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Abstract

Wilms’ tumor protein 1 (WT1)-targeted immunotherapy has been used in patients with leukemia and solid tumors. However,
the spontaneous WT1-specific immune response before WT1 peptide vaccination in patients with WT1-expressing tumors
(PTs) remains unclear. Therefore, we investigated whether WT1-specific cytotoxic CD8* T-lymphocytes (CTLs) are clonally
expanded in the peripheral blood outside of tumor sites. Clonal expansion of WT1,,. peptide (a.a.126—134)-specific CTLs
(WT1,,4-CTLs) was compared between seven PTs and five healthy volunteers (HVs), and their T-cell receptors (TCRs)
were analyzed at the single-cell level. Overall, 433 and 351 TCR B-chains of WT1,,,-CTLs were detected from PTs and
HVs, respectively, and complementarity-determining region 3 was sequenced for clonality analysis. The frequencies of
WT1,,,-CTLs were higher in human leukocyte antigen (HLA)-A*02:01* PTs than in HLA-A*02:01* HVs, although the
difference was not statistically significant. WT1,,,-CTLs of differentiated types, including memory and effector, were higher
in PTs than in HVs; whereas, those of the naive type were higher in HVs than in PTs. WT1,,,-CTL clonality was significantly
higher in PTs than in HVs. Furthermore, the frequency of effector WT1,,-CTLs positively correlated with WT1,,,-CTL
clonality in PTs; whereas, the frequency of naive phenotype WT1,,,-CTLs tended to be negatively correlated with clonality.
In conclusion, these results suggest that the WT1 protein in tumor cells is highly immunogenic, thereby stimulating endog-
enous naive-type WT1,,,-CTLs and enabling them to clonally expand and differentiate into effector-type WT1,,,-CTLs.
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APC  Allophycocyanin

CTLs Cytotoxic CD8* T-lymphocytes

Cy7 Cyanine7

FITC  Fluorescein isothiocyanate

HLA  Human leukocyte antigen

HVs Healthy volunteers

PTs Patients with WT1-expressing tumors
PE Phycoerythrin

PerCP  Peridinin-chlorophyll protein complex
TCR  T-cell receptor

WT1  Wilms’ tumor protein 1
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Introduction

Tumor-associated antigen (TAA)-specific cytotoxic T-lym-
phocytes (CTLs) are the main effectors of immunological
attack on tumor cells. To date, several investigations have
been performed to analyze tumor-infiltrating lymphocytes in
patients with solid tumors. Some of these studies have shown
T-cell receptor (TCR) sequence-based clonal expansion of
TAA-specific CTLs at tumor sites, indicating that TAA-
specific CTLs, which are activated and expanded, accumu-
late at tumor sites. Comparative evaluation of spontaneous
clonal proliferation of TAA-specific CTLs in peripheral
blood (PB), a non-tumor site in patients with various types
of solid tumors, and clonal proliferation of TAA-specific
CTLs in healthy human PB will hopefully provide us with
important insights into understanding anti-tumor immunity.
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Wilms’ tumor gene 1 (WTJ) is expressed in various
types of solid tumors [1, 2] and hematological malignan-
cies [3] and plays important roles in oncogenesis [4]. In
carcinogenesis, WT1 is considered to have a potential
oncogenic role by promoting cell proliferation [5-7] and
motility [8], while inhibiting apoptosis [9] through its
overexpression. Consequently, WT1 has been identified
as one of a potential target antigen for cancer immuno-
therapy, and had previously been selected as the most
promising one of the 75 TAAs [10]. We previously identi-
fied WT1-CTL epitopes and WT1,,, and modified WT1,;5
(a.a. 235-243) peptides that can induce CTLs with kill-
ing activity against WT1-expressing tumors by restrict-
ing human leukocyte antigen (HLA)-A*02:01 and HLA-
A*24:02, respectively [11, 12]. These HLA class I types
are frequently found in humans, and both our research and
that of others have reported a series of successful clinical
studies using these WT1 peptide-based vaccine therapies
for patients with solid tumors [13—15] and hematological
malignancies [15-17].

