section.  

4.3.1 Review of Existing Regular Wave Air Bubble Models 

4.3.1.1 Hoque et al., (2019) model 

The model for energy dissipation relies on the idea that introducing air 

entrainment into a system raises the potential energy, ∆𝑃𝐸. This increase in potential 

energy demands that the flow provide an equivalent amount of work, which is then 

dissipated within the flow field. It is assumed in the model that the distribution of air 

bubbles varies linearly with water depth, mathematically 𝑐(𝑧) = 𝑐0 (
𝑦+𝑧

𝑦
), where c(z) 

is the fraction of the air volume per unit width, and z, y, 𝑐0 resemble the vertical distance, 

penetration depth, and reference void fraction at 𝑧 = 0, correspondingly (depicted in 

Fig. 4.02). 

Applying this hypothesis, the model calculates the energy dissipation rate, 𝐷𝑎𝑖𝑟 that can 

be written as follows: 

𝐷𝑎𝑖𝑟 =
∆𝑃𝐸

𝑡𝑟
𝛼,                 (4.06) 

where 𝛼  represents a free parameter that incorporates factors such as turbulence 

dissipation, bottom friction, and other mechanisms that contribute to wave energy 

dissipation, ∆𝑃𝐸 =
𝑔𝜌𝑤𝑐0𝑦2

6
  represents the potential energy, 𝜌𝑤 is the density of water, 
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𝑔 represents the gravitational acceleration and  𝑡𝑟 is the average air bubble releasing 

time, 𝑡𝑟 =
ℎ𝐺

𝑤𝑟
 . Here, 𝑤𝑟 is the bubble rising velocity whose value is 0.25ms-1 (Chanson 

1997) and ℎ𝐺  is the depth of centre of gravity of  air bubbles distribution that can be 

expressd as: ℎ𝐺 = −
∫ 𝑧𝑐(𝑧)𝑑𝑧

∆ℎ
−𝑦

∫ 𝑐(𝑧)𝑑𝑧
∆ℎ

−𝑦

, implies as follows: 

ℎ𝐺 =
𝑦(1−𝑐0)

3
,                 (4.07) 

where ∆ℎ = ∫ 𝑐(𝑧
0

−𝑦
)𝑑𝑧 + ∫ 𝑐(𝑧

∆ℎ

0
)𝑑𝑧 =

𝑦𝑐0

2(1−𝑐0)
 is the air bubble-induced water level 

rise above the still water depth (see Fig. 4.02). 

 

  

 

 

 

 

 

Figure 4.02: A visual representation of breaking wave propagation with 

entrainment of air bubbles for the Hoque et al., (2019) model. 

Finally, upon adding the value of the above parameter, the following equation was 

obtained: 

𝐷𝑎𝑖𝑟 = 𝑔𝑤𝑟𝛼𝜌𝑤
𝑦𝑐0

2(1−𝑐0)
.                (4.08) 

This is identified as the air bubble model. 

 



 

 

77 

 

4.3.1.2 Hoque, (2002) model 

This model is also grounded in thermodynamic principles. It posits that the 

distribution of entrained air bubbles in water follows an exponential variation with 

respect to water depth, as expressed mathematically by the following equation: 

𝑐(𝑧) = 𝑐0𝑒𝑘0𝑧 ,                (4.09) 

where c(z) is the fraction of the air volume per unit width and 𝑘0, 𝑧, 𝑐0 resemble to the 

decay parameter exemplifying the vertical distribution of air bubbles, vertical distance 

positive upward direction, and reference void fraction at 𝑧 = 0 , correspondingly 

(depicted in Fig. 4.03). 

 

 

 

 

 

 

 

Figure 4.03: Definition sketch of breaking wave propagation with air bubble 

entrainment for the Hoque, (2002) model. 

Given the above assumption, the increase in potential energy can be calculated as 

follows: 

∆𝑃𝐸 = 𝑉𝑎𝜌𝑤𝑔ℎ𝐺 ,                (4.10)  

where 𝜌𝑤, 𝑔, ℎ𝐺  describes in the previous section, and 𝑉𝑎 =
𝑐0

𝑘0

1−𝑒−(𝑘0ℎ)

1−𝑐0𝑒−(𝑘0ℎ) is the volume 

per unit area of attuned air. 
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Since the entrained air bubbles, which rise due to buoyancy, quickly pass through the 

water's surface and are released into the air, the potential energy dissipation rate, 𝐷𝑎𝑖𝑟, 

is proportional to the rate at which the air bubbles rise, 𝑡𝑟. This relationship is expressed 

as: 

𝐷𝑎𝑖𝑟 =
∆𝑃𝐸

𝑡𝑟
𝛼 = 𝑉𝑎𝑤𝑟𝛼𝜌𝑤𝑔,               (4.11) 

where 𝑉𝑎, 𝑤𝑟 , 𝛼, 𝜌𝑤 , 𝑔 are now known parameters.  

4.3.2 Modified Air-Bubble-Induced Models for Irregular Waves 

This section details the application of the representative wave approach to adjust 

models for irregular waves. By using this method, the regular wave model is adapted 

for irregular waves through the representative wave height. Consequently, using this 

approach, the air bubble model for irregular waves can be formulated (based on Eqs. 

(4.05), (4.08), and (4.11)) as follows: 

Model I  

a) 
1

8
𝜌𝑤𝑔

𝜕(𝐻𝑟𝑚𝑠
2 𝑐𝑔𝑝)

𝜕𝑥
= −𝐾1𝜌𝑤𝑔𝑤𝑟

𝑐0

2(1−𝑐0)
𝐻𝑟𝑚𝑠,     (for spilling breakers)     (4.12) 

b) 
1

8
𝜌𝑤𝑔

𝜕(𝐻𝑟𝑚𝑠
2 𝑐𝑔𝑝)

𝜕𝑥
= −𝐾2𝜌𝑤𝑔𝑤𝑟

𝑐0

2(1−𝑐0)
𝛾ℎ,       (for plunging breakers)     (4.13) 

where 𝐾1 and 𝐾2  are the new unknown coefficients. 

Führboter, (1970) conditions have been employed in the above equations, so that the 

depth of aeration, y can be expressed as 𝑦 ∝ 𝐻(𝑥)  and, 𝑦 ∝ 𝐻𝑏 , for spilling and 

plunging breaking waves, respectively. Here, 𝐻𝑏 = ℎ𝛾 is the individual breaking wave 

height(Thornton and Guza, 1983). 

Model II  

Given the same phenomenon, Hoque's model has been modified in the following 

manner: 

1

8
𝜌𝑤𝑔

𝜕(𝐻𝑟𝑚𝑠
2 𝑐𝑔𝑝)

𝜕𝑥
= −𝐾3𝜌𝑤𝑔𝑤𝑟

𝑐0

𝑘0

1−𝑒−(𝑘0ℎ)

1−𝑐0𝑒−(𝑘0ℎ) ,            (4.14) 
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where 𝐾3 is the new undetermined coefficient. 

4.3.3 Modified Models Solution for the Wave Height 

Model I 

This section presents the solution for Model I, which addresses spilling and 

plunging breakers, applied to two distinct bathymetries: a plane-sloping beach profile 

and an irregular beach profile. 

4.3.3.1 Uniform plane sloping beach 

For deriving the analytical solutions of the modified models, the study focuses 

on wave transmission in shallow water along a constant plane-sloping beach. Here, the 

water depth is expressed as ℎ = 𝑥𝑡𝑎𝑛𝜃, where 𝜃 is the slope of the beach.  

Spilling breaking  

Eq. (4.12) is reformulated for the case of spilling breakers condition as follows: 

1

8
𝜌𝑤𝑔

𝑑

𝑑𝑥
(𝐻𝑟𝑚𝑠

2 √𝑔ℎ) = −𝐾1𝜌𝑤𝑔𝑤𝑟
𝑐0

2(1−𝑐0)
𝐻𝑟𝑚𝑠,             (4.15) 

where 𝑐𝑔𝑝 = √𝑔ℎ. 

Simplification yields: 

𝑑

𝑑𝑥
(𝐻𝑟𝑚𝑠

2 √ℎ) = −𝐴𝐻𝑟𝑚𝑠,                (4.16) 

where 𝐴 = 4𝐾1𝑤𝑟
𝑐0

√𝑔(1−𝑐0)
. 

Letting 𝑌 = 𝐻𝑟𝑚𝑠
2 √ℎ and  ℎ = 𝑥𝑡𝑎𝑛𝜃 into Eq. (4.16), that yields: 

𝑑𝑌

𝑑ℎ
=

𝐴

𝑡𝑎𝑛𝜃

𝑌
1

2⁄

ℎ
1

4⁄
.                                                                               (4.17) 

Integrating the above Eq. (4.17), it gives: 

𝑌(1
2⁄ ) =  𝑎ℎ(3

4⁄ ) + 𝑐𝑜𝑛𝑠𝑡.,                             (4.18) 
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where 𝑎 =
2𝐴

3𝑡𝑎𝑛𝜃
. 

To obtain the analytical solution, consider the shallow water boundary condition which 

can be composed as follows: 

𝑌 = 𝑌0 = 𝐻0
2√ℎ0,   at  ℎ0 ≤

𝐿

20
.             (4.19) 

Therefore Eq. (4.18), yields: 

𝑌 = 𝑎2 (ℎ
3

4 − ℎ0

3

4 +
√𝑌0

𝑎
)

2

,                (4.20) 

From the previously stated equation, the following equation is derived after simplifying 

it and working backward in terms of 𝐻𝑟𝑚𝑠: 

𝐻𝑟𝑚𝑠 = 𝑎√ℎ (1 − {
ℎ0

ℎ
}

3

4
+

√𝑌0

𝑎ℎ
3
4

).               (4.21) 

When the depth is very shallow, then Eq. (4.21) yields: 

𝐻𝑟𝑚𝑠 ≅ 𝑎√ℎ,  as ℎ → 0.               (4.22) 

This implies that the RMS wave height is related to the water depth. This result aligns 

with the findings of Thornton and Guza (1983), which confirmed that the RMS wave 

height within the shore correlates with the water depth. 

Plunging breaking  

Similarly, Eq. (4.13) yields the following for plunging breakers: 

1

8
𝜌𝑤𝑔

𝑑

𝑑𝑥
(𝐻𝑟𝑚𝑠

2 √𝑔ℎ) = −𝐾2𝜌𝑤𝑔𝑤𝑟
𝑐0

2(1−𝑐0)
𝛾ℎ,                        (4.23)  

where 𝑐𝑔𝑝 = √𝑔ℎ. 

Eq. (4.23) can be reorganized and transformed into: 

𝑑

𝑑𝑥
(𝐻𝑟𝑚𝑠

2 √ℎ) = −𝐵ℎ,                            (4.24) 
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where 𝐵 = 4𝐾2𝑤𝑟
𝑐0𝛾

√𝑔(1−𝑐0)
. 

Supposing 𝑌 = 𝐻𝑟𝑚𝑠
2 √ℎ and  ℎ = 𝑥𝑡𝑎𝑛𝜃 into Eq. (4.24), which produces: 

𝑑𝑌

𝑑ℎ
=

𝐵

𝑡𝑎𝑛𝜃
ℎ.                                                                               (4.25) 

Integrating Eq. (4.25), which provides: 

𝑌 = 𝑏ℎ2 + 𝑐𝑜𝑛𝑠𝑡.,                              (4.26) 

where 𝑏 =
𝐵

2𝑡𝑎𝑛𝜃
. 

Similarly, the following boundary condition can be applied: 

𝑌 = 𝑌0 = 𝐻0
2√ℎ0,   at  ℎ0 ≤

𝐿

20
.             (4.27) 

Therefore, Eq. (4.26) yields the following: 

𝑌 = 𝑏ℎ2 + 𝑌0 − 𝑏ℎ0
2.                            (4.28) 

Simplified in terms of 𝐻𝑟𝑚𝑠, gives: 

𝐻𝑟𝑚𝑠 = √𝑏ℎ
3

4 (1 − {
ℎ0

ℎ
}

2

+
𝑌0

𝑏ℎ2
)

1

2

.               (4.29) 

For very shallow water, Eq. (4.29) provides: 

𝐻𝑟𝑚𝑠 ≅ √𝑏ℎ
3

4,  as ℎ → 0.              (4.30) 

This indicates that the RMS wave height is related to the water depth, incorporating the 

effects of air bubbles within the inner surf zone. This conclusion is also consistent with 

Thornton and Guza's (1983) observations. 

4.3.3.2 Irregular beach profile 

Finding an analytical solution for irregular beach profiles is challenging for the 

models discussed. Therefore, a numerical approach, specifically the forward finite 
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difference scheme, is employed to find the solution of these models (see Fig. 3.02 in 

Chapter 3).  

Model I (spilling breakers) 

Applying a similar approach as outlined in Section 4.3.3.2 of Chapter 3 results 

in: 

(𝐻𝑟𝑚𝑠
2 √ℎ)

𝑖+1
−(𝐻𝑟𝑚𝑠

2 √ℎ)
𝑖

∆𝑥
= −𝐴𝐻𝑟𝑚𝑠,𝑖.              (4.31) 

Eq. (4.31) can be simplified into: 

(𝐻𝑟𝑚𝑠)𝑖+1 = √
(𝐻𝑟𝑚𝑠

2 √ℎ)
𝑖
−𝐴∆𝑥𝐻𝑟𝑚𝑠,𝑖

(√ℎ)
𝑖+1

 .              (4.32) 

Model I (plunging breakers) 

Similarly for Eq. (4.13), that yields: 

(𝐻𝑟𝑚𝑠
2 √ℎ)

𝑗+1
−(𝐻𝑟𝑚𝑠

2 √ℎ)
𝑗

∆𝑥
= −𝐵ℎ𝑗 .               (4.33) 

Reshuffling Eq. (4.33), it supplies: 

(𝐻𝑟𝑚𝑠)𝑗+1 = √
(𝐻𝑟𝑚𝑠

2 √ℎ)
𝑗
−𝐵∆𝑥ℎ𝑗

(√ℎ)
𝑗+1

 .              (4.34) 

Model II (for both breakers) 

Due to the presence of multiple nonlinear terms in Model II, finding an analytical 

solution for various beach profiles and breaker types (plane-sloping bathymetry and 

irregular-sloping bathymetry) proves to be highly challenging. Therefore, by applying 

the same approach to Eq. (4.14), the following equation is obtained: 

(𝐻𝑟𝑚𝑠
2 √ℎ)

𝑘+1
−(𝐻𝑟𝑚𝑠

2 √ℎ)
𝑘

∆𝑥
= −𝐶 {

1−𝑒−(𝑘0ℎ)𝑘

1−𝑐0𝑒−(𝑘0ℎ)𝑘
},              (4.35) 

where  𝐶 = 8𝐾3𝑤𝑟
𝑐0

𝑘0√𝑔
. 
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After rearranging Eq. (4.35), it gives: 

(𝐻𝑟𝑚𝑠)𝑘+1 = √
(𝐻𝑟𝑚𝑠

2 √ℎ)
𝑘

−𝐶∆𝑥{
1−𝑒−(𝑘0ℎ)𝑘

1−𝑐0𝑒−(𝑘0ℎ)𝑘
}

(√ℎ)
𝑘+1

.                        (4.36) 

Thus, with all variables on the right-hand sides of Eq. (4.32), Eq. (4.34), and Eq. (4.36) 

being known these equations can be utilized to compute the RMS wave height. 

4.3.4 Review of Existing Air-Bubble-Induced Momentum Equations 

4.3.4.1 Hoque et al., (2019) momentum equation 

To analyze momentum conservation in a water column with a sloping bed and a 

free surface, it is important to balance the hydrostatic pressure forces with the radiation 

stress gradient. When incorporating the effects of air bubbles (𝜂̅/), the forces acting on 

a plane at x = x0 + dx must be assessed. This assessment includes contributions from 

both hydrostatic pressure and radiation stress. The momentum flux Ix at the location of  

x = x0 considering the influence of air bubbles, is given by (see Fig. 4.02): 

𝐼𝑥 = ∫ 𝑔𝜌𝑤(𝜂̅/ − 𝑧)𝑑𝑧
−𝑦

−ℎ
+ ∫ 𝑔𝜌𝑤(𝜂̅/ − 𝑧)𝑑𝑧

0

−𝑦
+ ∫ 𝑔𝜌𝑤(𝜂̅/ − 𝑧)𝑑𝑧

∆ℎ

0
+

∫ 𝑔𝜌𝑤(𝜂̅/ − 𝑧)𝑑𝑧
𝜂̅/

∆ℎ
+ 𝑆𝑥𝑥

́ .                (4.37) 

Simplification yields the following: 

𝐼𝑥 = {ℎ2 + 2ℎ𝜂̅/ −
𝑐0

3
(𝑦2 + 3𝑦𝜂̅/) + (1 − 𝑐0)𝜂̅/2

}
𝑔𝜌𝑤

2
+ 𝑆𝑥𝑥,́            (4.38) 

where  𝑆𝑥𝑥
́ =

1

8
𝜌𝑤𝑔𝐻2 {

3

2
− (

2𝑐0
2−𝑐0

2−2𝑐0
)} + 𝑦𝑐0

2𝑤𝑟
2𝜌𝑤 (

4−3𝑐0

12
)   represents the radiation 

stress caused by the air bubbles effect, and 𝜌𝑤, 𝑔, 𝑦, ℎ are described in section 4.2.1.1. 

Owing to the nonhorizontal nature of the bottom (depicted in Fig. 4.02), an external 

force is exerted as a result of bottom friction. This force includes a horizontal 

component, which can be characterized as follows: 

𝐼𝑏 = {(ℎ + 𝜂̅/)
𝑑ℎ

𝑑𝑥
𝑑𝑥 − (

𝑦𝑐0

2
+ 𝑐0𝜂̅/)

𝑑ℎ

𝑑𝑥
𝑑𝑥} 𝑔𝜌𝑤.            (4.39) 
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When waves move closer to the shore and break, the momentum flux towards the shore 

decreases, which leads to compensating forces acting on the water column. A set of 

waves that hit the coast directly may be considered, with the assumption that they are 

perpendicular to the shoreline. Within a short distance dx, the balance of forces can be 

defined as follows: 

𝐼1 = 𝐼2 − 𝐼𝑏 which implies 𝐼𝑥 = (𝐼𝑥 +
𝑑𝐼𝑥

𝑑𝑥
𝑑𝑥) − 𝐼𝑏 .            (4.40) 

Using Taylor series expansion, and calculate I at the centre, while Ib represents the 

reaction force of the bottom in the direction of x and utilising Eq. (4.38), (4.39), and 

(4.40), the following momentum equation is obtained: 

𝑑𝜂̅/

𝑑𝑥
= −

1

𝜌𝑤𝑔{(ℎ+𝜂̅/)−𝑐0𝜂̅/−
𝑐0𝑦

2
}

𝑑𝑆𝑥𝑥́

𝑑𝑥
+

(
𝑐0𝜂̅/

2
+

𝑐0𝑦

3
)

{(ℎ+𝜂̅/)−𝑐0𝜂̅/−
𝑐0𝑦

2
}

𝑑𝑦

𝑑𝑥
−

(𝑐0𝜂̅/+
𝑐0𝑦

2
)

{(ℎ+𝜂̅/)−𝑐0𝜂̅/−
𝑐0𝑦

2
}

𝑑ℎ

𝑑𝑥
.     (4.41) 

To simplify the above equation, let 𝑀 = {(ℎ + 𝜂̅/) − 𝑐0𝜂̅/ −
𝑐0𝑦

2
} , 𝑁 = (

𝑐0𝜂̅/

2
+

𝑐0𝑦

3
)  

and 𝑃 = (𝑐0𝜂̅/ +
𝑐0𝑦

2
), that implies: 

𝑑𝜂̅/

𝑑𝑥
= −

1

𝜌𝑤𝑔𝑀

𝑑𝑆𝑥𝑥́

𝑑𝑥
+

𝑁

𝑀

𝑑𝑦

𝑑𝑥
−

𝑃

𝑀

𝑑ℎ

𝑑𝑥
.               (4.42) 

This is the modified momentum equation owing to the effect of the air bubble. 

4.3.4.2 Hoque, (2002) momentum equation 

In this study, the author assumed that the increase in level results from flow 

bulking induced by air bubbles, which may improve the wave set-up in the surf zone. 

Therefore, it is important to note that the actual wave set-up, 𝜂̅/, should include the rise 

in the water level caused by entrained air bubbles. The expression for the actual wave 

set-up, 𝜂̅/, can be written as follows: 

𝜂̅/ = 𝜂̅ + ∆ℎ,                  (4.43) 

where 𝜂̅/ is the wave set-up entrained by the air bubbles, ∆ℎ is the water level rise due 

to entrained air bubbles whose value can be written as ∆ℎ = ∫ 𝑐(𝑧)𝑑𝑧
0

−ℎ−∆ℎ
 which 

implies  ∆ℎ =
𝑐0

𝑘0

1−𝑒−(𝑘0ℎ)

1−𝑐0𝑒−(𝑘0ℎ)  and  𝜂̅ is the elevation of the mean water level (see Fig. 
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4.03) that is derived from the modified momentum balance equation, which is written 

as follows:  

 
𝑑𝜂̅

𝑑𝑥
= −

1

𝑔𝜌𝑤(ℎ+𝜂̅)

𝑑𝑆𝑥𝑥

′′

𝑑𝑥
,               (4.44) 

where 𝑆𝑥𝑥

′′
 is the radiation stress entrained by the air bubbles effect, and the value of 

this is as follows: 

2𝐸𝑘

𝑠𝑖𝑛ℎ2𝑘ℎ
∫ (1 − 𝐶0𝑒𝑘0𝑧) [𝑐𝑜𝑠ℎ2𝑘(ℎ + 𝑧) − {𝑠𝑖𝑛ℎ𝑘(ℎ + 𝑧) +

0

−ℎ−∆h

𝐶0

(1−𝐶0𝑒𝑘0𝑧)(𝑘2−𝑘0
2)

[𝑒𝑘0𝑧(𝑘𝑘0𝑐𝑜𝑠ℎ𝑘(ℎ + 𝑧) − 𝑘0
2𝑠𝑖𝑛ℎ𝑘(ℎ + 𝑧)) − 𝑘𝑘0𝑒𝑘0ℎ]}] 𝑑𝑧 +

𝜌𝑤𝑔𝐻2

16
+ 𝜌𝑤𝑔ℎ∆h,  

where k represents the wave number that is derived from the dispersion relation of the 

linear wave theory. 

4.3.5 Modified Air-Bubble-Induced Momentum Equation for Irregular Waves 

This section focuses on modifying models for irregular waves using the 

representative wave approach. The approach involves directly utilising the regular 

wave model for irregular waves by incorporating the representative wave height (Hrms). 

Model I  

Before using the representative wave approach, it is necessary to classify wave 

breakers into different types. The classification of wave breakers is important because 

it can impact the characteristics of wave loads acting on structures in the surf zone. 

Therefore, understanding the different types of wave breakers is essential for 

developing models of wave loads on coastal structures. The two main types of wave 

breakers are spilling and plunging breakers, which are distinguished based on how they 

break.  

