
Title Deterministic fault-tolerant connectivity
labeling scheme

Author(s) Izumi, Taisuke; Emek, Yuval; Wadayama, Tadashi
et al.

Citation Distributed Computing. 2024, 38(1), p. 31-50

Version Type VoR

URL https://hdl.handle.net/11094/98811

rights This article is licensed under a Creative
Commons Attribution 4.0 International License.

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Distributed Computing
https://doi.org/10.1007/s00446-024-00472-6

Deterministic fault-tolerant connectivity labeling scheme

Taisuke Izumi1 · Yuval Emek2 · Tadashi Wadayama3 · Toshimitsu Masuzawa1

Received: 16 November 2023 / Accepted: 9 October 2024
© The Author(s) 2024

Abstract
The f -fault-tolerant connectivity labeling (f -FTC labeling) is a scheme of assigning each vertex and edge with a small-size
label such that one can determine the connectivity of two vertices s and t under the presence of at most f faulty edges
only from the labels of s, t , and the faulty edges. This paper presents a new deterministic f -FTC labeling scheme attaining
O(f 2polylog(n))-bit label size and a polynomial construction time, which settles the open problem left by Dory and Parter
(in: Proceedings of the 2021 ACM symposium on principles of distributed computing (PODC), pp 445–455, 2021). The
key ingredient of our construction is to develop a deterministic counterpart of the graph sketch technique by Ahn et al. (in:
Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI symposium on principles of database systems (PODS), pp 5–14,
2012), via some natural connection with the theory of error-correcting codes. This technique removes one major obstacle in
de-randomizing the Dory–Parter scheme. The whole scheme is obtained by combining this technique with a new deterministic
graph sparsification algorithm derived from the seminal ε-net theory, which is also of independent interest. As byproducts,
our result deduces the first deterministic fault-tolerant approximate distance labeling scheme with a non-trivial performance
guarantee and an improved deterministic fault-tolerant compact routing. The authors believe that our new technique is
potentially useful in the future exploration of more efficient FTC labeling schemes and other related applications based on
graph sketches.

Keywords Labeling scheme · Fault-tolerance · Graph sketch · Derandomization

Yuval Emek, Tadashi Wadayama and Toshimitsu Masuzawa have con-
tributed equally to this work.

B Taisuke Izumi
izumi.taisuke.ist@osaka-u.ac.jp

Yuval Emek
yemek@technion.ac.al

Tadashi Wadayama
wadayama@nitech.ac.jp

Toshimitsu Masuzawa
masuzawa@ist.osaka-u.ac.jp

1 Graduate School of Information Science and Technology,
Osaka Univerisity, 1-5, Yamadaoka, Suita, Osaka 565-0871,
Japan

2 Technion, Haifa 3200003, Israel

3 Graduate School of Engineering, Nagoya Institute of
Technology, Gokiso-cho, Nagoya, Aichi 466-8555, Japan

1 Introduction

1.1 Motivation and background

Most message-passing distributed systems are modeled by
graphs. By the nature of distributed computing, nodes in
the network must cooperatively solve a given task without
rich access to the whole topological information. In addi-
tion, the network is typically prone to faults, i.e., some of
the vertices and/or links can be down by faults. Hence the
distributed and compact representation of some property of
the network (e.g., connectivity) adapting to topology mod-
ification is potentially useful for applications in distributed
environments. The f -fault-tolerant connectivity labeling (f -
FTC labeling) is a scheme of assigning each vertex and edge
with a small-size label. For any two vertices s and t , and an
edge set F of |F | ≤ f , it determines the connectivity of two
vertices s and t under the deletion of edges F only from the
labels of s, t , and the edges in F . The concept of f -FTC label-
ing schemes (precisely, more general fault-tolerant distance
labeling schemes returning the s-t distance rather than the

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00446-024-00472-6&domain=pdf

T. Izumi et al.

s-t connectivity) has been initiated explictly by Courcelle
and Twigg [15], following an earlier work by Feigenbaum
et al. [23]. The feature of FTC labeling schemes as a dis-
tributed data structure yields efficient structural algorithms
for the forbidden set routingwhich routes packets avoiding a
given set of faulty edges, and for more general fault-tolerant
compact routing [12, 13, 15, 21, 50] where the faulty edge
set is initially unknown.

1.2 Our result

While all of early results [1, 2, 6, 15, 16] mainly focus on the
construction of small-sized labels for restricted graph classes,
f -FTC labeling schemes for general graphs were recently
proposed by Dory and Parter [21]. They propose two ran-
domized f -FTC labeling schemes of O(f + log n)-bit and
O(log3 n)-bit label sizes respectively, which guarantee the
weaker form of the correctness that the response to each sin-
gle query is correct with high probability. In other words,
they guarantee the correctness only for 1 − 1/O(poly(n))

fraction of all possible nO(f) queries. We refer to this type
of correctness criteria as “whp query support”, in contrast
with the standard criteria of “full query support” ensuring
correct answers for all possible queries with high probabil-
ity. The authors of [21] also mention how the presented two
schemes are converted to the ones with full query support,
allowing the blow-up of their label sizes into O(f log n) bits
and O(f log3 n) bits respectively (see the footnote 4 of [21]).
In total, the paper [21] presents the four randomized schemes,
two ofwhich attain full query support and the other two attain
only whp query support. They leave as an open problem the
polynomial-time deterministic construction of compact FTC
labeling schemes for general graphs. The main contribution
of this paper is to settle this open problem:

Theorem 1 There exist two deterministic f -FTC labeling
schemes for any graphG of n vertices, m edges, and diameter
D, which respectively attain the following bounds:

• The label size is O(log n) bits per vertex, and
O(f 2(log2 n) log log n)bits per edge. The query process-
ing time is Õ(|F |4),1 where F is the set of queried edges
satisfying |F | ≤ f . The construction time is polynomial
of m.

• The label size is O(log n) bits per vertex, and
O(f 2 log3 n) bits per edge. The query processing time
is Õ(|F |4). The construction time is near linear, i.e.,
Õ(m f 2). In addition, there exists a deterministic CON-
GEST distributed algorithm of constructing the labels in
Õ(

√
mD + f 2) rounds.

1 The Õ(·) notation hides polylog(n) factors.

Note that every deterministic scheme inherently achieves
full query support. We emphasize that de-randomizing any
of two original schemes of Dory and Parter is a highly
non-trivial challenge. Those schemes are based on the other
labeling schemes representing a cut structures, whose con-
struction heavily depends on randomness. Our deterministic
construction is based on the second scheme of Dory and
Parter [21] utilzing the graph sketch technique by Ahn et al.
[3] as the key structure. Informally, the graph sketch is a label-
ing scheme to vertices, admitting the detection of an outgoing
edge for a given vertex set S ⊆ VG from the bitwise XOR
of all labels of vertices in S. The technical highlight of our
result is to develop a deterministic counterpart of the graph
sketch technique via some natural connection with the the-
ory of error-correcting codes. This technique is very simple,
and completely removes one of two major obstacles in de-
randomizing the outgoing edge detection by graph sketches.
Yet another obstacle is the sparsification of the input graph.
The sketch-based outgoing edge detection, including ours,
works only when the input vertex set S has a small number
of outgoing edges. To handle the case with many outgoing
edges, the original approachprepares a collection of spanning
subgraphs, where for each possible input S with a non-empty
outgoing edge set, there exists at least one subgraph in the
collection such that S has exactly one outgoing edge. The
construction of such a collection follows random sampling of
edges. Our second contribution is a novel de-randomization
technique for this graph sparsification process based on the
seminal ε-net theory in computational geometry [33]. On
this part, we present two different algorithms respectively
corresponding to the schemes presented in Theorem 1.

In addition to the key technical ideas above, the construc-
tions in Theorem 1 have a few more notable features: First,
our result is presented as a general framework with good
modularity, and thus one can easily transformour determinis-
tic scheme into an efficient randomized FTC labeling scheme
with full query support, just by replacing the graph sparsifi-
cation part with the conventional random edge sampling. The
construction time and label size of this randomized scheme
are competitive with the original sketch-based scheme in
[21]. Second, we propose a new query optimization strategy.
A drawback of our deterministic outgoing edge detection
technique requires the decoding time roughly quadratic of
the label size. Since the sketch-based f -FTC labeling scheme
requires |F | iterations of the outgoing edge detection for pro-
cessing a single query, the straightforward implementations
result in the Õ(f 4|F |) time for the deterministic case, and
Õ(f 2|F |) time for the randomized case. Our query process-
ing algorithm shaves off this additional |F | factor, as well
as getting rid of the dependency on f in the outgoing edge
detection. Consequently, we obtain a slightly improved ran-
domized f -FTC labeling scheme of Õ(|F |2) decoding time.
While the improvement of replacing f by |F | is very straight-

123

Deterministic fault-tolerant connectivity labeling scheme

forward and easily applicable to any scheme not limited to
ours, it is practically an intriguing feature because in typi-
cal scenarios the actual number of faults |F | is substantially
smaller than the upper bound f .

The detailed comparison between the schemes in [21] and
our schemes are summarized in Table 1.

1.3 Applications

Our deterministic replacement of graph sketches provides a
clearer insight to known outgoing edge detection techniques.
It is simple, versatile, and potentially useful in the future
exploration of other applications not limited to FTC-labeling
schemes (e.g., [3, 24–27, 32, 34, 36–38, 40, 43]). Actu-
ally, we obtain several non-trivial de-randomization results
in related topics. It has been shown in [21] that one can
deduce the approximate distance labeling scheme,whichpro-
vides an approximate s-t distance in G − F given the labels
of s, t and the edges in F , utilizing any f -FTC labeling
scheme in the black-box manner. In addition, if the underly-
ing FTC-labeling scheme ensures the additional property that
its decoding process can report a s-t path avoiding F (in a
succinctway), such an approximate distance labeling scheme
further deduces an efficient fault-tolerant compact rout-
ing scheme. Since the deduction parts are deterministically
implemented and our construction ensures this additional
property, our deterministic f -FTC labeling schemes also
de-randomize the construction of the schemes above. More
precisely, we obtain the following applications as corollaries
of Theorem 1.

Corollary 2 Assume that the input graph is any weighted
undirected graph with polynomially bounded edge weights.
For any positive intergers k > 0 and f > 0, there exists
a f -fault tolerant O(|F |k)-approximate distance label-
ing scheme which achieves Õ(f 2n1/k)-bit label size and
Õ(|F |4) query time.
Corollary 3 For any positive integer k > 0 and f > 0,
there exist two deterministic fault-tolerant compact routing
schemes which achieve the stretch factor of O(|F |2k) and
one of the following table-size bounds:

• Õ(f 2n1+1/k)-bit total table size and Õ(f 2n1+1/k)-bit
maximum local table size.

• Õ(f 5n1/k)-bit maximum local table size.

The result of Corollary 2 is the first deterministic scheme
for general graphs achieving a non-trivial performance guar-
antee. On Corollary 3, the prior work by Chechik [12], which
attains O(|F |2(|F | + log2 n)k) stretch factor with a smaller
table size, is also implemented deterministically, and thus
our result is not the first deterministic solution. However, our

scheme takes an advantage with respect to stretch factors.
Since the proofs completely follow the reduction techniques
proposed in [21], this paper does not present the precise for-
malism on these corollaries. See [21] for details.

1.4 Related work

As mentioned in Sect. 1.1, FTC-labeling schemes, and
more general fault-tolerant (approximate) distance labeling
schemes are introduced in the literature of forbidden set rout-
ing, which is the routing scheme avoiding non-adaptive faulty
edges/vertices (i.e., the set of faults is not specified at the
construction of routing tables, but given at the beginning of
packet routing). The first result by Courcelle and Twigg [15]
presents a FTC-labeling scheme of O(k2 log n)-bit labels for
graphs of treewidth k, as well as its application to forbidden-
set routing. A few results following this line exist [1, 2, 6, 15,
16], but all of them are interested in the construction of com-
pact labels for specific graph classes. FTC-labeling schemes
for general graphs is not much addressed until the result by
Dory andParter [21]. In the context of deterministic construc-
tion, many of the results for restricted graphs stated above are
deterministic, but the deterministic construction for general
graphs is not known so far. In the paper of Dory and Parter,
two randomized FTC labeling schemes relying on different
techniques are presented. While the second scheme is based
on graph sketches as we mentioned, the first one relies on the
cut-verification labeling by Pritchard and Thurimella [49].

