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Abstract

Genome-scale interaction networks involving correlational, physical, or regulatory
associations between key biomolecules such as genes and proteins are key to the functioning
of the cell; analysis of such gene networks facilitates a deeper understanding of gene function
and the underlying biological processes. Protein-protein interactions (PPIs) are fundamental
to many cellular processes and living systems. PPI dysfunctions have been implicated in
multiple diseases and hence understanding PPl mechanisms and events leading to their
dysregulation is significantly useful in disease biology research. In the post-genomics era, the
emergence of improved experimental technologies has enabled the characterization and
construction of PPI networks (PPINs) on a proteome-wide scale. Here, we briefly discuss
how PPINs inferred from experimentally characterized PPI data have been utilized for
understanding cellular organizations, disease mechanisms, and genotype-phenotype
relationships. We also discuss how bioinformatics methods for PPI prediction can facilitate
PPIN-based biological research. Despite the rapid advances in the field, our understanding of
protein interactomes is rather limited. We, therefore, briefly discuss future efforts in the field
and how subsequent developments will facilitate the researchers to better leverage the PPINs
and prioritize physiologically and therapeutically relevant proteins.
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Key point/ objectives box

e An overview of methods used to experimentally generate Proteome-Scale Interaction
Maps.

e A summarized review of the network methods that can be used for the analysis of PPINS.

e A (brief) survey on the current trends and advancements of in silico methods for
prediction and assessment of PPIs.

e A perspective on likely future developments in the field, together with their likely
significance in biological and clinical settings.



Introduction

Biological processes are complex systems, involving manifold interactions among elementary units of
a living system such as DNA, RNA, proteins, lipids, and small molecule metabolites. To describe
such processes, a common representation is a network model in which the participating biomolecules
are represented as nodes and the connections between them as edges. Proteins are the most important
biological building blocks, and they carry out their functions in the cells by interacting with each
other. Therefore, it is not surprising that the largest amount of biomolecular interaction data is
available for PPIs and consequently, a substantial chunk of biological network analysis encompasses
the construction and analysis of protein-protein interaction (PPI) networks (PPINs). PPIs are crucial to
the formation of macromolecular structures and enzymatic complexes that form the basis of nearly
every cellular process ranging from signal transduction and cellular transport to catalyzing metabolic
reactions, activating or inhibiting other proteins and biomolecular synthesis. PPIs are thus essential to
homeostasis and their dysregulation typically leads to cellular dysfunction and is often associated with
various diseases. A systematic mapping of protein interactomes, i.e., the entirety of PPIs in a cell or
an organism, is necessary to gain a deeper understanding of the roles of PPIs and PPINs in
fundamental cellular processes. It also enables a better understanding of the genotype-phenotype
relationships and the perturbations that are involved with the onset of complex diseases.

Owing to their high specificity, PPIs are also promising targets to develop drugs that are attuned to
specific disease-related pathways (Jubb ef al., 2015; Wells and McClendon, 2007; Murakami et al.,
2017). However, in this review, we will focus on the reconstruction and analysis of PPINs and their
applications in interpreting available biological data to gain a deeper understanding of cellular
processes and disease mechanisms.

The remainder of the chapter is organized as follows: In the first section, we discuss how
experimentally defined PPI data have been generated and harnessed for knowledge discovery. Next,
we will discuss how and why in silico methods for PPI characterization are important in PPIN-based
biological research. We will conclude with how future mapping efforts centered around a more
dynamic analysis of PPINs will continue to shape the field.

Experimental Methods to Generate Proteome-Scale Interaction
Maps

A variety of powerful experimental techniques are now available to characterize PPIs. Initially,
however, interactions between protein pairs were described by independent studies that employed
small-scale biochemical or genetic experiments (Koh et al., 2012). The steady improvements in
experimental methodologies and the development of new technologies that were more amenable to
PPI mapping on a larger scale, such as yeast two-hybrid system (Y2H) (Fields and Song, 1989) (see
below), have allowed rapidly increasing amounts of PPIs to be characterized. However, the advent of
high-throughput genome sequencing technologies and the genomics breakthrough at the turn of the
millennium was a milestone that paved the way for the PPI characterization on a proteome-wide scale.
The appearance of the first draft model organism genome sequences and the accompanying collection
of genome-wide open reading frames (ORFs), coupled with the availability of robust, high-throughput
PPI detection methods allowed the PPI mapping to truly take off (Luck et al., 2017). Thus, proteome-
scale interaction maps have been generated for different proteomes using available experimental
techniques that are amenable to large-scale interactome mapping (Vidal et al., 2011; Huttlin et al.,
2015; Rolland et al., 2014).