Therefore, the Führboter, (1970) conditions have been employed, so that the penetration 

depth y is expressed as: 𝑦 ∝ 𝐻(𝑥) = 𝑐1 ∗ 𝐻(𝑥) and, 𝑦 ∝ 𝐻𝑏 = ℎ𝛾 , for spilling and 

plunging breaking waves, respectively.  
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Therefore, Eq. (4.41) is reformulated for the spilling breaking waves as follows: 

𝑑𝜂̅/

𝑑𝑥
= −

1

𝜌𝑤𝑔{(ℎ+𝜂̅/)−𝑐0𝜂̅/−
𝑐0𝑐1𝐻

2
}

𝑑𝑆𝑥𝑥́

𝑑𝑥
+

(
𝑐0𝜂̅/

2
+

𝑐1𝑐0𝐻

3
)

{(ℎ+𝜂̅/)−𝑐0𝜂̅/−
𝑐0𝑐1𝐻

2
}

𝑑(𝑐1𝐻)

𝑑𝑥
−

(𝑐0𝜂̅/+
𝑐0𝑐1𝐻

2
)

{(ℎ+𝜂̅/)−𝑐0𝜂̅/−
𝑐0𝑐1𝐻

2
}

𝑑ℎ

𝑑𝑥
,                 (4.45) 

and plunging breaking waves as follows: 

𝑑𝜂̅/

𝑑𝑥
= −

1

𝜌𝑤𝑔{(ℎ+𝜂̅/)−𝑐0𝜂̅/−
𝑐0ℎ𝛾

2
}

𝑑𝑆𝑥𝑥́

𝑑𝑥
+

(
𝑐0𝜂̅/

2
+

ℎ𝛾𝑐0
3

)

{(ℎ+𝜂̅/)−𝑐0𝜂̅/−
𝑐0ℎ𝛾

2
}

𝑑(ℎ𝛾)

𝑑𝑥
−

(𝑐0𝜂̅/+
𝑐0ℎ𝛾

2
)

{(ℎ+𝜂̅/)−𝑐0𝜂̅/−
𝑐0ℎ𝛾

2
}

𝑑ℎ

𝑑𝑥
.          

        (4.46) 

Now, applying the ‘representative wave approach’ by incorporating the representative 

wave height (Hrms), Eqs. (4.45) and (4.46) can be rewritten as 

𝑑𝜂̅/

𝑑𝑥
= −

1

𝜌𝑤𝑔𝐿

𝑑𝑆𝑥𝑥𝑠́

𝑑𝑥
+

𝑄

𝐿
𝐾1

𝑑𝐻𝑟𝑚𝑠

𝑑𝑥
−

𝑅

𝐿

𝑑ℎ

𝑑𝑥
,              (4.47) 

and 

𝑑𝜂̅/

𝑑𝑥
= −

1

𝜌𝑤𝑔𝐿́

𝑑𝑆𝑥𝑥𝑝́

𝑑𝑥
+

𝑄́

𝐿́
𝛾

𝑑ℎ

𝑑𝑥
−

𝑅́

𝐿́

𝑑ℎ

𝑑𝑥
,               (4.48) 

where 𝐿 = {(ℎ + 𝜂̅/) − 𝑐0𝜂̅/ −
𝐾1𝑐0𝐻𝑟𝑚𝑠

2
} , 𝑄 = (

𝑐0𝜂̅/

2
+

𝐾1𝑐0

3
𝐻𝑟𝑚𝑠) , 𝑅 = (𝑐0𝜂̅/ +

𝐾1𝑐0

2
𝐻𝑟𝑚𝑠) , 𝑆𝑥𝑥𝑠

́ =
1

8
𝐾1𝜌𝑤𝑔𝐻𝑟𝑚𝑠

2 {
3

2
− (

2𝑐0
2−𝑐0

2−2𝑐0
)} + 𝑐0

2𝑤𝑟
2𝜌𝑤𝐾1 (

4−3𝑐0

12
) 𝐻𝑟𝑚𝑠  (spilling 

breakers); 

and 𝐿́ = {(ℎ + 𝜂̅/) − 𝑐0𝜂̅/ −
𝑐0𝛾

2
ℎ} , 𝑄́ = (

𝑐0𝜂̅/

2
+

𝑐0𝛾

3
ℎ) , 𝑅́ = (𝑐0𝜂̅/ +

𝑐0𝛾

2
ℎ)  , 𝑆𝑥𝑥𝑝

́ =

1

8
𝐾1𝜌𝑤𝑔𝐻𝑟𝑚𝑠

2 {
3

2
− (

2𝑐0
2−𝑐0

2−2𝑐0
)}+𝑐0

2𝑤𝑟
2𝜌𝑤𝛾 (

4−3𝑐0

12
) ℎ (plunging breakers). 

Model II  

Similarly, using the representative wave approach and incorporating the 

representative wave height (Hrms), the momentum balance equation can be expressed 

as: 
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𝑑𝜂̅

𝑑𝑥
= −

1

𝑔𝜌𝑤(ℎ+𝜂̅)

𝑑𝑆𝑥𝑥2́

𝑑𝑥
 ,                          (4.49) 

where 𝑆𝑥𝑥2
́ =

2𝑘

8𝑠𝑖𝑛ℎ2𝑘ℎ
𝜌𝑤𝑔𝐻𝑟𝑚𝑠

2 ∫ (1 − 𝐶0𝑒𝑘0𝑧) [𝑐𝑜𝑠ℎ2𝑘(ℎ + 𝑧) − {𝑠𝑖𝑛ℎ𝑘(ℎ +
0

−ℎ−∆h

𝑧) +
𝐶0

(1−𝐶0𝑒𝑘0𝑧)(𝑘2−𝑘0
2)

[𝑒𝑘0𝑧(𝑘𝑘0𝑐𝑜𝑠ℎ𝑘(ℎ + 𝑧) − 𝑘0
2𝑠𝑖𝑛ℎ𝑘(ℎ + 𝑧)) −

𝑘𝑘0𝑒𝑘0ℎ]}] 𝑑𝑧 +
𝜌𝑤𝑔

16
𝐻𝑟𝑚𝑠

2 + 𝜌𝑤𝑔ℎ∆h . 

The value of 𝜂̅ obtained by solving Eq. (4.49) can be used to calculate the wave set-up 

for irregular waves via substitution in Eq. (4.43). 

4.3.5.1 Modified models solution for wave set-up 

It has been found that all of the equations for wave set-up are nonlinear, implying 

that obtaining a regular solution is impossible. As a result, need to emphasize the use 

of numerical schemes to solve these equations. Therefore, the same technique has been 

applied which was described in the previous section (section 4.2.3.2). 

Model I (spilling breaker) 

The schemes applied in Eq. (4.47) that yield the following equation: 

𝜂̅/
𝑗+1

= 𝜂̅𝑗 −
3

16𝐿
(𝐻𝑟𝑚𝑠(𝑗+1)

2 − 𝐻𝑟𝑚𝑠(𝑗)
2 ) + (

2𝑐0
2−𝑐0

8𝐿(2−2𝑐0)
) (𝐻𝑟𝑚𝑠(𝑗+1)

2 − 𝐻𝑟𝑚𝑠(𝑗)
2 ) − (4 −

3𝑐0)
𝑐0

2𝑤𝑟
2𝐾1

12𝑔𝐿
(𝐻𝑟𝑚𝑠(𝑗+1) − 𝐻𝑟𝑚𝑠(𝑗)) +

𝑄𝐾1

𝐿
(𝐻𝑟𝑚𝑠(𝑗+1) − 𝐻𝑟𝑚𝑠(𝑗)) −

𝑅

𝐿
(ℎ𝑗+1 − ℎ𝑗).  

        (4.50) 

Eq. (4.50) represents the numerical solution of Eq. (4.47) for the spilling breakers.  

Model I (plunging breakers) 

Similarly, using the above-mentioned schemes in Eq. (4.48) provides: 

𝜂̅/
𝑗+1

= 𝜂̅𝑗 −
3

16𝐿́
(𝐻𝑟𝑚𝑠(𝑗+1)

2 − 𝐻𝑟𝑚𝑠(𝑗)
2 ) + (

2𝑐0
2−𝑐0

8𝐿́(2−2𝑐0)
) (𝐻𝑟𝑚𝑠(𝑗+1)

2 − 𝐻𝑟𝑚𝑠(𝑗)
2 ) − (4 −

3𝑐0)
𝑐0

2𝑤𝑟
2𝑘1𝛾

12𝑔𝐿́
(ℎ𝑗+1 − ℎ𝑗) +

𝑄́𝛾

𝐿́
(ℎ𝑗+1 − ℎ𝑗) −

𝑅́

𝐿́
(ℎ𝑗+1 − ℎ𝑗),          (4.51) 

which is the numerical solution of Eq. (4.48) for plunging breakers. 
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All parameters on the right-hand side of Eqs. (4.50) and (4.51) are now known. As a 

result, calculating the wave set-up using these equations is simple. 

Model II 

The difference equation of Model II using the above numerical schemes can be 

written as (from Eq. (4.49)) follows: 

𝜂̅𝑖+1 = 𝜂̅𝑖 −
1

𝜌𝑤𝑔ℎ𝑖
(𝑆𝑥𝑥2,𝑖+1

́ − 𝑆𝑥𝑥2,𝑖
́ ).              (4.52) 

By substituting this value in Eq. (4.43), it is easy to calculate the 𝜂̅/. 

4.4 Data Collection 

To validate the modified models, it is essential to compare their results against 

experimental data. This analysis involves examining irregular wave height data 

gathered from various experiments, which span small-scale, large-scale, and field 

conditions, as well as diverse wave and bottom topography scenarios. Table 2.2 (in 

Chapter 2) summarizes the experimental data on RMS wave heights, while Table 2.3 

(in Chapter 2) details the data on wave set-up. The collected experimental data are 

categorized into three groups based on the scale of the experiments: small-scale (SS), 

large-scale (LS), and field experiments (FE). These unbiased datasets, covering a broad 

spectrum of test conditions, were used to demonstrate the accuracy of the modified 

models. 

4.5 Findings and Validations 

4.5.1 Boundary Requirements 

The modified models have two boundary requirements that must be successfully 

solved. These are the offshore boundary along with the onshore boundary. To apply the 

model correctly, the offshore boundary must have the following parameters: (i) incident 

Hrms,0 (RMS wave height) and the h0 (water depth) (ii) bottom topography, and (iii) 𝑇̅ 

(average wave period). The incident set-down was also required to compute the wave 

set-up, which is written as 𝜂̅ . The onshore boundary aligns with the experimental 

bathymetry data sets.  
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4.5.2 Classifying Wave Breakers 

Consider an irregular wave travelling across the beach, as shown in Fig. 4.01. 

Once this wave starts to break, the wave's energy and height start to decrease as it 

approaches the shore. Thus, it is important to find the breaking point of the waves. In 

this regard, consider the suggestion  made by Thornton and Guza, (1983), which can be 

expressed as follows: 

𝐻𝑟𝑚𝑠,𝑏 = 𝛾ℎ,                                                                                                (4.53) 

where 𝐻𝑟𝑚𝑠,𝑏 represents the RMS wave height at the breaking point, h is the water 

depth, and 𝛾 is an arbitrary constant with a value of 0.42 (Thornton and Guza, 1982). 

The different types of wave breakers are determined using the parameter of surf 

similarity, developed by Battjes, (1974), as described in Chapter 3 (section 3.4.2.).  

4.5.3 Determination of c0, y and k0 

Void fraction, c0 

To calculate the value of void fraction c0, Hoque and Aoki, (2005) void fraction 

relation has been used for wave types with either spilling or plunging breaking. They 

discovered a relationship for calculating the void fraction, c0, as a function of the 

breakpoint-to-shoreline distance, which is written as follows: 

Spilling breaking waves 

𝑐0 =
(𝑥−𝑥𝑏)

𝐿0
∗ 0.80                     for         0.20 ≥

(𝑥−𝑥𝑏)

𝐿0
≥ 0,                     (4.54) 

𝑐0 = 0.238 − 0.39
(𝑥−𝑥𝑏)

𝐿0
          for         0.20 ≤

(𝑥−𝑥𝑏)

𝐿0
,           (4.55) 

Plunging breaking waves 

𝑐0 =
(𝑥−𝑥𝑏)

𝐿0
∗ 1.285                    for         0.14 ≥

(𝑥−𝑥𝑏)

𝐿0
≥ 0,                      (4.56) 

𝑐0 = 0.285 − 0.75
(𝑥−𝑥𝑏)

𝐿0
             for         0.14 ≤

(𝑥−𝑥𝑏)

𝐿0
,           (4.57) 
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where 𝑥𝑏 is the horizontal distance from the wave maker to the breakpoint towards the 

shoreline (see Fig. 4.02). 

Depth of aeration, y 

To determine the depth of aeration y, employed the relation proposed by Hoque 

et al., (2019) for breaking waves. They proposed a relationship that allows the 

calculation of the depth of aeration y, based on the breakpoint-to-shoreline distance. 

This relationship can be expressed as follows: 

𝑦 =
𝑐0𝑧

𝑐(𝑧)−𝑐0
,                  (4.58) 

where c(z) is the fraction of the air volume per unit width and z,  𝑐0 correspond to the 

vertical distance, and reference void fraction at 𝑧 = 0, respectively (as shown in Fig. 

4.02). 

Decay parameter, k0 

The parameter k0, which characterizes the void fraction distribution in the surf 

zone, was determined by Hoque and Aoki, (2005) through theoretical curve fitting 

based on experimental data from both spilling and plunging breaking waves by the 

following equation: 

𝐾 = 𝑘0𝐻,                  (4.59) 

where 𝐻 is a local wave height and 𝐾 is the new dimensionless parameter. 

Their analysis led to the identification of the value 𝐾 as 3.75 for spilling breakers and 

4.00 for plunging breakers. In this study, these specific values are employed for the 

numerical calculations.  

4.5.4 Determination of Unknown Coefficients K1, K2, and K3 

To determine three unknown coefficients in the modified models, the nonlinear 

regression analysis is employed, incorporating constraint values of c0 to the test data 

(LS, SS, and FE). Determining the values of coefficients K1 and K2 for Model I, Eq. 

(4.12) and Eq. (4.13) were used for spilling and plunging breakers, respectively. 

However, for Model II, Eq. (4.14) was utilised to compute the coefficient K3 for both 
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the different types of breakers. A comparison between the measured and predicted wave 

heights was made for LS experiments, SS experiments, and FE, as shown in Fig. 4.04. 

Table 4.1 lists the values of the unknown coefficients K1, K2, and K3 with RMS wave 

height scaling error. 

 

 

 

 

Figure 4.04: Comparison of predicted and measured (LS, SS, and FE data) 

RMS wave height, Hrms using Model I and (SB = Spilling Breaker and PB = Plunging 

Breaker) Model II. 
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4.4.5 Modified Models Vs. Experimental Data  

To determine wave height and wave set-up, the first step is to classify the breaker 

types based on incident wave parameters and surf similarity criteria. For a plane-sloping 

beach, wave heights are calculated using Eq. (4.22) for spilling breakers and Eq. (4.30) 

for plunging breakers within Model I. For beaches with irregular slopes, the 

corresponding equations are Eqs. (4.32) and (4.34) for spilling and plunging breakers, 

respectively. In Model II, Eq. (4.36) is applicable for both breaker types and slopes. 

Following the calculation of RMS wave height, the wave set-up is computed using Eqs. 

(4.50) and (4.51) for spilling and plunging breakers in Models I and II. For scenarios 

involving both breaker types, Eqs. (4.52) and (4.43) are used. The void fraction, crucial 

for these calculations, is determined using Eqs. (4.54) and (4.55) for spilling breakers 

and Eqs. (4.56) and (4.57) for plunging breakers. The calculated void fraction (c0) 

ranges from 13% to 15% for spilling breakers and 16% to 18% for plunging breakers, 

which is consistent with the values suggested by Blenkinsopp and Chaplin (2011), 

Huang et al. (2009), and Hoque and Aoki, (2005). The grid sizes (Δx) used in this study 

are based on the experimental measurements, with adjustments made to a maximum of 

5 m when necessary. Specifically, a grid size of 0.2–1.5 m is used for small-scale (SS) 

experiments, and 2.1–5.0 m for large-scale (LS) and field experiments (FE) 

(Rattanapitikon, 2008). The coefficients (K1, K2, and K3) used in the calculations for 

both models are detailed in Table 4.1. 

Within Figs. 4.05 and 4.06, a comparative analysis was performed between the 

proposed modified models (Model I and II) and established regular wave models 

(Hoque et al. 2019; Hoque 2002) using a diverse range of experimental data sets, 

including large-scale (LS), small-scale (SS), and field experiments (FE). The 

comparison highlighted a substantial discrepancy, with errors exceeding 30% for the 

regular wave models when juxtaposed with the experimental data. This significant 

deviation underscores the inadequacy of the regular wave models in accurately 

representing irregular wave conditions. The results indicate that the regular wave 

models, which are primarily designed for scenarios with uniform wave characteristics, 

fail to capture the complexities and variations inherent in irregular wave patterns. 

Consequently, this discrepancy points to the necessity for more robust models that can 

account for the variability and intricacies of irregular waves. 
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Large-scale Data 

        

Small-scale Data 

                

Field Data 

Figure 4.05: Comparison of regular and irregular energy dissipation model 

with various experimental data (LS, SS, and FE) and regular wave models (Hoque et 

al., 2019 as HHAR-19; Hoque 2002, as Hoq-02) including related beach profiles.  
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                     (a)                       (b) 

 

(c) 

 

 

 

 

 

Figure 4.06: Variations of wave set-up for Models I and II based on various 

experimental data ((a): BJ-78, (b) St-85, and (c) RGE-01) and regular wave models 

( HHAR-19 and Hoq-02) including corresponding beach profiles. 

The void fraction profile exhibits variability depending on the breaking points. First, 

identify the breaking point, followed by obtaining void fraction profile data for every 

gauge across all data cases. Analysis revealed that the maximum void fraction ranged 

from 13% to 19% across all cases. Subsequently, create a comparison in Fig. 4.07 using 

the maximum void fraction data from models I and II alongside experimental data (LS, 

SS, and FE). Specifically, the best matches between the void fraction of model I and 

experimental data were observed to be a maximum of 13%-15% and 16%-18% for 

spilling and plunging breaking waves, respectively, as well as 14%-16% and 17%-19% 

for model II. 
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Large-scale Data 

 

Small-scale Data 

 

Field Data 

 

Figure 4.07: Variation of void fraction (Model I and II) with different 

experimental data (LS, SS, and FE). 
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Figure 4.08: Comparison of the RMS wave height of Models I and II with data 

from LS experiments and different models (Rattanapitikon, Karunchintadit, and 

Shibayama, 2003 as RKS - 03; Roelvink, 1993 as Rol - 93) including various beach 

profiles. 



 

 

97 

 

Fig. 4.08 illustrates a comparison of the modified models (I and II) and LS datasets 

collected from several sources (see Table 2.2 in Chapter 2) and models (RKS-03 and 

Rol-93), which demonstrates an excellent match for computing the RMS wave height. 

In this particular instance, the execution of models (I and II) is excellent for the Kraus 

and McKee Smith, (1994) and Roelvink and Reniers, (1995) data series. However, there 

is some variation after wave breaking for the data collected by Dette et al., (2002). One 

possible reason for this is that the data were collected during storm-wave conditions. 

Because, stormy waves along with increased heights and winds, lead to notable air 

entrainment and turbulence, surpassing the capabilities of general wave energy 

dissipation models and resulting in prediction inaccuracies.  
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Figure 4.09: RMS wave height comparison of Models I and II with SS 

experimental data and different models (RKS – 03 and Rol - 93) including various 

beach profiles. 

Furthermore, an observation was made regarding the performance of the modified 

models, particularly model I, which exhibited slightly superior performance compared 

to the Rol-93 and RKS-03. 

The outcomes from the modified models (I and II) were assessed against small-scale 

(SS) datasets (see Table 2.2 in Chapter 2)  provided by various researchers and 

compared with two established models, RKS–03 and Rol–93, as shown in Fig. 4.09. 

Model I closely matched nearly all the datasets, while Model II showed a minor increase 

in error, though not significant. Both models effectively represented the data, 

particularly for plane-sloping beaches, consistent with the findings of some researchers 

(Smith and Kraus 1990; Hurue 1990; Sultan 1995; Ting 2001). They also performed 

well in scenarios involving quick transitions, such as slopes adjacent to narrow bar 

crests, as noted by some researchers (Smith and Kraus 1990; Grasmeijer and Rijn 1999) 

Overall, the performance of all models, including Rol–93 and RKS–03, was similar 

across different conditions, with Model II being the exception. 
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Figure 4.10: RMS wave heights of Models I and II compared with data from FE and 

different models ( RKS - 03 and Rol - 93)  including various beach profiles. 

Another comparison of the modified models (I and II) with field experimental data, as 

detailed in Table 2.2 in Chapter 2 was conducted alongside evaluations against two 

established models, RKS–03 and Rol–93. The results of this comparison are shown in 

Fig. 4.10. The modified models (I and II) demonstrated strong performance with the 
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data from Thornton and Guza, (1986) and Kraus et al., (1989). But, discrepancies were 

observed near the wave-breaking point with data from McKee Smith et al., (1993), 

likely due to the presence of a mound at the breaking point. Notably, Model I 

outperformed both the Rol–93 and RKS–03 models in these scenarios. This indicates 

that Model I is highly effective in predicting RMS wave height across various beach 

profiles. On the other hand, Model II encountered difficulties in accurately calculating 

RMS wave height, particularly in areas with mounds on the beach and near the shoreline. 

Therefore, it is evident that the modified Model I efficiency is considerably satisfactory 

in terms of predicting the RMS wave height for any beach profile. However, Model II 

has certain limitations in calculating the RMS wave height, particularly the presence of 

mounds on the beach and near the shoreline. 

Additionally, Fig. 4.11 presents a comparison of wave set-up calculations using 

different experimental data (refer to Table 2.3 in Chapter 2) and the established model 

DDD–85 (Dally, Dean, and Dalrymple, 1985). The modified models (I and II) 

performed exceptionally well against the data provided by Stive, (1985), highlighting 

their robustness in predicting wave set-up. 

  

 

Figure 4.11: Variations of wave set-up for Models I and II based on various 

experimental data and DDD – 85 model. 
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Conversely, Model II shows some inaccuracies near the coastline when compared with 

the experimental data from Battjes and Janssen, (1978). Additionally, for the data 

provided by Raubenheimer et al. (2001), both modified models (I and II) tend to slightly 

overestimate the wave set-up. A comparison with the DDD–85 model reveals that the 

current models, especially Model I, perform marginally better. Overall, the results for 

wave set-up obtained from the modified models (I and II) are consistent with the 

findings from Hoque et al. (2019) and Hoque, (2002). 

4.5.6 Error Analysis 

In this section, the overall accuracy of the modified models (I and II) is displayed 

by exhibiting the NRMSE for each case (RMS wave height and set-up). 

The NRMSE term is used to quantify the error. This term serves as an overall indicator 

of the model’s performance. According to Jadhav and Chen, (2013), the NRMSE can 

be written as follows: 

𝑁𝑅𝑀𝑆𝐸 = √1

𝑛
∑ (

(𝐻𝑟𝑚𝑠)𝑝,𝑘

(𝐻𝑟𝑚𝑠)𝑚,𝑘
− 1)

2
𝑛
𝑘=1 ,              (4.60) 

where n is the total number of wave data points, (𝐻𝑟𝑚𝑠)𝑝,𝑘 is the predicted RMS wave 

height, and (𝐻𝑟𝑚𝑠)𝑚,𝑘 is the measured RMS wave height. 

The NRMSE of the modified models (I and II) for the wave height and wave set-up are 

listed in Tables 4.1 and 4.2, respectively.  

Table 4.1: Unknown coefficient determination with NRMSE. 

Model 

Name 

Coefficients 

Name 

Coefficient 

Values 

Error (%) Avg. 