There are many works in the literature of the centralized
version of connectivity oracles and (approximate) distance
oracles supporting edge/vertex deletion [5, 7, 8, 10, 13, 18–
20, 22, 28, 29]. One of the major settings on this line is the
case of f = 1, which is known as the replacement path prob-
lem [8, 28, 29], or distance sensitivity oracle [5, 7, 8, 22].
Roughly, the replacement path problem computes all pair
(approximate) shortest path distances for every possible sin-
gle edge/vertex fault. The sensitivity oracle is further required
to store the information of replacement paths into a compact
data structure. Their single-source variants are also investi-
gated [7, 9]. The sensitivity oracles for multiple faults are
considered mainly in the context of fault-tolerant compact
routing, which is a generalization of forbidden-set routing
addressing adaptive faults (i.e., the set of faults is not explic-
itly given at the beginning of packet routing) [12, 13, 21, 50].
There are also a few results considering the oracles specific
to connectivity [18–20, 48], which are seen as centralized
counterparts of FTC labeling schemes. Obviously, any f -
FTC labeling scheme is also usable as a centralized oracle
with the space complexity of m times of label size. More
general dynamic connectivity of undirected graphs aims to
develop the data structure of supporting the operations of
inserting/deleting edges as well as the connectivity query.
By definition, such a data structure can be used as a fault-

123

T. Izumi et al.

Table 1 Comparison between
the schemes in [21] and our
results

Label size Query time Det./Rand Correctness Construction

1st (whp) [21] O(f + log n) Õ(f 3) Rand whp Õ(f m)

2nd (whp) [21] O(log3 n) Õ(|F |) Rand whp Õ(f m)

1st (full) [21] O(f log n) Õ(f 3)† Rand full Õ(f m)

2nd (full) [21] O(f log3 n) Õ(f |F |)† Rand full Õ(f m)

This paper O(f 2 log3 n) Õ(|F |4) Det full Õ(f 2m)

This paper O(f 2 log2 n log log n) Õ(|F |4) Det full poly(n)

This paper O(f log3 n) Õ(|F |2) Rand full Õ(f m)

The dagger mark † implies that the complexity is not explicitly stated in the original paper, and thus based
on our analyses. For any scheme, the dependency on f in query processing time is easily replaced by |F |
utilizing the technique proposed in this paper

tolerant connectivity oracle with the query processing time
of O(|F | · (operation cost)). While there is a long history of
this problem [11, 25, 30, 31, 36, 44, 51, 52], all the known
resultswith polylog(n)-time operation cost rely on amortized
analyses or the correctness criteria of whp guarantee. Focus-
ing on deterministic construction, the best known results are
the algorithm by Chuzhoy, Gao, Li, Nanongkai, Peng and
Saranurak for dynamic connectivity achieving no(1) opera-
tion cost per one edge deletion [11], and the connectivity
oracle by Pătraşcu and Throup [48] achieving Õ(|F |) query
processing time. The deterministic algorithm for dynamic
connectivity with worst-case polylog(n)-time operation is a
major open problem in this research field.

While this paper focuses only on edge faults, it is also
an interesting research direction to consider vertex faults.
Despite its similarity, vertex fault-tolerance often exhibits a
technical difficulty quite different from edge fault-tolerance.
A trivial approach is to reduce the failure of a vertex v into
the failure of all the edges incident to v, which results in
a f -vertex fault tolerant connectivity labeling scheme of
Õ(� f)-bit label size (where� is themaximumdegree of the
input graph). Unfortunately, this approach does not provide
a good worst-case bound because � could become �(n).
The first non-trivial results for vertex fault tolerant label-
ing schemes are proposed by Parter and Petruschka [46],
which provide two schemes respectively attaining a poly-
logarithmic label size for f = 2 and a sublinear size for
f = o(log log n). Very recently, Parter, Petruschka, and
Pettie proposes poly(f , log n)-bit schemes for vertex faults
[47]. More precisely, a randomized scheme of O(f 3 log5 n)-
bit labels, and a deterministic scheme of O(f 7 log13 n)-bit
labels are proposed. Their deterministic scheme also relies
on the de-randomization techniques presented in this paper.

The graph sketch technique is first presented by Ahn et al.
[3], aiming to develop space-efficient algorithms for graph
stream [4, 38, 40]. There are a variety of applications not
limited to graph stream, such as distributed computation [24,
26, 27, 32, 34, 37, 43] and dynamic algorithms [25, 36].

1.5 Roadmap

Following the introduction of necessary notations and defi-
nitions, we first explain the high-level idea of our framework
in Sect. 3, including the explanation of the sub-components
constituting our scheme. Section4 explains the key techni-
cal ideas of our de-randomization technique. Following the
summary of whole structure in Sect. 5, we present a further
query optimization technique in Sect. 6. Section7 explains
the details of our construction. We consider the distributed
construction of our labeling schemes in Sect. 8. Finally, we
conclude this paper in Sect. 9, as well as a few promising
future research directions.

2 Notations and terminologies

We denote the vertex set and edge set of a graph G respec-
tively byVG and EG .Weuse the notation H ⊆ G to represent
that H is a subgraph of G. For any edge subset E ′ ⊆ EG , we
define G − E ′ as the graph obtained from G by removing all
the edges in E ′. Given a vertex subset S ⊆ VG , an outgoing
edge of S is the edge having exactly one endpoint in S. We
define ∂G(S) as the set of all outgoing edges of S in G. For
any E ′ ⊆ EG , we also define ∂E ′(S) = ∂G(S) ∩ E ′.

Given a rooted tree T and vertex v ∈ VT , we denote by
T (v) the subtree of T rooted by v. Given an edge e ∈ ET ,
we also denote by T (e) the subtree of T rooted by the lower
vertex (i.e., the endpoint farther from the root than the other)
of e.

An f -FTC labeling scheme for a given input graph G
consists of a labeling function Lcon

G, f and a universal decoding
function Dcon

f . The labeling function assigns each of vertices
and edges x ∈ VG ∪ EG with a label Lcon

G, f (x) (i.e., a binary
string). Let s, t ∈ VG be any two vertices and F ⊆ E be
any edge subset of size at most f . The decoder function
Dcon

f correctly answers the connectivity between s and t in
G − F only with the information of Lcon

G, f (s), L
con
G, f (t), and

123

Deterministic fault-tolerant connectivity labeling scheme

{Lcon
G, f (e) | e ∈ F}. Note that the decoder function Dcon

f is
universal for all G, and cannot have any direct access to the
information ofG. The detailed formalism of f -FTC labeling
scheme is given in Sect. 7.1.

3 Construction framework

Wefirst introduce a general framework of constructing the f -
FTC labeling scheme. The technical core of this framework
relies on the scheme by Dory and Parter [21], but some addi-
tional techniques and abstractions are newly introduced. Let
G be the undirected input graph of n vertices and m edges.
Throughout this paper, we fix an arbitrary rooted spanning
tree T of G. The framework consists of two technical com-
ponents. The first one is a weaker variant of f -FTC labeling
schemes which supports only the query (s, t, F) satisfying
F ⊆ ET (i.e., only the edges in T can be faulty). We refer
to this scheme as the tree edge f -FTC labeling scheme. Our
tree edge f -FTC labeling scheme is implemented with two
other labeling schemes, respectively referred to as the ances-
try labeling scheme and the S-outdetect labeling scheme
(explained in the next section). The second component is
the very simple transformer which deduces an f -FTC label-
ing scheme from any tree edge f -FTC labeling scheme with
no blow up of label size. In the following sections we explain
the outline of each component.

3.1 Tree edge f-FTC labeling scheme

First, we state the informal specifications of the two sub-
schemes. The formal definitions of these sub-schemes are
also presented in Sect. 7.1.

• Ancestry Labeling Scheme: Let T be any tree. This
scheme assigns each vertex v ∈ VT with a label Lanc

T (v).
Given two labels Lanc

T (u) and Lanc
T (v) of distinct vertices

u, v ∈ VT , one can determine if u is an ancestor of v,
a descendant of v, or otherwise. There exists a linear-
time deterministic algorithmwhich provides the ancestry
labeling of O(log n) bits [39].

• S-Outdetect Labeling Scheme: We assume that each
edge e ∈ EG is assigned with a unique ID from some
domain E . Let S ⊆ 2VG be a collection of vertex sub-
sets. An S-outdetect labeling scheme assigns each vertex
v ∈ VG with a label Lout

G,S(v). For anyvertex subset S ∈ S
such that ∂G(S) is nonempty, one can compute an out-
going edge e ∈ ∂G(S) only from the bitwise XOR sum
⊕

v∈S Lout
G,S(v) of all the labels assigned to vertices in S.

If ∂G(S) is empty, the scheme also detects it. The graph
sketch technique [1] provides a randomized S-outdetect
labeling scheme with O((log |S|) · polylog(n))-bit label
size.

We define S f ,T as the collection of all vertex subsets S sat-
isfying ∂T (S) ≤ f . Note that S is not required to induce
a connected subtree of T . In what follows, we mostly con-
sider the construction of S-outdetect labeling schemes for
S = S f ,T , and thus often omit the subscript S f ,T of
Lout
G,S f ,T

Roughly, our tree edge f -FTC labeling scheme is
the combination of the ancestry labeling scheme of T and
the S f ,T -outdetect labeling scheme of G − ET for an appro-
priate edge ID domain E (explained later). Each vertex u
is assigned with the ancestry label of u, and each tree edge
e = (u, v) in ET is assigned with the concatenation of the
ancestry labels of u and v, and the XOR sum of the S f ,T -
outdetect labels over all the descendant vertices of e. We do
not have to assign any label to non-tree edges because we
focus on the construction of the tree edge f -FTC labeling
scheme.

Given a query (s, t, F) satisfying F ⊆ ET and |F | ≤ f ,
the spanning tree T is split into |F | + 1 subtrees by remov-
ing all the edges in F . We refer to the vertex set of each
split subtree as a fragment. Let S be the fragment of contain-
ing s. The query processing algorithm iteratively grows S by
detecting an outgoing edge e ∈ ∂G−ET (S). If such an edge
is found, the fragment that e reaches from S is merged into
S. This process terminates until no outgoing edge is found or
the fragment with t is merged. If no outgoing edge is found,
one can conclude that s and t are not connected in G − F ,
or connected otherwise. Our framework detects an outgoing
edge of S in G − ET by the S f ,T -outdetect labeling scheme
(recall S ∈ S f ,T by definition).With the support of the ances-
try labeling scheme, one can detect the ancestor–descendant
relationship between any entities in s, t , and F , which pro-
vides the information of the edge set ∂T (S′) for all fragments
S′. To compute

⊕
v∈S′ Lout

G−ET
(v) for each fragment S′, it suf-

fices to compute the XOR sum of the S f ,T -outdetect labels
assigned to the edges in ∂T (S′). Since the outdetect label of
each edge in T is the XOR sum of all descendants’ outdetect
labels, it appropriately cancels out the labels assigned with
the vertices not in S′. The fragment merging is simple but
has a point to be careful. Let e = (u, v) be an outgoing edge
of S (assuming u ∈ S), and S′ be the fragment containing v.
Then the XOR sum over all the labels of S ∪ S′ is easily cal-
culated by the XOR sum of the two computed sums for S and
S′. However, how can we identify the fragment S′ contain-
ing v? This problem is resolved by embedding the ancestry
labels of u and v into the edge ID of e. That is, as a pre-
processing step, we assign each edge (u, v) with the pair of
(Lanc

T (u), Lanc
T (v)) as the edge ID, and the outdetect labeling

is constructed for the edge domain by this assignment. Then
the decoding of an edge ID immediately yields the informa-
tion of the fragments containing its endpoints. We formalize
our framework explained above into the following lemma.

123

T. Izumi et al.

Fig. 1 Auxiliary graph G ′

Lemma 4 Assume any deterministic S f ,T -outdetect label-
ing scheme (Lout

G , Dout) of label size α and decoding time
β. Then there exists a deterministic tree edge f -FTC label-
ing scheme of (α + O(log n))-bit label size and O(|F |(β +
log |F |+α/ log n)) decoding time, where F is a set of faulty
edges given by a query.

The proof details are given in Sect. 7.2.

3.2 Transformation to general scheme

The second component reduces the construction of general
f -FTC labeling schemes into that of tree edge f -FTC label-
ing schemes. For the input graph G and its rooted spanning
tree T , our transformation constructs an auxiliary graph G ′
by subdividing all non-tree edges e ∈ EG \ ET into two
edges, respectively referred to as e, and e′ (see Fig. 1). The
spanning tree T ′ of G ′ is also obtained by adding e to the
tree T . This input transformation naturally defines a bijec-
tive mapping σ : EG → ET ′ , where every edge e ∈ EG

is mapped to the corresponding edge in T ′ with the same
name. A query (s, t, F) for G is also naturally interpreted to
the query (s, t, {σ(e)|e ∈ F}) for G ′. It is easy to see that s
and t are connected inG−F if and only if they are connected
inG ′ −{σ(e)|e ∈ F}. Hence the following proposition obvi-
ously holds:

Proposition 5 Let G and T be the input graph and its rooted
spanning tree, and G ′, T ′, and σ be the graphs and the map-
ping as defined above. Assume any tree edge f -FTC labeling
scheme (L tree

G ′, f , D
tree
f) for G ′ and T ′. Then we define the

labeling function Lcon
G, f for G as follows:

Lcon
G, f (x) =

{
L tree
G ′, f (x) if x ∈ VG ∪ ET

L tree
G ′, f (σ (x)) otherwise.

.

Then (Lcon
G, f , D

tree
f) is a f -FTC labeling scheme for G.