When considering proteome-scale interaction maps, Johnson and colleagues suggested the
classification of large PPI mapping into three categories: one-to-one, one-to-many, and many-to-many
approaches (Johnson et al., 2021). The first group leverages the parallelization and automation of
Y2H assays. The Y2H system is one of the most widely used methods to map binary PPIs. Y2H is an
in vivo method based on the reconstitution of a functional transcription factor (TF) following an
interaction between two proteins and the subsequent activation of reporter genes controlled by the TF
(Fields and Song, 1989). It is a scalable and relatively inexpensive method that is well suited to
detecting binary interactions between proteins and therefore facilitates the characterization of
physiologically relevant PPIs. Unsurprisingly, Y2H has been the method of choice for generating
proteome-wide binary interaction maps for many model organisms such as E. coli (Rajagopala et al.,
2014), Yeast (Uetz et al., 2000; Ito et al., 2001; Yu et al., 2008; Vo et al., 2016), C. elegans (Li et al.,
2004), Drosophila (Formstecher et al., 2005), Arabidopsis thaliana (Arabidopsis Interactome Mapping
Consortium, 2011) and human (Luck et al. 2020; Vidal et al., 2011; Huttlin et al., 2015; Rolland et
al., 2014). However, Y2H suffers from notable shortcomings; it is less amenable to capturing PPIs
involving extracellular or membrane proteins, PPIs that require proper folding as a part of protein
complex subunits, or PPIs that require post-translational modifications (PTMs). To overcome the
limitations of Y2H and to study different types of PPIs, several Y2H variants such as the mammalian
cell-based two-hybrid assay (Luo et al., 1997), the membrane-anchored two-hybrid assay (Snider et
al., 2010), and the three-hybrid assay (Maruta et al., 2016) have been developed.

Included in the one-to-many approaches is the mapping of PPIs by Affinity Purification — Mass
Spectrometry (AP-MS). This approach involves biochemical purification of the epitope-tagged target
proteins from the cells, followed by the identification of the components of the purified protein
complexes (including proteins interacting with the target protein) using mass-spectrometry analysis
(Dunham et al., 2012). AP-MS method has been widely used to characterize protein complexes on a
large scale in different species including yeast, Drosophila and human (Guruharsha et al., 2011;
Krogan et al., 2006; Ewing et al., 2007). To overcome the non-specific detection of co-purified
proteins, two-step tandem affinity protein purification systems have been developed (Burckstummer
et al., 2006). This approach allows the preparation of a substantially pure target protein complex and
reduces the background signals. The quantitative mass-spectrometry analysis also has been used to
identify different contaminants (Trinkle-Mulcahy et al., 2008). However, AP-MS data may not
always detect binary interactions and often reflects only steady-state PPI dynamics, thereby,
potentially missing weak and transient interactions.

As for many-to-many approaches, we may consider the use of co-fractionation and mass spectrometry
to characterize protein complexes. In this method, cellular extracts are subject to intense co-
fractionation by using biochemical separation methods such as chromatography, and a precise co-
elution of proteins is used to determine PPIs. A distinct advantage of this method over AP-MS is that
it allows for a mapping of dynamic PPIs and the determination of the size of the protein complexes
due to the use of size-exclusion chromatography (Yang et al., 2015). Thus, this method has been used
to map protein complexes on a proteome-wide scale in different organisms such as yeast and humans
(Doerr, 2012; Havugimana et al., 2012; Phanse ef al., 2016). More recently, PROPER-seq, a method
that leverages the use of high throughput DNA sequencing for the mapping of many-to-many non-
binary PPIs has also been introduced. Taking a group of cells as input, this method first generates a
barcode for each protein that conjugates the protein itself with its mRNA. Next, the barcodes are
grouped into two libraries, a bait library that is kept immobilized and a prey library that is not. Once
these libraries are combined, it is possible to identify the interactions in the form of chimeric
sequences of interacting mRNA barcodes (Johnson ef al., 2021).



Network Based PPIN Analysis

PPINs assembled from the experimentally characterized PPIs are crucial to understanding cellular
organization and complex diseases. PPI data extracted from the proteomic literature and compiled
within the expert-curated resources are highly useful in uncovering functional PPINs and guiding
subsequent research. However, such data are scattered across multiple databases that differ in scope
and content, i.e., the type and number of PPIs they contain, the number of organisms that are covered,
and the experimental and computational methods that were used for PPI characterization. Therefore,
combining different PPI maps is necessary to obtain a complete view of protein interactomes (Razick
et al., 2008; Chen et al., 2011; Chen et al., 2016; Chen et al., 2019).