Error(%) 
SS LS FE 

Model I 
K1 0.34 11.33 5.6% 7.14 8.03 

K2 0.36 11.71 5.83% 7.39 8.31 

Model II K3 0.41 15.78 6.06% 8.26 10.03 
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For calculating Hrms, the modified Models I and II yielded an average NRMSE of 

11.52% (with averages of 11.71% and 11.33% for the two models) and 15.78%, 

respectively, when compared to SS experimental data. This error rate is notably higher 

than that observed for LS data, which had an average NRMSE of 5.72% (averaging 

5.6% and 5.83%) and 6.06%, respectively. This discrepancy suggests potential scaling 

issues with the models. However, the models performed reasonably well with FE data, 

showing an average NRMSE of 7.27% (averaging 7.14% and 7.39%) for Model I and 

8.26% for Model II. Model I had an average NRMSE of 8.17%, which was lower than 

Model II's average NRMSE of 10.03%. For wave set-up calculations, the average 

NRMSE for the modified models was 9.38% for Model I and 11.15% for Model II, 

aligning closely with the performance of regular wave models. 

Table 4.2: Overview of the NRMSE of  𝜂̅/ in percentage (Models I and II). 

Resources 
NRMSE 

(Model I) 

NRMSE 

(Model II) 
Categories Average NRMSE 

RGS-01 11.89 8.68 FE 
9.38 (Model I) 

11.15 (Model II) 
St-85 4.03 5.25 SS 

BJ-78 12.23 19.53 LS 

As noted by Rattanapitikon, (2008), the overall qualitative assessment of the modified 

Model I is very good for calculating both the RMS wave height and wave set-up. In 

contrast, Model II received a good qualitative ranking for these calculations. 

4.6 Conclusions 

This chapter utilized the representative wave approach to enhance two energy 

dissipation models tailored for spilling and plunging breaking waves. These modified 

models were employed to calculate the RMS wave heights and wave set-ups, based on 

principles of energy and momentum conservation. The conceptual framework for these 

models was primarily derived from the air bubble model of wave breakers established 

by Hoque et al. (2019) and Hoque, (2002). The breaking criterion for irregular waves 

by Thornton and Guza, (1983) and the surf similarity parameter by Battjes, (1974) were 

used to identify breaking waves and classify their types. 
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The validity of the modified models (I and II) was corroborated by a range of 

experimental data from small-scale, large-scale, and field experiments across different 

wave and bottom topography scenarios. The computed RMS wave heights closely 

matched the experimental data, though minor discrepancies were noted near mounds 

and coastlines. Similarly, the modified models performed well in predicting wave set-

up, with some errors observed near the breaking points. The analysis revealed that air 

bubble contributions to wave energy dissipation were between 16% and 18% for 

plunging breakers, and 13% to 15% for spilling breakers. These values align closely 

with the experimental findings of Hoque and Aoki, (2005) and Huang et al. (2009). The 

average normalized root mean square error (NRMSE) for RMS wave height was 8.33% 

for Model I and 10.6% for Model II, demonstrating a high level of agreement with the 

experimental data. For wave set-up, the average NRMSE was 9.38% for Model I and 

11.15% for Model II, indicating effective prediction capabilities. Model I showed 

slightly better accuracy compared to Model II. Despite some inconsistencies near the 

shoreline and mounds, the modified models (I and II) successfully simulated RMS wave 

height and set-up under various wave conditions and beach profiles. Their key strengths 

lie in their simplicity and ease of application, making them valuable tools for comparing 

with more complex models. 
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CHAPTER 5 

Transformation of Spectral Significant Wave Height and 

Set-up Due to Entrained Air Bubbles in Breaking Waves 

5.1 Abstract 

Accurately assessing the transformation of wave height is crucial for coastal 

engineering and the design of coastal structures. To achieve this, a reliable energy 

dissipation model is necessary. This chapter introduced an optimized dissipation model 

that accounts for the impact of air bubbles to precisely determine changes in spectral 

significant wave height (Hm0) and wave set-up for irregular waves in the breaking phase. 

The approach adapted existing regular wave-breaking models—those incorporating air 

bubble effects—by creating new formulations suitable for irregular waves. These 

models utilize the probability distribution of broken waves to enhance precision. Hm0 

was derived using the energy balance equation, and wave set-up was calculated based 

on the momentum balance equation. The model's validity was tested across a range of 

scenarios, including small-scale and large-scale experiments as well as field data. 

Among the proposed models, Model-I (M-I) demonstrated particularly strong 

performance, showing lower error indices (P20), root-mean-square relative error 

(RMSRE), and Brier skill score (BSS) values for both Hm0 and wave set-up calculations. 

Therefore, Model-I is recommended for accurate predictions of Hm0 and wave set-up 

transformations. 

5.2 Introduction 

 Understanding wave behavior in the surf zone is essential for addressing coastal 

engineering challenges, including the design of coastal structures and analysis of beach 

variations. As illustrated in Fig. 4.01 in Chapter 4, wave breaking occurs in shallow 

waters due to the bottom slope as waves approach the shoreline, leading to the 

entrainment of numerous air bubbles near the breaking point. This interaction 

introduces significant complexity into the dynamics of air bubbles and the flow fields 

of breaking waves (Chanson and Jaw-Fang 1997; Koga 1982; Deane and Stokes 2002). 

The energy dissipated in this process contributes to turbulence and heat flux, reducing 
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wave height as waves move shoreward (Paul et al. 2016). Irregular breaking waves, 

which are more complex than regular waves, distribute energy over a broader area 

(Rattanapitikon, Karunchintadit, and Shibayama 2003). The impact of air bubble 

entrainment during the wave-breaking process highlights the need to thoroughly 

examine wave-breaking dynamics to understand their effects on coastal structures, 

sediment transport, wave set-up, overtopping, run-up, and coastal management 

strategies. 

Representative wave height is crucial for understanding coastal dynamics and designing 

coastal infrastructure. Key forms of representative wave heights include root-mean-

square wave height (Hrms), highest one-tenth wave height (H1/10), spectral significant 

wave height (Hm0), mean wave height (Hm), and maximum wave height (Hmax). Among 

these, Hm0 is most widely used in coastal engineering due to its prevalence in spectral 

analysis results and modern wave hindcasts. Although deep-water values for Hm0 are 

commonly available, there is often a lack of data for shallow-water depths. To address 

this gap, models for transforming wave heights are necessary for accurate calculations 

in shallow-water regions. 

Recent advancements in coastal engineering have increasingly utilized soft computing 

methods, like machine learning algorithms, to model significant wave heights and 

associated parameters. Various algorithms are now employed to forecast wave height 

by analyzing key input variables, including wind speed, wave period, and atmospheric 

pressure (Sadeghifar and Barati 2018; Sadeghifar et al. 2017; Mostafa et al. 2023; Ikram 

et al. 2023; Sadeghifar et al. 2022; Adnan et al. 2023; Sadeghifar and Barati 2018; Afzal 

et al. 2023; Duong et al. 2023; Chen et al. 2023). These algorithms leverage methods 

like regression, neural networks, and ensemble techniques, relying on extensive 

historical data to refine their predictions. By training on diverse datasets from multiple 

locations, these models are able to capture the intricate relationships between input 

factors and wave height, offering valuable insights for oceanographic study, weather 

prediction, and marine science & engineering. Nevertheless, the effectiveness of these 

models is heavily dependent on the availability of comprehensive experimental data, 

highlighting the necessity for robust observational datasets to guarantee accurate 

predictions. 
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Even though advanced machine learning methods have become popular for predicting 

significant wave heights, traditional techniques are still essential for accurately 

forecasting wave height and set-up. These conventional methods are grounded in 

established standards and methodologies, providing reliable standards for verifying 

new approaches. Although the improvements in machine learning, traditional methods 

offer a solid foundation for comparison and verification. This study focused on 

developing new empirical or semi-empirical mathematical formulas to address these 

needs. The models developed for shallow water wave height calculations primarily rely 

on three key concepts: air bubbles, stable energy, and bores. Le Mehaute, (1962), who 

pioneered the bore model, proposed that both broken waves and hydraulic jumps are 

equally effective in dissipating wave energy. Various models have since been 

developed to estimate average wave height in the surf zone (Alsina and Baldock, 2007; 

Apotsos et al., 2008; Battjes and Janssen, 1978; Thornton and Guza, 1983). The energy 

dissipation model introduced by Dally et al. (1985) was based on the principle of stable 

energy. Taking into consideration this concept Swift, (1993) and Rattanapitikon and 

Shibayama, (1998)  improved their models. On the other hand, numerous studies have 

explored air bubble entrainment in breaking waves and its impact on the surf zone, 

addressing aspects such as gas exchange, representative wave height transformation, 

and sediment transport (Blenkinsopp and Chaplin, 2011; Deike et al., 2016; Hoque et 

al., 2021; Hossain et al., 2022; Koga, 1982; Leng and Chanson, 2019; Shi et al., 2023). 

Among them, Hossain and Araki (2022, 2023) recently recommended two models that 

incorporate the effects of air bubbles: one parametric modeling and the other 

representative wave modeling. Their findings indicated that the representative approach 

slightly outperformed the parametric model in predicting the root mean square (RMS) 

wave height following wave set-up. 

However, these models typically focus on calculating the RMS wave height rather than 

the spectral significant wave height. Significant wave heights are crucial for 

understanding wave characteristics, energy distribution, and long-term wave climate 

variability, especially in shallow water environments. Despite this, many measurement 

instruments and results are reported in terms of significant wave heights. Additionally, 

wave set-up, which refers to the increase in water level due to waves, can cause 

significant damage to coastal areas and is an important factor in beach management. 

Unfortunately, there has been limited research on wave set-up. 
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Despite the development of various models using different approaches to evaluate wave 

height and surf zone dynamics, there is currently no model that can simultaneously 

calculate both spectral significant wave height and wave set-up accounting for air 

bubble entrainment in irregular waves. While previous research has examined air 

entrainment during wave breaking, there has been limited investigation into how air 

bubbles affect the transformation of spectral significant wave height and wave set-up 

in shallow water. This study aims to fill this gap. Typically, wave height is determined 

using energy conservation principles, while wave set-up is calculated based on 

momentum conservation laws. The following section discusses the governing equations 

derived from these principles. 

5.3 Model Formulation 

Predicting wave breaking, a complex process in the surf zone is particularly 

challenging. In this area, waves lose energy as they break, leading to a decrease in wave 

height and a rise in the water level as they approach the shore. This study utilized the 

energy flux law and momentum flux law as governing equations to forecast wave height 

reduction and the resulting wave set-up along the shoreline. 

5.3.1 Energy Conservation Law 

To represent the evolution of wave height in a dissipative surf zone, the study 

employs the energy balance equation for one-dimensional wave propagation which can 

be written as follows: 

𝜕𝐸𝑐𝑔

𝜕𝑥
= −𝐷.                 (5.01) 

Here E stays the wave energy; 𝑐𝑔 = √𝑔ℎ indicate the group celerity in shallow water 

areas; 𝑔 stands for the gravitational acceleration; x is the horizontal distance to the 

shoreline; h is the water depth; and D denotes the energy dissipated as waves travel 

from the breaking point to the coastline. This study assumes that all parameters are 

derived from linear wave theory, with the neglect of energy dissipation caused by 

bottom friction. 

The moments of a wave spectrum are crucial in spectral analysis because they provide 

a characterization of the spectrum and demonstrate how the spectral representation of 
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waves relates to significant wave height. The zero moments of the wave spectrum, 

referred to as 𝑚0 , signifies the total wave energy. This moment is determined by 

integrating the wave spectrum, 𝑆(𝑓) , across the complete frequency range f. 

Corresponding to Goda, (2000), the zero moment can be expressed as follows: 

𝑚0 =
1

𝑡𝑁
∫ 𝜉2𝑑𝑡

𝑡𝑁

0
= ∫ 𝑆(𝑓)𝑑𝑓

∞

0
,              (5.02) 

Here t stands for the time, 𝑡𝑁 represents the total time of a wave record, and 𝜉 is the 

surface elevation. 

The relationship among the zero moment, total energy density, and significant wave 

height, 𝐻𝑚0, of a wave train in linear wave theory can be expressed as follows: 

𝐸 =
2

𝑡𝑁
∫

𝜌𝑤𝑔

2
𝜉2𝑑𝑡 = 𝜌𝑤𝑔

𝑡𝑁

0
𝑚0,              (5.03) 

where 𝜌𝑤 signifies the density of water. 

But, 𝐻𝑚0 expressed as follows: 

𝐻𝑚0 = 4√𝑚0.                 (5.04) 

therefore, Eq. (5.03) yields: 

𝐸 =
𝜌𝑤𝑔

16
𝐻𝑚0

2 .                 (5.05) 

Consequently, Eq. (5.01) yields: 

1

16
𝜌𝑤𝑔

𝜕(𝐻𝑚0
2 𝑐𝑔)

𝜕𝑥
= −𝐷.               (5.06) 

The examination of wave height variations as waves approach the shoreline can be 

conducted using the energy-conservation equation (Eq. (5.06)). To do this, the energy 

dissipation rate, 𝐷, needs to be substituted into Eq. (5.06), enabling the calculation of 

wave height along the coastline. The main challenge is to determine the rate of energy 

loss for waves that break in the surf zone. To calculate 𝐷, this study first reviewed two 

regular wave models that account for air bubble entrainment and then developed new 

models for irregular breaking waves in the subsequent section. 
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5.3.1.1 Existing Air Bubble Models for Regular Waves 

5.3.1.1.1 Model by Hoque et al., (2019)  

A brief overview of this model can be found in Section 4.3.1.1. This model is  

expressed as follows: 

𝐷𝑎 =
∆𝑃𝐸

𝑡𝑟
𝛼,                 (5.07) 

where all the parameters are described in the relevant section. 

Ultimately, the values of these parameters provide the subsequent models:  

𝐷𝑎 = 𝑔𝑤𝑟𝛼𝜌𝑤
𝑦𝑐0

2(1−𝑐0)
.                (5.08) 

5.3.1.1.2 Model by Hoque, (2002) 

A comprehensive overview of this model, along with the related parameters, is provided 

in Section 4.3.1.2, and the model is written as follows: 

𝐷𝑎 =
∆𝑃𝐸

𝑡𝑟
𝛼 = ∆ℎ𝑤𝑟𝛼𝜌𝑤𝑔.               (5.09) 

5.3.1.2 Proposed models  

The energy dissipation process in an irregular wave train due to wave breaking 

is highly complex. In creating a new model, the principle outlined by Roelvink, (1993) 

has been followed. This principle suggests that the energy loss rate per unit area, 𝐷, in 

an irregular wave train is likely influenced by two distinct factors and can be stated as 

follows: 

𝐷 = 𝑄𝑏𝑟𝐷𝑎.                  (5.10) 

Here 𝑄𝑏𝑟 signifies the fraction of breaking waves, and 𝐷𝑎 is the energy lost due to the 

presence of air bubbles in regular wave scenarios. 

As waves approach shallow-water regions, the breaking process becomes increasingly 

important, causing the wave height distribution to deviate from the Rayleigh 

distribution (Hossain, Rahman, and Hoque 2022; Wu et al. 2016; Mendez, Losada, and 
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Medina 2004; Jurjen A. Battjes and Groenendijk 2000). Thus, the following equation 

for 𝑄𝑏𝑟   suggested by Stringari and Power, (2019) constructed from the Weibull 

distribution is for this study: 

𝑄𝑏𝑟 = 𝑒
−(

𝐻𝑏
𝐻𝑟𝑚𝑠

)
𝜅

.                (5.11) 

Here Hrms signifies the root-mean-square wave height, Hb is the individual wave height 

at the breaking point, and 𝜅 is the shape parameter. 

According to Thornton and Guza, (1983), the average rate of energy loss can be 

approximated by multiplying the energy dissipated by a given broken wave of height 

𝐻 with the associated probability of wave breaking, as expressed in Eq. (5.10). Building 

on this principle, this study presents a model for irregular waves, designated as Model-

I (M-I), as follows:: 

M-I:  

𝐷𝐼𝑎 = 𝑄𝑏𝑟𝐷𝑎 = ∫ 𝑔𝑤𝑟𝛼𝜌𝑤
𝑐0

2(1−𝑐0)
𝑄𝑏𝑟𝑦𝑃(𝐻)𝑑𝐻,

∞

𝟎
             (5.12) 

where 𝐷𝐼𝑎 represents the energy dissipation rate owing to the influence of attuned air 

bubbles for an irregular wave train, 𝑄𝑏𝑟  found from Eq. (5.11), 𝐷𝑎  come from Eq. 

(5.08), and  𝑃(𝐻) =
𝜅

𝐻𝑟𝑚𝑠
(

𝐻

𝐻𝑟𝑚𝑠
)

𝜅−1

𝑒
−(

𝐻

𝐻𝑟𝑚𝑠
)

𝜅

is the PDF of the Weibull distribution. 

Other parameters such as 𝑔, 𝑤𝑟 , 𝛼, 𝜌𝑤, 𝑐0, 𝑎𝑛𝑑 𝑦 described in the previous sections. 

Now, according to Führboter, (1970), y is written as follows: 

 𝑦 ∝ 𝐻(𝑥) = 𝑑1 ∗ 𝐻(𝑥)  for spilling breakers                  (5.13) 

𝑦 ∝ 𝐻𝑏 = 𝛾ℎ     for plunging breakers                   (5.14) 

where d1 is an arbitrary constant, and 𝐻𝑏 = 𝛾ℎ, 𝛾 =0.42 (Thornton and Guza 1982).  

Applying Eq. (5.13) in Eq. (5.12) yields: 

𝐷𝐼𝑎𝑆 =
𝑔𝑤𝑟𝛼𝑑1𝜌𝑤𝑐0

2(1−𝑐0)
∫ 𝐻𝑒

−(
𝐻𝑏

𝐻𝑟𝑚𝑠
)

𝜅
𝜅

𝐻𝑟𝑚𝑠
(

𝐻

𝐻𝑟𝑚𝑠
)

𝜅−1

𝑒
−(

𝐻

𝐻𝑟𝑚𝑠
)

𝜅

𝑑𝐻
∞

𝟎
,           (5.15) 
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where 𝐷𝐼𝑎𝑆 is the energy dissipation rate due to attuned air bubbles in spilling breaking 

waves. 

Simplification yields the following model for spiling breakers in terms of 𝐻𝑚0 (see 

Appendix C): 

𝐷𝐼𝑎𝑆 = 𝐾1𝜌𝑤𝑔
𝐶0

2√2(1−𝐶0)
𝑤𝑟𝛤 (

1

𝜅
+ 1) 𝐻𝑚0𝑒

−(
√2𝛾ℎ

𝐻𝑚0
)

𝜅

.            (5.16) 

In a similar way using Eq. (5.14) in Eq. (5.12) the following model is found for plunging 

breaking waves: 

𝐷𝐼𝑎𝑃 =
𝑔𝑤𝑟𝛼𝜌𝑤𝑐0

2(1−𝑐0)
𝛾 ∫ ℎ𝑒

−(
𝐻𝑏

𝐻𝑟𝑚𝑠
)

𝜅
𝜅

𝐻𝑟𝑚𝑠
(

𝐻

𝐻𝑟𝑚𝑠
)

𝜅−1

𝑒
−(

𝐻

𝐻𝑟𝑚𝑠
)

𝜅

𝑑𝐻.
∞

𝟎
           (5.17) 

Here 𝐷𝐼𝑎𝑃 is the energy dissipation rate owing to the air bubbles effect for plunging 

breaking waves. 

Similarly, simplification yields the following model for plunging breakers in terms of 

𝐻𝑚0 (see Appendix D): 

𝐷𝐼𝑎𝑃 = 𝐾2𝜌𝑤𝑔
𝐶0𝛾

2(1−𝐶0)
𝑤𝑟ℎ𝑒

−(
√2𝛾ℎ

𝐻𝑚0
)

𝜅

.              (5.18) 

M-II:  

In a comparable fashion, based on the assumptions of Thornton and Guza, 

(1983), Model-II (M-II) can be constructed using Eq. (5.10) along with the regular wave 

model presented by Hoque, (2002), as outlined below:: 

𝐷𝐼𝐼𝑎 = 𝑄𝑏𝑟𝐷𝑎 =
𝑐0

𝑘0
𝛼𝜌𝑤𝑔𝑤𝑟 ∫ (

1−𝑒−𝑘0ℎ

1−𝑐0𝑒−𝑘0ℎ) 𝑒
−(

𝐻𝑏
𝐻𝑟𝑚𝑠

)
𝜅

𝑃(𝐻)
∞

0
𝑑𝐻,           (5.19) 

where 𝐷𝐼𝐼𝑎 is the energy dissipation rate owing to the entrained air bubbles effect.  

Simplification yields the following model in terms of 𝐻𝑚0 (see Appendix C): 

𝐷𝐼𝐼𝑎 = 𝐾3𝜌𝑤𝑔𝑐0𝑤𝑟 (
1−𝑒−𝑘0ℎ

1−𝑐0𝑒−𝑘0ℎ) 𝑒
−(

√2𝛾ℎ

𝐻𝑚0
)

𝜅

.             (5.20) 



 

 

112 

 

5.3.2 Momentum Conservation Law 

The conservation of momentum is assumed to be applicable in the context of 

wave setup. Using this assumption, Longuet-Higgins and Stewart, (1964) formulated 

the following equation to determine wave setup: 

𝑑𝜂̅

𝑑𝑥
= −

1

𝜌𝑤𝑔(ℎ+𝜂̅)

𝑑𝑆𝑥𝑥

𝑑𝑥
,                 (5.21) 

where 𝜂̅ signifies the surface elevation, and 𝑆𝑥𝑥 represents the radiation stress. 

5.3.2.1 Existing models for wave set-up 

5.3.2.1.1 Model by Hoque et al., (2019) 

The belief of momentum conservation law demonstrates the balance between 

the pressure force from the mean water surface slope and the radiation stress gradient. 

To analyze momentum equilibrium in a water region with an inclined bed and exposed 

surface, while accounting for air bubbles, Hoque et al. (2019) referenced Eq. (5.21) and 

proposed a revised momentum equation, which can be written as follows: 

𝑑𝜂̅/

𝑑𝑥
= −

1

𝜌𝑤𝑔{(ℎ+𝜂̅/)−𝑐0𝜂̅/−
𝑐0𝑦

2
}

𝑑𝑆𝑥𝑥́

𝑑𝑥
+

(
𝑐0𝜂̅/

2
+

𝑐0𝑦

3
)

{(ℎ+𝜂̅/)−𝑐0𝜂̅/−
𝑐0𝑦

2
}

𝑑𝑦

𝑑𝑥
−

(𝑐0𝜂̅/+
𝑐0𝑦

2
)

{(ℎ+𝜂̅/)−𝑐0𝜂̅/−
𝑐0𝑦

2
}

𝑑ℎ

𝑑𝑥
,    (5.22) 

where (𝜂̅/) represents the wave set-up owing to the effect of the air bubble, and   𝑆𝑥𝑥
́ =

1

8
𝜌𝑤𝑔𝐻2 {

3

2
− (

2𝑐0
2−𝑐0

2−2𝑐0
)} + 𝑦𝑐0

2𝑤𝑟
2𝜌𝑤 (

4−3𝑐0

12
)  is the radiation stress owing to the air 

bubbles effect. 