Combining Lemma 4 and Proposition 5, we obtain the
following corollary:

Corollary 6 Assume any deterministic S f ,T -outdetect label-
ing scheme (Lout

G , Dout) of label size α whose decoding time
isβ. Then there exists a deterministic f -FTC labeling scheme
of (α + O(log n))-bit label size and O(|F |(β + log |F | +
α/ log n)) decoding time, where F is a set of faulty edges
given by a query.

4 Technical outline of our approach

4.1 Obstacles in de-randomization

Corollary 6 implies that the difficulty of de-randomization
lies only at the implementation of the deterministic S f ,T -
outdetect labeling scheme. The known S-outdetect labeling
scheme based on the graph sketch includes two major points
reling on random bits, which are summarized as follows:

• The first is at the computation of vertex labels. Let IG(v)

be the set of incident edges of v in G. The graph sketch
first prepares some function g : E → {0, 1}k , where
E is the edge ID domain and k is the label length, and
define the label Lout

G (v) of vertex v as the bitwise XOR
sum of g(e) for all the edges e ∈ IG(v). When com-
puting

⊕
v∈S Lout

G (v) for a given subset S ⊆ VG , the

123

Deterministic fault-tolerant connectivity labeling scheme

value g(e) for any e lying at the inside of S are can-
celed out because the term g(e) appears exactly twice in
the sum

⊕
v∈S Lout

G (v) = ⊕
v∈S(

⊕
e∈IG (v) g(e)). That

is,
⊕

v∈S Lout
G (v) = ⊕

e∈∂G (S) g(e) holds. For clari-
fying the essence of the first point, we consider the
simple case such that |∂G(S)| = 1 holds (the general
case is addressed in the second point). In this case,⊕

v∈S Lout
G (v) = g(e) obviously holds for the unique

outgoing edge e of S. Hence one can extract the out-
going edge ID from

⊕
v∈S Lout

G (v), provided that there
exists a way of computing the inverse g−1. However, if g
is not well-designed, some subset S′ ∈ S f ,T which does
not have e as an outgoing edge might accidentally sat-
isfy

⊕
v∈S′ Lout

G (v) = g(e). Then, e is wrongly detected
as an outgoing edge of S′. To avoid it, the graph sketch
needs to guarantee that

⊕
v∈S′ Lout

G (v) becomes different
from the value g(e) of any edge e ∈ EG if |∂G(S′)|
= 1.
The first point of utilizing random bits is to attain this
condition by taking a random hash function g.

• As explained above, the strategy above provides the
S-outdetect labeling scheme working only for S ∈ S sat-
isfying |∂G(S)| = 1. To cover the case of |∂G(S)| > 1,
the original scheme prepares the collection G of span-
ning subgraphs of G such that for any S ∈ S there exists
a corresponding H ∈ G which satisfies |∂H (S)| = 1.
The label to vertex v is then obtained by the concatena-
tion of Lout

H (v) for all H ∈ G. Roughly, each spanning
subgraph in G must be (almost everywhere) sparser than
the original input G. The construction of each graph in
that collection follows a stochastic sampling of edges,
which is the second point relying on randomization.

The technical highlight of our deterministic scheme is
twofold, which respectively resolve the two issues above.
We explain the outline of each technique in the remainder of
this section. The formal argument is provided in Sect. 7.3.

4.2 First technique: deterministic k-threshold
outdetect labeling scheme

The first technique is a deterministic function g replacing
the random function of the graph sketch, based on the theory
of error-correcting codes. To explain it, we first present a
very concise review of coding theory: A linear code W is
a y-dimensional linear subspace of GF(2)x , where GF(2) is
the finite field of two elements (i.e., the element set {0, 1}
and every calculation is done in modulo 2), y is the length of
source data, and x is the length of codewords. The sum of two
elements over GF(2) is described with the operator ⊕. We
abuse W as the set of all codewords. The minimum distance
of a linear code is the minimum Hamming distance over all
pairs of the codewords inW . In principle, any linear codewith
minimum distance k can correct any error of less than k/2

symbols (but it does not necessarily imply that there exists an
efficient algorithm of correcting errors). One of the standard
approaches of correcting errors is the syndrome decoding
based on parity check matrices. The parity check matrix C
ofW is the full-rank x × (x − y) matrix satisfying w ·C = 0
for any codeword w ∈ W . Since the parity check matrix of
W is uniquely determined from W , linear codes are often
defined by the corresponding parity check matrices. A key
property of the parity check matrix is that given a codeword
with noise w ⊕ δ, where w ∈ W and δ is a noise vector,
(w ⊕ δ) · C = δ · C holds. The syndrome of a received
(noisy) codeword w ⊕ δ is the vector (w ⊕ δ) · C , and the
syndrome decoding is the process of recovering δ from the
syndrome (w ⊕ δ) · C = δ · C . If δ is correctly recovered,
the noiseless codeword w is also recovered by adding δ to
the received codeword w + δ.

The background idea of our first technique is as follows:
We treat g : E → {0, 1}
 as the mapping from E to
-
dimensional row vectors over GF(2) (where
 is the label
size), and define the |E | ×
 matrix C = (ce,i)e∈E,i∈[0,
−1],
where ce,i is the i-th bit of g(e). Let w(X) = (we)e∈E be the
characteristic row vector for X ⊆ E , i.e., we = 1 if e ∈ X ,
or zero otherwise. Then the following equality holds for any
S ⊆ V :

w(∂G(S)) · C =
⊕

e∈∂G (S)

g(e) =
⊕

v∈S
Lout
G (v).

What we need is the recovery of one non-zero entry in
w(∂G(S)) from the right-side sum. This task can be inter-
preted into the following scenario: Consider the linear code
whose parity checkmatrix isC . Then recover the noise vector
w(∂G(S)) from the syndromew(∂G(S))C = ⊕

v∈S Lout
G (v).

If the linear code defined by C has a minimum distance
k > 0, one can obtain the complete recovery of w(∂G(S))

for any S satisfying |∂G(S)| < k/2. Since fixing C implies
fixing g (and thus the labeling function Lout

G), one can obtain
the deterministic function g from the parity check matrix of
any linear code. We show that Reed-Solomon code nicely
fits our objective2, which provides the outdetect labeling of
O(k log n) bits supporting the detection of all outgoing edges
of a given subset S ∈ 2VG in O(k2) time if |∂G(S)| ≤ k holds.
We refer to such a scheme as the k-threshold outdetect label-
ing scheme hereafter. Let (LRS(k)

H , DRS(k)) be the k-threshold
outdetect labeling scheme for H ⊆ G defined by the |E |×2k
parity check matrix of Reed-Solomon code. It satisfies the
following properties:

2 Precisely, Reed-Solomon code is a non-binary code. Hence we need
to generalize the argument above slightly, from GF(2) to any general
finite field of characteristic two. The detailed formalism is given in
Sect. 7.1.

123

T. Izumi et al.

Proposition 7 The k-threshold outdetect labeling scheme
(LRS(k)

H , DRS(k)) satisfies the following conditions:

• The label size is O(k log n) bits.
• The time taken to assign the labels LRS(k)

H (v) to all
vertices v ∈ VH is O(mk). The time of computing
DRS(k)(LRS(k)

H (S)) for given LRS(k)
H (S) is always bounded

by O(k2).
• Given LRS(k)

H (S), the output of the decoding function is
the IDs of all edges in ∂H (S) if |∂H (S)| ≤ k holds. If
|∂H (S)| > k, the returned value is unspecified. That is,
an arbitrary value can be returned.

The formal proof is given in Sect. 7.4. In contrast with the
single edge detection capability of the original graph sketch,
it is a great advantage that our technique admits the detection
of at most k outgoing edges, which made the construction of
the collection G much easier. It suffices to construct the spar-
sification hierarchy EG−ET = E0 ⊇ E1 ⊇ E2 ⊇, . . . ,⊇
Eh = ∅ for h = O(log n) such that every S ∈ S f ,T satis-
fying ∂G(S)
= ∅ admits a graph Gi = (V , Ei) satisfying
0 < |∂Gi (S)| ≤ k. We define such a hierarchy as a (S, k)-
good hierarchy:

Definition 1 Let S ⊆ 2VG and a k be a positive integer. A
(S, k)-good hierarchy of EG − ET is the hierarchical edge
set EG−ET = E0 ⊇ E1 ⊇ E2 ⊇, . . . ,⊇ Eh = ∅ satisfying
the following conditions

• The subset Ei+1 ⊆ Ei is a constant fraction size3 for
any i ∈ [0, h − 1]. Note that this condition inherently
deduces the property of h = O(log n).

• For any S ∈ S such that |∂Ei (S)| > k, |∂Ei+1(S)| > 0
holds.

The collection of k-threshold outdetect labeling schemes
for all Gi = (VG , Ei) forms a S-outdetect labeling scheme
for G − ET with O(k log2 n)-bit label size and O(k2 log n)

decoding time. The decoding process tries to obtain the
edge(s) in ∂Gi (S) in the decreasing order of i . For the largest i
such that ∂Gi (S) is non-empty, the corresponding k-threshold
outdetect labeling returns a subset of ∂G(S) correctly. For-
mally, the following lemma holds:

Lemma 8 Assume that any k-threshold outdetect labeling
scheme (L̂out

H , D̂out) of label size α and query processing
time β is available. If there exists an algorithm of construct-
ing a (S, k)-good hierarchy forS ⊆ 2VG and EG−ET , there
exists an S-outdetect labeling scheme (Lout

G−ET ,S , Dout) for
G − ET whose label size is O(α log n) bits and query pro-
cessing time is O(β log n).

3 We use the statement “a subset X ′ ⊆ X has a constant fraction size
(of X)” to mean |X ′| ≤ (1 − c)|X | for some constant c > 0.

The proof is given in Sect. 7.3.

4.3 Second technique: deterministic construction of
(Sf,T, k)-good hierarchy

Our goal is to provide an (S f ,T , k)-good hierarchy E0 ⊇
E1 ⊇ · · · ⊇ Ek , for some specific choice of k > 0 (to
be specified later). Reinterpreting Definition 1, we see that
each Ei+1 ⊆ Ei must (1) have a constant fraction size, and
(2) be a hitting set for the family of edge sets defined by
Zi, f ,k = {∂Ei (S) | S ∈ S f ,T , |∂Ei (S)| > k}. Allowing ran-
domization, it suffices to construct Ei+1 by the independent
edge sub-sampling from Ei with probability 1/2. Such a con-
struction satisfies the desired property for k = O(f log n)

with high probability (see the Appendix A for details).While
the standard greedy algorithmcan deterministically construct
the hitting set with the same guarantee, such an approach
is not tractable because the size of Zi, f ,k could be super-
polynomial, i.e., |Zi, f ,k | = �(|S f ,T |) = �(n f) can hold.
The second key ingredient of our construction is to provide a
polynomial-time deterministic algorithm of constructing the
hitting set for k = Õ(f 2) through the geometric represen-
tation based on the Euler-tour structure by Duan and Pettie
[19]. In this structure, each undirected edge e in T is replaced
by two directed edges with opposite orientations. We refer
to the tree T after the replacement as �T , and extend the defi-
nition of ∂T (S) into the directed case ∂ �T (S), which consists
of all the directed edges obtained by the replacement of an
edge in ∂T (S). All the edges in �T are ordered by any Euler
tour ET of �T starting from the root r , and each vertex in
the tree is assigned with the smallest order of the incident
in-edge (i.e. the edge coming from its parent) as its one-
dimensional coordinate in the range [1, 2n − 2]. We denote
the one-dimensional coordinate of a vertex v ∈ V �T by c(v).
Then, one can map each non-tree edge e = (u, v) into the
2D-point (c(u), c(v)) in the range [1, 2n − 2] × [1, 2n − 2]
(assuming the x-coordinate is always smaller than the y-
coordinate to make the mapping well-defined). An example
of the geometric representation for the instance of Fig. 1 is
presented in Fig. 2. For any integer a ∈ [1, 2n − 2] and axis
z ∈ {x, y}, let hs(z, a) be the axis-aligned halfspace consist-
ing of all points in the plane whose z-coordinate is at least a.
Then it is observed that the point set ∂Ei (S) for any S ∈ S f ,T

lies in the symmetric difference of at most 4 f axis-aligned
halfspaces. More precisely, the following lemma holds:

Lemma 9 For each directed tree edge e = (u, v) ∈ E �T , we
define c(e) = c(v). Given any vertex subset S ⊆ VG and
edge subset E ′ ⊆ EG∗ , the following equality holds.

∂E ′(S) = E ′ ∩
(
�e∈∂ �T (S),z∈{x,y} hs(z, c(e))

)
,

where � represents the symmetric difference of sets.