However, the combined PPI datasets will likely be noisy and beset with false positives that are
inherent in experimentally characterized PPIs and therefore, they must be carefully assessed before
being used for PPIN analyses. A relatively simple and commonly used approach is to consider only
those PPIs that are determined by at least two different experimental methods or are reported in the
literature in two different publications (Chen et al., 2016). Biophysical data from the experimentally
determined structures of interacting proteins can be useful since they offer detailed insights into how
PPIs are formed at the atomic scale (De Las Rivas and Fontanillo, 2010; Erijman et al., 2014; Moal et
al., 2011, 2013), but such data are available for very few protein complexes. It is also important to
view and analyze the PPIN data in the proper spatiotemporal context such as cellular/tissue
specificity, protein subcellular localization, gene expression patterns, homologous associations, and
PTMs (Schaefer et al., 2013). Several studies have employed PPIN analysis to probe a broad
spectrum of biomolecular processes and seek answers to key biological questions (Fig. 1).
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Figure 1. Multiple types of analysis can be performed on a base PPI network.

Network Topology

A typical PPIN is an undirected graph with each protein represented as a node and each interaction
between two proteins represented as an edge (Fig. 1(a)). This wiring or the connectivity of the



different proteins within a PPIN is referred to as network topology. There is a strong correlation
between the topological properties of a network and its functioning. Therefore, graph theory concepts
such as node degree distribution, betweenness centrality, and shortest path length have been used to
pinpoint key determinants of network function (Raman, 2010). Network ‘hubs’ are highly connected
proteins with many PPIs (that is, they have a high node degree); they are therefore likely to have a
greater influence on network functioning via multiple interactions. Network ‘bottlenecks’ are proteins
with high betweenness centrality; they regulate the flow of signaling information across the network
and therefore represent key nodes for communication (Yu et al., 2007) (Fig. 1(b)). Thus, analyzing
network topologies can be a means of new discoveries such as identifying novel biomarkers and
potential drug targets (Csermely et al., 2013; Kotlyar et al., 2012; Charitou et al., 2016; Gebicke-
Haerter, 2016; Hakes et al., 2008). Network topologies have been employed to identify novel disease-
associated genes (Vidal et al., 2011; Feldman et al., 2008; Sarajlic et al., 2013) to better understand
the organization of localized cellular networks. For example, Gupta et al. (2015) mapped the
centriole-cilium protein interaction landscape by generating a PPIN consisting of >7000 interactions
and using network topology analysis, which led to the discovery of novel insights into human
centrosome and cilia biology.

Network Clustering

It is reasonably understood that proteins group together to form complexes to perform biological
functions such as transcription, translation, and cell growth. The clustering of nodes, namely the
identification of groups of proteins within a PPIN-based on its intrinsic properties and associated
information, is thus a commonly used method for the characterization of protein complexes (Fig 1(c)).
In Computer Science literature, clustering algorithms are typically classified into partitional,
hierarchical and density-based methods. Partitional approaches, as the name suggests, generate
partitions of the initial data based on the minimization of the difference between the points in a given
cluster, expressed usually as some sort of distance. Hierarchical approaches are rooted in the
generation of dendrograms that represent the nesting of different elements. Finally, density-based
approaches relate to the concept of determining the density of a given region (Jain ef al., 1999). All of
these methods can be potentially used for the clustering of PPINs.

For example, Yu and Zheng used clustering approaches for the identification of complexes in PPIN
that have been constructed with weight information from Gene Ontology and van Mering data (Yu
and Zheng, 2019); whilst Ranjani Rani and colleagues applied the commonly known Markov
Clustering algorithm in conjunction with optimization methods, for the detection of dynamic protein
complexes (Ranjani Rani et al., 2019). Also, novel clustering algorithms, specifically developed for
the identification of complexes have also been described (Shirmohammady et al, 2021). The
effectiveness of different clustering methods in the identification of complexes was examined by
Brohée and van Helden, who using a test network of complexes based on the MIPS database,
evaluated the sensitivity of various algorithms to the setting of different parameters, and their
robustness to alterations in the graph (Brohée and van Helden, 2006).

Another important outcome of using PPIN clustering to investigate disease mechanisms is the disease
module hypothesis, which is based on the observation that genes associated with the same disease
preferentially interact with each other and tend to form well-connected clusters in the same network
neighborhood (Barabasi et al., 2011; Ideker and Sharan, 2008; Menche et al., 2015). The disease
module hypothesis has attracted much interest from the researchers since a given set of disease-
causing genes can provide a deeper insight into related diseases. This is carried out by collating other
disease-causing genes, defining tightly interconnecting communities (Girvan and Newman, 2002) of



functionally related or disease-related proteins, and then retrieving the uncharacterized neighboring
genes connected with the initial “seed” genes by shortest paths. For instance, Huttlin and colleagues
constructed BioPlex, a network of experimentally derived human PPIs, and defined many protein
communities and subnetworks that enabled functional characterization of poorly characterized human
proteins, including many with novel roles in human diseases such as cancer and hypertensive disease
(Huttlin et al., 2015, 2017). Rolland and co-workers also demonstrated that known cancer-associated
genes are highly interconnected in the human protein interactome (Rolland et al., 2014).