To make straightforward Eq. (5.22), let 𝑀 = {(ℎ + 𝜂̅/) − 𝑐0𝜂̅/ −
𝑐0𝑦

2
} , 𝑁 = (

𝑐0𝜂̅/

2
+

𝑐0𝑦

3
) , and 𝑃 = (𝑐0𝜂̅/ +

𝑐0𝑦

2
), that yields Hoque et al., (2019): 

𝑑𝜂̅/

𝑑𝑥
= −

1

𝜌𝑤𝑔𝑀

𝑑𝑆𝑥𝑥́

𝑑𝑥
+

𝑁

𝑀

𝑑𝑦

𝑑𝑥
−

𝑃

𝑀

𝑑ℎ

𝑑𝑥
.               (5.23) 

5.3.2.1.2 Model by Hoque, (2002)  

The details of this model can be found in Section 4.3.4.2. The genuine wave set-up, 𝜂̅/, 

suggested by Hoque, (2002) is writtens as follows: 
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𝜂̅/ = 𝜂̅ + ∆ℎ,                  (5.24) 

where the 𝜂̅ is obtained from:  

 
𝑑𝜂̅

𝑑𝑥
= −

1

𝑔𝜌𝑤(ℎ+𝜂̅)

𝑑𝑆𝑥𝑥
′′

𝑑𝑥
.                           (5.25) 

Here 𝑆𝑥𝑥
′′  is the radiation stress owing to the air bubbles effect and written as follows: 

2𝐸𝑘

𝑠𝑖𝑛ℎ2𝑘ℎ
∫ (1 − 𝐶0𝑒𝑘0𝑧) [𝑐𝑜𝑠ℎ2𝑘(ℎ + 𝑧) − {𝑠𝑖𝑛ℎ𝑘(ℎ + 𝑧) +

0

−ℎ−∆h

𝐶0

(1−𝐶0𝑒𝑘0𝑧)(𝑘2−𝑘0
2)

[𝑒𝑘0𝑧(𝑘𝑘0𝑐𝑜𝑠ℎ𝑘(ℎ + 𝑧) − 𝑘0
2𝑠𝑖𝑛ℎ𝑘(ℎ + 𝑧)) − 𝑘𝑘0𝑒𝑘0ℎ]}] 𝑑𝑧 +

𝜌𝑤𝑔𝐻2

16
+ 𝜌𝑤𝑔ℎ∆h,  

where k is the wavenumber. 

5.3.2.2 Proposed models for wave set-up 

In this section, two models for irregular waves are proposed, focusing on 

significant wave height. 

M-I based on the model by Hoque et al., (2019)  

Prior to modifying the model, it is important to identify the various types of 

wave breakers associated with wave breaking. This classification is critical since it can 

greatly influence the properties of wave-induced forces on structures located in the surf 

zone. Therefore, a thorough understanding of the different types of wave breakers is 

essential for developing these models. The two main types of wave breakers—spilling 

and plunging—are characterized by their specific breaking mechanisms. As a result, 

the assumptions made by Führboter, (1970) regarding the penetration depth y for both 

spilling and plunging breakers, outlined in Eqs. (5.13) and (5.14), are utilized in Eq. 

(5.22), leading to the following: 

For spilling breakers: 

𝑑𝜂̅/

𝑑𝑥
= −

1

𝜌𝑤𝑔{(ℎ+𝜂̅/)−𝑐0𝜂̅/−
𝑐0𝑑1𝐻

2
}

𝑑𝑆𝑥𝑥́

𝑑𝑥
+

(
𝑐0𝜂̅/

2
+

𝑑1𝑐0𝐻

3
)

{(ℎ+𝜂̅/)−𝑐0𝜂̅/−
𝑐0𝑐1𝐻

2
}

𝑑(𝑑1𝐻)

𝑑𝑥
−

(𝑐0𝜂̅/+
𝑐0𝑑1𝐻

2
)

{(ℎ+𝜂̅/)−𝑐0𝜂̅/−
𝑐0𝑑1𝐻

2
}

𝑑ℎ

𝑑𝑥
.             (5.26) 
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For plunging breakers: 

𝑑𝜂̅/

𝑑𝑥
= −

1

𝜌𝑤𝑔{(ℎ+𝜂̅/)−𝑐0𝜂̅/−
𝑐0ℎ𝛾

2
}

𝑑𝑆𝑥𝑥́

𝑑𝑥
+

(
𝑐0𝜂̅/

2
+

ℎ𝛾𝑐0
3

)

{(ℎ+𝜂̅/)−𝑐0𝜂̅/−
𝑐0ℎ𝛾

2
}

𝑑(ℎ𝛾)

𝑑𝑥
−

(𝑐0𝜂̅/+
𝑐0ℎ𝛾

2
)

{(ℎ+𝜂̅/)−𝑐0𝜂̅/−
𝑐0ℎ𝛾

2
}

𝑑ℎ

𝑑𝑥
.   

                   (5.27) 

In terms of 𝐻𝑚0 for both types of breakers: 

M-I (set-up): 

For spilling breakers,  

𝑑𝜂̅/

𝑑𝑥
= −

1

𝜌𝑤𝑔𝐿

𝑑𝑆𝑥𝑥𝑠́

𝑑𝑥
+

𝑄

𝐿
𝐾1

𝑑𝐻𝑚0

𝑑𝑥
−

𝑅

𝐿

𝑑ℎ

𝑑𝑥
,              (5.28) 

where 𝐿 = (ℎ + 𝜂̅) − 𝑐0𝜂̅ −
𝑐0𝐾1

2√2
𝛤 (

1

𝜅
+ 1) 𝐻𝑚0, 𝑄 =

𝑐0𝜂̅

2
+

𝑐0𝐾1

3√2
𝛤 (

1

𝜅
+ 1) 𝐻𝑚0, 

𝑅 = 𝑐0𝜂̅ +
𝑐0𝐾1

2√2
𝛤 (

1

𝜅
+ 1) 𝐻𝑚0, and 𝑆𝑥𝑥𝑠

́ =
1

16
𝜌𝑤𝑔𝛤 (

2

𝜅
+ 1) 𝐻𝑚0

2 {
3

2
−

(
2𝑐0

2−𝑐0

2−2𝑐0
)}+

𝑐0
2𝑤𝑟

2𝜌𝑤𝐾1

√2
(

4−3𝑐0

12
) 𝛤 (

1

𝜅
+ 1) 𝐻𝑚0.  

M-I (set-up): 

For plunging breakers, 

𝑑𝜂̅/

𝑑𝑥
= −

1

𝜌𝑤𝑔𝐿́

𝑑𝑆𝑥𝑥𝑝́

𝑑𝑥
+

𝑄́

𝐿́
𝛾

𝑑ℎ

𝑑𝑥
−

𝑅́

𝐿́

𝑑ℎ

𝑑𝑥
,               (5.29) 

where 𝐿́ = (ℎ + 𝜂̅) − 𝑐0𝜂̅ −
𝑐0𝛾

2
ℎ , 𝑄́ =

𝑐0𝜂̅

2
+

𝑐0𝛾

3
ℎ , 𝑅́ = 𝑐0𝜂̅ +

𝑐0𝛾

2
ℎ , and 𝑆𝑥𝑥𝑝

́ =

1

16
𝜌𝑤𝑔𝛤 (

2

𝜅
+ 1) 𝐻𝑚0

2 {
3

2
− (

2𝑐0
2−𝑐0

2−2𝑐0
)}+

𝑐0
2𝑤𝑟

2𝜌𝑤𝛾

2
 h(

4−3𝑐0

12
) . 

M-II:  

In this context, the equation for wave setup is identical to that outlined in Eq. 

(5.24). However, the conservation of momentum equation (Eq. (5.25)) can be revised 

for both spilling and plunging breakers as follows: 

𝑑𝜂̅

𝑑𝑥
= −

1

𝜌𝑤𝑔(ℎ+𝜂̅)

𝑑𝑆𝑥𝑥2
′′

𝑑𝑥
,                (5.30) 
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where 𝑆𝑥𝑥2
′′ =

2𝐸𝑘

𝑠𝑖𝑛ℎ2𝑘ℎ
∫ (1 − 𝐶0𝑒𝑘0𝑧) [𝑐𝑜𝑠ℎ2𝑘(ℎ + 𝑧) − {𝑠𝑖𝑛ℎ𝑘(ℎ + 𝑧) +

0

−ℎ−∆h

𝐶0

(1−𝐶0𝑒𝑘0𝑧)(𝑘2−𝑘0
2)

[𝑒𝑘0𝑧(𝑘𝑘0𝑐𝑜𝑠ℎ𝑘(ℎ + 𝑧) − 𝑘0
2𝑠𝑖𝑛ℎ𝑘(ℎ + 𝑧)) − 𝑘𝑘0𝑒𝑘0ℎ]}] 𝑑𝑧 +

𝜌𝑤𝑔𝐻𝑚𝑜
2

32
𝛤 (

2

𝜅
+ 1) + 𝜌𝑤𝑔ℎ∆h. 

5.3.3 Solutions for Proposed Models  

Achieving analytical solutions for M-I and M-II in the contexts of wave height 

and setup is particularly challenging because of the numerous nonlinear terms involved. 

Therefore, a numerical method was employed to solve these models. The x-axis is 

considered to point toward the shoreline. The entire domain is discretised for systematic 

analysis and evaluation, and the spacing in the x-direction in the grid is equal to Δx. For 

the discretisation of the derivative terms, it has been used the forward finite difference 

(FFD) method, whereas, for the discretisation of all the other terms, the central value is 

used. 

5.3.3.1 Solutions for significant wave height 

M-I (spilling breaker): 

Combining Eqs. (5.06) and Eq. (5.16) and reorganising the result yields: 

1

16
𝜌𝑤𝑔

𝑑(𝐻𝑚0
2 √𝑔ℎ)

𝑑𝑥
= −

𝐾1𝑤𝑟𝑐0𝜌𝑤𝑔

2√2(1−𝑐0)
𝛤 (

1

𝜅
+ 1) 𝐻𝑚0𝑒

−(
√2 𝛾ℎ

𝐻𝑚0
)

𝜅

.            (5.31) 

Applying the FFD scheme in Eq. (5.31), yields: 

(𝐻𝑚0)i+1 =
√(𝐻𝑚0

2 √ℎ)
𝑖
−𝐴∆𝑥𝐻𝑚0,𝑖𝑒

−(
√2𝛾ℎ𝑖
𝐻𝑚0,𝑖

)

𝜅

(√ℎ)
i+1

,                (5.32) 

where  A =
8𝐾1𝑐0𝑤𝑟

√2𝑔(1−𝑐0)
𝛤 (

1

𝜅
+ 1). 

M-I (plunging breaker): 

Similarly, Eqs. (5.06) and (5.18) togetherly provide: 
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1

16
𝜌𝑤𝑔

𝑑(𝐻𝑚0
2 √𝑔ℎ)

𝑑𝑥
= −

𝐾2𝑤𝑟𝑐0𝛾𝜌𝑤𝑔

2(1−𝑐0)
ℎ𝑒

−(
√2𝛾ℎ

𝐻𝑚0
)

𝜅

.            (5.33) 

Applying the FFD technique in Eq. (5.33), yields: 

(𝐻𝑚0)𝑗+1 =
√(𝐻𝑚0

2 √ℎ)
𝑗
−𝐵∆𝑥ℎ𝑗𝑒

−(
√2𝛾ℎ𝑗
𝐻𝑚0,𝑗

)

𝜅

(√ℎ)
𝑗+1

,               (5.34) 

where 𝐵 =
8𝐾2𝑐0𝑤𝑟𝛾

√𝑔(1−𝑐0)
. 

M-II: 

For M-II, combined Eqs. (5.06) and (5.20) that yield: 

1

16
𝜌𝑤𝑔

𝑑(𝐻𝑚0
2 √𝑔ℎ)

𝑑𝑥
= −𝐾3𝑤𝑟𝑐0𝜌𝑤𝑔 (

1−𝑒−𝑘0ℎ

1−𝑐0𝑒−𝑘0ℎ) 𝑒
−(

√2𝛾ℎ

𝐻𝑚0
)

𝜅

.           (5.35) 

Similarly, By applying the FFD scheme in Eq. (5.35), provides: 

(𝐻𝑚0)𝑗+1 =
√(𝐻𝑚0

2 √ℎ)
𝑗
−C∆𝑥ℎ𝑗𝑒

−(
√2𝛾ℎ𝑗
𝐻𝑚0,𝑗

)

𝜅

(√ℎ)
𝑗+1

,               (5.36) 

where C =
8𝐾3𝑐0𝑤𝑟

√𝑔(1−𝑐0)
. 

5.3.3.2 Solution for wave set-up 

M-I (spilling breaker): 

Eq. (5.28) is discretised by using the aforementioned scheme to obtain a solution 

for the wave set-up in the case of spilling breaking waves. This yields: 

𝜂́̅𝑗+1 = 𝜂́̅𝑗 −
3

32𝐿
𝛤 (

2

𝜅
+ 1) (𝐻𝑚0(𝑗+1)

2 − 𝐻𝑚0(𝑗)
2 ) + 𝛤 (

2

𝜅
+

1) (
2𝑐0

2−𝑐0

16𝐿(2−2𝑐0)
) (𝐻𝑚0(𝑗+1)

2 − 𝐻𝑚0(𝑗)
2 ) − (4 − 3𝑐0)

𝑐0
2𝑤𝑟

2𝐾1

12√2𝑔𝐿
𝛤 (

1

𝜅
+ 1) (𝐻𝑚0(𝑗+1) −

𝐻𝑚0(𝑗)) + 𝛤 (
1

𝜅
+ 1)

𝑄𝐾1

√2𝐿
(𝐻𝑚0(𝑗+1) − 𝐻𝑚0(𝑗)) −

𝑅

𝐿
(ℎ𝑗+1 − ℎ𝑗),           (5.37) 

where the other (L, Q, and R) parameters provide the central value. 
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M-I (plunging breaker) 

Similarly, Eq. (5.38) can be obtained by discretising Eq. (5.29) by using the 

same numerical scheme. 

𝜂́̅𝑗+1 = 𝜂́̅𝑗 −
3

32𝐿
𝛤 (

2

𝜅
+ 1) (𝐻𝑚0(𝑖+1)

2 − 𝐻𝑚0(𝑖)
2 ) + (

2𝑐0
2−𝑐0

16𝐿(2−2𝑐0)
𝛤 (

2

𝜅
+ 1)) (𝐻𝑚0(𝑖+1)

2 −

𝐻𝑚0(𝑖)
2 ) − (4 − 3𝑐0)

𝑐0
2𝑤𝑟

2𝛾

12𝑔𝐿
(ℎ𝑖+1 − ℎ𝑖) +

𝑄𝛾

𝐿
(ℎ𝑖+1 − ℎ𝑖) −

𝑅

𝐿
(ℎ𝑖+1 − ℎ𝑖),          (5.38) 

where other (𝐿́, 𝑄́ and 𝑅́) parameters supply the central value. 

M-II 

To solve M-II, Eq. (5.30) is discretised using the same scheme which yields: 

𝜂́̅𝑗+1 = 𝜂́̅𝑗 −
1

𝜌𝑤𝑔(ℎ𝑖+𝜂́̅𝑗)
(𝑆𝑥𝑥,𝑖+1

′′ − 𝑆𝑥𝑥,𝑖
′′ ).             (5.39) 

The value of each parameter on the right-hand sides of Eqs. (5.32), (5.34), (5.36), (5.37), 

(5.38), and (5.39) are known. Hence, calculating the spectral significant wave height 

and wave set-up using these equations is straightforward. 

5.4 Results and Validations 

5.4.1 Data  

Validating the developed models through comparison with experimental data is 

crucial. To this end, conducted experiments (as detailed in section 5.4.1.1.) and 

compiled experimental data from alternative sources (as elaborated in section 5.4.1.2.).  

5.4.1.1 Experiment 

To evaluate the accuracy of the developed model, the authors carried out 

experiments and collected data between November 2nd and 12th, 2023, at a wave flume 

situated in the S2 building of the Graduate School of Osaka University in Japan. The 

primary objective of the experiment was to explore the complexities of cross-shore 

hydrodynamics and the behavior of air bubbles in breaking waves. The setup featured 

a compact wave tank that measured 20 m in length, 0.7 m in width, and 1.0 m in-depth, 

along with a 5 m long sloping beach profile made of wood and steel, designed with a 
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slope ratio of 1/10. During the experiments, the beach remained unchanged. Both 

regular and irregular waves were generated, and the study comprised three main tests, 

each consisting of several cases, with two of the tests conducted under irregular wave 

conditions. 

For the generation of irregular waves, the authors used the JONSWAP spectrum 

developed by Hasselmann et al. (1973), setting the spectral width parameter at 3.3. The 

experimental campaign included 24 cases, with incident significant wave heights 

ranging from 6.8 cm to 9.30 cm (see Table 5.1). The spectral peak periods varied 

between 1.72 s and 1.91 s. Of the 24 test scenarios, 8 cases employed JONSWAP 

spectra, another 8 used Modified Bretschneider spectra, and the remaining cases 

featured regular waves. Among the JONSWAP spectrum cases, 4 tests focused on 

plunging breakers, while the other 4 concentrated on spilling breakers. Data were 

gathered by measuring water surface elevation at 9 cross-shore locations using 

capacitance-type wave gauges (see Fig. 2.01 in Chapter 2).  

To maintain consistency, each case underwent more than five pre-testing procedures 

prior to the final test. Each actual test lasted 5 minutes, with a sampling frequency of 

100 Hz, generating 30,000 data points. Following each test, approximately 10 minutes 

were dedicated to preparation before moving on to the next test. The zero-up crossing 

method was utilized to isolate individual wave heights and periods. Afterward, 

formulas for irregular wave heights and periods were applied to calculate statistical 

wave heights and periods for each test at every gauge (Bosboom et al., 1984; Hughes, 

1993). Each test scenario produced over 250 waves.  

Table 5.1: Incident wave parameters for the experiment. 

Cases Hm0 (m) Tp (s) h0 (m) 

Case I 0.093 1.91 0.30 

Case II 0.085 1.72 0.30 

Case III 0.068 1.85 0.30 

Case IV 0.079 1.86 0.30 
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5.4.1.2 Collected experimental data 

To improve the validation process, a comprehensive dataset on spectral 

significant wave height and wave setup was compiled from various sources, 

encompassing a wide range of cases. This collection includes experiments conducted 

at different scales, such as SS, LS, and FE, reflecting diverse wave conditions and 

bottom topographies. An overview of the varied experimental data for significant wave 

heights is presented in Table 2.2 of Chapter 2, while Table 2.3 in Chapter 2 details the 

gathered experimental data for wave set-up.  

5.4.2 Classifying Wave Breakers 

Consider a beach traversed by an irregular wave, as illustrated in Fig. 4.02 in 

Chapter 4. As the wave enters the breaking phase, both its energy and height gradually 

decrease as it approaches the shoreline. Therefore, it is essential to determine the exact 

locations where these waves begin to break. In this context, we can refer to the equation 

developed by Thornton and Guza, (1983), which can be concisely expressed as follows: 

𝐻𝑚0,𝑏 = √2𝛾ℎ,                                                                                            (5.40) 

where 𝐻𝑚0,𝑏 is the spectral significant wave height at the breaking point. 

Utilized the surf similarity parameter (𝜉𝑏), suggested by Battjes, (1974), to detect the 

wave breakers (see section 3.4.2. in Chapter 3), where 𝜉𝑏 can be obtained using the 

following equation: 

𝜉𝑏  =
𝑡𝑎𝑛𝛼

√
𝐻𝑚0,𝑏

√2𝐿0

.                  (5.41) 

Here 𝐿0 is the deep water wavelength, and 𝛼 is the slope. 

5.4.3 Determination of Void Fraction (c0)  

In their study, Hoque and Aoki, (2005) examined a substantial amount of 

experimental data to develop a relationship for calculating the void fraction (c0). This 

relationship is defined  as a function of the horizontal distance from the breakpoint to 

the shoreline (see Section 4.5.3 in Chapter 4) 
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5.4.4 Models Against Experimental Data 

To accurately calculate both wave height and wave set-up, it is essential to 

satisfy the boundary conditions at both the seaward and coastline boundaries. The 

following parameters are needed for the seaward boundary to effectively apply the 

model: water depth, incident spectral significant wave height, bottom topography, and 

peak wave period. Additionally, an incident set-down is required for calculating the 

wave set-up. Once the boundary conditions are confirmed, the types of breakers are 

identified using the incident wave parameter values, the breaker index formula, and the 

surf similarity parameter. For Model I (M-I), the wave height of spilling breakers is 

calculated using Eq. (5.32), while Eq. (5.34) is applied for plunging breakers. Model II 

(M-II) uses Eq. (5.36) for both types of breakers. After determining the wave height, 

the wave set-up is calculated using Eqs. (5.37) and (5.38) for both spilling and plunging 

breakers in M-I. In contrast, Eq. (5.39) is used for M-II for both breaker types. In these 

calculations, the reference void fraction for spilling and plunging breakers is considered. 

The computed void fraction ranges from 12% to 15% for spilling breakers and from 

16% to 18% for plunging breakers, aligning with values reported in the literature 

(Blenkinsopp and Chaplin 2011; Huang et al. 2009; Hoque and Aoki 2005; Hossain 

and Araki 2022). The mesh size used in the computations is the same as the measured 

wave height, except when it exceeds 5 m (Rattanapitikon 2008). The unspecified 

coefficients K1, K2, and K3 were determined using the least-squares method, with the 

resulting values of 0.36, 0.39, and 0.47 applied in the calculations for both proposed 

models.   

Significant wave height 

Fig. 5.01 compares the proposed models (M-I and M-II) with the established 

models RS-10 (Rattanapitikon and Shibayama, 2010) and NLHO-17 (Nam et al., 2017) 

using a variety of experimental data scenarios (Authors, 2023). 
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Figure 5.01: Comparison of the spectral significant wave heights of M-I, M-II, RS-

10, and NLHO-17 with authors’ experimental data. 

M-I exhibited strong performance across a wide range of experimental cases, though 

some discrepancies were observed with M-II. Among the datasets evaluated, the 

developed models, especially M-I, showed excellent agreement with the existing RS-

10 and NLHO-17 models. 
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The analysis of large-scale datasets, as shown in Fig. 5.02 and detailed in Table 2.2 of 

Chapter 2, reveals a strong correlation in wave height calculations across various 

models. M-I, NLHO-17, and RS-10 show significant consistency with the experimental 

data provided by Kraus and Smith, (1994) and Roelvink and Reniers, (1995). However, 

when examining the dataset from Dette et al. (2002), discrepancies in wave breaking 

are observed, especially for M-II. These deviations are likely due to the unique 

conditions of storm-wave data collection. Such findings are consistent with the 

observations made by Hossain and Araki, (2023). 
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Figure 5.02: Comparison of the spectral significant wave height of M-I, M-II, RS-10, 

and NLHO-17 with large-scale experimental data. 

The results of the proposed models were compared with RS-10 and NLHO-17 against 

small-scale data collected from multiple studies (refer to Table 2.2 in Chapter 2). As 

illustrated in Fig. 5.03, the results from M-I, NLHO-17, and RS-10 show a high level 

of agreement for almost all data points. M-II exhibited a minor error, but it was not 

statistically significant.  
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Figure 5.03: Comparison of the spectral significant wave height of M-I, M-II, RS-10, 

and NLHO-17 with small-scale experimental data. 

The models showed good agreement with data from plane-sloping beaches (Ting 2002) 

and quick rise and fall slopes (Smith and Seabergh 2001; Smith and Kraus 1990), 

particularly in areas near bars with narrow crests. Nonetheless, M-II displayed slightly 

less accuracy in predicting wave heights close to the shoreline. 

The evaluation of the proposed models, as well as RS-10 and NLHO-17, against 

experimental field data (refer to Table 2.2, Chapter 2) is shown in Fig. 5.04. The models 

demonstrated strong agreement with the datasets provided by Birkemeier et al. (1997) 

and Kraus et al. (1989). However, M-II exhibited a minor deviation near the wave-

breaking point in the dataset from Smith et al. (1993). This discrepancy is attributed to 

the presence of a mound close to the breaking point. 
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Figure 5.04: Comparison of the spectral significant wave height of M-I, M-II, RS-10, 

and NLHO-17 with field experimental data. 

Fig. 5.05 compares M-I, M-II, and NLHO-17 concerning the RS-10 model, using 

different datasets (LS, SS, and FE). The results reveal that M-I steadily outperforms M-

II in the comparison. 
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Figure 5.05: Variation of computed spectral significant wave heights of M-I, M-II, 

RS-10, and NLHO-17 with different measured data. 