123

Deterministic fault-tolerant connectivity labeling scheme

Fig. 2 The geometric interpretation of cutsets. The blue number is the ordering of the directed tree edges by an Euler tour. The non-tree edges e′
1,

e′
3, e

′
5, e

′
9 and e′

12 are respectively mapped into the points shown in the right-side coordinate system

The proof of the lemma is given in Sect. 7.5. This lemma
implies that every ∂Ei (S) for S ∈ S f ,T is associated with
a “checkered shape” in the plane with at most 2 f vertical
(or horizontal) alternations. In Fig. 2, the region colored by
white corresponds to the outgoing edges of S such that ∂ �T (S)

consists of two directed edges with numbers 3 and 18. Then
the problem of constructing the hitting set is seen as the con-
struction of ε-nets [33].

Definition 2 (ε-nets) Let X be a class of geometric shapes
(e.g., rectangles or disks) in some space, and P be a set of
points in the space. An ε-net for (P,X) is a subset P ′ ⊆ P
such that for any X ∈ X , X∩P ′
= ∅ holds if |X∩P| ≥ ε|P|.

Let us define the classHq which consists of all the shapes
formed by the symmetric difference of at most q horizon-
tal halfspaces hs(y, a0), hs(y, a1), . . . , hs(y, aq ′−1) (q ′ ≤ q,
ai ∈ [1, 2n − 2]) and the corresponding vertical halfs-
paces hs(x, a0), hs(x, a1), . . . , hs(x, aq ′−1). Recalling that
the construction of Ei+1 is equivalent to the computation
of a hitting set of a constant fraction size for the family
Zi, f ,k = {∂Ei (S) | S ∈ S f ,T , |∂Ei (S)| > k}, our goal is
to construct the hitting set of a constant fraction size for
{Z ∩ Ei | Z ∈ H2 f , |Z ∩ Ei | ≥ k}, i.e., to construct an ε-net
of a constant fraction size for (Ei ,H2 f) and ε = k/|Ei |.

While there are a few deterministic polynomial-time algo-
rithms of constructing nearly-optimal ε-nets for a given class
of shapes [14, 41], their running times exponentially depend
on the VC dimension of the given class. The VC dimen-
sion of H2 f is �(f), and thus those algorithms cannot be
applied.4 To circumvent this issue, we regard any shape in

4 More precisely, they takes�(1/ε)d time for the class with VC dimen-
sion d. This would efficiently work if 1/ε is small, but in our use 1/ε
is roughly close to m/ f , and thus they are not tractable for f = ω(1).

H2 f as the union of (2 f + 1)2/2 disjoint axis-aligned rect-
angles. For any H ∈ H2 f containing at least γ (2 f + 1)2/2
points (γ ≥ 1), there exists at least one axis-aligned rectan-
gle as a subset of H which contains at least γ points. Hence
the construction of an O(γ /|Ei |)-net of a constant fraction
size for all axis-aligned rectangles deduces an O(γ f 2/|Ei |)-
net of a constant fraction size for H2 f . In other words,
we can obtain a deterministic polynomial-time algorithm
of constructing (S f ,T , O(γ f 2))-good hierarchy from any
deterministic polynomial-time algorithm of constructing a
(γ /N)-net of a constant fraction size for N points and all
axis-aligned rectangles.

Since the VC-dimension of axis-aligned rectangles is a
constant, it is possible to use the general de-randomization
technique as stated above. The optimal ε-net for N points
and axis-aligned rectangles is of size O(log log N/ε) (i.e.,
O(log log N/N)-net of a constant fraction size), which is
known to be deterministically constructed [42]. However, the
construction time takes a high-exponent polynomial. Hence
we also present a simpler alternative construction which
provides a O(log N/N)-net of a constant fraction size for
axis-aligned rectangles in a near linear time. In summary, we
obtain the following lemma:

Lemma 10 (Partly by Moustafa et al. [42]) There exist two
deterministic algorithms of constructing an O(γ /N)-net of
a constant fraction size for any N points and all axis-aligned
rectangles, each of which attains the following performance
guarantee.

• γ = log log N and the construction time is poly(N).
• γ = log N and the construction time is Õ(N).

By the argument above, we obtain the following lemma.

123

T. Izumi et al.

Lemma 11 There exist two deterministic algorithms respec-
tively constructing a (S f ,T , k)-good hierarchy with the
following performance guarantees:

• k = O(f 2 log n) and the construction time is Õ(m).
• k = O(f 2 log log n) and the construction time is

poly(m).

The formal proofs of the lemmas above are given 7.5.

5 Wrap-up

We summarize how all the components are combined into the
f -FTC labeling scheme.We present below the case of the f -
FTC labeling scheme of label size O(f 2 log3 n). Yet another
scheme of label size O(f 2(log2 n) log log n) is constructed
in the same way. Consider any input graph G of n vertices
andm edges. The whole construction algorithm works as the
following steps:

1. Construct any spanning tree T of G, and transform G
and T into the auxiliary graph G ′ and its spanning tree
T ′ explained in Sect. 3.2. Note that the graph G ′ satisfies
|VG ′ | = O(m) and |EG ′ | = O(m).

2. Utilizing the algorithm of Lemma 11, construct a
(S f ,T , c f 2 log n)-good hierarchy E0 ⊇ E1 ⊇ E2 ⊇
, . . . ,⊇ Eh for EG ′ − ET ′ , where c is a hidden constant.
The construction time is Õ(|EG ′ |) = O(m).

3. Let Gi = (VG ′ , Ei) (0 ≤ i ≤ h). Construct

LRS(c f 2 log n)

Gi
for all i . By the construction of step 2 and

Lemma 8, we obtain the S f ,T -outdetect labeling scheme
of O(f 2 log3 n)-bit label size. The construction time is
in Õ(mkh) = Õ(m f 2), and the decoding time is Õ(f 4)
due to Proposition 7 and Lemma 8.

4. Construct the ancestry labeling scheme for T ′ by the algo-
rithm of [39], which takes O(m) time.

5. By Lemma 4, the labels constructed in the steps 3 and 4
form a tree edge f -FTC labeling scheme for G ′ and T ′.
Then we also obtain the f -FTC labeling scheme for G
by Corollary 6.

Finally we have the following theorem.

Theorem 12 There exist two deterministic f -FTC labeling
schemes for any graph G of n vertices and m edges which
respectively attain the following bounds:

• The label size is O(log n) bits per vertex, and
O(f 2(log2 n) log log n)bits per edge. The query process-
ing time is Õ(|F | f 4), where F is the set of queried edges
satisfying |F | ≤ f . The construction time is polynomial
of m.

• The label size is O(log n) bits per vertex, and
O(f 2 log3 n) bits per edge. The query processing time
is Õ(|F | f 4). The construction time is near linear, i.e.,
Õ(m f 2).

This theorem is a weaker form of Theorem 1. In the next
section we present how one can improve this to Theorem 1
claiming faster query processing time.

6 Improving query processing time

The algorithmic idea of this improvement is twofold: The
first idea attains the adaptiveness of S f ,T -outdetect label-
ing scheme, i.e., to get rid of the dependency on f in the
decoding time. There is a simple technique of transforming
any S f ,T -outdetect labeling scheme with Õ(f c) decoding
time into the one with Õ(|∂T (S)|c) decoding time for any
given query S ∈ S f ,T : Instead of single labeling, we prepare
the multiple instances of the (non-adaptive) S f ′,T -outdetect
labeling scheme for f ′ = 2, 4, . . . , f . If the original labeling
scheme has a �(f)-bit label size, this transformation does
not cause any asymptotic blow-up of label size. Assume that
a query S ⊆ S f ,T is given. Since S ∈ S|∂T (S)|,T necessarily
holds, the adaptive scheme can find the outgoing edge of S
by utilizing the S f ′,T -outdetect labeling scheme for f ′ such
that f ′/2 < |∂T (S)| ≤ f ′ holds, which runs in Õ(|∂T (S)|c)
time.5

The second idea is to utilize the adaptive scheme for fur-
ther acceleration of the decoding time. In processing the
query of (s, t, F), every query S ⊆ VG issued to the S f ,T -
outdetect labeling scheme necessarily belongs to S|F |,T .
Hence The adaptive decoding of the S f ,T -outdetect labeling
scheme always runs in Õ(|F |4) time for the deterministic
cases, and in Õ(|F |2) time for the randomized case. Since
the decoding time of the tree edge f -FTC labeling scheme
is dominated by |F | queries to the S f ,T -outdetect label-
ing scheme, the straightforward implementation respectively
results in the decoding time of Õ(|F |5) and Õ(|F |3). We
shave off this extra |F | factor by a simple refinement of the
decoding process of the tree edge f -FTC labeling scheme:
In the refined process, the outgoing edge detection for merg-
ing fragments is always applied to the fragment S such that
|∂T (S)| is the smallest of all the fragments currently man-
aged, while the original process always applies it to the
fragment with s. By a careful analysis, we obtain the fol-
lowing lemma:

5 In reality, this transformation is not necessary if we utilize our deter-
ministic S f ,T -outdetect labeling scheme based on the Reed-Solomon
code. More precisely, it inherently admits the adaptive decoding with-
out any modification of the label construction. See the Appendix B for
details.

123

Deterministic fault-tolerant connectivity labeling scheme

Lemma 13 Assume that there exists a S f ,T -outdetect label-
ing scheme of label size α = Õ(f b) and decoding time
β = Õ(f c). Then there exists a f -FTC labeling scheme of
O(α + log n)-bit label size and Õ(|F |b+1 + |F |c) decoding
time. The resultant f -FTC labeling scheme is determinis-
tic if the corresponding S f ,T -outdetect labeling scheme is
deterministic.

The three S f ,T -outdetect labeling schemes we presented
in this paper (including the randomized case) attain (α, β) =
(O(f 2(log2 n) log log n), Õ(f 4)), (O(f 2 log3 n), Õ(f 4)),
and O(f log3 n), Õ(f 2)). By this lemma, they respectively
deduce the schemes as claimed in Table 1.

7 Technical details

7.1 Formal specification of labeling schemes

Fault-Tolerant Connectivity Labeling A f -fault-tolerant
connectivity labeling scheme (f -FTC labeling scheme) for a
given input graph G consists of a labeling function Lcon

G, f :
VG ∪ EG → {0, 1}∗ and a universal decoding function
Dcon

f : {0, 1}∗ × {0, 1}∗ × {0, 1}∗ → {0, 1}. For an edge
subset F = {e1, e2, . . . , e|F |} ⊆ EG , let Lcon

G, f (F) be the con-
catenation of the labels Lcon

G, f (e1)◦Lcon
G, f (e2)◦· · ·◦Lcon

G, f (e|F |)
in an arbitrary order. For a query (s, t, F) of s, t ∈ VG and
an edge subset F ⊆ EG of cardinality at most f , the decoder
function returns the s-t connectivity in G− F when given as
input the labels of s, t and all the edges in F , i.e., Dcon satis-
fies that Dcon(Lcon

G (s), Lcon
G (t), Lcon

G (F)) = 1 if and only if
s and t are connected in G − F . The label size of the scheme
is defined as the maximum length of the labels assigned to
vertices and edges.

Ancestry labeling Given any rooted tree T , this label-
ing scheme assigns all vertices with the labels such that the
ancestor–descendant relationship between any twovertices is
determined only from their labels. More precisely, the ances-
try labeling scheme for T consists of a labeling function
Lanc
T : VT → {0, 1}∗ and a universal decoding function

Danc : {0, 1}∗ × {0, 1}∗ → {−1, 0, 1} (not dependent on
T). It determines if two given vertices x, y ∈ VT have the
ancestor–descendant relationship or not from their labels,
i.e., Danc(Lanc

T (x), Lanc
T (y)) = 1 if x is an ancestor of y, −1

if y is an ancestor of x , or 0 otherwise (including the case of
x = y). The following lemma is well-known:

Lemma 14 (Kannan et al. [39]) Let T be a rooted tree of
n vertices. There exists a deterministic ancestry labeling
scheme with label size of O(log n) bits. Computing Lanc

T (x)
for all x ∈ VT takes O(n) time, and Danc(Lanc

T (x), Lanc
T (y))

for each x, y ∈ VT takes O(1) time. The labeling function
Lanc
T is injective for any T , i.e., a unique label assignment.

S-Outdetect Labeling for S ⊆ 2VG

Let F be any finite field of characteristic two whose addi-
tion and multiplication operators are respectively denoted by
“⊕” and “·” ,6 and E be the domain of unique edge IDs not
depending on G.7 An S-outdetect labeling scheme for S ⊆
2VG consists of a vertex labeling function Lout

G,S : VG → F

and a universal decoding function Dout : F
 → E , where

is a positive integer representing the size of labels. It must
satisfy the following two conditions:

• For any S ∈ S, Dout(
∑

v∈S Lout
G,S(v)) returns the ID of

an outgoing edge of S in G if ∂G(S) is nonempty.
• If ∂G(S) = ∅, Dout(

∑
v∈S Lout

G,S(v)) returns formal zero,
which is a special value in E never assigned to actual
edges.

• If S /∈ S, the returned value is undefined, i.e., an arbitrary
value is returned.