Clustering can also be used as a complement or in conjunction with other techniques to extract
biological insights. While studying the role of the Rho-GDI signaling pathway in the progression of
non-small cell lung cancer, Gupta and colleagues (Gupta et al., 2022) initially used feature selection
strategies to reduce the original list of over 10 thousand genes originally sampled from patients, to just
over 400. Using this scaled-down list of genes, they constructed a PPIN that, when clustered, could be
used to find PPI cliques that were potentially relevant to cancer progression.

Network Alignment

Network alignment allows the discovery of similar parts between molecular systems, particularly
those that are evolutionarily conserved between species. The alignment places together the sections of
the PPIN that remain constant together, thus clearly identifying the interactions that can be understood
as conserved across species; whilst at the same time it highlights the areas that are different across
different networks, i.e., thus that should be considered to be species’ specific. The alignment is made
considering both topological and functional properties of the networks (Ma and Liao, 2020) (Fig

1(d)).

Various approaches have been developed for the alignment of PPI networks; for example, Mahdipour
and Ghasemzadeh (2021) introduced a deep learning approach that starts by using different sequence
and topological properties of the networks to define embeddings for each of them; these embeddings
are then processed by a recurrent neural network in order to predict the alignment of the nodes in the
two networks. Alternatively, Menor-Flores and Vega-Rodriguez (2022) focused on improving the
alignment results by jointly considering both topological and biological features.

In addition to the comparison across species, network alignment could also play a role when
considering PPI data from different cells and tissues. Complex diseases are usually very site-specific
and mostly impact specific cells and/or tissues (Goh et al., 2007; Magger et al., 2012). Therefore, it is
necessary to examine the PPI data, in cellular and tissue context, such as cell/tissue-specific
expression of proteins, the relative abundance of alternatively spliced isoforms and PTMs, and their
impact on the interactome of different cells and tissues. Magger and co-workers, for instance,
observed that using tissue-specific PPINs greatly enhanced the prioritization of candidate disease-
causing genes compared with generic PPINs and highlighted novel tissue-disease associations
(Magger et al., 2012).

For more details on current developments of algorithms and metrics for PPI alignment, readers are
also encouraged to see the review on the subject from Ma and Liao (2020).

Network Dynamics

Although the interactions that give rise to PPI networks can in many cases be stable, there are
instances where the interactions could be temporary, to allow changes to different regulatory
processes in response to prevailing conditions (Fig 1(¢e)). Various efforts thus can also be found when



it comes to the study of the dynamic nature of PPIs. For example, by incorporating expression data
into the genome-scale interactome of cassava, Thanasomboom and colleagues were able to rewire the
interactions under various conditions, such as drought stress or virus infection (Thanasomboom et al.,
2020). Using a similar strategy, Li and colleagues leveraged gene expression to generate aging-
specific dynamic PPINs and examined whether these were better suited to predict age-related genes
than their static counterparts (Li et al., 2021).

The rapid proliferation of high-quality sequence data generation using low-cost Next Generation
Sequencing (NGS) experimental platforms coupled with speedy bioinformatics methods have
contributed to the mapping of scores of sequences and structural variants associated with clinically
relevant phenotypes and diseases. Although there is a limited understanding of causal relationships
between various mutations and diseases, it has been well established that functional variants may
often impact overall protein functions including PPIs (Shameer er al., 2016). Comparative PPIN
analysis, therefore, offers a promising avenue to examine the genotype-phenotype relationships
underlying key biological processes and the causative mechanisms of disease-causing mutations
emanating from the gain and/or loss of specific PPIs. Different studies involving the analysis of global
PPINs in humans have highlighted mutation-induced network perturbation and loss of specific PPIs
that can be reliably linked with specific diseases (Rolland et al., 2014; Sahni et al., 2015).

PPIN rewiring has also been examined in the context of evolution and conservation of PPIs and
interactions across species (Fig. 1(e)). Vo and co-workers (Vo et al., 2016) constructed a high-quality
binary protein interactome for S. pombe and implemented a framework to compare the organization
and evolution of PPINs across yeast and humans. Their findings revealed extensive species-specific
network rewiring and novel paradigms on network co-evolution and conservation of interacting
proteins.