As a result, the M-I model demonstrates strong performance in predicting wave heights 

across diverse bathymetry. However, M-II has some limitations, particularly in 

accurately calculating wave heights in the presence of beach mounds immediately along 

the coastline. 

Wave set-up 

Fig. 5.06 illustrates a comparison of wave set-up calculations, highlighting the 

performance of the proposed models alongside NLHH-09 (Nam et al. 2009) and DDD-

85 (Dally, Dean, and Dalrymple 1985). The results reveal that M-I, NLHH-09, and 

DDD-85 exhibit outstanding promise with the experimental datasets (Authors-23). 
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Figure 5.06: Wave set-up differences of M-I, M-II, DDD-85, and NLHH-09 with the 

authors' experimental data. 

Additionally, another comparison, depicted in Fig. 5.07 and utilizing the datasets listed 

in Table 2.3 of Chapter 2, mirrors the results shown in Fig. 5.06. Nonetheless, in both 

comparisons, M-II displayed discrepancies after the breaking point and near the 

shoreline.  
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Figure 5.07: Wave set-up variations of M-I, M-II, DDD-85, and NLHH-09 with 

different experimental data. 

The results for wave set-up from the proposed models were found to be in close 

agreement with the regular wave models proposed by Hoque et al., (2019) and Hoque, 

(2002), respectively. 
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Also, Fig. 5.08 presents a comparison between the proposed models and the NLHH-09 

model, alongside the DDD-85 model, using various experimental datasets. This 

analysis underscores the performance of M-I and M-II, revealing that M-I demonstrates 

superior effectiveness compared to M-II. 

 

 

 

 

 

 

 

 

Figure 5.08: Variations of computed wave set-up of M-I, M-II, DDD-85, and NLHH-

09  with different measured data. 

5.4.5 Error Assessment 

A thorough assessment was conducted to evaluate the performance of M-I and 

M-II in comparison to RS-10 and NLHO-17 for predicting spectral significant wave 

height, and to DDD-85 and NLHH-09 for estimating wave set-up. This evaluation 

utilized various experimental datasets detailed in Tables 2.2 and 2.3 of Chapter 2. The 

accuracy of the models was measured using several error metrics, including the root 

mean square relative error (RMSRE), the percentage error index (P20), and the Brier 

skill score (BSS). 

RMSRE  

The RMSRE is used to evaluate the accuracy of a model’s predictions by comparing 

them to observed values. This metric is particularly useful for understanding the scale 

of errors across different ranges of values.  
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The calculation of RMSRE for wave height is given by: 

𝑅𝑀𝑆𝑅𝐸 = √
∑ (𝐻𝑚𝑜.𝑐𝑗−𝐻𝑚𝑜.𝑚𝑗)

2𝑀
𝑗=1

∑ 𝐻𝑚𝑜,𝑚𝑗
2𝑀

𝑗=1

∗ 100,             (5.42) 

where 𝐻𝑚𝑜.𝑐𝑗  is the computed significant wave height, 𝐻𝑚𝑜.𝑚𝑗  is the measured 

significant wave height, and M is the number of data points. 

Likewise, for the wave set-up: 

𝑅𝑀𝑆𝑅𝐸 = √
∑ (𝜂́̅𝑐𝑗−𝜂́̅𝑚𝑗)

2𝑀
𝑗=1

∑ 𝜂́̅𝑚𝑗
2𝑀

𝑗=1

∗ 100,                (5.43) 

where 𝜂́̅𝑐𝑗 is the computed wave set-up, 𝜂́̅𝑚𝑗 indicates the measured wave set-up, and 

M is the number of data points. 

Fig. 5.09 illustrates the RMSRE for Hm0, comparing the proposed models (M-I and M-

II) with RS-10 and NLHO-17. For Hm0, the average RMSRE values for the proposed 

models are 6.17% for M-I (with sub-averages of 5.52% for LS, 6.90% for SS, and 

6.14% for FE) and 10.09% for M-II (with sub-averages of 8.11% for LS, 11.53% for 

SS, and 10.64% for FE). In comparison, the RS-10 and NLHO-17 models show average 

RMSRE values of 7.82% and 7.43%, respectively, with RS-10 having sub-averages of 

6.5% for LS, 8.33% for SS, and 8.62% for FE, and NLHO-17 having sub-averages of 

6.12% for LS, 8.21% for SS, and 7.97% for FE.  

The error analysis, as depicted in Fig. 5.10, reveals that M-I excels in predicting wave 

set-up with an average RMSRE of 7.91%. In comparison, M-II has a higher RMSRE 

of 12.42%, while NLHH-09 and DDD-85 show average RMSRE values of 8.76% and 

9.85%, respectively. This analysis highlights M-I's superior performance in accurately 

forecasting wave set-up, outperforming the other models. 
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Figure 5.09: RMSRE values of M-I, M-II, RS-10, and NLHO-17 for spectral 

significant wave heights. 

 

 

 

Figure 5.10: RMSRE values of M-I, M-II, DDD-85, and NLHH-09 for wave set-up. 

Percentage Error 

The P20 metric reflects the percentage of cases where the deviation between predicted 

and observed values is within 20%. As shown in Fig. 5.11 and summed up in Table 5.2, 

which outlines the performance of the models for predicting significant wave heights, 

the average P20 values are 3.01% for M-I, 10.21% for M-II, 3.38% for NLHO-17, and 

3.67% for RS-10. This analysis reveals that M-II had a higher proportion of predictions 

falling outside the 20% margin, indicating its comparatively lower accuracy in 

forecasting significant wave heights. 
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Figure 5.11: P20 Comparison of the spectral significant wave height of M-I, M-II, 

NLHO-17, and RS-10 with various experimental data (LS,  SS, and FE). 

Table 5.2: P20 error summary for spectral significant wave height. 

Model Names 
Error (%) 

Average Error (%) 
LS SS FE 

M-I 2.07 3.59 3.11 3.01 

M-II 7.78 14.09 8.86 10.21 

RS-10 3.13 3.86 4.02 3.67 

NLHO-17 2.91 3.71 3.53 3.38 

Furthermore, in evaluating the wave set-up, Fig. 5.12 and Table 5.3 display the 

variations in P20 values for the different models (M-I, M-II, NLHH-09, and DDD-85). 

The average P20 values are 7.11% for M-I, 19.41% for M-II, 8.15% for NLHH-09, and 

9.07% for DDD-85. These results also indicate that M-I stands out with superior 

accuracy in predicting wave set-up compared to the other models. 
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Table 5.3: P20 error summary for wave set-up. 

Model Names Average Error (%) 

M-I 7.31 

M-II 19.41 

DDD-85 9.07 

NLHH-09 8.15 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12: P20 differences of the wave set-up of M-I, M-II, NLHH-09, and DDD-

85 with different experimental data. 

BSS 

The BSS measures how well the current model reduces relative error compared to 

previous models. It is expressed mathematically as follows: 

𝐵𝑆𝑆 = {1 −
𝑅𝑀𝑆𝑅𝐸(𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑚𝑜𝑑𝑒𝑙)

𝑅𝑀𝑆𝑅𝐸(𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑚𝑜𝑑𝑒𝑙)
}.               (5.44) 
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Figure 5.13:  BSS comparison of M-I, M-II, and NLHO-17 concerning RS-10 for 

spectral significant wave height. 

Fig. 5.13 illustrates the BSS values for models M-I, M-II, and NLHO-17, compared to 

RS-10 across LS, SS, and FE datasets for spectral significant wave height prediction. 

The positive BSS values for M-I highlight its superior performance relative to M-II, 

which shows negative BSS values, indicating its less effective performance.  

 

 

Figure 5.14: BSS comparison of M-I, M-II, and NLHH-09  with respect to DDD-85 

for wave set-up. 

In the context of wave set-up analysis, Figure 5.14 illustrates the Brier Skill Score 

(BSS) values for models M-I, M-II, and NLHH-09 compared to DDD-85. The 
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evaluation spans a range of datasets: AREGS-07, Authors-23, RGE~L-01, St-85, and 

BJ-78. Particularly, away from the instance of the RGE~H-01 data, M-I consistently 

shows positive BSS values, highlighting its effectiveness in accurately predicting wave 

set-up dynamics. 

5.5 Conclusion 

In this chapter, two energy-dissipation models were developed to study irregular 

waves undergoing both spilling and plunging breaking phenomena. The models, M-I 

and M-II, were based on the integration of air bubbles and the concept of the fraction 

of breaking waves, as suggested by Hoque, (2002) and Stingray et al. (2019), 

respectively. The foundational framework of these models was inspired by the air-

bubble model for wave breakers under regular wave conditions proposed by Hoque et 

al. (2019) and Hoque, (2002). The breaking criterion established by Thornton and Guza, 

(1983) and the surf similarity parameter introduced by Battjes, (1974) were utilized to 

identify and categorize breaking waves. These models were then used to calculate 

spectral significant wave heights and wave set-ups by applying the principles of energy 

and momentum conservation laws. The validation of the adapted models was achieved 

through application across various wave conditions and seabed profiles, utilizing data 

from multiple experiments, including SS, LS, and FE by different researchers. The 

spectral significant wave height calculated by M-I showed excellent agreement with 

experimental data and existing models (NLHO-17 and RS-10), while M-II showed 

some discrepancies near mounds and the coastline. For wave set-up calculations, M-I 

performed exceptionally well across various experimental datasets and compared 

favorably with models like NLHH-09 and DDD-85, except near the breaking point. In 

contrast, M-II exhibited more inconsistencies near the breaking point and coastline 

compared to experimental data. The performance of the proposed models was assessed 

using error analysis with three error indices: RMSRE, P20, and BSS, to ensure an 

unbiased evaluation. When comparing the proposed models with established models 

(NLHO-17 and RS-10 for significant wave height; NLHH-09 and DDD-85 for set-up), 

the average P20 values for spectral significant wave height prediction were 3.01%, 

10.21%, 3.38%, and 3.67% for M-I, M-II, NLHO-17, and RS-10, respectively. The 

RMSRE values were 6.17%, 10.09%, 7.82%, and 7.82%, respectively. For the BSS 

evaluation, M-I, M-II, and NLHO-17 were compared with RS-10 models, with M-I 
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showing all positive BSS values (LS, SS, and FE), whereas M-II had negative values, 

highlighting M-I's superiority. In terms of wave set-up, the average P20 values were 

7.11%, 19.41%, 8.15%, and 9.07% for M-I, M-II, NLHH-09, and DDD-85, respectively. 

The RMSRE values were 7.91%, 12.42%, 8.76%, and 9.85% for these models. In the 

BSS assessment, M-I, M-II, and NLHH-09 were compared against DDD-85. 

Interestingly, M-I's BSS values were consistently positive, while M-II mostly had 

negative BSS values, except for the Authors-23 data, and the St-85 data were close to -

1.00 (-0.82). This indicates the superior performance of M-I and unsatisfactory results 

for M-II in predicting wave set-up. Overall, despite some minor inconsistencies close 

to the shoreline, particularly for M-II, the models, especially M-I, demonstrated strong 

simulation capabilities for both spectral significant wave height and wave set-up across 

an extensive series of wave circumstances and coastal outlines. 
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CHAPTER 6 

Wave Height Distribution for Plunging Breakers Induced by 

Air Bubbles 

6.1 Abstract 

This chapter examines how wave height distributions are influenced by 

plunging breaking waves and air bubbles in the surf zone. The wave height distributions 

that were formerly predicted by various models have been redeveloped to account for 

the effects of air bubbles. The most widely used wave height distributions were 

evaluated against laboratory observations conducted in a custom-built wave flume. The 

findings indicate a significant deviation from the Rayleigh distribution, with the 

proposed model showing a closer alignment with experimental data, especially for 

larger wave heights. The probability densities for larger waves are significantly reduced 

due to the presence of entrained air bubbles, resulting in measured wave heights that 

are lower than those predicted by the Rayleigh distribution. Moreover, the wave height 

parameters derived from the proposed model show good agreement with laboratory 

measurements when compared to the Rayleigh distribution. The theoretical analysis 

further demonstrates the dependency of the scale parameter on the decay coefficient, 

which matches well with the observed data and simplifies the proposed distribution to 

a one-parameter model. Error analysis confirms that the results from the proposed 

model perform well in comparison to existing models.  

6.2 Introduction 

In coastal and marine engineering, understanding wave height distribution is 

vital for several applications. It is crucial for tasks like evaluating wave loading on 

coastal infrastructure, estimating wave overtopping, and designing offshore structures 

and wind turbines. This knowledge ensures the reliability and effectiveness of 

engineering solutions in marine environments (Goda, 2010; Karmpadakis et al., 2022). 

The representative wave heights are typically obtained from a suitable distribution and 

integrated into design calculations. In some cases, wave heights—whether individual 

or representing the entire distribution—are estimated offshore and then modeled 
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towards the shoreline using numerical techniques. Accurate estimation of wave height 

distributions is essential, as inaccuracies can introduce uncertainty and errors into the 

design process. Although the Rayleigh probability density function (PDF) is often used 

for non-breaking waves, its accuracy diminishes in shallow waters where depth 

limitations and breaking waves occur. In these conditions, the actual wave height 

distribution can differ significantly from the Rayleigh model, necessitating alternative 

approaches for more accurate modeling(Battjes and Groenendijk, 2000; Dally, 1990; 

Hossain et al., 2022; Stringari and Power, 2019). 

In recent years, coastal engineers have struggled to accurately model the distribution of 

wave heights in shallow water areas, especially in depth-limited breaking conditions 

along shallow foreshores and in the surf zone. When waves transport from deep water 

into the nearshore zone, they become steeper, eventually leading to breaking waves. 

This transition adds complexity to the modeling process. During the breaking process, 

air bubbles get entrained in the water, as shown in Fig. 6.01(a). This air entrainment 

transforms the wave energy into turbulence, resulting in a decrease in wave height as 

the waves approach the shoreline (Hoque et al., 2021, 2019). In shallow regions, four 

types of breakers are commonly observed, with plunging breakers being particularly 

significant. In a plunging breaker, the wave crest becomes unstable, collapses forward, 

and releases a large amount of energy, making it especially destructive. This type of 

breaking wave generates turbulent motion and high kinetic energy, which draws air into 

the water. As the wave crest falls, it forms air pockets within the water, enhancing 

turbulence and increasing energy dissipation. Consequently, some of the wave's kinetic 

energy is converted into turbulent kinetic energy, contributing to the overall dissipation 

of wave energy. Understanding this process is crucial, as it influences nearshore 

currents, sediment transport, and coastal morphology. The phenomenon of air bubble 

entrainment in plunging breaking waves has been extensively studied by numerous 

researchers (Chanson et al., 2002, 2006; Hoque and Aoki, 2008; Hossain and Araki, 

2022, 2023). Research from the studies mentioned above has demonstrated that 

plunging breaking waves have higher levels of air entrainment, which results in greater 

energy dissipation. This leads to a more complex distribution of wave heights in the 

presence of plunging breaking waves. 

Many studies have also examined the derivation of probability density functions and 

analytical distributions of wave heights, factoring in the impact of depth-induced wave 
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breaking in both deep and shallow water regions (Battjes and Janssen, 1978; 

Karmpadakis and Swan, 2022; Katsardi et al., 2013; Longuet-Higgins, 1952; Tayfun 

and Fedele, 2007; Thornton and Guza, 1983). 

(a) 

 

 

 

 

 

(b) 

 

 

 

Figure 6.01:(a) An image depicting the ideal plunging breaking wave with air 

bubbles, and (b) A conceptual illustration outlining the propagation of plunging 

breaking waves over a uniform sloping seabed. 

To determine the wave height distribution across the surf zone or a shallow foreshore, 

researchers have mainly focused on two approaches: (i) the point model (Battjes and 

Groenendijk, 2000; Klopman et al., 1989; Naess, 1985; Tayfun, 1991), and ii) the wave 

energy propagation model (WEPM) (Battjes and Janssen, 1978; Jadhav and Chen, 

2013; Mendez et al., 2004; Thornton and Guza, 1983).  

The point model, which uses a localized analysis that takes into account bathymetry 

and coastal morphology, offers site-specific predictions for individual wave heights 

based solely on local parameters. On the other hand, WEPM depends on the balance of 
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energy conservation for wave decay, which is determined by the specific energy 

dissipation model used.  

An examination of various studies on wave height distributions in both deep and 

shallow water environments reveals a wide array of approaches to comprehending wave 

dynamics. It was found that, Thornton and Guza, (1983) successfully illustrated the 

applicability of a modified Rayleigh distribution for spilling breakers in the surf zone, 

utilizing the bore energy dissipation concept. In contrast, Hossain et al. (2022) proposed 

a novel distribution based on the dynamics of air bubbles for similar phenomena. The 

impact of vegetation on wave heights was specifically addressed by Jadav and Chen, 

(2013), who developed a probability density function that accounts for the attenuation 

effects caused by vegetation. Further research by Glukhovskiy et al. (1966), supported 

by Xiong et al. (2020), favored the Weibull distribution, which provided a better fit for 

shallow water conditions compared to the Rayleigh distribution. Mendez et al. (2004) 

formulated a probability density function for transformed waves in the surf zone, 

incorporating a bore energy dissipation model, which accurately represented wave 

height distribution on planar beaches. Meanwhile, Wu et al. (2016) introduced a two-

part Weibull-generalized Pareto model for wave height in shallow water, parameterized 

using laboratory and field data to enhance understanding of coastal wave dynamics. 

Additionally, Katsardi et al. (2013) and Power et al. (2016) emphasized the intricate 

interactions between environmental factors and wave dynamics, highlighting the 

necessity for refined models capable of accurately predicting wave height distributions 

across various circumstances.  

Research on probability density functions and wave height distributions in shallow 

water, especially regarding breaking waves, has garnered significant attention from 

scholars. However, there is still a lack of understanding regarding the modifications of 

wave height distributions, particularly in irregular waves affected by air bubble 

dynamics during plunging breaking events. This study seeks to fill this gap by 

developing a wave height distribution model specifically designed for random waves 

influenced by air bubble effects in plunging-breaking scenarios. The research highlights 

the essential requirement for precise wave height distribution models to guide the 

design of coastal structures and the management of oceanic controls. 
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6.3 Review of Existing Distribution for Shallow Water 

This section delivers an in-depth examination of various wave height 

distributions that have been tailored for shallow water conditions, based on 

contributions from various investigators (Glukhovskiy, 1966; Battjes and Groenendijk, 

2000; Mendez et al., 2004; Jadhav and Chen, 2013; Wu et al., 2016; Hossain et al., 

2022). Developed under various assumptions, these distributions provide valuable 

insights into the PDF and cumulative distribution function (CDF), covering a range of 

models suitable for shallow water surroundings. 

6.3.1 Glukhovskiy Distribution  

Glukhovskiy, (1966) utilized a Weibull distribution to characterize the 

probability density function for wave height in shallow water, the PDF of this 

distribution can be written as follows: 

𝑃(𝐻) =
𝐵𝜅

𝐻𝑚
(

𝐻

𝐻𝑚
)

𝜅−1

𝑒𝑥𝑝 [−𝐵 (
𝐻

𝐻𝑚
)

𝜅

],              (6.01) 

and CDF: 

𝐹𝐻 = 1 − 𝑒𝑥𝑝 [−𝐵 (
𝐻

𝐻𝑚
)

𝜅

]               (6.02) 

where 𝐻 is the local wave height, 𝐻𝑚 represents the local significant wave height,  𝜅 

denotes the shape parameter, and 𝐵 represents the scale parameter. This distribution 

simplifies to the Rayleigh distribution when the shape parameter (𝜅) is set to 2, and the 

scale parameter (𝐵) is set to 1. 

Limitations: The empirical basis of this distribution limits its applicability, which may 

lead to inaccuracies in complex wave conditions, and it does not establish specific upper 

and lower bounds. 

6.3.2 BG distribution  

To model wave heights in shallow water, Battjes and Groenendijk, (2000) 

developed a bimodal Weibull-Weibull distribution. This distribution's parameters were 

derived from laboratory measurements, focusing on wave heights that exceed a 
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specified threshold, 𝐻𝑡𝑟. The equations for the PDF and CDF of this distribution are as 

follows: 

𝑃(𝐻) = {

𝜅1

𝐻1
(

𝐻

𝐻1
)

𝜅1−1

𝑒𝑥𝑝 [− (
𝐻

𝐻1
)

𝜅1

]

𝜅2

𝐻2
(

𝐻

𝐻2
)

𝜅2−1

𝑒𝑥𝑝 [− (
𝐻

𝐻2
)

𝜅2

]
,  for {

𝐻 ≤ 𝐻𝑡𝑟

𝐻 > 𝐻𝑡𝑟
,           (6.03) 

and  

𝐹𝐻 = {
1 − 𝑒𝑥𝑝 [− (

𝐻

𝐻1
)

𝜅1

]

1 − 𝑒𝑥𝑝 [− (
𝐻

𝐻2
)

𝜅2

]
   for {

𝐻 ≤ 𝐻𝑡𝑟

𝐻 > 𝐻𝑡𝑟
,           (6.04) 

where 𝜅1 = 2, 𝜅2 = 3.6, 𝐻 is the local wave height, and 𝐻𝑡𝑟 = ℎ(5.8 𝑡𝑎𝑛𝜃 + 0.35), 

here 𝑡𝑎𝑛𝜃 is the bed slope. Nevertheless, it is essential to emphasize that the calibration 

of this model is derived solely from unidirectional laboratory measurements, without 

considering bathymetric changes in other directions. The normalization wave heights 

𝐻1 and 𝐻2 are detailed in Table 2 of Battjes and Groenendijk (2000). 

Limitation: One notable drawback of this distribution is that its probability density 

function displays a discontinuity at the transition wave height (Karmpadakis et al., 

2020).  

6.3.3 MLM distribution  

Adopting an entirely different perspective, Mendez et al. (2004) formulated a 

distribution that examines the transformation of wave heights as they near the shoreline. 

They based their model on wave energy propagation, starting with an initial Rayleigh 

distribution in deep water, and subsequently deriving a unique wave height distribution 

for shallow water. This approach incorporates the effects of wave shoaling following 

Green’s law and wave breaking, as outlined by Battjes and Janssen, (1978). The PDF 

and CDF for this distribution are presented below: 

𝑃(𝐻) = 𝜑2(𝜅)
2𝐻𝐻𝑟𝑚𝑠

(𝐻𝑟𝑚𝑠−𝜅𝐻)3
𝑒𝑥𝑝 [− (

𝐻

(𝐻𝑟𝑚𝑠−𝜅𝐻)
)

2

𝜑2(𝜅)],            (6.05) 

and 
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𝐹𝐻 = 1 − 𝑒𝑥𝑝 [− (
𝐻

(𝐻𝑟𝑚𝑠−𝜅𝐻)
)

2

𝜑2(𝜅)]             (6.06) 

where, 𝐻 is the local wave height, 𝐻𝑟𝑚𝑠 stands for the root-mean-square wave height, 

𝜙(𝜅) ≈ (1 − 𝜅0.944)1.19 , and 𝜅 =
𝐻𝑟𝑚𝑠

𝐻𝑚𝑎𝑥
, here 𝜅  is computed from the subsequent 

equation: 

𝜅 = (26.2𝐼𝑟
2 − 20.8𝐼𝑟 + 4.7) (

𝐻𝑟𝑚𝑠

ℎ
)

2.5

for {
(

𝐻𝑟𝑚𝑠

ℎ
) < 0.66

0.25 > 𝐼𝑟 > 0.02
,          (6.07) 

where 

𝐼𝑟 = 𝑡𝑎𝑛𝜃√
𝑔𝑇̅2

2𝜋𝐻𝑟𝑚𝑠
.                (6.08) 

Here, 𝑇̅ stands for the mean wave period, and  𝜃 represents the bed slope. 