For short, we use the notation Lout
G,S(S) to represent

∑
v∈S Lout

G,S(v) in the following argument. By definition,
Dout(Lout

G,S(VG)) = 0 must hold. The k-threshold outdetect
labeling scheme for G is a special case of S-outdetect label-
ing schemes such that S consists of all S ⊆ VG satisfying
|∂G(S)| ≤ k.

7.2 Proof of Lemma 4

Let G∗ = G − ET for short. The tree edge f -FTC label-
ing scheme is implemented by any S f ,T -outdetect labeling
scheme for G∗ and any ancestry labeling scheme for T .
Let (Lanc

T , Danc) be the ancestry labeling scheme. With-
out loss of generality, we assume that Lanc

T (v) for all v has
a fixed bit length p = O(log n). We assign the edge ID
Lanc
T (u) ◦ Lanc

T (v) ∈ {0, 1}2p to each edge (u, v) ∈ EG∗ .
The uniqueness of the edge ID follows the uniqueness of the
ancestry labeling guaranteed in Lemma 14. For the edge ID
domain E = {0, 1}2p, we construct the S f ,T -outdetect label-
ing scheme (Lout

G∗ , Dout). The labeling function Lcon
G (v) of

our tree edge f -FTC labeling scheme is defined as follows:

• Lcon
G (v) = Lanc

T (v).
• For any e = (u, v) ∈ ET , Lcon

G (e) = Lanc
T (u)◦ Lanc

T (v)◦
Lout
G∗ (VT (e)). Recall that any tree edge f -FTC labeling

scheme does not have to assign labels to non-tree edges.

6 A field F has characteristic two if and only if any element x ∈ F

satisfies x ⊕ x = 0 (where 0 is the unit element)
7 Since the size of this domain inherently depends on n, it should be
defined precisely as En , which is the universal domain valid for all
the graphs with at most n vertices. But we intentionally omit such a
dependency for avoiding non-essential complication.

123

T. Izumi et al.

We see how to implement the decoding function. Assume
that a query (s, t, F) of |F | ≤ f is given. Let C(F) =
{C0,C1, . . . ,C|F |} be the collection of the fragments (i.e.,
the vertex subset inducing a connected component of T −F).
Let V (F) be the set of the endpoints of the edges in F . By
introducing any total order over {0, 1}p, we define the ID of
Ci ∈ C(F) as themaximumancestry label inVCi ∩V (F), and
abuseCi itself as the IDofCi . The component graph H/C(F)

of a spanning subgraph H ⊆ G is the multigraph obtained
from H by contracting each vertex set Ci (0 ≤ i ≤ |F |) into
a single vertex and then removing self-loops. The following
proposition is known:

Proposition 15 (Claim 3.14 in [21]) Let (s, t, F) be any
given query, and |F | ≤ f . Then T /C(F) is computed deter-
ministically in O(|F | log |F |) time. In addition, there exists
a deterministic algorithm which is given Lanc

T (v) and returns
in O(log |F |) time the ID of Ci ∈ C(F) containing v.

The proposition above allows the detection of the two con-
nected components in T − F respectively containing s and
t . We assume s ∈ C0 and t ∈ C1 without loss of generality.
Starting from C0, the decoding procedure grows the com-
ponent containing s iteratively by finding its outgoing edge:
Initially, let S = C0. The procedure detects an outgoing edge
(u, v) of S in G∗, where u is the vertex in S and v ∈ C j for
some j ∈ [1, |F |], until no outgoing edge is found.When the
edge (u, v) is found, S is updated with S∪{C j }. Obviously, s
and t are connected inG−F if and only if this processmerges
C1 with S. Throughout this process, ∂T (S) ⊆ F obviously
holds and thus S ∈ S f ,T always holds. Hence one can use
the S f ,T -outdetect labeling scheme to find an outgoing edge
(u, v). The primary matter is how to manage Lout

G∗ (S). We
resolve it with a technique similar to [21] (Claim 3.15). The
following proposition holds.

Proposition 16 For any X ⊆ VT , Lout
G∗ (X) =⊕

e∈∂T (X) L
out
G∗ (VT (e)) holds.

Proof Let k = |∂T (X)|. The proof is based on the induction
on k. (Basis) k = 0: Then X = VG or X = ∅ holds. Since we
have Lout

G∗ (VT) = 0 by the definition of the S f ,T -outdetect
labeling scheme, the proposition obviously holds. (Inductive
step) Suppose that the proposition holds for any X ′ such that
|∂T (X ′)| = k, and consider X such that |∂T (X)| = k + 1
holds. Let ∂T (X) = {e1, e2, . . . , ek+1}. Without loss of gen-
erality, we assume that there is no descendant of ek+1 in
∂T (X), i.e., T (ek+1) does not contain any edge in ∂T (X). Let
ek+1 = (u, v) where v is the lower vertex of ek+1. We con-
sider the case of v ∈ X . In this case, we have V (T (ek+1)) ⊆
X because no edge in ∂T (X) is a descendant of ek+1. Then,
for W = X\VT (ek+1), we have ∂T (W) = ∂T (X)\{ek+1},
and thus |∂T (W)| = k holds. By the induction hypothesis,
we obtain Lout

G∗ (W) = ⊕
e∈∂T (W) L

out
G∗ (VT (e)). Since W and

VT (v) are disjoint by definition, we have

Lout
G∗ (X) = Lout

G∗ (W) + Lout
G∗ (VT (ek+1))

=
⊕

e∈∂T (W)

Lout
G∗ (VT (e)) + Lout

G∗ (VT (ek+1))

=
⊕

e∈∂T (X)\{ek+1}
Lout
G∗ (VT (e)) + Lout

G∗ (VT (ek+1))

=
⊕

e∈∂T (X)

Lout
G∗ (VT (e)).

In the case of v /∈ X , one can utilize the fact of Lout
G∗ (X) =

Lout
G∗ (VT − X), which is easily deduced from the fact of

Lout
G∗ (VT) = 0 (and the property of characteristic two).

Due to this equality, it suffices to show Lout
G∗ (VT − X) =⊕

e∈∂T (VT −X) L
out
G∗ (VT (e)). Since v ∈ VT − X holds, it is

proved in the same way as the case of v ∈ X . ��
We prove Lemma 4 by the proposition above.

Lemma 4 Assume any deterministic S f ,T -outdetect label-
ing scheme (Lout

G , Dout) of label size α and decoding time
β. Then there exists a deterministic tree edge f -FTC label-
ing scheme of (α + O(log n))-bit label size and O(|F |(β +
log |F |+α/ log n)) decoding time, where F is a set of faulty
edges given by a query.

Proof By Proposition 16, one can compute the Lout
G∗ (Ci)

for all i ∈ [0, |F |] from the labels of the edges in F .
Assume an outgoing edge e = (u, v) of S (v /∈ S) is
detected by the S f ,T -outdetect labeling. Since we can obtain
the ID Lanc

T (u) ◦ Lanc
T (v) of e, the ancestry label Lanc

T (v)

is available. By Proposition 15, it also gives the ID of
the component in C(F) which contains v. Let us assume
v ∈ C j . When merging C j into S, we have known both
Lout
G∗ (S) and Lout

G∗ (C j). Thus the label Lout
G∗ (S) is updated

by adding Lout
G∗ (C j). The query processing time is spent for

|F | times of querying the S f ,T -outdetect labeling scheme,
which takes O(|F |(β + log |F |)) time in total. The ini-
tial set-up takes O(|F | log |F | + (|F |α)/ log n) time, where
the term |F | log |F | is for computing the component graph,
and (|F |α)/ log n is for computing the S f ,T -outdetect labels
of all fragments (recall that we assume the standard word-
RAM model, and thus a single XOR sum operation of α-bit
labels takes O(α/ log n) time). The label size is obviously
O(α + log n). ��

7.3 Construction of deterministicSf,T-outdetect
labeling scheme

Lemma 8 Assume that any k-threshold outdetect labeling
scheme (L̂out

H , D̂out) of label size α and query processing
time β is available. If there exists an algorithm of construct-
ing a (S, k)-good hierarchy forS ⊆ 2VG and EG−ET , there
exists an S-outdetect labeling scheme (Lout

G−ET ,S , Dout) for
G − ET whose label size is O(α log n) bits and query pro-
cessing time is O(β log n).

123

Deterministic fault-tolerant connectivity labeling scheme

Proof Assume that a (S, k)-good hierarchy E0 ⊇ E1 ⊇
E2 ⊇, . . . ,⊇ Eh is obtained. Let Gi = (VG, Ei). The
labeling function Lout

G−ET ,S is defined as the concatenation

of the labels by L̂out
Gi

for all i ∈ [0, h], i.e., Lout
G−ET

(v) =
L̂out
G0

(v) ◦ L̂out
G1

(v) ◦ · · · ◦ L̂out
Gh

(v) (where ◦ is the binary
operator of concatenating two strings). To detect an out-
going edge of S ∈ S, it suffices to compute the value of
D̂out(

⊕
v∈S L̂out

Gi
(v)) such that it returns a non-zero value

and D̂out(
⊕

v∈S L̂out
G j

(v)) for any j > i returns zero. The
condition of the hierarchy implies 0 < |Ei ∩ ∂G(S)| ≤ k,
and thus ˆDout(

⊕
v∈S L̂out

Gi
(v)) correctly returns all the out-

going edges of S in Ei ⊆ EG − ET . The bounds for the label
size and the query processing time are obvious. ��

7.4 k-threshold outdetect labeling: choice of codes

Following the construction presented in Sect. 4.2, any linear
code ofminimum distance 2k naturally induces a k-threshold
outdetect labeling scheme for any graph G. The label size is
determined by the number of columns of the parity check
matrix C of the code. Obtaining both a smaller number of
columns and a largerminimumdistance is roughly equivalent
to achieving a good code rate. Hence, as a general principle,
any high-rate code would provide a good scheme. In addi-
tion, we need to care other additional criteria for efficient
implementation of the outdetect labeling scheme, which are
stated as follows:

• We use a parity check matrix which has |E | rows, i.e.,
the codeword length is |E |. Thus it is not appropriate
to use the error-correcting codes whose decoding time
depends on the codeword length. Ideally, the decoding
time should depend only on the length of the syndrome
(i.e., the length of labels).

• The construction of the label for an edge e corresponds to
the computation of the row vector of C corresponding to
e. Since the number of rows |E | could bemuch larger than
the actual number of edges |EG |, computing the whole
matrix C can result in slower computation of edge labels
to all e ∈ EG . To complete the label assignment in time
dependent only on the actual number |EG | of edges but
not on |E |,C must admit efficient “local” computation of
a specified row.

One of the error-correcting codes addressing the issues above
is Reed-Solomon code. Reed-Solomon code is a non-binary
code whose alphabet is a finite field F of order |E | + 1, and
the number of rows is chosen arbitrarily. Since |E | is a poly-
nomial of n in our application, each code symbol is encoded
with O(log n) bits, and the addition and multiplication over
F takes O(1) time in the standard word-RAM model. Let

C2k be the |E | × 2k parity check matrix of Reed-Solomon
code. We have the following nice features:

• Theminimumdistance of the code definedbyC2k is equal
to 2k. That is, a k-threshold outdetect labeling scheme
is deduced from C2k . Since each row vector of C2k is
encoded by O(k log |E |) bits, the label size is O(k log n)

bits.
• Let w be any |E |-dimensional vector over F which
contains atmost k nonzero elements. There exists a deter-
ministic algorithm of computing all non-zero elements
in w (in the form of the pairs of value and position)
from w · C2k , which runs in O(k2) time in the standard
word-RAM model [17]. The recovery of w necessarily
succeeds if w contains at most k non-zero elements, but
the result can become arbitrary if w contains more than
k non-zero elements.

• Given any e ∈ E , the row vector of C2k corresponding
to e is deterministically computed in O(k) time in the
standard word-RAM model.

Let (LRS(k)
H , DRS(k)) be the k-threshold outdetect labeling

scheme for H ⊆ G defined by the |E | × 2k parity check
matrix of Reed-Solomon code. The features above obviously
deduces Proposition 7.

7.5 Deterministic construction of good hierarchy

We first focus on the proof of Lemma 9. Since ∂G ′(S) =
∂G ′(VG \ S) holds for any S ⊆ VG and any spanning sub-
graph G ′ of G, we assume S always contains the root r
wlog. We use notations �T , ET , c(v), hs(z, a), and H2 f as
defined in Sect. 4.3. In addition, we introduce a few addi-
tional notations. Let ET = e1, e2, . . . , ei , . . . , e2n−2. The
prefix e1, e2, . . . , ei of ET up to the i-th element is denoted
by ET(i). For the proof, we introduce an auxiliary lemma.

Lemma 17 Assume that S ⊆ VT contains the root r of T .
For any vertex v ∈ VT , |ET(c(v)) ∩ ∂ �T (S)| is even if v ∈ S,
or odd otherwise.

Proof Suppose we walk from r to v along ET(c(v)). This
walkmoves between different sides of the cut (S, VT \S) pre-
cisely when traversing edges from ∂ �T (S). Thus, |ET(c(v))∩
∂ �T (S)| is the total number of side changes. As we started
from r ∈ S, this number is even if and only if we end up in
the same side S, i.e., if and only if v ∈ S. ��

Now we are ready to prove Lemma 9.