Compared to the lack of reports showing clonality of
TAA-specific CTLs in the PB of patients with solid tumors,
as mentioned above, several investigations, including ours,
have reported clonality of WT1-specific CTLs in the PB or
bone marrow (BM) of patients with acute myeloid leukemia
(AML), in which PB and BM are the areas where abundant
leukemic cells exist, that is, tumor sites [18—20]. Therefore,
this study aimed to investigate whether WT1-specific CTLs
are clonally expanded in the PB outside the tumor site of
patients to comprehensively understand the nature of the
anti-cancer immune response in patients with solid cancer.
If the clonal expansion of WT1-specific CTLs in the PB
of patients is demonstrated, the clonal expansion of CTLs
may also exist in tumor-draining lymph nodes (LNs) that are
non-tumor sites, such as the PB. The expectation of WT1
peptide vaccine therapy is to artificially induce and activate
WT1-specific CTLs through the migration of dendritic cells
carrying intradermally administered WT1 peptides from the
skin to LNs, and antigen presentation to WT1-specific CTLs
in LNs. If WT1-specific CTLs with advanced differentiation
are already present in the PB of patients with solid tumors
prior to treatment and are proliferating clonally, adminis-
tration of the WT1 peptide vaccine is expected to rapidly
activate these CTLs and further promote clonal prolifera-
tion. The existence of long-term viable WT1-specific CD8*
T cells is important for the long-term anti-tumor effect.
However, the pre-existence of WT1-specific effector CD8*
T cells that can rapidly attack tumors after the start of WT1
peptide vaccine therapy is an important factor for the suc-
cess of this therapy. For this reason, we believe that proof of
clonal expansion prior to WT1 peptide vaccination in the PB
of patients with solid tumors will strengthen the expectation
of WT1 peptide vaccine therapy in these patients.

@ Springer

Materials and methods
Samples

Peripheral blood mononuclear cells (PBMCs) were iso-
lated from heparinized blood samples obtained from seven
HLA-A*02:01 patients with solid tumors and five HLA-
A*02:01 healthy volunteers (HVs) prior to the WT1-235
peptide vaccination by using Ficoll-Hypaque gradient cen-
trifugation in Lymphocyte Separation Solution (Nacalai
Tesque, Inc., Kyoto, Japan) and cryopreserved in liquid
or gas-phase nitrogen until use. Tumor cells of patients
were analyzed for WT1 protein expression using immu-
nohistochemical analysis, as previously described [21].
Patients were enrolled in the University Hospital Medi-
cal Information Network (UMIN) Clinical Trials (UMIN
number: UMIN000002001) on May 24, 2009. This obser-
vational study was carried out by using the patients' sam-
ples approved by the Institutional Review Board for Clini-
cal Research of Osaka University Hospital on June 15,
2012 (IRB number: 11293). Written informed consent was
obtained from all patients and HVs. All mandatory labo-
ratory health and safety procedures were complied with
during the study. Tumor response was defined based on
the investigator's assessment according to the Response
Evaluation Criteria for Solid Tumors.

WT1-tetramer, antibodies, and flow cytometry

The PE-labeled HLA-A*02:01 WTI 54 34 (RMFP-
NAPYL) tetramer (WT1,, tetramer) was purchased from
MBL Co., Ltd. (Nagoya, Japan). WT1,,¢-specific CTLs
were detected using the WT1,,¢ tetramer and other mono-
clonal antibodies (mAbs) as previously described [22].
Briefly, thawed PBMCs were rested for 1.5 h and stained
with WT1,, tetramer at 37 °C for 30 min. Subsequently,
these PBMCs were stained with anti-human mAbs at 4 °C
for 25 min. The following mAbs were used: anti-CD4-
FITC, anti-CD16-FITC, and anti-CD45RA-APC (BioLe-
gend, San Diego, CA, USA); anti-CD19-FITC and anti-
CCR7-PE-Cy7 (BD Pharmingen, San Diego, CA, USA);
anti-CD3-PerCP, anti-CD8-APC-Cy7, and anti-CD14-
FITC (BD Biosciences, San Jose, CA, USA); and anti-
CD56-FITC (eBioscience, San Diego, CA, USA). After
staining, WT1,,c-specific CTLs were directly sorted into
polymerase chain reaction tubes containing a cDNA reac-
tion-mix solution using a FACSAria (BD Biosciences).
WT1,,6-specific CTLs were stained with anti-PD-1-PE-
Cy7 (EH12.2H7; BioLegend, San Diego, CA, USA),
anti-LAG-3-APC (3DS223H; San Diego, CA, USA),
and anti-Tim-3-APC (F38-2E2; San Diego, CA, USA)
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antibodies to detect the expression of exhaustion markers
in WT1 ,4-specific CTLs. Anti-mouse IgG1, x-PE-Cy7
(BioLegend), and -APC (TONBO Biosciences) (MOPC-
21; San Diego, CA, USA) were used as isotype controls.
Data were analyzed using FlowJo 7.6.5 and 10.9.0 soft-
ware (FlowJo LLC, Ashland, OR, USA).