Limitations: Although the MLM distribution forms the foundation for WEPM-type 

wave height distributions, it has significant limitations. Notably, its shape parameter is 

constrained for Irrebian numbers below 0.3, and it lacks simple equations for 

calculating statistical parameters. 

6.3.4 JC distribution  

Adjustments to the Rayleigh distribution model have been made by Jadhav and 

Chen, (2013) to incorporate the effects of vegetation on waves as they move into 

shallow water areas. The proposed PDF and CDF are expressed as follows: 

𝑃(𝐻) =
2𝐻

(1−
𝛼𝐻

𝐻𝑟𝑚𝑠
)

3 (
𝛽

𝐻𝑟𝑚𝑠
)

2

𝑒𝑥𝑝 [− (
𝐻

(1−
𝛼𝐻

𝐻𝑟𝑚𝑠
)𝐻𝑟𝑚𝑠

)

2

𝛽2],where 0 ≤ 𝐻 <
𝐻𝑟𝑚𝑠

𝛼
       (6.09) 

and the CDF: 

𝐹𝐻 = 1 − 𝑒𝑥𝑝 [− (
𝐻

(1−
𝛼𝐻

𝐻𝑟𝑚𝑠
)𝐻𝑟𝑚𝑠

)

2

𝛽2].             (6.10) 

where 𝐻 is the local wave height, 𝐻𝑟𝑚𝑠 represents the root-mean-square wave height, 

the shape parameter is 𝛼, and the scale parameter 𝛽, looks like the form of the Weibull 
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distribution. Here, 𝛼 = ∁1𝐻𝑟𝑚𝑠, and 𝛽 = 1 − ∁2𝐻𝑟𝑚𝑠 , ∁1 and ∁2 are the vegetational 

coefficients. 

Limitations: This distribution has been customized for salt marsh vegetation, with the 

shape parameter being impacted by the Keulegan–Carpenter number. The model's 

accuracy heavily depends on the precise estimation of its derivations. 

6.3.5 WRCEJ distribution  

To derive this model, a transition wave height 𝐻𝑡𝑟, was selected to separate the 

distribution into two distinct segments. Ensuring continuity of the probability density 

functions at 𝐻𝑡𝑟 and fitting each segment independently led to the following 

formulation for the PDF (Wu et al., 2016): 

𝑃(𝐻) = {

𝜅𝜇

𝜌𝐻𝑠
(

𝐻

𝜌𝐻𝑠
)

𝜅−1

𝑒𝑥𝑝 [−𝜇 (
𝐻

𝜌𝐻𝑠
)

𝜅

]

1

𝜎
{1 +

𝜉

𝜎
(𝐻 − 𝜌𝐻𝑠)}

−
1

𝜉
−1

𝑒𝑥𝑝[−𝜇]

,   for {
𝐻 ≤ 𝐻𝑡𝑟

𝐻 > 𝐻𝑡𝑟
,         (6.11) 

and CDF: 

𝐹𝐻 = {
1 − 𝑒𝑥𝑝 [−𝜇 (

𝐻

𝜌𝐻𝑠
)

𝜅

]

1 − 𝑒𝑥𝑝[−𝜇] {1 + [1 +
𝜉

𝜎
(𝐻 − 𝜌𝐻𝑡𝑟)]}

−
1

𝜉

,   for {
𝐻 ≤ 𝐻𝑡𝑟

𝐻 > 𝐻𝑡𝑟
,        (6.12) 

where 𝐻 is the local wave height; 𝐻𝑠 represents the significant wave height; 𝜇, 𝜎, and 

𝜅 represent the scale and shape parameters of the Weibull component individually; and 

𝜉 signifies the shape parameter of the Generalized Pareto factor (see Wu et al., (2016)). 

Limitations: In the generalized Pareto distribution, a negative shape parameter 

signifies an upper bound on the distribution, which is often used to characterize 

maximum wave height. However, applying this criterion to random waves in 

intermediate and shallow water depths can be problematic (Karmpadakis et al., 2020). 

Additionally, the presence of multiple scale parameters in the distribution complicates 

the process of accurately determining their values across a wide range of applications. 
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6.3.6 HRH distribution  

In their study, Hossain et al. (2022) developed a model aimed at understanding 

wave height distributions while factoring in the influence of air bubbles during spilling 

breaking waves. This model is based on an initial Rayleigh distribution applicable to 

deep water, which is then modified to establish a specific wave height distribution for 

shallower waters. The formulation considers wave shoaling effects in accordance with 

Green's law and integrates the dynamics of wave breaking, including the interaction of 

air bubbles, as described by Hoque et al. (2019). The PDF and CDF for this wave height 

distribution are presented as follows: 

𝑃(𝐻) =
2(𝐻−𝑞)

(𝐻𝑟𝑚𝑠−𝑤)2 𝑒𝑥𝑝 [− (
𝐻−𝑞

𝐻𝑟𝑚𝑠−𝑤
)

2

],  where 𝑞 ≤ 𝐻 < ∞.              (6.13) 

and the CDF: 

𝐹𝐻 = 1 − 𝑒𝑥𝑝 [− (
𝐻−𝑞

𝐻𝑟𝑚𝑠−𝑤
)

2

],  where 𝑞 ≤ 𝐻 < ∞.                    (6.14) 

Here, 𝐻 is the local wave height; 𝐻𝑟𝑚𝑠 represents the root-mean-square wave height;  

and 𝑞, 𝑤 signify decay coefficients attributed to the effect of air bubbles, as described 

in Hossain et al., (2022). 

Limitations: A key drawback of this distribution is its emphasis on spilling and 

breaking waves, which may limit its applicability in other wave conditions. 

Furthermore, it tends to perform better for smaller wave heights, making it less effective 

for accurately representing larger wave events. 

The extensive literature review highlights a significant emphasis on wave height 

distribution within specific frameworks, including the effects of vegetation, energy 

dissipation, and traditional modeling approaches. However, there is a notable lack of 

research addressing the role of air bubbles in plunging breaking waves, particularly in 

shallow water environments. This gap is critical for several reasons. Firstly, accurately 

forecasting wave forces on coastal structures is essential for their design and durability 

against the added stresses caused by entrained air. Secondly, understanding how air 

bubbles affect wave energy dissipation and sediment transport is crucial for analyzing 

coastal erosion and deposition processes. Thirdly, recognizing this distribution is vital 
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for ensuring safety in navigation and coastal operations, as air bubbles influence water 

density and buoyancy. Finally, precise modeling of these interactions is necessary for 

environmental evaluations and for addressing the effects of climate change on coastal 

ecosystems. Consequently, this study seeks to fill this gap by developing a new 

distribution model for plunging breaking waves that incorporates the effects of air 

bubbles, enabling accurate predictions of wave height in shallow water settings. 

6.4 Model Formulation Considering the Impact of Air Bubbles 

6.4.1 Mathematical Background 

This study introduces a wave height distribution model that incorporates the 

influence of air bubbles, building on the findings of Hoque et al. (2019). It emphasizes 

the crucial role air bubbles play in determining wave heights in shallow water. Unlike 

some existing models that overlook the impact of wave energy in shallower regions, 

this approach recognizes the significant effect of air bubbles on wave height distribution. 

The model begins by transitioning wave heights from deep water to shallow water using 

a Gaussian distribution that takes local conditions into account. As waves approach 

extremely shallow depths, they begin to break, leading to the entrainment of air bubbles 

and subsequent energy dissipation, as illustrated in Fig. 6.01(a). This approach treats 

random waves as individual regular waves, consistent with methodologies previously 

employed in research (Mendez et al., 2004; Jadhav and Chen, 2013). In the surf zone, 

waves lose energy due to air bubbles generated by breaking waves, which inspired 

Hoque et al. (2019) to develop a model for wave energy dissipation based on this 

process, expressed as follows: 

𝐷𝑎 =
𝑦

2

𝑤𝑟𝛼𝜌𝑤𝑔𝑐0

(1−𝑐0)
,                                                                                 (6.15) 

where 𝐷𝑎 is the energy dissipation rate owing to the air bubble effect, 𝑦 signifies the 

penetration depth, 𝜌𝑤 stays the density of water, 𝛼 remains an adjusting parameter and 

for plunging breakers, its value is 1.50 as recommended by Hoque et al., (2019), 𝑤𝑟 is 

the rising bubbles' velocity, and  𝑐0 is the reference void fraction. 

Due to the intense and turbulent characteristics of the plunging wave-breaking process, 

which leads to the incorporation of a significant number of air bubbles, the Führboter, 
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(1970) condition can be utilized to adjust for y such as 𝑦 ∝ 𝐻𝑏 = 𝛾ℎ, and Eq. (6.15) 

yields: 

𝐷𝑎 =
𝛾ℎ

2

𝑤𝑟𝛼𝜌𝑤𝑔𝑐0

(1−𝑐0)
,                                                                                            (6.16) 

where 𝐻𝑏 , ℎ  and 𝛾  are denote the breaking wave height, still water depth, and an 

arbitrary constant, individually. 

Merging the one-dimensional energy conservation equation with the aforementioned 

dissipation model, and utilizing the principles of linear water wave theory, leads to the 

formulation expressed as follows: 

𝑑𝐸𝑓

𝑑𝑥
= −𝐷𝑎,                                                  (6.17) 

where 𝐸𝑓 is given by Hoque et al., 2019 as follows: 

𝐸𝑓 =
1

8
𝜌𝑤𝑔 {𝐻2√ℎ +

𝑐0

2(1−𝑐0)
𝐻2√ℎ}.              (6.18) 

The seaward boundary is identified at the point where the waves break (as shown in 

Fig. 6.01(b)), and at this boundary, shallow water conditions are assumed. For shallow 

water waves propagating normally along a planar-sloping beach, Eqs. (6.17) and (6.18) 

can be rewritten as: 

𝑑(𝐻2√ℎ)

𝑑𝑥
+ 𝐴

𝑑(𝐻2√ℎ)

𝑑𝑥
= −𝐴1ℎ,                                     (6.19)              

where 𝐴 =
𝑐0

2(1−𝑐0)
 , and 𝐴1 =

4𝛼𝑤𝑟𝛾

√𝑔

𝑐0

(1−𝑐0)
  are the arbitrary constants.  

For a uniform-sloping beach, ℎ = ℎ0 − 𝑚𝑥, where 𝑚 is the slope, and  ℎ0 indicates the 

still water depth at the toe of the slope. 

Propositioning 𝑍 = 𝐻2√ℎ in Eq. (6.19) that yields: 

𝑑𝑍

𝑑ℎ
=

𝐴1

(1+𝐴)𝑚
ℎ = 𝐴2ℎ,                                                            (6.20) 

where 𝐴2 =
𝐴1

(1+𝐴)𝑚
. 
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Simplification yields: 

𝑍 = 𝐴3ℎ2 + 𝐵,                (6.21) 

where 𝐴3 =
𝐴2

2
 and 𝐵 is the integrating constant. 

Transfering back using 𝑍 = 𝐻2√ℎ, generates:   

𝐻2√ℎ = 𝐴3ℎ2 + ℂ1.                (6.22) 

By applying the boundary conditions 𝐻 = 𝐻0 and ℎ = ℎ0 at 𝑥 = 𝑥0, the constant of 

integration is figured out as follows: 

ℂ1 = 𝐻0
2√ℎ0 − 𝐴3ℎ0

2.                                                                                                             (6.23) 

Ultimately, employing the expression for ℂ1 as per Eq. (6.23), which gives: 

𝐻 = (𝑎𝐻0
2 + 𝑏)

1

2,                (6.24) 

where the parameter 𝑎 = (
ℎ0

ℎ
)

1/2

 corresponds to the shoaling coefficient as per Green’s 

law and the other parameter 𝑏 = 𝐴3 (
ℎ2−ℎ0

2

√ℎ
) signifies the damping effect attributed to 

air bubbles. 

6.4.2 PDF Derivation  

In a region immediately before the breaking zone, the wave characteristics 

follow the Rayleigh PDF, assuming a narrow-banded Gaussian process as outlined by 

Dally, (1990), the expression for the incident wave height 𝑃0(𝐻0) is written as follows:  

𝑃0(𝐻0) =
2𝐻0

𝐻𝑟𝑚𝑠,0
2 𝑒𝑥𝑝 [− (

𝐻0

𝐻𝑟𝑚𝑠,0
)

2

] ,  where 0 ≤ 𝐻0 < ∞.                                (6.25) 

Here, the expression 𝐻𝑟𝑚𝑠,0
2  is derived from the integral of ∫ 𝐻0

2∞

0
𝑃0(𝐻0)𝑑𝐻0 over the 

range from 0 to infinity, where 𝐻𝑟𝑚𝑠,0  denotes the root-mean-square wave height at the 

seaward boundary. 
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Believing the validity of the transformation defined by Eq. (6.24) for each wave 𝐻0, the 

assessed probability density function 𝑃(𝐻) at a specific point within the breaking zone 

can be computed through a standard transformation of variables, as follows: 

𝑃(𝐻) = 𝑃0(𝐻0) |
𝜕𝐻0

𝜕𝐻
|.                                                                                                            (6.26) 

To acquire the value of |
𝜕𝐻0

𝜕𝐻
|, differentiating Eq. (6.24) with respect to 𝐻, result in: 

|
𝜕𝐻0

𝜕𝐻
| =

𝐻

𝑎

1

√𝐻2−𝑏

𝑎

.                (6.27) 

By combining Eqs. (6.25), (6.26), and (6.27), yields: 

𝑃(𝐻) =
2𝐻

𝑎𝐻𝑟𝑚𝑠,0
2 𝑒𝑥𝑝 [−

𝐻2−𝑏

𝑎𝐻𝑟𝑚𝑠,0
2 ], where  √𝑏 ≤ 𝐻 < ∞.                      (6.28) 

Conversion to local parameter, 𝑯𝒓𝒎𝒔 

Typically, the distribution of wave heights in random waves is predominantly 

influenced by local wave parameters, with a foundation in the incident wave parameters 

within the surf zone. In the case of narrow-banded waves experiencing damping due to 

air bubble effects, the root-mean-square wave height (𝐻𝑟𝑚𝑠,0) can be expressed with 

the local 𝐻𝑟𝑚𝑠 (as detailed in Hossain and Araki, (2023)). They introduced an energy 

dissipation model (𝐷𝑎,𝑝) for plunging breaking waves attributed to air bubble effects 

using the representative wave approach as follows: 

𝐷𝑎,𝑝 =
𝜌𝑤𝑔𝑐0𝛼𝑤𝑟𝛾

2(1−𝑐0)
ℎ,                            (6.29) 

where all parameters are detailed in the preceding section. 

Now, to derive the local 𝐻𝑟𝑚𝑠, revisiting the energy balance equation using this energy 

dissipation model (Eq. (6.29)), this can be expressed as follows (following Thornton 

and Guza, (1983)): 

𝑑(𝐸𝑐𝑔)

𝑑𝑥
= −

𝜌𝑤𝑔𝑐0𝛼𝑤𝑟𝛾

2(1−𝑐0)
ℎ,               (6.30) 
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where 𝐸 =
1

8
𝜌𝑔 ∫ 𝐻2𝑃(𝐻)𝑑𝐻

∞

0
=

1

8
𝜌𝑤𝑔𝐻𝑟𝑚𝑠

2  and  𝑐𝑔 = √𝑔ℎ, is the wave celerity, 𝑔 

remains for the gravitational acceleration. 

Now, by substituting these values in the above and performing simplifications, yields: 

𝑑(𝐻𝑟𝑚𝑠
2 √ℎ)

𝑑𝑥
= −

4𝑐0𝛼𝑤𝑟𝛾

√𝑔(1−𝑐0)
ℎ.               (6.31) 

Letting, 𝑌 = 𝐻𝑟𝑚𝑠
2 √ℎ, and employing ℎ = ℎ0 − 𝑚𝑥 in Eq. (6.31), which provides: 

𝑑𝑌

𝑑ℎ
=

4𝑐0𝛼𝑤𝑟𝛾

𝑚√𝑔(1−𝑐0)
ℎ.                (6.32) 

Integrating and reverting to its original form, yields: 

𝐻𝑟𝑚𝑠
2 √ℎ = 𝐵ℎ2 + ℂ2,                           (6.33) 

where ℂ2 is the integrating constant and 𝐵 =
2𝑐0𝛼𝑤𝑟𝛾

𝑚√𝑔(1−𝑐0)
. 

By applying the boundary conditions 𝐻𝑟𝑚𝑠 = 𝐻𝑟𝑚𝑠,0 and ℎ = ℎ0 at 𝑥 = 𝑥0, the value 

of ℂ2 is obtained and then Eq. (6.33) becomes: 

𝐻𝑟𝑚𝑠
2 √ℎ = 𝐵(ℎ2 − ℎ0

2) + 𝐻𝑟𝑚𝑠,0
2 √ℎ0.                        (6.34) 

After some simplification, Eq. (6.34) provides the following: 

𝐻𝑟𝑚𝑠,0 = √𝐻𝑟𝑚𝑠
2 −𝑐

𝑎
,                           (6.35)                                                                                                                 

where 𝑎 = (
ℎ0

ℎ
)

1/2

 and 𝑐 = 𝐵
(ℎ2−ℎ0

2)

√ℎ
. 

To enhance the transformed probability density function 𝑃(𝐻) considering air bubble 

effects, substitute Eq. (6.35) into Eq. (6.28) and express the new PDF, 𝑃(𝐻) as follows: 

𝑃(𝐻) =
2𝐻

(𝐻𝑟𝑚𝑠
2 −𝑐)

𝑒𝑥𝑝 [− (
𝐻2−𝑏

𝐻𝑟𝑚𝑠
2 −𝑐

)],   where  √𝑏 ≤ 𝐻 < ∞.                     (6.36) 

After integrating Eq. (6.36), the corresponding CDF, (𝐹𝐻) is found as follows: 

𝐹𝐻 = 1 − 𝑒𝑥𝑝 [− (
𝐻2−𝑏

𝐻𝑟𝑚𝑠
2 −𝑐

)] ,   where  √𝑏 ≤ 𝐻 < ∞.                     (6.37) 
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Finally, Eqs. (6.36) and (6.37) represent the new PDF and CDF of plunging breaking 

waves attributed to air bubble effects, respectively. 

In the absence of air bubble effects (𝑐0 = 0) in deep water, Eqs. (6.36) and (6.37) 

correspond to the Rayleigh distribution model. 

To present Eq. (6.36) in a more simplified form, by introducing 𝜅 =
𝑏

𝐻𝑟𝑚𝑠
2 , Φ = 1 −

𝑐

𝐻𝑟𝑚𝑠
2  are local dimensionless parameters and Ψ =

𝐻

𝐻𝑟𝑚𝑠
 as the non-dimensional wave 

height in Eq. (6.36) and performing subsequent algebraic operations, it transforms into 

a local dimensionless PDF, 𝑃(Ψ) as follows: 

𝑃(Ψ) =
2Ψ

Φ
𝑒𝑥𝑝 [−

(Ψ2−𝜅)

Φ
] ,               where      

√𝜅

𝐻𝑟𝑚𝑠
≤ Ψ < ∞.          (6.38) 

By integrating the above dimensionless PDF, the CDF has been derived as follows: 

𝐹Ψ = 1 − 𝑒𝑥𝑝 [−
(Ψ2−𝜅)

Φ
] ,                  where      

√𝜅

𝐻𝑟𝑚𝑠
≤ Ψ < ∞.          (6.39) 

Finally, Eqs. (6.38) and (6.39) characterize the updated PDF and CDF of plunging 

breaking waves, considering the effects of air bubbles, presented in a dimensionless 

form. 

6.4.3 Derivation of Characteristic Wave Height  

By considering the impact of air bubble effects, statistical parameters for wave 

height can be established. In this context, revisit and present the mathematical 

representation of the average wave height of the highest qN waves taking the limits 

from 𝐻 = 𝐻̂𝑞 to , gives: 

𝐻̅𝑞 =
∫ 𝐻𝑃(𝐻)𝑑𝐻

∞
𝐻̂𝑞

∫ 𝑃(𝐻)𝑑𝐻
∞

𝐻̂𝑞

=
∫

2𝐻2

(𝐻𝑟𝑚𝑠
2 −𝑐)

𝑒𝑥𝑝[−(
𝐻2−𝑏

𝐻𝑟𝑚𝑠
2 −𝑐

)]𝑑𝐻
∞

𝐻̂𝑞

∫
2𝐻

(𝐻𝑟𝑚𝑠
2 −𝑐)

𝑒𝑥𝑝[−(
𝐻2−𝑏

𝐻𝑟𝑚𝑠
2 −𝑐

)]𝑑𝐻
∞

𝐻̂𝑞

,                       (6.40) 

where the probability that the wave height is greater than or equal to a given threshold 

𝐻̂𝑞 and is surpassed by the 𝑞𝑁 waves is given by  𝐻̂𝑞 = √(𝐻𝑟𝑚𝑠
2 − 𝑐)√𝑙𝑛

1

𝑞
 (see details 

in Longuet-Higgins, 1952). 
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Upon integrating Eq. (6.40) the result yields the simplified form for the average wave 

height of the highest qN waves as follows: 

𝐻̅𝑞 = {√𝑙𝑛 (
1

𝑞
) +

√𝜋

2𝑞
𝑒𝑟𝑓𝑐 (√𝑙𝑛 (

1

𝑞
))} {√(𝐻𝑟𝑚𝑠

2 − 𝑐)},                      (6.41) 

where 𝑒𝑟𝑓𝑐 (√𝑙𝑛 (
1

𝑞
)) represents the complementary error function. 

Now, utilizing Eq. (6.41), it is easy to deduce the statistical parameters of wave height, 

such as 𝐻1, 𝐻1/3, and 𝐻1/10 in the following manner: 

𝐻1 = 𝐻𝑎𝑣𝑟 = {√𝑙𝑛(1) +
√𝜋

2
𝑒𝑟𝑓𝑐 (√𝑙𝑛(1))} {√(𝐻𝑟𝑚𝑠

2 − 𝑐)} = 0.886 ∗

{√(𝐻𝑟𝑚𝑠
2 − 𝑐)},                         (6.42) 

𝐻1

3

= {√𝑙𝑛(3) +
√𝜋

2

3

𝑒𝑟𝑓𝑐 (√𝑙𝑛(3))} {√(𝐻𝑟𝑚𝑠
2 − 𝑐)} = 1.416 ∗ {√(𝐻𝑟𝑚𝑠

2 − 𝑐)},  

                  (6.43) 

and 

𝐻 1

10

= {√𝑙𝑛(10) +
√𝜋

2

10

𝑒𝑟𝑓𝑐 (√𝑙𝑛(10))} {√(𝐻𝑟𝑚𝑠
2 − 𝑐)} = 1.80 ∗ {√(𝐻𝑟𝑚𝑠

2 − 𝑐)}.      

        (6.44) 

It is evident that as 𝑞  decreases in Eq. (6.41), there is a notable alteration in the 

statistical wave height parameters. 

6.5 Findings and Validation 

6.5.1 Experiment 

To verify the accuracy of the developed model, the authors conducted 

experiments. Detailed descriptions of these experiments are provided in Chapter 2, with 

a concise explanation included in the experiment section of Chapter 5. The case used 

in this chapter is presented in the following table. 
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Table 1: Incident wave parameter variations across plunging breaking cases. 

Cases Wave Height, Hs (m) 
Wave Period, Ts 

(s) 

Water depth, h0 

(m) 

Case I 0.093 1.35 0.30 

Case II 0.085 1.31 0.30 

Case III 0.079 1.48 0.30 

Case IV 0.068 1.44 0.30 

6.5.2 Identification of Breaking and Plunging Breakers 

Examining a random wave train progressing toward the beach, depicted in Fig. 