Lemma 9 For each directed tree edge e = (u, v) ∈ E �T , we
define c(e) = c(v). Given any vertex subset S ⊆ VG and
edge subset E ′ ⊆ EG∗ , the following equality holds.

∂E ′(S) = E ′ ∩
(
�e∈∂ �T (S),z∈{x,y} hs(z, c(e))

)
,

123

T. Izumi et al.

where � represents the symmetric difference of sets.

Proof Let Qx = {hs(x, c(e)) | e ∈ ∂ �T (S)}, Qy =
{hs(y, c(e)) | e ∈ ∂ �T (S)}, and Q = �Q′∈Qx∪Qy Q

′. For any
(u, v) ∈ ∂E ′(S), exactly one of u and v belongs to S and the
other one belongs to VG \ S. By symmetry, we assume u ∈ S
and c(u) < c(v)wlog. Lemma17 implies |ET (c(u))∩∂ �T (S)|
is even, and |ET(c(v)) ∩ ∂ �T (S)| is odd. It implies that (u, v)

lies in the two regions respectively defined as the intersection
of an even number of halfspaces inQy and as the intersection
of an odd number of halfspaces inQx . SinceQx andQy are
disjoint, (u, v) lies in the region defined as the intersection of
an odd number of halfspaces inQx ∪Qy , i.e., it is contained
in Q. Similarly, if (u, v) is not an edge in ∂E ′(S), the parities
of |ET(c(u)) ∩ ∂ �T (S)| and |ET(c(v)) ∩ ∂ �T (S)| becomes the
same, and thus e lies in the region defined as the intersection
of an even number of halfspaces in Qx ∪ Qy , and thus not
contained in Q. The lemma is proved. ��

Next, we focus on the deterministic ε-net construction.
We first quote a known deterministic construction for axis-
aligned rectangles.

Lemma 18 (Mustafa et al. [42]) Let ε > 0. There exists a
deterministic polynomial-time algorithm of constructing an
ε-net of size O(log log N/ε) for any N point set and all axis-
aligned rectangles.

As we mentioned in Sect. 4.3, the polynomial of the con-
struction time has a high exponent, and thus we consider a
slightly weaker but much faster solution. Let P be any set of
points in a 2D-range R = [a1, a2] × [b1, b2]. For simplicity,
we assume that |P| is a power of two in the lemma below,
but it is not essential.

Lemma 19 Let P be any point set in R = [a1, a2]×[b1, b2],
0 < ε < 1, and, M ∈ [a1, a2]. There exists a O(|P| log |P|)-
time algorithm of computing a subset P∗ ⊆ P of size at most
ε|P| such that any axis-aligned rectangle X crossing the
vertical line x = M and satisfying |X∩P| ≥ 6/ε necessarily
contains at least one point in P∗.

Proof The construction follows the technique by Kulkarni
and Govindarajan [35]. For simplicity, we assume that any
two points in P have different y-coordinates, 2/ε is an inte-
ger, and |P| is divisible by 2/ε. Let YP be the sequence of
points in P sorted by their y-coordinates. We split YP into
ε|P|/2 subsequences Y 1

P ,Y 2
P , . . . of the length 2/ε. For each

Y i
P , we define p−

i ∈ Y i
P as the point with the maximum x-

coordinate not exceeding M , and p+
i ∈ Y i

P as the one with
the minimum x-coordinate not lower than or equal to M . We
construct P∗ as the union of {p+

i , p−
i } for all i .

It is easy to check that the constructed point set P∗ satisfies
the condition of the lemma: The size of P∗ is obviously
bounded by ε|P|. We define the y-range [bi1, bi2] of Y i

P as

the minimal interval containing the y-coordinates of all the
points in Y i

P . Consider any rectangle X = [a1, a2]× [b1, b2]
such that |X ∩ P| ≥ 6/ε. Then there exists at least one
subsequence Y i

p such that at least one point inY
i
P is contained

in X ∩ P and the y-range of Y i
P is covered by [b1, b2]. For

such an i , either p−
i or p+

i must be contained in X . ��

We obtain the deterministic algorithm of constructing a
O(log |P|/|P|)-net of a constant fraction size for any point
set P and axis-aligned rectangles in near linear time.

Lemma 20 Let P be any set of points in [a1, a2] ×
[b1, b2], and N be any upper bound of |P|. There exists a
deterministic algorithm NetFind(N , P) which constructs a
(12 log N/|P|)-net of size at most |P| log |P|/(2 log N) for
P and all axis-aligned rectangles in O(|P| log |P| log N)

time.

Proof We first present the algorithm. It is based on the divide
and conquer approach as follows:

1. If |P| ≥ 12 log N : find the vertical line x = M bisecting
P into two equal-size subsets P0 and P1 (with an arbitrary
tie-breaking rule for the points on x = M). Let R0 =
[a1, M] × [b1, b2] and R1 = [M, a2] × [b1, b2]. Then
NetFind(N , P) outputs the union of the following four
subsets of P:

• The outputs ofNetFind(N , P0) andNetFind(N , P1).
• The point set P∗ obtained from P by Lemma 19 for

ε = 1/(2 log N) and x = M .

2. If |P| < 12 log N : output the empty set.

Let P ′ be the output in the run of NetFind(N , P). The proof
is based on the induction on the size of P .
(Basis) |P| < 12 log N holds: Then the case 2 of the
algorithm applies. The output size is trivially bounded by
|P| log |P|/(2 log N) ≥ 0. Since |P| < 12 log N holds,
there is no axis-aligned rectangle containing more than or
equal to 12 log N points. Hence the constructed output (i.e.,
the empty set) is a (12 log N/|P|)-net.
(Inductive Step): Let P be the set of points such that |P| ≥
12 log N holds. Consider any axis-aligned rectangle X such
that |X ∩ P| ≥ 12 log N holds. We show that X necessar-
ily contains a point in P ′. By the induction hypothesis, both
NetFind(N , P0) and NetFind(N , P1) correctly computes a
(12 log N/|P0|)-net and a (12 log N/|P1|)-net. Hence if X is
contained either R0 or R1, X necessarily contains a point in
P ′. If X intersects x = M , it also intersects P ′ by Lemma 19.
Hence the constructed P ′ is a (12 log N/|P1|)-net.We bound
the output size |P ′|. By the induction hypothsis, the output
sizes of NetFind(N , P0) and NetFind(N , P1) are respec-
tively bounded by |P| log(|P|/2)/(4 log N). The size of P∗

123

Deterministic fault-tolerant connectivity labeling scheme

is bounded by |P|/(2 log N). Summing up them, we obtain

|P ′| ≤ 2 · |P| log |P|
2

4 log N
+ |P|

2 log N

≤ |P|(log |P| − 1)

2 log N
+ |P|

2 log N

≤ |P| log |P|
2 log N

.

It is easy to bound the running time because the total running
time of all recursive calls at the same depth is bounded by
O(|P| log N). The lemma is proved. ��

Lemma 10 is obviously obtained from Lemmas 18 and
20. We finally show the main lemma of this section.

Lemma 11 There exists two deterministic algorithms respec-
tively constructing a (S f ,T , k)-good hierarchy with the
following performance guarantees:

• k = O(f 2 log n) and the construction time is Õ(m).
• k = O(f 2 log log n) and the construction time is

poly(m).

Proof We only show that first construction, but the second
construction is proved in the same way. Consider the con-
struction of Ei+1 from Ei . The algorithm first maps all the
edges in Ei into the space [1, 2n − 2]2. Applying the algo-
rithm of Lemma 20 to Ei with P = Ei and N = |Ei |, we
obtain an (6 log |Ei |/|Ei |)-net Ei+1 of a constant fraction
size for Ei and all axis-aligned rectangles. As mentioned
in Sect. 4.3, Ei+1 works as a (6(2 f + 1)2 log n/|Ei |)-net
for H2 f and thus it satisfies the condition of (S f ,T , 6(2 f +
1)2 log n)-good edge hierarchy. Since Ei+1 is a subset of
Ei with a constant fraction size, the depth h of hierarchy is
bounded by O(log n). The construction time of Ei+1 from Ei

follows the running time of the algorithm of Lemma 20, i.e.,
it takes Õ(m) time. Hence the total running time is Õ(m). ��

7.6 Fast query processing

We construct a refined query processing algorithm for our
tree edge f -FTC labeling scheme. Let G∗ = G − ET for
short. Throughout this section, we assume that the tree edge
f -FTC labeling scheme is implemented with any adaptive
S f ,T -outdetect labeling scheme (Lout

G∗ , Dout) of Õ(f b)-bit
label size which admits Õ(|∂T (S)|c) decoding time for a
given query S ⊆ VG∗ , as explained in Sect. 6. Similarly as
the original one, the refined algorithm also iteratively merges
the vertices of the component graph T /C(F). It manages a
collectionX of disjoint subsets ofC(F) throughout the proce-
dure.A subset S ⊆ C(F) inX is called a component fragment

(note that S is not a subset of VG). For any component frag-
ment S ⊆ C(F), we define V (S) ⊆ VG as V (S) = ⋃

C∈S C .
As a loop invariant, the algorithm guarantees that V (S) for
any component fragment S ∈ X induces a connected sub-
graph of G − F . Each component fragment S ⊆ C(F)

is maintained as the triple (S, ∂T (V (S)), Lout
G∗ (V (S))). We

denote this triple associated with S ⊆ C(F) by τ(S), and
abuse the notation X as the set of associated triples. The
whole structure of the algorithm is stated below:

1. Initially, we set X = {τ({C}) | C ∈ C(F)}.
2. In each iteration, we pick up τ(S) such that |∂T (V (S))| is

the smallest, and find an outgoing edge of S by decoding
Lout
G∗ (V (S)), which is obtained from Lout

G∗ (V (S)) stored
in τ(S).

3. If no outgoing edge of S is found, we remove τ(S) from
X and go to the next iteration. Otherwise, let S′ be the
component fragment the outgoing edge from S reaches.

4. If S and S′ contains s and t respectively, the procedure
terminates with returning true. Otherwise, the algorithm
deletes τ(S) and τ(S′) fromX , and newly insert the entry
of τ(S′′) for S′′ = S ∪ S′. The entry τ(S′′) is computed
as τ(S′′) = (S′′, (∂T (V (S)) ∪ ∂T (V (S′)))\(∂T (V (S)) ∩
∂T (V (S′))), Lout

G∗ (V (S))+Lout
G∗ (V (S′))). After the inser-

tion, the algorithm proceeds to the next iteration unless
|X | = 1 holds. If |X | = 1 holds, the algorithm termi-
nates with returning false (this case occurs only when the
component fragment containing s or t is discarded).

To implement the algorithm above efficiently, we manage X
by the heap which supports O(log |X |)-time insert, delete,
and search of the element having the minimum cutset. Each
cutset associated with an element in X is stored as the bit
vector of length |F | and the additional integer value rep-
resenting the size of the stored cutset. This data structure
obviously supports union and intersection in O(|F |) time, as
well as getting the cutset size in O(1) time. Each fragment S
associated with a triple in X is managed by any disjoint-set
data structure (e.g., union-find) over C(F). Combining this
structure with Proposition 15, one can determine the frag-
ment S ∈ X containing a given vertex u ∈ VG from Lanc

T (u)

in O(log |F |) time (i.e., identifyC ∈ C(F) containing u first,
and then identify S ∈ X containing C). With support of all
the data structures above, we can implement one iteration of
the refined procedure in Õ(|F |b + |∂T (V (S))|c) time. The
initialization of X is implemented in Õ(|F |b+1) time. We
show that the refined algorithm runs in Õ(|F |c) time in total.

Lemma 13 Assume that there exists a S f ,T -outdetect label-
ing scheme of label size α = Õ(f b) and decoding time
β = Õ(f c). Then there exists a f -FTC labeling scheme of
O(α + log n)-bit label size and Õ(|F |b+1 + |F |c) decoding
time. The resultant f -FTC labeling scheme is determinis-

123

T. Izumi et al.

tic if the corresponding S f ,T -outdetect labeling scheme is
deterministic.

Proof Consider the refined query processing algorithm
above. We denote byXi the setX at the beginning of the i-th
iteration, and let Yi = {S | τ(S) ∈ Xi }. Since Yi is a disjoint
collection of component fragments and each S ∈ Yi satis-
fies ∂T (V (S)) ⊆ F , we have

∑
S∈Yi

|∂T (S)| ≤ 2|F |. Let
S1, S2 . . . , Sx be the component fragments chosen in each
iteration (x ≤ |F |). Since the algorithm chooses Si mini-
mizing |∂T (V (Si))|, we have |∂T (V (Si))| ≤ 2|F |/|Yi |. As
discussed in this section, the detection of an outgoing edge
of Si takes Õ(|∂T (V (Si))|c) time. Since exactly one com-
ponent in Yi is merged or discarded in the i-th iteration,
we have |Yi+1| = |Yi | − 1 = |F | + 1 − i . The compu-
tation time excluding that for the outgoing edge detection
is O(|F |b log n) per one iteration. The total running time is
bounded as follows:

∑

1≤i≤|F |
Õ

((|F |
|F | + 1 − i

)c

+ |F |b
)

≤ Õ(|F |c) ·
∑

1≤i≤|F |

1

i c
+ Õ(|F |b+1)

≤ Õ(|F |c + |F |b+1).

