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Abstract
Wilms’ tumor protein 1 (WT1)-targeted immunotherapy has been used in patients with leukemia and solid tumors. However, 
the spontaneous WT1-specific immune response before WT1 peptide vaccination in patients with WT1-expressing tumors 
(PTs) remains unclear. Therefore, we investigated whether WT1-specific cytotoxic  CD8+ T-lymphocytes (CTLs) are clonally 
expanded in the peripheral blood outside of tumor sites. Clonal expansion of  WT1126 peptide (a.a.126–134)-specific CTLs 
 (WT1126-CTLs) was compared between seven PTs and five healthy volunteers (HVs), and their T-cell receptors (TCRs) 
were analyzed at the single-cell level. Overall, 433 and 351 TCR β-chains of  WT1126-CTLs were detected from PTs and 
HVs, respectively, and complementarity-determining region 3 was sequenced for clonality analysis. The frequencies of 
 WT1126-CTLs were higher in human leukocyte antigen (HLA)-A*02:01+ PTs than in HLA-A*02:01+ HVs, although the 
difference was not statistically significant.  WT1126-CTLs of differentiated types, including memory and effector, were higher 
in PTs than in HVs; whereas, those of the naïve type were higher in HVs than in PTs.  WT1126-CTL clonality was significantly 
higher in PTs than in HVs. Furthermore, the frequency of effector  WT1126-CTLs positively correlated with  WT1126-CTL 
clonality in PTs; whereas, the frequency of naïve phenotype  WT1126-CTLs tended to be negatively correlated with clonality. 
In conclusion, these results suggest that the WT1 protein in tumor cells is highly immunogenic, thereby stimulating endog-
enous naïve-type  WT1126-CTLs and enabling them to clonally expand and differentiate into effector-type  WT1126-CTLs.
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Abbreviations
APC  Allophycocyanin
CTLs  Cytotoxic  CD8+ T-lymphocytes
Cy7  Cyanine7
FITC  Fluorescein isothiocyanate
HLA  Human leukocyte antigen
HVs  Healthy volunteers
PTs  Patients with WT1-expressing tumors
PE  Phycoerythrin
PerCP  Peridinin-chlorophyll protein complex
TCR   T-cell receptor
WT1  Wilms’ tumor protein 1

Introduction

Tumor-associated antigen (TAA)-specific cytotoxic T-lym-
phocytes (CTLs) are the main effectors of immunological 
attack on tumor cells. To date, several investigations have 
been performed to analyze tumor-infiltrating lymphocytes in 
patients with solid tumors. Some of these studies have shown 
T-cell receptor (TCR) sequence-based clonal expansion of 
TAA-specific CTLs at tumor sites, indicating that TAA-
specific CTLs, which are activated and expanded, accumu-
late at tumor sites. Comparative evaluation of spontaneous 
clonal proliferation of TAA-specific CTLs in peripheral 
blood (PB), a non-tumor site in patients with various types 
of solid tumors, and clonal proliferation of TAA-specific 
CTLs in healthy human PB will hopefully provide us with 
important insights into understanding anti-tumor immunity.
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Wilms’ tumor gene 1 (WT1) is expressed in various 
types of solid tumors [1, 2] and hematological malignan-
cies [3] and plays important roles in oncogenesis [4]. In 
carcinogenesis, WT1 is considered to have a potential 
oncogenic role by promoting cell proliferation [5–7] and 
motility [8], while inhibiting apoptosis [9] through its 
overexpression. Consequently, WT1 has been identified 
as one of a potential target antigen for cancer immuno-
therapy, and had previously been selected as the most 
promising one of the 75 TAAs [10]. We previously identi-
fied WT1-CTL epitopes and  WT1126 and modified  WT1235 
(a.a. 235–243) peptides that can induce CTLs with kill-
ing activity against WT1-expressing tumors by restrict-
ing human leukocyte antigen (HLA)-A*02:01 and HLA-
A*24:02, respectively [11, 12]. These HLA class I types 
are frequently found in humans, and both our research and 
that of others have reported a series of successful clinical 
studies using these WT1 peptide-based vaccine therapies 
for patients with solid tumors [13–15] and hematological 
malignancies [15–17].

Compared to the lack of reports showing clonality of 
TAA-specific CTLs in the PB of patients with solid tumors, 
as mentioned above, several investigations, including ours, 
have reported clonality of WT1-specific CTLs in the PB or 
bone marrow (BM) of patients with acute myeloid leukemia 
(AML), in which PB and BM are the areas where abundant 
leukemic cells exist, that is, tumor sites [18–20]. Therefore, 
this study aimed to investigate whether WT1-specific CTLs 
are clonally expanded in the PB outside the tumor site of 
patients to comprehensively understand the nature of the 
anti-cancer immune response in patients with solid cancer. 
If the clonal expansion of WT1-specific CTLs in the PB 
of patients is demonstrated, the clonal expansion of CTLs 
may also exist in tumor-draining lymph nodes (LNs) that are 
non-tumor sites, such as the PB. The expectation of WT1 
peptide vaccine therapy is to artificially induce and activate 
WT1-specific CTLs through the migration of dendritic cells 
carrying intradermally administered WT1 peptides from the 
skin to LNs, and antigen presentation to WT1-specific CTLs 
in LNs. If WT1-specific CTLs with advanced differentiation 
are already present in the PB of patients with solid tumors 
prior to treatment and are proliferating clonally, adminis-
tration of the WT1 peptide vaccine is expected to rapidly 
activate these CTLs and further promote clonal prolifera-
tion. The existence of long-term viable WT1-specific  CD8+ 
T cells is important for the long-term anti-tumor effect. 
However, the pre-existence of WT1-specific effector  CD8+ 
T cells that can rapidly attack tumors after the start of WT1 
peptide vaccine therapy is an important factor for the suc-
cess of this therapy. For this reason, we believe that proof of 
clonal expansion prior to WT1 peptide vaccination in the PB 
of patients with solid tumors will strengthen the expectation 
of WT1 peptide vaccine therapy in these patients.