Despite the wealth of knowledge emerging from the analysis of increasingly available large-scale PPI
data, the known protein interactomes are incomplete. This is not only due to the challenges associated
with the experimental determination of PPIs, but it was also speculated that to obtain a comprehensive
coverage of the human protein interactome, ~200 million protein pairs would need to be
experimentally tested (Rolland ez al., 2014). Moreover, because of systemic bias, well-studied genes
and proteins are screened more frequently than others and are thereby disproportionately represented
in literature and PPI databases. This lopsidedness has led to other proteins, potentially the causative
agents of diseases, remaining under-represented (Edwards et al., 2011). This issue is particularly
visible in model organisms such as rats and mice (Murakami et al., 2017) that are key for biomedical
research and it is estimated that only ~10% of the human protein interactome has been characterized
so far (Kotlyar et al., 2015). Therefore, to generate a complete interactome, it is necessary to develop
computational methods for PPI prediction to expand the coverage of PPI space and mine the protein
interactomes for knowledge discovery.

In Silico Prediction of PPIs for PPI Network Analysis and
Assessment of PPI Quality

A wide range of in silico methods for predicting PPIs have been proposed as complementary to
experimental methods and to assess the quality of existing PPIs using their associated features
obtained from known PPIs, such as gene co-localization, phylogenetic profiling, gene fusion, domain-
domain interactions (DDIs), homologous interactions, contextual information of amino acid (AA)
residues, and also using various computational methods such as text mining and machine learning
(ML) (Murakami et al., 2017; Peng et al., 2017; Keskin et al., 2016). In silico methods can be



broadly classified into two types: Low-resolution methods that offer a simple binary classification to
determine whether a given pair of proteins interact or not, and high-resolution methods that can
predict the detailed interatomic interactions between proteins (Vakser, 2014). The former can swiftly
predict many PPIs as compared with experimental methods and may also be applied to the assessment
of known PPIs. The latter can predict PPIs based on their structural and physicochemical
complementarities, i.e., protein docking (Tuncbag et al., 2009; Keskin et al., 2016), and require
protein structural information, and therefore, are less suitable for characterizing the entire interactome.

Although recent advances in docking methodologies have yielded robust protein complex models,
docking proteins with large conformational changes and/or without prior knowledge of the PPI sites
(ab initio docking) remains a non-trivial task (Janin et al., 2003; Janin and Wodak, 2007). To achieve
this task, molecular dynamics (MD) simulations, which take into consideration the physical
movements of atoms in proteins, have been used to elucidate the precise positions of atoms involved
in the interaction; MD simulations, however, are computational resource intensive and therefore,
unsuitable for whole interactome modeling. Moreover, in recent years, it has become possible to
predict the structures of monomeric proteins with physical and biological knowledge about protein
structure using approaches such as AlphaFold 2.0 (Jumper et al., 2021), and also to predict protein
docking models with high accuracy with approaches such as AlphaFold-Multimer (Evans et al.,
2022), which is an extension of AlphaFold 2.0. For their efforts, AlphaFold 2.0 chief developers
Demis Hassabis and John M. Jumper were awarded one half of the 2024 Nobel Prize in Chemistry.
However, those approaches are resource intensive, and the docking model accuracy is yet to be
validated fully.

Consequently, most of the existing in silico methods applicable to interactome modeling and PPI
assessment lean heavily on information obtained from known PPIs, especially their sequence
information, which is more widely available than structural information. In addition, in silico methods
based on only sequence information are useful for predicting PPIs involving proteins for which either
structures are yet undetermined, or which are inherently disordered. Below, we discuss the underlying
principles of different in silico PPI prediction methods for PPIN analysis.

Interolog-Based Methods

Orthologous proteins are descended from a common ancestral gene as a consequence of speciation,
and they are believed to retain similarity in structure and function (Fitch, 2000; Koonin, 2005; Watson
et al., 2005; Webber and Ponting, 2004), including PPIs. Interologue-based methods predict PPIs and
assess the quality of existing PPIs based on the biological principle of orthologous PPIs (interologue)
across different species, that is, if two or more proteins are known to interact in a species A and if
they have identifiable orthologs in species B, the orthologous proteins may also potentially interact in
species B. This approach is similar to those used for gene function annotation, where a gene function
is inferred from the function of homologous genes in other species. A large amount of PPI data is
available in public databases (Salwinski et al., 2004; Licata et al., 2012; Aranda er al., 2010;
Szklarczyk et al., 2015; Chatr-Aryamontri et al., 2017), where orthologous PPIs can be identified.
This approach is useful in transferring the annotation of PPIs from one species to another species of
interest; for example, it has been applied to predict PPIs in human cancer proteins (Jonsson and Bates,
2006). However, the accuracy of this approach depends on the reliability of the interactions, so it is
considered to be inappropriate for the prediction of transient interactions because such interactions are
poorly conserved across species (Keskin et al., 2016). Thus, other features, such as domain co-
occurrences, gene co-expression or functional similarity, can be integrated into this approach to assess
PPIs and the co-localization of the proteins predicted to interact, as implemented in BIPS (Garcia-



Garcia et al., 2012), 12D (Brown and Jurisica, 2005) and PSOPIA (Murakami and Mizuguchi, 2014)
(Table 1).