��

8 Distributed construction

In this section, we explain how our deterministic f -FCT
labeling scheme is constructed in the standard CONGEST
model, i.e., the round-based synchronous system with the
O(log n)-bit message size bound. For the input graph G,
we fix T as its BFS tree for an arbitrary chosen root. Since
the corresponding auxiliary graph G ′ is easily simulated on
the top of the original graph, the behavior of the proposed
algorithm is described as the message passing on G ′. The
spanning tree of G ′ transformed from T is denoted by T ′.

8.1 Construction of ancestry labels

The construction by Kannan, Naor, and Rudich is to assign
each node and edge with the pair of its pre-order and post-
order in the Euler-tour traversal of T ′ starting from the root.
For any two labels (a, b) and (c, d) assigned tou and v,u is an
ancestor of v if and only if the interval [a, b] contains [c, d].
In the following argument, we focus on the computation of
the pre-orders and post-orders of edges in T ′. The computa-
tion of vertex orders is processed similarly. For every edge e,
the algorithm computes the number of edges in the subtree
T ′(e), which is implemented by the subtree-sum aggregation

over T ′, taking O(D) rounds. The twice of the computed
value, denoted by gap(e), is equal to the gap between the
pre-order and the post-order of e. Then the algorithm deter-
mines the pre-orders and post-orders of all tree edges from
the root side. Assume that we have fixed the orders (a, b) of
an edge e, and let e1, e2, . . . , e j be the set of children edges
of e. Then the pre-order of e1 is obviously a+1, and its post-
order is a+2+gap(e1). The orders of e2, e3, e4, . . . , e j are
decided similarly.

8.2 Construction of outdetect labels

Suppose that an (S f ,T ′ , O(f 2 log n))-good hierarchy has
already been distributedly computed, meaning that each
vertex v knows all of its incident edges in Ei , for every
0 ≤ i ≤ h. Then, it is easy to verify that v can locally com-
pute its S f ,T ′ -outdetect label Lout

G ′−ET ′ (v), which consists of

Õ(f 2) bits. This is done using the O(f 2 log n)-threshold
outdetect labeling scheme of Proposition 7 and Lemma 8.
To compute the tree edge f -FTC labels of the edges in T’,
we execute subtree-sum aggregation of the S f ,T ′ -outdetect
labels of the vertices, which takes Õ(D + f 2) rounds using
standard pipeline techniques. So, for each edge e of T ′,
the root of T ′(e) holds Lout

G ′−ET ′ (T
′(e)). Concatenating the

ancestry labels of e’s to this information yields the tree edge
f -FTC label of e. We therefore focus henceforth on the dis-
tributed construction of a good hierarchy.

8.3 Construction of a (Sf,T′,O(f2 log n))-good
hierarchy

To construct a good hierarchy, it suffices to implement
NetFind in the CONGEST model. As a preprocessing, the
algorithm computes the coordinates of all non-tree edges.
They are computed in the same way as the construction of
ancestry labels. We assume that both of the endpoints of
any non-tree edge e know the x- and y-coordinates of e. We
refer to the vertex corresponding to the x-coordinate (resp.
y-coordinate) of a non-tree edge e as the x-side (resp. y-side)
endpoint of e. Let seqx (P) (resp. seqy(P)) be the minimal
consecutive subsequence of the Euler tour of T ′ containing
all x-side (resp. y-side) endpoints of edges in P . In the fol-
lowing argument, we often abuse seqx (P) and seqy(P) as
the sets of vertices in the sequences. The CONGEST version
of NetFind(N , P) is executed in the subgraph induced by
seqx (P).

Let m′ = |EG ′ | − |ET ′ |, and j∗ be the smallest integer
such that 2 j∗ >

√
m′/D holds. Our implementation pro-

cesses the invocations of NetFind at the recursion level j∗ in
parallel. It is easy to check that the following two conditions
are satisfied:

123

Deterministic fault-tolerant connectivity labeling scheme

• For any call of NetFind(N , P) at the recursion level j >

j∗, we have |P| = O(
√
m′D). In addition, since the

diameter of T ′ is O(D), the diameter of the subtree of T ′
induced by seqx (P) is also O(D).

• For any two invocations of NetFind(N , P1) and
NetFind(N , P2) at the same recursion level, seqx (P1)
and seqx (P2) induces two edge-disjoint consecutive sub-
tours of the Euler tour of T ′ under the treatment of two
edges (u, v) and (v, u) as distinct ones.

For the invocation ofNetFind(N , P), every node in seqx (P)

can aggregate whole information of P in O(
√
m′D + D) =

O(
√
m′D) rounds. Hence each node can execute the central-

ized version of NetFind locally. Due to the second condition
above, the aggregation tasks for all invocations at the recur-
sion level j∗ are efficiently processed in parallel: each edge
e ∈ ET ′ is contained at most two induced subtrees, and thus
the total running time is still bounded by O(

√
m′D). Note

that we do not have to handle the recursion level more than j∗
distributedly because NetFind(N , P) at the recursion level
j∗ is processed in the centralized manner. Consequently,
the total running time for the recursion level j > j∗ is
O(

√
m′D).

For the recursion level j ≤ j∗, the total number of invo-
cations is O(

√
m′/D), and thus the algorithm sequentially

processes each invocation. Themain body ofNetFind(N , P)

is the construction of the point set P∗ shown in Lemma 19.
To identify the sets Y 1

P ,Y 2
P , . . . , it suffices to compute the

order of each non-tree edge in the sequence YP , which is
also computed in O(D) rounds similarly to the construc-
tion of ancestry labels. Only the difference is that for every
tree edge e ∈ ET ′ , the algorithm computes the number of
non-tree edges in P whose y-side endpoints lie in T ′(e).
Next, the algorithm finds two non-tree edges p−

i and p+
i for

each Y i
P . Each subgraph induced by seqy(Y

i
P) independently

finds the non-tree edge inY i
P with themaximum x-coordinate

not exceeding M , and that with the minimum x-coordinate
not lower than M . Each of them is found with a single-shot
aggregation in the subgraph,whose running time is obviously
O(D). Hence the total running timeofNetFind(N , P) for the
recursion level j ≤ j∗ isO(

√
m′/DD) = Õ(

√
m′D). It con-

cludes that our distributed implementation of NetFind takes
O(

√
m′D) rounds. To construct whole (S f ,T ′ , c f 2 log n)-

good hierarchy, O(log n) repetition of invoking NetFind
suffices. Consequently, we obtain the following lemma

Lemma 21 Let T ′ be any BFS tree of the auxiliary graph G ′
of the input graph G. There exists a deterministic CONGEST
algorithm of constructing a (S f ,T ′ , O(f 2 log n))- good hier-
archy in Õ(

√
mD) rounds.

This lemma obviously deduces the theorem below:

Theorem 22 There exists a deterministic CONGEST algo-
rithm of constructing f -FTC labels for all vertices and edges
in Õ(

√
mD + f 2) rounds.

9 Concluding remarks

This paper presented a new deterministic f -FTC label-
ing scheme which attains O(f 2polylog(n))-bit label size,
polynomial-time construction, and Õ(poly(|F |))-time query
processing time for a given faulty edge set F . This is the first
deterministic and polynomial-time f -FTC labeling scheme
with a non-trivial label size. The scheme is developed on
the top of a general framework, and only by the modifica-
tion of graph sparsification, we can also obtain a randomized
f -FTC labeling scheme which is competitive to the original
Dory-Parter scheme and attains an adaptive query processing
time. The key technical ingredient is a new deterministic S-
outdetect labeling scheme based on error-correcting codes.
From the authors’ perspective, our results pose a few promis-
ing future research directions. We conclude this paper with
summarizing them.

• Is it possible to develop a deterministic algorithm yield-
ing better edge hierarchies, i.e., the hierarchy such that
for any S there exists i satisfying 0 < |∂Ei (S)| =
o(f 2 log n)? Our framework automatically deduces a
deterministic f -FTC labeling scheme with an improved
label size if such an algorithm is found.

• With respect to the construction time in the CONGEST
model, our deterministic scheme still has a large gap
with the known randomized construction, only taking
Õ(f +D) rounds. Is it possible to obtain the deterministic
f -FTC labeling scheme of O(poly(f , log n))-bit label
size which is implemented in the CONGESTmodel with
Õ(poly(f) + D) or Õ(poly(f) · D) rounds?

• Can we obtain any non-trivial lower bound for the label
size of f -FTC labeling schemes with full query support?
It seems plausible that the �(f)-bit lower bound holds,
but no promising way of proving this is found so far.

• Can our technique be exported to other applications
of S-outdetect labeling schemes, such as centralized
fault-tolerant connectivity oracles [20], distributed com-
putation of sparse spanning subgraphs [24, 27, 37, 43]
or small cut detection [45, 49], and dynamic algorithms
[25, 36], for obtaining any improved result?

123

T. Izumi et al.

A Randomized construction of edge set
hierarchy

Comparing the quality of labeling schemes with the label
size, decoding time, and construction time, our determinis-
tic construction is competitive but certainly worse than the
known randomized scheme. However, most of high costs
incurred by our construction is derived from the construction
of edge set hierarchies. As mentioned in Sect. 4.3, a simple
edge sub-sampling strategy suffices to construct good hier-
archies.

Proposition 23 Let EG−ET = E0 ⊇ E1 ⊇ E2 ⊇, . . . ,⊇
Eh = ∅ be the edge set hierarchy such that Ei+1 is con-
structed by sampling each edge in Ei independently with
probability 1/2 if |Ei | > 5 f log n, or Ei+1 = ∅ other-
wise. Then with probability 1 − 1/nO(1),this hierarchy is
(S f ,T , 5 f log n)-good.

Proof Consider the construction of Ei+1 from Ei . If |Ei | ≤
5 f log n, Ei+1 obviously satisfies the two conditions of Def-
inition 1, and thus consider only the case of |Ei | > 5 f log n.
We show that with high probability, |∂Ei+1(S)| > 0 holds
for any S ∈ S f ,T satisfying |∂Ei (S)| > 5 f log n. The
probability that no edge in ∂Ei (S) is added to Ei+1 is at
most (1/2)5 f log n = 1/n5 f . Since the cardinality of S f ,T

is bounded by
∑

i≤ f

(|ET |
i

) = O(n f), by the union bound
argument, we conclude that |∂Ei+1(S)| > 0 holds for any
S ∈ S f ,T satisfying |∂Ei (S)| > 5 f log n with probability
1− O(1/n5). That is, the probability that Ei+1 does not sat-
isfies the second condition of Definition 1 is O(1/n4). The
first condition is satisfied with high probability because one
can show |Ei+1| ≤ 3|Ei |/4 with probability 1−O(1/n2) by
the straightforward application of Chernoff bound. Applying
the union bound again on the failing events of the first and
second conditions for all i , we obtain the proposition. ��

B Adaptive decoding of deterministic
Sf ,T -outdetect labeling scheme based on
the Reed–Solomon code

In this Appendix, we show that our S f ,T -outdetect labeling
scheme attains the adaptiveness without any modification
or transformation. The key idea is a nice property of Reed-
Solomon Code: We define LRS(k)

H ,k′ for k′ ≤ k as the labeling

function which assign v ∈ VH with the prefix of LRS(k)
H (v) up

to the k′-th element. Then the following proposition holds:

Proposition 24 For any k′ ≤ k, LRS(k)
H ,k′ = LRS(k′)

H holds.

Proof The proof trivially follows the definition of the parity
check matrix C2k . Let ci j be the (i, j)-element of C2k (0 ≤
i ≤ |E |, 0 ≤ j ≤ 2k − 1) and ω be a primitive element of F.

Then the each element of C2k is defined as ci j = ωi j . That
is, the submatrix formed by the first 2k′ columns of C2k is is
equal to C2k′ . ��

Intuitively, the proposition above implies that the
O(k′ log n)-bit prefixes of the labels assigned by our k-
threshold outdetect labeling scheme also work as the labels
of the k′-threshold outdetect labeling scheme. It is also pos-
sible to make the sparsification hierarchy adaptive because
our construction does not use the upper bound f at all, i.e.,
the construction is universal for every f : We explained in
the previous section that Ei+1 is constructed in the way
that it becomes the hitting set of Zi, f ,c f 2 log n (where c is
a hidden constant). In reality, it also becomes the hitting
set of Zi, f ′,c(f ′)2 for any f ′ > 0. Hence it is guaranteed
that for any S ∈ S|∂T (S)|,T there exists an index i such that
0 < |∂Gi (S)| ≤ c|∂T (S)|2 log n holds (in the deterministic
case).