6.01(a), as the wave initiates breaking, its energy and height diminish approaches the 

shore. Identifying the breaking point becomes crucial. In this context, consider the 

recommendation proposed by Thornton and Guza, (1983), which can be articulated as 

follows: 

𝐻𝑟𝑚𝑠,𝑏 = 𝛾ℎ,                                                                                                  (6.45) 

Here, 𝐻𝑟𝑚𝑠,𝑏 denotes the RMS wave height at the breaking point, ℎ represents the water 

depth, and 𝛾 is an arbitrary constant with a specified value of 0.42 as suggested by 

(Thornton and Guza, 1982). 

The classification of various types of wave breakers relies on the surf similarity 

parameter 𝜉𝑏 (see details in Chapter 3, section 3.4.2), formulated by Battjes, (1974), as 

determined by the following equation: 

𝜉𝑏 =
𝑚

√
𝐻𝑟𝑚𝑠,𝑏

𝐿0

,                  (6.46) 

In this context, 𝐿0, defined as 
𝑔𝑇̅2

2𝜋
, which represents the wavelength in deep water, while 

𝑚 characterizes the slope of the beach and 𝑇̅ is the average period. 

6.5.3 Determination of 𝒄𝟎, 𝜿, and 𝜱 

Void Fraction (𝒄𝟎) 

In computing the void fraction, utilized the void fraction relation presented by 

Hoque and Aoki, (2005) specific to plunging breaking waves. They identified a formula 
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for determining the void fraction as a function of the breakpoint-to-shoreline distance, 

which is expressed as follows: 

If        0 ≤ (
𝑥−𝑥𝑏𝑟𝑘

𝐿0
) ≤ 0.14 then     𝑐0 = (

𝑥−𝑥𝑏𝑟𝑘

𝐿0
) ∗ 1.285.                 (6.47) 

If        (
𝑥−𝑥𝑏𝑟𝑘

𝐿0
) > 0.14 then  𝑐0 = 0.285 − 0.75 (

𝑥−𝑥𝑏𝑟𝑘

𝐿0
).           (6.48) 

In this context, 𝑥 is the horizontal distance from the wave maker to the shoreline,  𝑥𝑏𝑟𝑘 

denotes the horizontal distance from the wave maker to the breakpoint in the direction 

of the shoreline, as depicted in Fig. 1(b), and 𝐿0 is the incident wavelength. 

Decay coefficient (𝜿) 

The suggested PDF is contingent upon a Decay coefficient 𝜅. This coefficient 

encompasses details about local wave properties (𝐻𝑟𝑚𝑠) and the historical aspects of 

propagation (ℎ, ℎ0, 𝑚, 𝑐0, 𝛼, 𝑤𝑟 and 𝑇̅). Since 𝜅 serves as an indicator of saturation, it 

is anticipated that this coefficient can be formulated as a function of certain coefficients 

linked to the degree of saturation and the characteristics of the breaking process. 

Following this concept, 𝜅  was calculated from the straightforward relationship as 

follows: 

𝜅 =
𝑏

𝐻𝑟𝑚𝑠
2 .                             (6.49) 

Scale parameter (𝜱) 

Since both the scale and decay coefficients are defined concerning 𝐻𝑟𝑚𝑠, the 

inclusion of this common factor can be omitted. This results in the formulation of the 

following relationship, specifically expressing the scale parameter in terms of the decay 

coefficient: 

Φ = 1 −
𝑐

𝑏
𝜅,   which implies   Φ = 1 −

(2−𝑐0)

2(1−𝑐0)
𝜅.          (6.50) 

In Eq. (6.50), it is evident that the scale parameter is directly influenced by both the 

decay coefficient and the reference void fraction.  
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6.5.4 Interpretation and Discussion 

6.5.4.1 Void fractions vs decay coefficient and scale parameter 

 After performing the verification of plunging-breaking occurrences ( 𝜉𝑏 =

0.87, 𝜉𝑏 = 0.85, 𝜉𝑏 = 1.00, 𝜉𝑏 = 1.02 for all cases 𝐼, 𝐼𝐼, 𝐼𝐼𝐼 and 𝐼𝑉, correspondingly), 

the void fraction entrainment was calculated for each scenario using Eqs. (6.47) and 

(6.48). The distribution of the void fraction along the horizontal distance for all 

experimental cases is illustrated in Fig. 6.02. In these cases, the highest void fraction 

recorded was approximately 16%, which is consistent with findings from other studies 

(Blenkinsopp and Chaplin, 2011; Hoque and Aoki, 2005; Hossain and Araki, 2023; 

Huang et al., 2009). Moreover, it has been observed that the void fraction increases 

with longer wave periods relative to wave heights. This trend results from the extended 

interaction time between longer wave periods and the water surface, which promotes 

greater air entrapment within the water column. Additionally, the slower oscillation 

associated with longer waves allows for the inclusion of larger volumes of air into the 

water, unlike smaller wave periods.  

 

 

 

 

 

 

 

 

Figure 6.02: Variations in void fraction across horizontal distance. 
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The analysis of the decay coefficient (κ), which is dependent on parameters such as 𝑏 

and 𝐻𝑟𝑚𝑠 (see Eq. (6.49)), where 𝑏 involves numerous components (ℎ, ℎ0, 𝑚, 𝑐0, 𝛼, 

𝑤𝑟  and 𝑇̅ ), showed an interesting correlation with respect to the parameter 𝑐0 , 

considered substantial in this analysis. The analysis focused on the decay coefficient in 

relation to the void fraction, as shown in Fig. 6.03. The results revealed a positive 

relationship between the decay coefficient and the void fraction, peaking at around 0.16. 

This observation implies that the decay coefficient is contingent upon the void fraction. 

Consequently, a hypothesis is proposed that suggests a direct proportionality between 

the decay coefficient and the void fraction..  

 

 

 

 

 

 

 

 

Figure 6.03: Variations of decay coefficient with void fractions (triangle, WG-6; 

asterisk, WG-5; diamond, WG4; and circle, WG-3). 

Also, an analogous investigation explored the relationship between the scale parameter 

and two crucial factors: void fraction and decay coefficient (see Eq. (6.50)). The results, 

illustrated in Fig. 6.04 (a) and 6.04 (b), revealed noteworthy patterns. First, a negative 

correlation was found between the scale parameter and the void fraction, as shown in 

Fig. 6.04(a). In contrast, an inverse linear relationship emerged when analyzing the 

scale parameter in relation to the decay coefficient, depicted in Fig. 6.04(b). These 

observations suggest a hypothesis that the scale parameter is inversely related to the 
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void fraction while also displaying an inverse linear relationship with the decay 

coefficient.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.04: (a) Variations in the scale parameter with void fractions, and (b) 

Contrasts in the scale parameter with decay coefficients (Triangle, WG-6; Asterisk, 

WG-5; Diamond, WG4; and Circle, WG-3). 
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These findings provide valuable insights into how void fraction behaves under different 

wave conditions, enhancing our understanding of wave dynamics, particularly in the 

context of plunging breaking waves. 

6.5.4.2 Statistical wave heights 

This section focuses on validating the statistical wave height obtained from the 

proposed distribution against those derived from the Rayleigh distribution, utilizing 

experimental data. The parameters for the proposed distribution were calculated using 

Eqs. (6.42), (6.43), and (6.44). The results, illustrated in Figs. 6.05(a to d), demonstrates 

that the parameters from the proposed distribution align closely with the experimental 

observations, in contrast to the discrepancies noted with the Rayleigh distribution.  
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Figure 6.05: Changes in statistical wave heights (𝐻1
3⁄ , 𝐻𝑎𝑣𝑟, and 𝐻1

10⁄ ) across 

horizontal distances for various incident wave heights and periods. 

Additional information about the specific errors associated with the proposed and 

Rayleigh distributions is provided in the section focused on error assessment. 

6.5.4.3 PDF and CDF comparison with experimental data and other model 

This analysis evaluates the performance of the proposed PDF and CDF in 

comparison to established models such as JC-13, MLM-04, and the Rayleigh 

distributions across various experimental datasets. The relevant equations used include 

Eqs. (6.38) and (6.39) for the proposed models, Eqs. (6.09) and (6.10) for JC-13, and 

Eqs. (6.05) and (6.06) for MLM-04, along with standard expressions for PDF, and CDF 
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for the Rayleigh distribution. Visual comparisons of the predicted versus observed 

wave height distributions at four different gauges from four-wave records are illustrated 

in Fig. 6.06 and Figs. F1-F3 (found in Appendix F). The results indicate a high level of 

accuracy in capturing the observed deviations in wave height distribution when 

compared to the JC-13, MLM-04, and Rayleigh distributions, as seen in PDF and CDF 

estimates. 
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Figure 6.06: Comparison of the 𝑃(Ψ), and 𝐹Ψ concerning 𝛹  for the proposed model 

and other models (Rayleigh, MLM-04, and JC-13) for the incident, 𝑇𝑠 = 1.35s, and 𝐻𝑠 

= 0.093m. 

Again, the proposed model's effectiveness largely hinges on the relationship between 

the scale parameter and the decay coefficient, which together function as a unified 

parameter due to their interdependence. Notably, the model approaches the Rayleigh 

distribution when the decay coefficient nears zero. However, the investigation 

highlights significant limitations in the Rayleigh distribution's accuracy for predicting 

wave heights in the surf zones of natural beaches. This raises questions about its 

applicability, particularly in shallow water areas that are characterized by complex 

dynamics. In such regions, factors like wave breaking, turbulence, and air bubble 

entrainment have a considerable impact on wave height distributions, leading to 

deviations from the assumptions of the Rayleigh distribution (Battjes and Groenendijk, 

2000; Power et al., 2016). Overall, both theoretical analysis and experimental 

comparisons suggest that the Rayleigh distribution may not be suitable for shallow 

water scenarios. However, it can still provide a reasonable approximation in cases 

involving very small wave heights, where the frequency components are closely aligned.   

6.5.4.4 Exceedance of probability variations  

Grasping the probability of exceedance is crucial for model development, as it 

provides essential insights into the likelihood of experiencing extreme events within a 

specific system or environment. This understanding enables researchers and engineers 

to evaluate and manage the risks linked to various extreme occurrences, including 
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floods, tsunamis, and storms. In this section, a detailed comparison of the probability 

of exceedance is conducted using several models, including JC-13, MLM-04, and 

Rayleigh. Figs. 6.07 and G1-G3 (found in Appendix G) illustrate the visual 

comparisons between predicted and observed wave height distributions at four different 

gauges across four-wave records. The proposed model demonstrates superior 

performance in capturing the observed deviations in wave height distribution compared 

to the JC-13, MLM-04, and Rayleigh distributions, particularly in its ability to predict 

the probability of exceedance accurately. 

  

  

Figure 6.07: Variation of the exceedance of probability with respect to 𝛹  for the 

proposed model and other models (Rayleigh, MLM-04, and JC-13) for the specified 

incident wave conditions: 𝑇𝑠 = 1.35s, and 𝐻𝑠 = 0.093m. 

Nonetheless, this study identifies considerable shortcomings in the Rayleigh 

distribution’s capability to accurately forecast wave height in the surf zone of natural 

beaches. These inconsistencies raise doubts about the appropriateness of using the 

Rayleigh distribution in shallow water contexts. The findings highlight the critical need 

for specialized models that accurately reflect the distinct characteristics of various 

environments, thereby enhancing the precision and effectiveness of risk assessment and 

management approaches. 
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6.5.4.5 Error assessment 

This section presents a thorough evaluation of the proposed models’ accuracy when 

compared to the Rayleigh model, utilizing experimental data for analysis. The focus is 

on the statistical wave parameters derived from the proposed distribution. While 

straightforward equations were developed for these parameters, the JC-13 and MLM-

04 models took a different approach, opting for numerical integration instead. The 

evaluation encompasses several experimental datasets, detailed in Table 6.1. 

To assess accuracy, two error metrics are applied: the RMSRE and the percentage error 

indices (P20 and P10). The RMSRE serves as a valuable metric for measuring the 

precision of a model’s predictions, taking into account the relative differences between 

the predicted and actual values. This approach is particularly effective for evaluating 

errors across different scales. The method for calculating RMSRE for wave height is 

specified as follows: 

𝑅𝑀𝑆𝑅𝐸 = √
∑ (𝐻𝑆𝑡.,𝑐,𝑖−𝐻𝑆𝑡.,𝑚,𝑖)

2𝑁
𝑖=1

∑ 𝐻𝑆𝑡.,𝑚,𝑖
2𝑁

𝑖=1

∗ 100,              (6.51) 

where 𝐻𝑆𝑡.,𝑐,𝑖 is the computed statistical wave height, 𝐻𝑆𝑡.,𝑚,𝑖 is the measured statistical 

wave height, and N signifies the total number of data points. 

 

Figure 6.08: Comparison of RMSRE of different statistical wave heights concerning 

experimental data for the proposed and Rayleigh models. 
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The values of RMSRE shown in Fig. 6.08 provide a comparison between the wave 

height predictions of the proposed model and those produced by the Rayleigh model. 

The average RMSRE values for the proposed models are found to be 6.40% for 𝐻1
3⁄ , 

7.03% for 𝐻1
10⁄ , and 8.08% for  𝐻𝑎𝑣𝑟, respectively. Conversely, the Rayleigh model 

displays considerably higher RMSRE values of 14.83% for 𝐻1
3⁄ , 18.17% for 𝐻1

10⁄ , 

and 22.09% for  𝐻𝑎𝑣𝑟, correspondingly. These observations imply that the Rayleigh 

distribution may not effectively predict representative wave heights in shallow water 

environments. 

Table 6.2: Error summary for statistical wave height (%). 

Statistical 

Wave 

Height 

RMSRE P20 P10 

Proposed 

Model 
Rayleigh 

Proposed 

Model 
Rayleigh 

Proposed 

Model 
Rayleigh 

𝐻1
3⁄  6.40 14.83 2.86 08.57 5.71 22.86 

𝐻1
10⁄  7.03 18.17 2.86 14.29 11.42 29.57 

𝐻𝑎𝑣𝑟 8.08 22.09 5.71 28.58 17.14 37.14 

In Fig. 6.09, the differences in P20 and P10 values between the proposed model and the 

Rayleigh model are illustrated, with Table 6.2 summarizing the statistical wave height 

calculations. The proposed model demonstrates P20 values of 2.86%, 2.86%, and 

5.71% for 𝐻1
3⁄ , 𝐻1

10⁄ , and 𝐻𝑎𝑣𝑟 , correspondingly. Conversely, the Rayleigh model 

shows significantly higher P20 values, at 8.57%, 14.29%, and 28.58% 𝐻1
3⁄ , 𝐻1

10⁄ , and 

𝐻𝑎𝑣𝑟, correspondingly.  
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Figure 6.09: P20 and P10 comparison of different statistical wave heights concerning 

experimental data for the proposed model and Rayleigh model. 

In addition, the proposed model exhibits P10 values of 5.71%, 11.42%, and 17.14% for 

𝐻1
3⁄ ,  𝐻1

10⁄ , and 𝐻𝑎𝑣𝑟 , individually. In comparison, the Rayleigh model reports 

significantly higher P10 values of 22.86%, 29.57%, and 37.14% for the same wave 

height parameters. These findings further emphasize the limitations of the Rayleigh 

model in effectively predicting statistical wave heights in shallow water environments. 

6.6 Conclusions 

This chapter investigated various wave height distributions, emphasizing 

statistical wave heights and variations in probability exceedance. It began by assessing 

the effectiveness of the Rayleigh PDF in describing wave height distributions just 

outside the breaking zone, while also introducing the role of air bubble-induced energy 

dissipation in plunging breaking waves within the surf zone. 
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Through algebraic manipulation, the proposed model was refined to depend solely on 

local wave characteristics, resulting in a streamlined point model characterized by a 

single function. Both theoretical and empirical findings revealed a strong correlation 

between the scale parameter of the distribution and the decay coefficient, simplifying 

the proposed distribution to a one-parameter model. Validation through experimental 

data confirmed the model's effectiveness, as indicated by various error metrics 

(RMSRE, P10, and P20) compared to the Rayleigh distribution, thereby demonstrating 

its accuracy in predicting representative wave heights. Notably, the transformed PDF 

was able to accurately replicate observed wave height histograms in laboratory 

environments within the breaking zone, surpassing the performance of models such as 

JC-13 and MLM-04. Furthermore, the model adeptly captured the complexities of wave 

height distribution changes under depth-limited breaking conditions, particularly for 

low probabilities of exceedance. These results underscored the theoretical framework's 

ability to represent wave height distribution transformations over shallow foreshores. 

Additionally, the dynamics governing these transformations were closely tied to the 

decay coefficient and scale parameter in the surf zone. In conclusion, the proposed 

model offers a robust and practical approach for characterizing wave height 

distributions in dynamic coastal settings, making it an essential tool for researchers and 

practitioners involved in coastal engineering, hazard calculation, and coastal 

management. 
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CHAPTER 7 

General Conclusions 

7.1 General 

This chapter delves into the outcomes of the research detailed in this thesis, 

offering both an overview and an in-depth discussion. Later in the chapter, a concise 

summary and key findings from the study are provided. Furthermore, the chapter 

addresses the limitations of the research and offers suggestions for future directions. By 

providing a comprehensive analysis, this chapter contributes to a deeper understanding 

of the research outcomes and their implications for future research endeavors. 

7.2 Summary 

Irregular breaking waves with an air bubble effect are integral to the dynamics 

of shallow water waves, playing a crucial role in dissipating wave energy, which is vital 

for coastal protection and erosion control. As waves approach shallow water, their 

interaction with the seabed intensifies, leading to heightened turbulence and energy 

dissipation. The formation of air bubbles within breaking waves is pivotal in this 

process, facilitating the conversion of wave energy into turbulent kinetic energy. This 

mechanism effectively reduces wave height and intensity, thus mitigating the impact of 

waves on coastal structures and shorelines. Furthermore, irregular breaking waves with 

air bubble effects influence sediment transport dynamics, ecosystem processes, and 

wave-induced forces in shallow water environments. Understanding and accurately 

modeling these phenomena are imperative for effective coastal management, resilient 

infrastructure design, and the preservation of coastal ecosystems. 

Given the importance of air bubbles in dissipating irregular wave energy, this study 

aimed to develop a comprehensive energy dissipation model to accurately calculate 

wave height and set-up in breaking waves. After an extensive literature review, this 

research objective was specified to develop the energy dissipation model using four 

approaches: parametric, representative, spectral, and probabilistic, to analyze the 

kinematics of irregular waves with air bubble effects in both spilling and plunging 

breaking conditions. In shallow water, wave breaking is induced by the sloping bottom, 
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and the entrainment of a significant amount of air bubbles in the breaking process is 

crucial for energy dissipation. However, quantifying the air entrainment itself is 

challenging, despite wave breaking being the dominant mechanism. With a focus on 

unsteady bubble entrainment, this study first explored steady bubbles in irregular waves 

and associated energy dissipation phenomena. Therefore, the subsequent section 

succinctly summarizes the key outcomes derived from this study. 

7.3 Conclusion and Key Findings 

The conclusions and major findings drawn from this thesis are outlined chapter 

by chapter, providing a comprehensive overview of this study's outcomes. 

Chapter 2 

  In this chapter, a series of experiments was conducted to validate the developed 

models. Data on regular and irregular wave heights and set-ups were collected during 

the breaking phase. The entrainment of air bubbles into breaking waves and subsequent 

wave energy dissipation was also examined. Additionally, to maintain objectivity and 

mitigate bias, a significant amount of data was collected from external sources. 

Major Outcomes: 

❖ A new set of wave heights and set-up data were collected from the experiment. 

❖ Explored the process of air bubble entrainment into breaking waves. 

Chapter 3 

In this chapter, the parametric approach concept was used to develop a new 

energy dissipation model for spilling and plunging breaking waves and utilized to 

calculate RMS wave height and wave set-up. The model was based on the air bubble 

model of regular breaking waves proposed by Hoque et al., (2019) and the fraction of 

breaking wave concepts proposed by Thornton and Guza, (1983). The modified Miche's, 

(1944) breaking criterion and Battjes, (1974) surf similarity parameter were employed 

to identify breaking waves and breaker types. The validity of the model was supported 

by various experimental data conducted by various authors and established models (Ro-

93 and TG-83). In many cases, the computed RMS wave height excellently matched 

the experimental data and outperformed the Ro-93 and TG-83 models. The model 
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performed well in computing wave set-up except near the breaking zone. It was found 

that void fractions of 17% to 18% (plunging breaking) and 14% to 16% (spilling 

breaking) were responsible for wave energy dissipation for irregular waves, which 

closely resembled the results of Houqe and Aoki, (2005). 

Major Outcomes: 

❖ A novel energy dissipation model was introduced to account for the influence 

of air bubbles on irregular breaking waves, outlined as follows: 

𝐷 =
3√𝜋

8

𝜌𝑤𝑘1𝑔𝑐0𝛼𝑤𝑟

(1−𝑐0)𝛾4

𝐻𝑟𝑚𝑠
5

ℎ4 ,   for spilling breaking waves.         (7.01) 

𝐷 =
1

2

𝜌𝑤𝑔𝑐0𝛼𝑤𝑟

(1−𝑐0)𝛾3

𝐻𝑟𝑚𝑠
4

ℎ3 ,    for plunging breaking waves.         (7.02) 

❖ A co-relationship was discovered between RMS wave height and water depth, 

considering the air bubble effect for plane-sloping bathymetry, which was 

expressed as: 

❖ 𝐻𝑟𝑚𝑠 ≅ 𝑎
1

3⁄ ℎ
7

6⁄ ,    for spilling breaking waves.         (7.03) 

❖ 𝐻𝑟𝑚𝑠 ≅ 𝑏
1

2⁄ ℎ
5

4⁄ ,    for plunging breaking waves.         (7.04) 

❖ To calculate wave set-up, using the above model the momentum balance 

equation was modified (see Eqs. 3.36 and 3.37). 

Weaknesses: 

❖ A limitation of this model is its origin in the Rayleigh distribution, which is 

questionable for calculating breaking wave energy dissipation. Therefore, it 

is crucial to accurately determine unknown parameters such as 𝑘1 and 𝛼 to 

enhance the model's accuracy for practical application. 

Chapter 4  

In this chapter, the representative wave approach was employed to develop two 

energy dissipation models for spilling and plunging breaking waves. These models 

were then utilized to compute RMS wave heights alongside wave set-ups, applying 

energy conservation and momentum conservation principles. Drawing from the air 

bubble model proposed by Hoque et al., (2019) and Hoque, (2002) for regular waves, 
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this served as the foundational framework for both models (I and II). To identify 

breaking waves and their respective categories, the breaking criterion for irregular 

waves established by Thornton and Guza, (1983), along with the surf similarity 

parameter developed by Battjes, (1974) were applied. The computed RMS wave height 

and set-up exhibited excellent agreement with experimental data and established 

models (Ro-93 and RKS-03 for wave height and DDD-85 and RGE-01 for wave set-

up), albeit with a few discrepancies near mounds and coastlines. The analysis revealed 

that air bubbles ranging from 16% to 18% for plunging breaking waves and 13% to 

15% for spilling breaking waves (using Models I and II) were responsible for wave 

energy dissipation in irregular waves. These findings closely mirrored the experimental 

results reported by Hoque and Aoki, (2005) and Huang et al., (2009). 