Domain-Based Methods

Protein domains are independent evolutionary units, which define protein function. Multiple studies
have demonstrated that DDIs are useful for predicting PPIs since domains are directly involved in
intermolecular interactions (Memisevic et al., 2013; Shoemaker and Panchenko, 2007). Domain-
based methods can identify PPIs without relying on homologous interactions that exist in public
databases, unlike the interologue-based approaches. To use DDIs for the prediction of new PPIs, most
methods annotate protein sequences using domain databases such as Pfam (Finn ef al., 2016), SCOP2
(Andreeva et al., 2014) and CATH (Sillitoe et al., 2015). There are two types of domain-based
approaches (Shoemaker and Panchenko, 2007). The first type consists of the association approach-
based methods that are based on the idea that certain domains are frequently observed in interacting
proteins and therefore can be used as markers to predict new PPIs (Sprinzak and Margalit, 2001).
However, this approach does not consider the relationships of all possible domain pairs in interacting
pairs, and the missing domain pairs not observed in known interacting pairs. The second type is the
Bayesian network approach, where the interaction probabilities of all possible domain pairs are
estimated using the Maximum Likelihood Estimation (Burger and van Nimwegen, 2008; Deng et al.,
2002). The accuracy of this approach depends on the reliability of the domain assignments, so
sufficient coverage of domain databases is necessary to obtain sufficient true positives and negatives.
This approach can also be used to assess the quality of PPIs since an interaction can be deemed more
reliable if it contains domain pairs found in known PPIs in the database (Ng et al., 2003).

In recognition of the limitations of the domain-based approaches, a new set of PPI prediction methods
has been developed, which are based on the principle of short co-occurring polypeptide regions as
mediators of PPIs (Pitre et al., 2012; Schoenrock et al., 2014). A distinct advantage of these methods
is that unlike the classical domain-based approaches, they are designed to predict PPIs solely based on
primary sequence and are thus, not handicapped by the absence of characterized protein domains;
these methods are therefore useful for large-scale PPI prediction. For instance, Schoenrock and
colleagues (Schoenrock et al., 2014) designed a tool to predict human PPINs and validated their
prediction results experimentally. They further employed their computationally predicted human
PPINs for the prediction of gene functions and formations of PPI complexes in human diseases, some
of which were validated by follow-up experimental assays (Schoenrock et al., 2014).

Gene Neighborhood-Based Methods

Gene co-localization-based methods are centered on the idea that two proteins are more likely to
interact when their genes are in the same region of the genome (Tamames et al., 1997). This approach
requires several genome sequences to predict and assess PPIs using information about the
conservation of gene locations, and the confidence increases with increasing genome sequences.
Although this approach can predict new PPIs without relying on known PPIs reported in the literature
or available in databases, it would not be applicable to the eukaryotic genomes, since there is no
tangible evidence that two genes that encode for interacting proteins are always co-localized within a
genome. Although this approach is simple in comparison with other in silico approaches, it often fails
to detect interactions between distantly located genes and often generates many false negatives in the
eukaryotic genomes (Zahiri et al., 2013).



Phylogenetic Similarity-Based Methods

There are two types of phylogenetic similarity-based approaches. One is the phylogenetic tree-based
approach (also known as the mirror tree approach), which is based on the underlying principle that
interacting proteins tend to co-evolve through the interaction and thus have similar topological
phylogenetic tree profiles (Craig and Liao, 2007; Sato et al., 2005; Pazos and Valencia, 2001; Goh
and Cohen, 2002), as implemented in MirrorTree (Ochoa and Pazos, 2010) (Table 1). However, when
a pair of proteins co-evolve through the speciation events even if they do not interact, many false
positives are created due to the generation of similar mirror trees (Ochoa and Pazos, 2014). The
elimination of non-specific tree similarities has been attempted by different methods, for example, the
16S rRNA tree is used as a representation of the speciation process to normalize the non-specific
similarities by subtracting their phylogenetic distances from the distance matrices for a pair of
proteins (Sato et al., 2005; Pazos et al., 2005). The second type is the phylogenetic profile-based
approach that assumes that functionally related proteins tend to be inherited together during evolution.
A phylogenetic profile represents the conservation of a certain protein in various species. Thus, if two
proteins are functionally related, they are more likely to have similar phylogenetic profiles (Juan et
al., 2008). However, the outcomes of this approach are largely dependent on the number of species
used to construct phylogenetic profiles. Thus, this approach is not very suitable for eukaryotic
proteins since there are comparatively fewer eukaryotes with complete genomic sequences than
prokaryotes (Muley and Ranjan, 2012).