Acknowledgements The authors express their gratitude to the anony-
mous reviewers for their careful reading and many valuable comments.
This work was supported by JSPS KAKENHI Grant Nos. 21H05854,
22H03569, 23H04385, 20H04139, and 19H04085.

Author Contributions All authors are equally contributed to this work.

Funding Open Access funding provided by Osaka University.

Data availability No datasets were generated or analysed during the
current study.

Declarations

Conflict of interest The authors declare no conflict of interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abraham, I., Chechik, S., Gavoille, C.: Fully dynamic approximate
distance oracles for planar graphs via forbidden-set distance labels.
In: Proceedings of the 44th Annual ACM Symposium on Theory
of Computing (STOC), pp. 1199–1218 (2012)

2. Abraham, I., Chechik, S., Gavoille, C., Peleg, D.: Forbidden-set
distance labels for graphs of bounded doubling dimension. ACM
Trans. Algorithms 12(2), 1–17 (2016)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Deterministic fault-tolerant connectivity labeling scheme

3. Ahn, K.J., Guha, S., McGregor, A.: Analyzing graph structure via
linear measurements. In: Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
459–467. SIAM (2012)

4. Ahn, K.J., Guha, S., McGregor, A.: Graph sketches: sparsifica-
tion, spanners, and subgraphs. In: Proceedings of the 31st ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems (PODS), pp. 5–14 (2012)

5. Bilò, D., Choudhary, K., Gualà, L., Leucci, S., Parter, M., Proietti,
G.: Efficient oracles and routing schemes for replacement paths.
In: Proceedings of 35th Symposium on Theoretical Aspects of
Computer Science (STACS), volume 96 of Leibniz International
Proceedings in Informatics (LIPIcs), pp. 13:1–13:15 (2018)

6. Bar-Natan, A., Charalampopoulos, P., Gawrychowski, P., Mozes,
S.,Weimann, O.: Fault-tolerant distance labeling for planar graphs.
In: Proceedings of International ColloquiumonStructural Informa-
tion and Communication Complexity (SIROCCO), volume 12810
of Lecture Notes in Computer Science, pp. 315–333 (2021)

7. Bilò, D., Gualà, L., Leucci, S., Proietti, G.: Compact and fast
sensitivity oracles for single-source distances. In: Sankowski, P.,
Zaroliagis, C.D. (eds.) Proceedings of 24th Annual European Sym-
posium on Algorithms (ESA), volume 57 of Leibniz International
Proceedings in Informatics (LIPIcs), pp. 13:1–13:14 (2016)

8. Bernstein, A., Karger, D.: A nearly optimal oracle for avoiding
failed vertices and edges. In: Proceedings of the 41st Annual ACM
Symposium on Theory of Computing (STOC), pp. 101–110 (2009)

9. Baswana, S., Khanna, N.: Approximate shortest paths avoid-
ing a failed vertex: near optimal data structures for undirected
unweighted graphs. Algorithmica 66(1), 18–50 (2013)

10. Chechik, S., Cohen, S., Fiat, A., Kaplan, H.: (1+ ε)-Approximate
f -sensitive distance oracles. In: Proceedings of the 2017 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
1479–1496 (2017)

11. Chuzhoy, J., Gao, Y., Li, J., Nanongkai, D., Peng, R., Saranurak,
T.: A deterministic algorithm for balanced cut with applications to
dynamic connectivity, flows, and beyond. In: 61st IEEE Annual
Symposium on Foundations of Computer Science (FOCS), pp.
1158–1167. IEEE (2020)

12. Chechik, S.: Fault-tolerant compact routing schemes for general
graphs. In: 38th International Colloquium on Automata, Lan-
guages, and Programming, (ICALP), pp. 101–112 (2011)

13. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: f -sensitivity
distance oracles and routing schemes. Algorithmica 63(4), 861–
882 (2012)

14. Chazelle, B.,Matoušek, J.: On linear-time deterministic algorithms
for optimization problems in fixed dimension. J. Algorithms 21(3),
579–597 (1996)

15. Courcelle, B., Twigg, A.: Compact forbidden-set routing. In: Pro-
ceedings of the 24th Annual Conference on Theoretical Aspects of
Computer Science, STACS’07, pp. 37–48 (2007)

16. Courcelle, B., Twigg, A.: Constrained-path labellings on graphs
of bounded clique-width. Theory Comput. Syst. 47(2), 531–567
(2010)

17. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors:
how to generate strong keys from biometrics and other noisy data.
SIAM J. Comput. 38(1), 97–139 (2008)

18. Duan, R, Pettie, S: Dual-failure distance and connectivity oracles.
In: Proceedings of the 20th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 506–515 (2009)

19. Duan, R., Pettie, S.: Connectivity oracles for failure prone graphs.
In: Proceedings of the 42nd ACM Symposium on Theory of Com-
puting (STOC), pp. 465–474 (2010)

20. Duan, R., Pettie, S.: Connectivity oracles for graphs subject to
vertex failures. SIAM J. Comput. 49(6), 1363–1396 (2020)

21. Dory, M., Parter, M.: Fault-tolerant labeling and compact routing
schemes. In: Proceedings of the 2021 ACM Symposium on Prin-
ciples of Distributed Computing (PODC), pp. 445–455 (2021)

22. Demetrescu, C., Thorup, M.: Oracles for distances avoiding a
link-failure. In: Proceedings of the 13th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pp. 838–843 (2002)

23. Feigenbaum, J., Karger, D.R.,Mirrokni, V.S., Sami, R.: Subjective-
cost policy routing. Theor. Comput. Sci. 378(2), 175–189 (2007)

24. Ghaffari, M., Kuhn, F.: Distributed MST and broadcast with fewer
messages, and faster gossiping. In: Proceedings of 32nd Interna-
tional Symposium on Distributed Computing (DISC), volume 121
of LIPIcs, pp. 30:1–30:12 (2018)

25. Gibb, D., Kapron, B.M., King, V., Thorn, N.: Dynamic graph con-
nectivitywith improvedworst case update time and sublinear space.
CoRR, arXiv:1509.06464 (2015)

26. Ghaffari,M., Parter,M.:Mst in log-star rounds of congested clique.
In: Proceedings of the 2016 ACM Symposium on Principles of
Distributed Computing (PODC), pp. 19–28 (2016)

27. Gmyr, R., Pandurangan, G.: Time-message trade-offs in distributed
algorithms. In: Proceedings of 32nd International Symposium on
Distributed Computing (DISC), volume 121 of LIPIcs, pp. 32:1–
32:18 (2018)

28. Gu, Y., Ren, H.: Constructing a distance sensitivity oracle in
o(n2.5794m) time. In: Bansal, N., Merelli, E., Worrell, J. (eds.) 48th
International Colloquium on Automata, Languages, and Program-
ming, (ICALP), volume 198 of LIPIcs, pp. 76:1–76:20 (2021)

29. Grandoni, F.,Williams,V.V.: Faster replacement paths and distance
sensitivity oracles. ACM Trans. Algorithms 16(1), 1–25 (2019)

30. Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deter-
ministic fully-dynamic algorithms for connectivity, minimum
spanning tree, 2-edge, and biconnectivity. J. ACM 48(4), 723–760
(2001)

31. Henzinger, M.R., King, V.: Randomized fully dynamic graph algo-
rithms with polylogarithmic time per operation. J. ACM 46(4),
502–516 (1999)

32. Hegeman, J.W., Pandurangan, G., Pemmaraju, S.V., Sardesh-
mukh, V.B., Scquizzato, M.: Toward optimal bounds in the con-
gested clique: graph connectivity and mst. In: Proceedings of the
2015 ACM Symposium on Principles of Distributed Computing
(PODC), pp. 91–100 (2015)

33. Haussler, D., Welzl, E.: Epsilon-nets and simplex range queries.
Discrete Comput. Geom. 2, 127–151 (1987)

34. Jurdzinski, T., Nowicki, K.: MST in O(1) rounds of the congested
clique. In: Proceedings of the 29th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pp. 2620–2632 (2018)

35. Kulkarni, J., Govindarajan, S.: New epsilon-net constructions. In:
22nd Annual Canadian Conference on Computational Geometry
(CCCG), pp. 159–162 (2010)

36. Kapron,B.M.,King,V.,Mountjoy,B.:Dynamic graph connectivity
in polylogarithmic worst case time. In: Proceedings of the 24th
Annual ACM-SIAMSymposium onDiscrete Algorithms (SODA),
pp. 1131–1142 (2013)

37. King, V., Kutten, S., Thorup, M.: Construction and impromptu
repair of an mst in a distributed network with o(m) communica-
tion. In: Proceedings of the ACM Symposium on Principles of
Distributed Computing (PODC), pp. 71–80 (2015)

38. Kapralov, M., Lee, Y.T., Musco, C., Musco, C., Sidford, A.: Single
pass spectral sparsification in dynamic streams. In: Proceedings
of 55th IEEE Annual Symposium on Foundations of Computer
Science (FOCS), pp. 561–570 (2014)

39. Kannan, S., Naor,M., Rudich, S.: Implicit representation of graphs.
SIAM J. Discrete Math. 5(4), 596–603 (1992)

40. Kapralov, M., Woodruff, D.: Spanners and sparsifiers in dynamic
streams. In: Proceedings of the 2014 ACM Symposium on Princi-
ples of Distributed Computing (PODC), pp. 272–281 (2014)

123

http://arxiv.org/abs/1509.06464

T. Izumi et al.

41. Matoušek, J.: Derandomization in computational geometry. J.
Algorithms 20(3), 545–580 (1996)

42. Mustafa, N.H., Dutta, K., Ghosh, A.: A simple proof of optimal
epsilon nets. Combinatorica 38(5), 1269–1277 (2018)

43. Mashreghi, A., King, V.: Broadcast and minimum spanning tree
with o(m) messages in the asynchronous CONGEST model. Dis-
trib. Comput. 34(4), 283–299 (2021)

44. Patrascu, M., Demaine, E.D.: Logarithmic lower bounds in the
cell-probe model. SIAM J. Comput. 35(4), 932–963 (2006)

45. Parter,M., Petruschka,A.:Near-optimal distributed computation of
small vertex cuts. In: 36th International Symposium on Distributed
Computing (DISC), vol. 246, pp. 31:1–31:21 (2022)

46. Parter, M., Petruschka, A.: Õptimal dual vertex failure connectivity
labels. In: 36th International Symposium on Distributed Comput-
ing (DISC 2022), pp. 32:1–32:19 (2022)

47. Parter, M., Petruschka, A., Pettie, S.: Connectivity labeling and
routing with multiple vertex failures. In: 56th Annual ACM Sym-
posium on Theory of Computing (STOC), pp. 823–834 (2024)

48. Patrascu, M., Thorup, M.: Planning for fast connectivity updates.
In: Proceedings of 48th Annual IEEE Symposium on Foundations
of Computer Science, pp. 263–271 (2007)

49. Pritchard, D., Thurimella, R.: Fast computation of small cuts via
cycle space sampling. ACM Trans. Algorithms 7(4), 1–30 (2011)

50. Rajan, V.: Space efficient edge-fault tolerant routing. In: D’Souza,
D., Kavitha, T., Radhakrishnan, J. (eds.) Proceedings of IARCS
Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, (FSTTCS), volume 18 of Leib-
niz International Proceedings in Informatics (LIPIcs), pp. 350–361
(2012)

51. Thorup, M.: Near-optimal fully-dynamic graph connectivity. In:
The 32nd Annual ACM Symposium on Theory of Computing
(STOC), pp. 343–350 (2000)

52. Wulff-Nilsen, C.: Faster deterministic fully-dynamic graph con-
nectivity. In: The 2013 Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pp. 1757–1769

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Deterministic fault-tolerant connectivity labeling scheme
	Abstract
	1 Introduction
	1.1 Motivation and background
	1.2 Our result
	1.3 Applications
	1.4 Related work
	1.5 Roadmap

	2 Notations and terminologies
	3 Construction framework
	3.1 Tree edge f-FTC labeling scheme
	3.2 Transformation to general scheme

	4 Technical outline of our approach
	4.1 Obstacles in de-randomization
	4.2 First technique: deterministic k-threshold outdetect labeling scheme
	4.3 Second technique: deterministic construction of (mathcalSf, T, k)-good hierarchy

	5 Wrap-up
	6 Improving query processing time
	7 Technical details
	7.1 Formal specification of labeling schemes
	7.2 Proof of Lemma 4
	7.3 Construction of deterministic mathcalSf, T-outdetect labeling scheme
	7.4 k-threshold outdetect labeling: choice of codes
	7.5 Deterministic construction of good hierarchy
	7.6 Fast query processing

	8 Distributed construction
	8.1 Construction of ancestry labels
	8.2 Construction of outdetect labels
	8.3 Construction of a (mathcalSf, T', O(f2 logn))-good hierarchy

	9 Concluding remarks
	A Randomized construction of edge set hierarchy
	B Adaptive decoding of deterministic mathcalSf, T-outdetect labeling scheme based on the Reed–Solomon code
	Acknowledgements
	References