Major Outcomes: 

❖  Two new energy dissipation models were introduced to accommodate the 

influence of air bubbles on irregular breaking waves, as detailed below: 

𝐷 = 𝐾1𝜌𝑤𝑔𝑤𝑟
𝑐0

2(1−𝑐0)
𝐻𝑟𝑚𝑠,  for spilling breakers      M-I.              (7.05) 

𝐷 = 𝐾2𝜌𝑤𝑔𝑤𝑟
𝑐0

2(1−𝑐0)
𝛾ℎ,  for plunging breakers           (7.06) 

𝐷 = 𝐾3𝜌𝑤𝑔𝑤𝑟
𝑐0

𝑘0

1−𝑒−(𝑘0ℎ)

1−𝑐0𝑒−(𝑘0ℎ),  for both types of breakers     M-II.              (7.07) 

❖ A direct relationship emerged between the RMS wave height and water depth 

for plane-sloping bathymetry in M-I, as expressed: 

❖ 𝐻𝑟𝑚𝑠 ≅ 𝑎√ℎ,    for spilling breakers.          (7.08) 

❖ 𝐻𝑟𝑚𝑠 ≅ √𝑏ℎ
3

4,    for plunging breakers.          (7.09) 

❖ For calculating wave set-up, using the above models the momentum balance 

equation was modified (see Eqs. 4.47, 4.48, and 4.49). 

Weaknesses: 

❖ Since these models rely on applying regular wave models to irregular waves 

by using representative wave heights multiplied by unknown coefficients, the 
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accurate determination of these coefficients is essential for the model's 

continued development and accuracy. 

Chapter 5  

In this chapter, two energy dissipation models were developed using a spectral 

approach to address irregular waves undergoing both spilling and plunging breaking 

phenomena. These models, denoted as M-I and M-II, were built upon the incorporation 

of air bubbles and the application of the fraction of breaking waves concept, as proposed 

by Hoque, (2002) and Stingray et al., (2019), respectively. The conceptual basis for 

these models was inspired by the air bubble model introduced by Hoque et al., (2019) 

and Hoque, (2002) for wave breakers under regular wave conditions. To identify 

breaking waves and categorize them, the previous process is applied. Subsequently, 

these models were utilized to compute both spectral significant wave heights and wave 

set-ups, employing the principles of energy and momentum conservation laws. The 

computed spectral significant wave heights and set-ups exhibited excellent agreement 

with both experimental data and previous models (NLHO-17 & RS-10 for wave height 

and NLHH-09 & DDD-85 for set-up), particularly in the case of M-I. However, slight 

differences near the mound and coastline were observed in M-II.  

Major Outcomes: 

❖  Two novel energy dissipation models were introduced to address the impact 

of air bubbles on irregular breaking waves, as expressed below: 

𝐷 = 𝐾1𝜌𝑤𝑔
𝐶0

2√2(1−𝐶0)
𝑤𝑟𝛤 (

1

𝜅
+ 1) 𝐻𝑚0𝑒

−(
√2𝛾ℎ

𝐻𝑚0
)

𝜅

, for spilling breakers     M-I.      (7.10) 

𝐷 = 𝐾2𝜌𝑤𝑔
𝐶0𝛾

2(1−𝐶0)
𝑤𝑟ℎ𝑒

−(
√2𝛾ℎ

𝐻𝑚0
)

𝜅

,         for plunging breakers          (7.11) 

𝐷 = 𝐾3𝜌𝑤𝑔𝑐0𝑤𝑟 (
1−𝑒−𝑘0ℎ

1−𝑐0𝑒−𝑘0ℎ) 𝑒
−(

√2𝛾ℎ

𝐻𝑚0
)

𝜅

,         for both breaking types   M-II. (7.12) 

❖ For calculating wave set-up, using the above models the momentum balance 

equation was modified (see Eqs. 5.28, 5.29, and 5.30). 
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Weaknesses: 

❖ A disadvantage of these models is that they involve several parameters, 

making it challenging to handle them, especially when calculating wave setup. 

Chapter 6  

This study highlights the probabilistic approach, especially wave height 

distributions in the surf zone, was the primary focus, with particular attention given to 

plunging breaking waves and the effects of air bubbles. A new wave height distribution 

was proposed. Previous wave height distribution models were re-evaluated in light of 

air bubble effects, and laboratory observations in a custom-built wave flume were used 

for validation. The results indicated significant deviations from the Rayleigh 

distribution, with this proposed model demonstrating closer agreement with 

experimental data, particularly for larger wave heights. Entrained air bubbles notably 

reduced the probability densities of larger wave heights, resulting in measured wave 

heights below the predictions of the Rayleigh distribution. Additionally, the wave 

height parameters derived from the proposed model showed good agreement with 

laboratory data compared to the Rayleigh distribution. Theoretical analysis revealed the 

scale parameter's dependence on the decay coefficient, which aligned well with 

measurements and allowed for simplification of the proposed distribution to a one-

parameter model. 

Major Outcomes: 

❖  A novel wave height distribution was proposed for plunging breakers owing 

to the effect of air bubbles, as expressed below: 

𝑃(𝛹) =
2𝛹

𝛷
𝑒𝑥𝑝 [−

(𝛹2−𝜅)

𝛷
],   [PDF].              (7.13) 

𝐹𝛹 = 1 − 𝑒𝑥𝑝 [−
(𝛹2−𝜅)

𝛷
],  [CDF].              (7.14) 

❖ The statistical wave height parameters were derived from this proposed 

distribution, expressed as follows: 

𝐻1 = 𝐻𝑎𝑣𝑟 = 0.886 ∗ {√(𝐻𝑟𝑚𝑠
2 − 𝑐)}.              (7.15) 
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         𝐻1

3

= 1.416 ∗ {√(𝐻𝑟𝑚𝑠
2 − 𝑐)}.                      (7.16) 

𝐻 1

10

= 1.80 ∗ {√(𝐻𝑟𝑚𝑠
2 − 𝑐)}.               (7.17) 

❖ Energy dissipated by the air bubbles was found 16%(max.) for the plunging 

breaker. 

Weaknesses: 

❖ This PDF was developed specifically for plunging breaking waves, which 

makes the model potentially unsuitable for other types of breaking waves. 

7.4 General Limitations and Recommendations for Future Work 

Limitations 

Although this research made a significant contribution to energy dissipation 

modeling in the surf zone by addressing the complexity of breaking waves and the 

dynamics of air bubbles within them, some limitations were identified regarding the 

future study of air bubble dynamics in irregular breaking waves expressed as follows: 

❖ Assumptions: In further studies, it is essential to properly consider how air 

bubbles entrain into the water, particularly in terms of bubble distribution 

within breaking waves. This aspect is crucial for enhancing the accuracy and 

comprehensiveness of air bubble energy dissipation models, as they often 

rely on simplified assumptions that may not fully capture the intricacies of 

the phenomenon. 

❖ Complex air bubble dynamics: The role of the air bubble effect in breaking 

waves is substantial and intricately complex. Achieving higher accuracy in 

the energy dissipation model necessitates careful consideration of air bubble 

size and water quality. These factors should be taken into account when 

updating the models in future endeavors. 

Recommendations  

❖ A comprehensive error analysis (refer to Fig. 7.01) indicates that in the study of 

irregular wave energy dissipation models, the representative wave approach is 
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viable and can be used as a reference model. Its simplicity and direct application 

of regular wave principles to irregular waves make it a favorable choice for 

ensuring accurate analysis. 

(a) 

 

 

 

 

 

 

 

 

(b) 

 

Figure 7.01: Comparison of NRMSE of representative approach and parametric 

approach with respect to M-I, (a) Wave height, and (b) Wave set-up. 
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❖ The M-I model excels in computing spectral significant wave height and set-up 

in shallow water, as evidenced by multiple error analyses comparing it to 

experimental data. Its accuracy renders it suitable for future studies and can 

offer valuable insights and applications in wave height and set-up calculations. 

❖ In the context of shallow water wave height distribution, especially on plunging 

breaking waves, this study introduced a simple and user-friendly wave height 

distribution. This distribution holds promise as a valuable resource for future 

studies and can provide important insights for further research endeavors. 

❖ This study generates a dataset comprising wave height and set-up data for 

breaking irregular waves, supplemented by analysis of additional data gathered 

from various sources. These datasets can prove valuable for verifying the energy 

dissipation model in future studies. 
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Appendices 

Appendix A 

Derivation of the model for spilling breakers:  

For obtaining an analytical solution for Eq. (3.10), integration is required as 

follows: 

𝐷 = 𝛼𝜌𝑤𝑔
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𝐻𝑟𝑚𝑠

𝛾ℎ
)

2

[1 − 𝑒
−(

𝐻

𝛾ℎ
)

2

]
2𝐻

𝐻𝑟𝑚𝑠
2 𝑒

−(
𝐻

𝐻𝑟𝑚𝑠
)

2

𝑑(𝐻).
∞

0
         (A1) 

Now, let  (
𝐻

𝐻𝑟𝑚𝑠
)

2

= 𝑧 which implies 𝐻 = 𝐻𝑟𝑚𝑠
2 √𝑧 and 𝑑𝑧 =

2𝐻

𝐻𝑟𝑚𝑠
2 𝑑𝐻. 

Incorporate the above parameters in Eq. (A1) and adjust the limit, it provides: 

𝐷 = 𝛼𝜌𝑤𝑔
𝑘1

2

𝐶0

(1−𝐶0)
𝑤𝑟

𝐻𝑟𝑚𝑠
3

(𝛾ℎ)2 ∫ √𝑧
∞

0
(1 − 𝑒

−𝑧
𝐻𝑟𝑚𝑠

2

(𝛾ℎ)2 ) 𝑒−𝑧𝑑𝑧.             (A2) 

Now, integrating Eq. (A2) concerning z and use limit, which gives: 

𝐷 = 𝛼𝜌𝑤𝑔
𝑘1

2

𝐶0

(1−𝐶0)
𝑤𝑟

𝐻𝑟𝑚𝑠
3

(𝛾ℎ)2

√𝜋

2
{1 − (1 + (

𝐻𝑟𝑚𝑠

𝛾ℎ
)

2
)

−3
2⁄

}.             (A3) 

Expanding the last part of the above equation and neglecting the higher power of 

(
𝐻𝑟𝑚𝑠

𝛾ℎ
)

2

, yields: 

𝐷 = 𝛼𝜌𝑤𝑔
𝑘1

2

𝐶0

(1−𝐶0)
𝑤𝑟

𝐻𝑟𝑚𝑠
3

(𝛾ℎ)2

√𝜋

2

3

2𝛾2 (
𝐻𝑟𝑚𝑠

𝛾ℎ
)

2

.                  (A4) 

Therefore, after reshuffling Eq. (A4), that yields: 

𝐷 = 𝛼𝜌𝑤𝑔
𝑘1

2

𝐶0

(1−𝐶0)
𝑤𝑟

𝐻𝑟𝑚𝑠
5

(𝛾ℎ)4

3√𝜋

4
.                 (A5) 

Eq. (A5) is the new dissipation model for spilling breaking irregular waves attenuation 

by the air bubbles effect.  
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Appendix B 

Derivation of the model for plunging breakers: 

To get an analytical solution for Eq. (3.24), need to integrate it in the following 

way: 

𝐷 =
1

2
𝛼𝜌𝑤𝑔

𝐶0

(1−𝐶0)
𝑤𝑟 ∫ 𝐻𝑏 (

𝐻𝑟𝑚𝑠

𝛾ℎ
)

2

[1 − 𝑒
−(

𝐻

𝛾ℎ
)

2

]
2𝐻

𝐻𝑟𝑚𝑠
2 𝑒

−(
𝐻

𝐻𝑟𝑚𝑠
)

2

𝑑(𝐻)
∞

0
.            (B1) 

At once, allow  (
𝐻

𝐻𝑟𝑚𝑠
)

2

= 𝑧 which implies 𝐻 = 𝐻𝑟𝑚𝑠
2 √𝑧 and 𝑑𝑧 =

2𝐻

𝐻𝑟𝑚𝑠
2 𝑑𝐻. 

Include the overhead parameters in Eq. (B1) and change the limit, it gives: 

𝐷 =
1

2
𝛼𝜌𝑤𝑔

𝐶0

(1−𝐶0)
𝑤𝑟

𝐻𝑟𝑚𝑠
2

(𝛾ℎ)2 ∫ (1 − 𝑒
−𝑧

𝐻𝑟𝑚𝑠
2

(𝛾ℎ)2 ) 𝑒−𝑧𝑑𝑧.
∞

0
               (B2) 

Now, integrating Eq. (B2) concerning z and use limit, which delivers: 

𝐷 =
1

2
𝛼𝜌𝑤𝑔

𝐶0

(1−𝐶0)
𝑤𝑟

𝐻𝑟𝑚𝑠
2

(𝛾ℎ)2 {1 − (1 + (
𝐻𝑟𝑚𝑠

𝛾ℎ
)

2
)

−1

}.                          (B3) 

Expanding the last part of the overhead equation and ignoring the greater power of 

(
𝐻𝑟𝑚𝑠

𝛾ℎ
)

2

, yields: 

𝐷 =
1

2
𝛼𝜌𝑤𝑔

𝐶0

(1−𝐶0)
𝑤𝑟

𝐻𝑟𝑚𝑠
2

(𝛾ℎ)2 (
𝐻𝑟𝑚𝑠

𝛾ℎ
)

2

.                              (B4) 

Hence, after reshuffling Eq. (B4), generates: 

𝐷 =
1

2
𝛼𝜌𝑤𝑔

𝐶0

(1−𝐶0)
𝑤𝑟

𝐻𝑟𝑚𝑠
4

(𝛾ℎ)4.                   (B5) 

Eq. (B5) represents the new energy dissipation model for plunging breaking irregular 

waves attenuation by the air bubbles effect. 
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Appendix C 

M-I (spilling breaking waves) derivation: 

For spilling breaking waves, the new energy dissipation model for irregular 

waves could be written after applying Führboter, (1970) condition as follows: 

𝐷𝐼𝑎𝑆 =
𝑔𝑤𝑟𝛼𝜌𝑤𝑐0𝑑1

2(1−𝑐0)
∫ 𝐻𝑒

−(
𝐻𝑏

𝐻𝑟𝑚𝑠
)

𝜅
𝜅

𝐻𝑟𝑚𝑠
(

𝐻

𝐻𝑟𝑚𝑠
)

𝜅−1

𝑒
−(

𝐻

𝐻𝑟𝑚𝑠
)

𝜅

𝑑𝐻
∞

𝟎
,              (C1) 

To find an analytical solution of Eq. (C1), need to integrate it. So, assume (
𝐻

𝐻𝑟𝑚𝑠
)

𝜅

= 𝑟 

which implies 𝐻 = 𝑟
1

𝜅𝐻𝑟𝑚𝑠 and 𝑑𝑟 =
𝜅𝐻𝜅−1

𝐻𝑟𝑚𝑠
𝜅 𝑑𝐻.  

Adjust the limit after incorporating the overhead parameters into Eq. (C1), it gives: 

𝐷𝐼𝑎𝑆 =
𝐾1𝑔𝑤𝑟𝜌𝑤𝑐0

2(1−𝑐0)
∫ 𝑟

1

𝜅𝐻𝑟𝑚𝑠𝑒
−(

𝐻𝑏
𝐻𝑟𝑚𝑠

)
𝜅

𝑒−𝑟𝑑𝑟
∞

0
,              (C2) 

where 𝐾1 = 𝛼𝑑1 is the new arbitrary constant. 

Now, integrating Eq. (C2) within the limit it supplies: 

𝐷𝐼𝑎𝑆 =
𝐾1𝑔𝑤𝑟𝜌𝑤𝑐0

2(1−𝑐0)
𝐻𝑟𝑚𝑠𝛤 (

1

𝜅
+ 1) 𝑒

−(
𝐻𝑏

𝐻𝑟𝑚𝑠
)

𝜅
.
                (C3) 

Again, to adopt the above model in terms of significant wave height (𝐻𝑚0) using 

𝐻𝑚0 = √2𝐻𝑟𝑚𝑠 which implies 𝐻𝑟𝑚𝑠 =
𝐻𝑚0

√2
. 

Therefore, after using the above transformation and 𝐻𝑏 = 𝛾ℎ in Eq. (C3), yields: 

𝐷𝐼𝑎𝑆 = 𝐾1𝜌𝑤𝑔
𝐶0

2√2(1−𝐶0)
𝑤𝑟𝛤 (

1

𝜅
+ 1) 𝐻𝑚0𝑒

−(
√2𝛾ℎ

𝐻𝑚0
)

𝜅

,               (C4) 

which is the new dissipation model for irregular spilling breaking waves attenuated by 

the effect of air bubbles. 
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Appendix D 

M-I (plunging breaking waves) derivation: 

The new energy dissipation model for irregular waves can be written for plunging 

breaking waves using Führboter, (1970) condition as follows:  

𝐷𝐼𝑎𝑃 =
𝑔𝑤𝑟𝛼𝜌𝑤𝑐0

2(1−𝑐0)
𝛾 ∫ ℎ𝑒

−(
𝐻𝑏

𝐻𝑟𝑚𝑠
)

𝜅
𝜅

𝐻𝑟𝑚𝑠
(

𝐻

𝐻𝑟𝑚𝑠
)

𝜅−1

𝑒
−(

𝐻

𝐻𝑟𝑚𝑠
)

𝜅

𝑑𝐻.
∞

𝟎
             (D1) 

To find an analytical solution of Eq. (D1), letting (
𝐻

𝐻𝑟𝑚𝑠
)

𝜅

= 𝑟  which gives 𝐻 =

𝑟
1

𝜅𝐻𝑟𝑚𝑠 along with 𝑑𝑟 =
𝜅𝐻𝜅−1

𝐻𝑟𝑚𝑠
𝜅 𝑑𝐻.  

Change the limit so that, once the above considerations have been incorporated into Eq. 

(D1), it gives: 

𝐷𝐼𝑎𝑃 =
𝐾2𝑔𝑤𝑟𝜌𝑤𝑐0

2(1−𝑐0)
𝛾 ∫ ℎ𝑒

−(
𝐻𝑏

𝐻𝑟𝑚𝑠
)

𝜅

𝑒−𝑟𝑑𝑟
∞

0
,               (D2) 

where 𝐾2 = 𝛼 represents the new arbitrary constant. 

Now, by integrating Eq. (D2) into its limit, it provides: 

𝐷𝐼𝑎𝑃 =
𝐾2𝑔𝑤𝑟𝜌𝑤𝑐0

2(1−𝑐0)
𝛾ℎ𝑒

−(
𝐻𝑏

𝐻𝑟𝑚𝑠
)

𝜅

.                (D3) 

Again, to adopt the above model in terms of significant wave height (𝐻𝑚0), using the 

relation, 𝐻𝑚0 = √2𝐻𝑟𝑚𝑠 which implies 𝐻𝑟𝑚𝑠 =
𝐻𝑚0

√2
. 

Therefore, by applying the transformation described above and substituting 𝐻𝑏 = 𝛾ℎ 

into Eq. (D3), which provides: 

𝐷𝐼𝑎𝑃 = 𝐾2𝜌𝑤𝑔
𝐶0𝛾

2(1−𝐶0)
𝑤𝑟ℎ𝑒

−(
√2𝛾ℎ

𝐻𝑚0
)

𝜅

.                    (D4) 

This is the new air bubble-attenuated irregular plunging breaking wave dissipation 

model. 
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Appendix E 

M-II derivation: 

Following the assumption made by Thornton and Guza, (1983), M-II can write 

using Eq. (5.10) and Hoque, (2002) regular wave model as follows: 

𝐷𝐼𝐼𝑎 =
𝑐0

𝑘0
𝛼𝜌𝑤𝑔𝑤𝑟 ∫ (

1−𝑒−𝑘0ℎ

1−𝑐0𝑒−𝑘0ℎ) 𝑒
−(

𝐻𝑏
𝐻𝑟𝑚𝑠

)
𝜅

𝑃(𝐻)
∞

0
𝑑𝐻,               (E1) 

To get an analytical solution of M-II, integrate Eq. (E1), letting (
𝐻

𝐻𝑟𝑚𝑠
)

𝜅

= 𝑟 which 

gives 𝐻 = 𝑟
1

𝜅𝐻𝑟𝑚𝑠 along with 𝑑𝑟 =
𝜅𝐻𝜅−1

𝐻𝑟𝑚𝑠
𝜅 𝑑𝐻.   

Modify the limit such that Eq. (E1) yields after the aforementioned factors have been 

taken into account as follows: 

𝐷𝐼𝐼𝑎 = 𝐾3𝑔𝑤𝑟𝜌𝑤𝑐0 ∫ (
1−𝑒−𝑘0ℎ

1−𝑐0𝑒−𝑘0ℎ) 𝑒
−(

𝐻𝑏
𝐻𝑟𝑚𝑠

)
𝜅

𝑒−𝑟𝑑𝑟,
∞

0
               (E2) 

where 𝐾2 =
𝛼

𝑘0
 is the new arbitrary constant. 

Now, by integrating Eq. (E2) into its limit, it supplies: 

𝐷𝐼𝐼𝑎 = 𝐾3𝑔𝑤𝑟𝜌𝑤𝑐0 (
1−𝑒−𝑘0ℎ

1−𝑐0𝑒−𝑘0ℎ) 𝑒
−(

𝐻𝑏
𝐻𝑟𝑚𝑠

)
𝜅

.                (E3) 

Similarly, using 𝐻𝑚0 = √2𝐻𝑟𝑚𝑠 which means 𝐻𝑟𝑚𝑠 =
𝐻𝑚0

√2
. 

Finally, by using the transformation described above and substituting 𝐻𝑏 = 𝛾ℎ into Eq. 

(E3), yields: 

𝐷𝐼𝐼𝑎 = 𝐾3𝜌𝑤𝑔𝐶0𝑤𝑟 (
1−𝑒−𝑘0ℎ

1−𝑐0𝑒−𝑘0ℎ) 𝑒
−(

√2𝛾ℎ

𝐻𝑚0
)

𝜅

,                    (E4) 

which is the new air bubble-attenuated irregular breaking wave energy dissipation 

model that comes from Hoque's, (2002) regular wave model. 
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Appendix F 

PDF and CDF comparison:  

  

  

Figure F1: Comparison of the 𝑃(Ψ), and 𝐹Ψ concerning Ψ  for the proposed 

model and other models (Rayleigh, MLM-04, and JC-13) for the incident, 𝑇𝑠 = 1.31s, 

and 𝐻𝑠 = 0.085m. 

  



 

 

196 

 

 

 

Figure F2: Comparison of the 𝑃(Ψ), and 𝐹Ψ with respect to Ψ  for the 

proposed model and other models (Rayleigh, MLM-04, and JC-13) for the incident, 𝑇𝑠 

= 1.44s, and 𝐻𝑠 = 0.068m. 
  

  

Figure F3: Comparison of the 𝑃(Ψ), and 𝐹Ψ, with respect to Ψ  for the 

proposed model and other models (Rayleigh, MLM-04, and JC-13) for the incident, 𝑇𝑠 

= 1.48s, and 𝐻𝑠 = 0.079m. 
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Appendix G 

Probability of exceedance comparison: 
  

Figure G1: Variation of the exceedance of probability with respect to Ψ  for 

the proposed model and other models (Rayleigh, MLM-04, and JC-13) for the 

specified incident wave conditions: 𝑇𝑠 = 1.31s, and 𝐻𝑠 = 0.085m. 
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Figure G2: Variation of the exceedance of probability with respect to Ψ  for 

the proposed model and other models (Rayleigh, MLM-04, and JC-13) for the 

specified incident wave conditions: 𝑇𝑠 =1.48s, and 𝐻𝑠 = 0.079m. 

  

Figure G3: Variation of the exceedance of probability concerning Ψ  for the 

proposed model and other models (Rayleigh, MLM-04, and JC-13) for the specified 

incident wave conditions: 𝑇𝑠 = 1.44s, and 𝐻𝑠 = 0.068m. 

 

 

 