Single-cell sorted TCR repertoire analysis

cDNA was synthesized from single-cell sorted WT1-spe-
cific CTLs, as previously described [22]. Complementarity-
determining region 3 (CDR3) amino acid sequences of TCR
B-chains in individually sorted single-cell CTLs were ana-
lyzed using IMGT/V-QUEST (https://www.imgt.org/IMGT _
vquest/input).

TCR repertoire clonality

Clonality (C) was normalized by entropy (E), which was
calculated using Shannon’s definition, as follows [23]:

N
E=- ) filogfi
i=1

__E
log,(N)

where fi represents the ratio occupied by each clone in all
analyzed cells, and N represents the total number of clones.

Statistical analysis

The Mann—Whitney U test was used to evaluate the differ-
ences in the frequency of WT1,¢-specific CTLs and clon-
ality between patients with WT1-expressing tumors (PTs)
and HVs. A two-way ANOVA followed by Sidak’s multiple
comparison test was used to evaluate the phenotypic dif-
ferences in WT1,,4-specific CTLs between PTs and HVs.
Pearson’s correlation was used to calculate the significance
of the correlations between the phenotypes and clonality
of WT1,,¢-specific CTLs. All statistical analyses were per-
formed using GraphPad Prism versions 7 and 10 (GraphPad
Software Inc., La Jolla, CA, USA). P- values <0.05 were
considered significant in all analyses.

Results
Frequencies of WT1,,.-specific CTLs in PB

The characteristics of seven cancer PTs and five HVs are
shown in Table 1 [22]. The median age of PTs and HVs

were 53 years (range 18—73 years) and 25 years (range
23-45 years), respectively. All PTs underwent surgery, and
the timing of PBMCs collection is indicated by the period
following prior treatment. We defined WT1 ,-specific
CTLs as CD3"*, CD8*, WTl1,,, tetramer™, and lineage
marker (CD4, CD14, CD16, CD19, and CD56)-negative
cells (abbreviated as WT1,,,-CTLs) (Fig. 1a). Because the
frequencies of WT1,,,-CTLs in PB are generally as low
as 1/10,000 to 1/1,000 of those in CD8" T cells, we per-
formed fluorescence-activated cell-sorting in at least one
million PBMCs to accurately measure the frequencies and
obtain WT1,,,-CTLs sufficient to analyze their TCR f-chain
variable repertoires. The frequencies of WT1,,,-CTLs
were 0.007-0.122% (median: 0.026%) and 0.009-0.079%
(median: 0.016%) in PTs and HVs, respectively, without
statistically significant difference (Fig. 1b) [22].

Differences in the phenotypes of WT1,,,-specific
CTLs between PTs and HVs

We examined the phenotypes of the WT1,,4-specific CTLs
[22]. WT1,,¢-specific CTLs were categorized into four
distinct subtypes, corresponding to the four differentiation
stages, based on the cell surface expression of CD45RA
and CCR7: (i) naive cells, CD45RA* CCR7%; (ii) cen-
tral memory, CD45RA~ CCR7; (iii) effector memory,
CD45RA~ CCR77; and (iv) effector, CD45RA* CCR7".
Most of the WT1,4-specific CTLs in all seven PTs exhib-
ited higher percentages of effector memory (36.6-50.0%,
median: 40.0%) and effector (11.4-85.7%, median: 27.4%)
phenotypes (Fig. 2a). Notably, WT1,,4-specific CTLs of
86.0%, 94.4%, and 92.8% in PTs 1, 4, and 7, respectively,
showed extremely differentiated phenotypes (effector mem-
ory and effector). However, most of the WT1,,¢-specific
CTLs in all five HVs predominantly exhibited a naive phe-
notype (36.7-63.4%, median: 58.1%) (Fig. 2b). Significant
differences were found in the proportions of CTLs with
naive (P=0.0008) and effector phenotypes (P=0.0336)
between PTs and HVs (Fig. 2¢). Cell surface expression of
exhausted markers in WT1,,¢-specific CTLs was assessed
using specimens for which abundant numbers of samples
had been stored. The frequencies of exhausted PD-17"
LAG-3* and PD-1* Tim-3* T cells in PT4 were 0.0% and
0.2%, respectively, which were comparable to those in HV's
(Fig. 2d). Conversely, the frequency of PD-1 single positive
in PT4 was higher than that of HV1 and HV3.