Gene Fusion-Based Methods

Gene fusion (domain fusion)-based approaches are based on the genetic observation that independent
genes can combine or “fuse” together to form a single chimeric gene, known as the “Rosetta Stone”.
This method is based on the observation that two separate proteins are functionally related and are
likely to interact if certain proteins in a given species consist of co-localized domains that are
otherwise mapped to different proteins in another species (Enright et al., 1999; Marcotte et al., 1999,
Chia and Kolatkar, 2004). Although gene fusion is an informative feature of the functional
relationships between different proteins, it requires a mapping of domain architecture across different
genomes and is usually only applicable to proteins corresponding to well-characterized protein
domain families.

Function Annotation-Based Methods

Function annotation-based methods are based on the observation that interacting proteins tend to
significantly share function annotations since they are involved in the same biological processes (Peng
et al., 2017). This method is often used to assess the quality of existing PPIs and evaluate the
reliability of different sources with experimentally determined PPIs, for example, the reliability is
evaluated by computing the faction of interacting proteins that have at least one identical function
(Nabieva et al., 2005). Gene Ontology (GO) can be used to define functional similarity between two
proteins to assess the quality of existing PPIs (Cho et al., 2007). However, this approach cannot
reliably evaluate the quality of PPIs where the interacting proteins are annotated with many different
GO terms (Peng et al., 2017).

Text Mining-Based Methods

Text mining-based approaches use grammatical rules to retrieve the co-occurrence of predefined
entities, i.e., in biology, genes, or proteins, and the relationship between these entities in repositories
such as literature and various databases (Papanikolaou et al., 2015). An interaction between two



proteins (A, B) can be ascertained if the grammatical rules, such as “A interaction verb B” or
“interaction between A and B”, are used in the repositories. Although such approaches cannot retrieve
PPIs not described in the repositories, they may be able to infer potentially novel PPIs in a given
species based on homologous PPIs in another species. For example, this approach has been used to
automatically extract host-pathogen interactions from the biomedical literature (Thieu et al., 2012)
and is used in the STRING database to retrieve predicted interactions from the literature (Szklarczyk
etal.,2017).

Machine Learning-Based Methods

Machine learning-based methods train a classifier on a set of known PPI data to predict whether a
given pair of proteins is likely to interact or not. Many different supervised ML techniques, such as
Support Vector Machine (SVM), Naive Bayes (NB), Neural Networks (NN), k-Nearest Neighbors
(kNN), Random Forest (RF), and Deep Learning (DL) have been used to imbibe the informative
protein features that can distinguish between true and false interactions. For example, the NB
integrating protein domain data, gene expression data, and functional annotation data has been applied
to the human interactome network analysis to identify PPIs and subnetworks relevant to human cancer
(Rhodes ef al., 2005). The kNN has been applied to identify human hereditary disease-gene based on
topological features, which describe a protein in PPINs (Xu and Li, 2006). Specifically, DL has been
applied to predict human-SARS-CoV-2 PPIs (Yang et al., 2021; Liu-Wei et al., 2021) and to predict
PPIs containing cell and tumor information in PPIN prediction based on one-core and crossover
network (Li et al., 2022). Furthermore, an ensemble learning approach, which combines multiple
scores obtained from different classifiers trained on different ML techniques can be effective (Peng et
al., 2017). For example, an ensemble learning method that utilizes four classifiers trained using RF,
NB, SVM, and multilayer perceptron (MLP, a type of NN with multi-layers), has been applied to the
prediction of PPIs between humans and the hepatitis C virus (HCV) proteins (Emamjomeh et al.,
2014). The high quality of the training dataset, i.e., informative and unbiased, is crucial for accurate
assessments and predictions, as well as for the evaluation of the ML models. The testing dataset, for
example, is classified into three types by examining if the interacting partner proteins in the dataset
are similar to the proteins in the training dataset or not (Hamp and Rost, 2015; Park and Marcotte,
2012). Such a classification offers an effective mechanism not only to evaluate the models but also to
prepare high-quality datasets. In supervised ML, the quality and quantity of a set of non-PPI data
significantly impact the predictions. Non-PPIs can be generated by randomly pairing any proteins or
proteins found in different subcellular locations and ignoring the actual interactions and are generally
sampled by having a 1:1 or 1:10 ratio of PPIs to non-PPIs. However, data imbalance is an issue that
needs to be suitably resolved.