Oligoclonal expansion of WT1,,,-CTLs
We examined the TCR repertoire of WT1,,,-CTLs by
sequencing the CDR3 regions of TCR f-chains of the indi-

vidual single-cell sorted CTLs to investigate the difference
in the diversity of WT1,,,-CTLs between PTs and HVs.
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A total of 59, 66, 46, 66, 88, 73, and 35 CDR3 sequences
were obtained from PTs 1, 2, 3, 4, 5, 6 and 7, respectively,
and 53, 57, 77, 79, and 85 CDR3 sequences from HVs
1, 2, 3, 4 and 5, respectively (Table 1). The CDR3 usage
frequency was considered to be accurately determined
since the amplification efficiency of the CDR3 sequences
was > 80%. Figure 3a schematically shows the concept of
TCR repertoire clonality (abbreviated as clonality). In the
case where the WT1-CTLs were occupied by only one
clone, the clonality was calculated to be infinitely close
to 1.000 (0.9999) but not 1.0; whereas, clonality 0 meant
that no clones were present. Figures 3b and 3c show the
usage frequencies of CDR3 sequences of TCR f-chains
of the WT1,,-CTLs and the clonality in PTs and in HVs,
respectively. TCR f-chains detected more than twice in
each sample were considered expanded clones (ECs). PTs
not only had more types of ECs than HVs, but in some
cases, such as PT1 and PT7, a single EC accounted for a
high percentage. Figure 3d graphically shows the clonality
of PTs and HVs. Clonality was significantly higher in PTs
than in HVs (P <0.05).

Clear correlation between effector phenotype
and clonality of WT1,,,-specific CTLs in PTs

We evaluated the correlation between the phenotype
and clonality of WT1 ,¢-specific CTLs in PTs and HVs
(Fig. 4). The frequency of the effector phenotype of
WT1,,4-specific CTLs positively correlated with the
clonality of WT1 ,¢-specific CTLs in PTs (P=0.0110,
R2=0.7557); whereas, the frequency of the naive pheno-
type of WT1,¢-specific CTLs in PTs tended to be nega-
tively correlated with the clonality of WT1,¢-specific
CTLs (P=0.0943, R>=0.4593) (Fig. 4a). However, the
frequencies of the central memory and effector memory
phenotypes did not correlate with clonality, and no cor-
relation was found between the phenotype and clonality
of WT1,¢-specific CTLs in HVs (Fig. 4b). Therefore,
these results indicate that WT1 ,4-specific CTLs prolifer-
ated in the immune response against the WT1 antigen of
tumor cells in PTs, may differentiate from naive to termi-
nal effector phenotypes, and may clonally expand during
this cell differentiation in association with the continuous

@ Springer
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Fig.2 Phenotypes of WTI,,s-specific CTLs Phenotypes of
WT1,,6-specific CTLs in seven PTs (a) and five HVs (b).
WT1,,6-specific CTLs were classified into four distinct subtypes
based on the four differentiation stages according to the cell sur-
face expression of CD45RA and CCR7 as follows: (i) naive cells,
CD45RA"™ CCR7*; (ii) central memory, CD45RA~ CCR7%; (iii)
effector memory, CD45RA~ CCR7~; and (iv) effector, CD45RA*
CCR7". ¢ Subtype frequency in WT1 ,¢-specific CTLs. Box plots

proliferation of WT1,,¢-specific CTLs, leading to higher
clonality of WT1,4-specific CTLs.