Furthermore, in this approach, various types of protein features (descriptors) are combined and used
to train the prediction models; these descriptors include the positions of amino acids (AA), the
localization of proteins, domains within proteins, phylogenetic profiles, the degree of the conservation
and the physicochemical characteristics of AA, protein sequence profiles (evolutionary profiles),
protein sequence embedding, and so on. Various physicochemical properties of AA are available in
the AAindex (https://www.genome.jp/aaindex/) database (Kawashima et al., 2008). Protein sequence
profiles are a list of preferences for each AA at each position in a multiple sequence alignment
(MSA), i.e., a position-specific scoring matrix (PSSM). Protein sequence embedding captures
semantic information on AA residues in entire sequences. The widely used embedding methods, such
as Word2Vec (Mikolov et al., 2013) and Doc2Vec (Le and Mikolov, 2014), were originally
developed in the field of natural language processing (NLP) to obtain the distributed representation of
words and documents. In the context of biological sequences, a sequence is regarded as a sentence



and represented by multiple k consecutive AA (k-mer) used to train Word2Vec or Doc2Vec models.
These methods were recently applied to the prediction of human and virus protein interactions,
showing that they learned the protein features well and enabled a robust prediction of human-virus
PPIs (Yang et al, 2020; Tsukiyama et al., 2021). Recently, approaches that combine protein
embeddings with dimensionality reduction and transfer learning, an ML technique that repurposes
knowledge learned from one task to boost prediction in a related task, have been increasingly used for
predicting protein structure and function, including PPIs (Dallago ef al., 2021).

In addition, although some methods are more suitable for prokaryotes than eukaryotes, the confidence
scores assigned to existing PPIs or to potentially interacting protein pairs can be useful to ascertain the
reliability of the inferred interactomes for the subsequent PPIN analysis. A list of in silico prediction
web servers that are useful for PPIN analysis is shown in Table 1.

Conclusions and Future Prospects

A proteome-wide mapping of PPIs and leveraging them in PPIN-based analyses can help to gain
knowledge of the genotype-phenotype relationships and the functioning of complex biological
systems. Publicly available PPI data are expected to grow substantially and more comprehensive
interactome maps are likely to become available in the near future. Consequently, the accuracy and
efficacy of the various in silico PPI prediction and scoring methods will also likely improve with the
increasing amounts of genomic and proteomics data that are likely to become available in the near
future. As PPI mapping transitions from capturing steady state associations to dynamic interactions, it
will become increasingly necessary to take additional parameters such as protein isoforms,
spatiotemporal expression, localization and interaction, and perhaps even the “strength” of the PPIs
into consideration to maximize the robustness of biological insights obtained from the PPIN-based
analyses.

See also

Algorithms for Graph and Network Analysis: Clustering and Search of Motifs in Graphs. Algorithms
for Graph and Network Analysis: Graph Alignment. Algorithms for Graph and Network Analysis:
Graph Indexes/Descriptors. Algorithms for Graph and Network Analysis:
Traversing/Searching/Sampling Graphs. Natural Language Processing Approaches in Bioinformatics.
Network-Based Analysis of Host-Pathogen Interactions.
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Figures and Tables

Figures

Figure 1 Applications of PPIN-based analysis using protein interactome maps. (a) A base
PPIN is usually illustrated with proteins represented as nodes (circles) and their interactions
represented as edges (solid lines). Multiple types of analysis can be performed on a base
PPIN: (b) identify topological features of the network and their biological significance; (c)
finding clusters of tightly related groups of proteins; (d) Determining commonalities across
two or more PPINs using alignment and (e) Investigating changes in PPIN over time with
network dynamics.

Tables

Table 1: A selection of in silico prediction web servers that are useful for PPIN analysis.
Indicated are the web address where the service is available, the strategy used for the
prediction of interactions, and the reference to the publication associated to the method that
can be used for further details.

'Web server Method, URL

MirrorTree Server Phylogenetic similarity

(Ochoa and Pazos 2010) http://csbg.cnb.csic.es/mtserver/

BIPS: Biana Interolog Interolog (across multiple species) / domain / functional
Prediction Server (Garcia- annotation

Garcia et al., 2012) http://sbi.imim.es/web/index.php/research/servers/bips
[2D: Interolog Interaction Interologs (across seven species; human, rat, mouse, fly,
Database (Brown and Jurisica, worm, yeast, and hhv8)

2007) http://ophid.utoronto.ca/ophidv2.204

PSOPIA: Prediction Server of [Homologs (within the human genome) / domain / the shortest
Protein-Protein Interactions ath between two homologous proteins




(Murakami and Mizuguchi,
2014)

https://psopia.mizuguchilab.org/PSOPIA®

InterSPPI-HVPPI
(Yang et al., 2020)

RF/protein sequence embedding / k-mers / Doc2Vec

http://zzdlab.com/hvppi/

LSTM-PHV
(Tsukiyama et al., 2021)

DP / protein sequence embedding / k-mers / Word2Vec

http://kurata35.bio.kyutech.ac.jp/LSTM-PHV/

2 These servers accept only a single protein pair per submission.
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