Discussion
This study demonstrated for the first time that the clonality

of WT1,,¢-specific CTLs was significantly higher in PTs
than in HVs, although the frequency of WT1,,¢-specific

@ Springer

represent median +25th percentile, with whiskers representing min/
max values. Red boxplots: PTs; blue boxplots: HVs. P-values were
obtained using a two-way ANOVA followed by Sidak’s multiple
comparison test. d The exhaustion state of WT1,¢-specific CTLs
in PT4, HV1, and HV3. *P <0.05, ***P <0.001. ns, not significant.
WTI, Wilms’ tumor protein 1; CTLs, cytotoxic T-lymphocytes; PTs,
patients with WT1-expressing tumor; HVs, healthy volunteers; N/A,
not assessable (less than 10 cells)

CTLs did not differ significantly between the groups. Most
of the WT1,,¢-specific CTLs in all seven PTs exhibited
effector memory and effector phenotypes; whereas, most of
the WT1¢-specific CTLs in all five HVs exhibited naive
phenotypes. The frequency of the effector phenotype of
WT1,,6-specific CTLs in PTs positively correlated with CTL
clonality, whereas that of the naive phenotype of CTLs nega-
tively correlated with clonality. No correlation was found
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between the phenotype and clonality of WT1,¢-specific
CTLs in HVs.

In mouse models, the clonal expansion of T cells induced
by strong TCR signals, including the foreign antigen OVA
peptide, has been reported to exhibit differentiated phe-
notypes, such as effector memory and effectors [24, 25].
However, there have been no reports of spontaneous and
clonal proliferation of CTLs specific for overexpressed pro-
tein antigens such as WT1 in the PB of solid tumor patients.
All patients underwent surgery, chemotherapy, and/or radio-
therapy before PBMC samples were collected. Therefore, a
large amount of WT1 antigen was likely released from col-
lapsed WT1-expressing tumor cells during these treatments,
which endogenously induced WT1-specific CTLs, followed
by clonal expansion in association with cell proliferation and
differentiation from naive to memory phenotypes. The early
administration of the WT1 peptide vaccine after tumor col-
lapse is expected to cause rapid clonal expansion of WT1-
specific CTLs, which can attack WT1-expressing tumors
and lead to a favorable clinical response. Moreover, PTs 1
and 7, who received the modified WT1,55 peptide vaccine
relatively early (5—7 weeks after pretreatment) and showed
high clonality, achieved partial response and stable disease,
respectively. This suggests epitope spreading due to tumor
disruption from prior therapy.

Epitope and antigen spreading have been reported to
be favorable prognostic factors for many cancer immuno-
therapies [26—28]. However, no clear predictors of favorable
clinical response were found in our study because of the
small number of patients analyzed. Therefore, we hope to
increase the number of patients analyzed in the near future
to identify prognostic factors. In all HVs, a small number of
WT1,,6-specific CD8" T cells showed clonality (Fig. 3c).
This clonality may indicate the existence of a tumor immune
surveillance system involving WT1-specific CD8* T cells.
Cancer immunoediting is an essential process where the
immune system suppresses or promotes tumor development
via the following three processes: elimination, equilibrium,
and escape [29]. During the elimination process, the innate
and adaptive immune systems cooperate to suppress tumors.
Tumor-specific CD8" T cells recognize and destroy tumor

antigen-expressing tumor cells. This immunosurveillance
system leads to tumor disappearance. In HVs, in whom
clinically apparent tumors are absent, the tumor elimination
process may effectively operate and thoroughly eradicate
newly appearing tumors via tumor-specific CD8% T cells.

Several studies have reported the clonal expansion of
tumor-infiltrating lymphocytes specific to TAAs, such as
Melan-A, MART-1, and NY-ESO-1, in patients with solid
tumors [30-32] and WT1-specific CD8" T cells in the PB
and BM of patients with AML [19, 33]. However, no reports
of clonal expansion of TAA-specific CD8* T cells in the PB
of patients with solid tumors before tumor antigen-target-
ing immunotherapy administration have been documented.
CD8* T cells recognize TAAs presented by antigen-present-
ing cells, such as dendritic cells in the LNs, and infiltrate the
tumor site via the peripheral bloodstream. Since circulating
CD8* T cells serve as a source of tumor-infiltrating CD8* T
cells, exhaustion of circulating CD8* T cells is a key factor
in determining the cytotoxicity of tumor-infiltrating CD8"
T cells. Oliveira et al. demonstrated that the same clones
as those in circulating CD8* T cells could be detected in
tumor-infiltrating CD8™ T cells and that the exhaustion state
of the clones may be an indicator of the patient’s disease
status and responsiveness to immune checkpoint block-
ade [34]. Therefore, we evaluated the exhaustion state of
WT1,,e-specific CD8" T cells from PT4 cells, which con-
tained abundant samples for further analysis. The frequen-
cies of exhausted PD-1* LAG-3" and PD-1* Tim3™* T cells
were 0.0% and 0.2%, respectively, which were comparable
to those in healthy donors (Fig. 2d). These results indicate
that the clonally expanded WT1 ,¢-specific CD8" T cells
in the PB of the patient were not exhausted and that they
could be activated through subsequent WT1 peptide vac-
cination, leading to tumor reduction. Therefore, phenotypic
analysis of clonally expanded WT1-specific CD8" T cells
may be useful for predicting the clinical effect of the WT1
peptide vaccine. However, due to the limited sample size in
our study, no definitive answer exists, and further research
is required to address this issue.

In conclusion, this is the first demonstration of spontane-
ous clonal expansion of WT1-specific CTLs in circulating
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«Fig.3 T-cell repertoire clonality of WTI,,s-specific CTLs (a)
Schema of the concept of TCR repertoire clonality. In cases where
only one WT1-CTL clone occupies the whole, the clonality is calcu-
lated to be infinitely close to 1.000 (0.9999) but not 1.0. A clonal-
ity of 0.000 indicates no clonal expansion. Clonality 0.500 includes
various types of clonal expansion. The clonalities of WT1,¢-specific
CTLs are shown in PTs (b) and HVs (c). Individual clones are
shown in different colors. Sequences with clonally expanded clones
in each donor are shown in the same color except light gray. Light
gray indicates CTLs with unique amino acid residues, that is, unex-
panded CTL clones. (d) Graphical representation of the clonality of
WT1,,4-specific CTLs in PTs (n=7) and HVs (n=5). Bars indicate
the median value of the clonality. Differences in clonality between
PTs and HVs were significant (*P <0.05). P-values were obtained
using the Mann—Whitney U test. WT1; Wilms’ tumor protein 1;
CTLs, cytotoxic T-lymphocytes. PTs, patients with WT1-expressing
tumor; HVs, healthy volunteers; TCR, T-cell receptors
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Fig.4 Correlation between the subtype of WT1,,4-specific CTLs and
clonality Correlation between the subtype of WT1,,¢-specific CTLs
and clonality is shown for PTs (n=7) (a) and HVs (n=5) (b). Small
numbers represent patient numbers. Red circles represent the top
three PTs in terms of clonality, and blue circles represent the remain-
ing PTs. R? denotes Pearson’s correlation. P values were obtained

0 510152025
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T cells in patients with solid tumors. These results suggest
that the WT1 protein in tumor cells is highly immunogenic,
thereby stimulating endogenous naive-type WT1,,,-CTLs
and enabling them to clonally expand and differentiate
into effector-type WT1,,,-CTLs. The presence of clonally
expanded WT1,4-specific CTLs with advanced differentia-
tion stages in the PB of solid tumor patients prior to WT1
peptide vaccine therapy suggests that these CTLs may rap-
idly trigger tumor attack after WT1 peptide vaccine admin-
istration. Although our study cannot draw definitive conclu-
sions due to the limited number of samples, further analysis
of a larger number of samples may provide us with not only
proof-of-concept for ongoing WT1 peptide vaccine clini-
cal trials, but also a basis for predicting therapeutic efficacy
before initiating WT1 peptide vaccine therapy.
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using two-sided t tests. WT1; Wilms’ tumor protein 1; CTLs, cyto-
toxic T-lymphocytes. PTs, patients with WTI-expressing tumor;
HVs, healthy volunteers; N, naive (CD45RA* CCR7%); CM, central
memory (CD45RA™ CCR7%); EM, effector memory (CD45RA™
CCR77); E, effector (CD45RAY CCR7.7)
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