Materials and methods

Samples

Peripheral blood mononuclear cells (PBMCs) were iso-
lated from heparinized blood samples obtained from seven 
HLA-A*02:01 patients with solid tumors and five HLA-
A*02:01 healthy volunteers (HVs) prior to the WT1-235 
peptide vaccination by using Ficoll–Hypaque gradient cen-
trifugation in Lymphocyte Separation Solution (Nacalai 
Tesque, Inc., Kyoto, Japan) and cryopreserved in liquid 
or gas-phase nitrogen until use. Tumor cells of patients 
were analyzed for WT1 protein expression using immu-
nohistochemical analysis, as previously described [21]. 
Patients were enrolled in the University Hospital Medi-
cal Information Network (UMIN) Clinical Trials (UMIN 
number: UMIN000002001) on May 24, 2009. This obser-
vational study was carried out by using the patients' sam-
ples approved by the Institutional Review Board for Clini-
cal Research of Osaka University Hospital on June 15, 
2012 (IRB number: 11293). Written informed consent was 
obtained from all patients and HVs. All mandatory labo-
ratory health and safety procedures were complied with 
during the study. Tumor response was defined based on 
the investigator's assessment according to the Response 
Evaluation Criteria for Solid Tumors.

WT1‑tetramer, antibodies, and flow cytometry

The PE-labeled HLA-A*02:01  WT1126-134 (RMFP-
NAPYL) tetramer  (WT1126 tetramer) was purchased from 
MBL Co., Ltd. (Nagoya, Japan).  WT1126-specific CTLs 
were detected using the  WT1126 tetramer and other mono-
clonal antibodies (mAbs) as previously described [22]. 
Briefly, thawed PBMCs were rested for 1.5 h and stained 
with  WT1126 tetramer at 37 °C for 30 min. Subsequently, 
these PBMCs were stained with anti-human mAbs at 4 °C 
for 25 min. The following mAbs were used: anti-CD4-
FITC, anti-CD16-FITC, and anti-CD45RA-APC (BioLe-
gend, San Diego, CA, USA); anti-CD19-FITC and anti-
CCR7-PE-Cy7 (BD Pharmingen, San Diego, CA, USA); 
anti-CD3-PerCP, anti-CD8-APC-Cy7, and anti-CD14-
FITC (BD Biosciences, San Jose, CA, USA); and anti-
CD56-FITC (eBioscience, San Diego, CA, USA). After 
staining,  WT1126-specific CTLs were directly sorted into 
polymerase chain reaction tubes containing a cDNA reac-
tion-mix solution using a FACSAria (BD Biosciences). 
 WT1126-specific CTLs were stained with anti-PD-1-PE-
Cy7 (EH12.2H7; BioLegend, San Diego, CA, USA), 
anti-LAG-3-APC (3DS223H; San Diego, CA, USA), 
and anti-Tim-3-APC (F38-2E2; San Diego, CA, USA) 
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antibodies to detect the expression of exhaustion markers 
in  WT1126-specific CTLs. Anti-mouse IgG1, κ-PE-Cy7 
(BioLegend), and -APC (TONBO Biosciences) (MOPC-
21; San Diego, CA, USA) were used as isotype controls. 
Data were analyzed using FlowJo 7.6.5 and 10.9.0 soft-
ware (FlowJo LLC, Ashland, OR, USA).

Single‑cell sorted TCR repertoire analysis

cDNA was synthesized from single-cell sorted WT1-spe-
cific CTLs, as previously described [22]. Complementarity-
determining region 3 (CDR3) amino acid sequences of TCR 
β-chains in individually sorted single-cell CTLs were ana-
lyzed using IMGT/V-QUEST (https:// www. imgt. org/ IMGT_ 
vquest/ input).

TCR repertoire clonality

Clonality (C) was normalized by entropy (E), which was 
calculated using Shannon’s definition, as follows [23]:

where fi represents the ratio occupied by each clone in all 
analyzed cells, and N represents the total number of clones.

Statistical analysis

The Mann–Whitney U test was used to evaluate the differ-
ences in the frequency of  WT1126-specific CTLs and clon-
ality between patients with WT1-expressing tumors (PTs) 
and HVs. A two-way ANOVA followed by Sidak’s multiple 
comparison test was used to evaluate the phenotypic dif-
ferences in  WT1126-specific CTLs between PTs and HVs. 
Pearson’s correlation was used to calculate the significance 
of the correlations between the phenotypes and clonality 
of  WT1126-specific CTLs. All statistical analyses were per-
formed using GraphPad Prism versions 7 and 10 (GraphPad 
Software Inc., La Jolla, CA, USA). P- values < 0.05 were 
considered significant in all analyses.

Results

Frequencies of  WT1126‑specific CTLs in PB

The characteristics of seven cancer PTs and five HVs are 
shown in Table 1 [22]. The median age of PTs and HVs 

E = −

N
∑

i=1

fi log2fi

C = 1 −
E

log2(N)

were 53 years (range 18–73 years) and 25 years (range 
23–45 years), respectively. All PTs underwent surgery, and 
the timing of PBMCs collection is indicated by the period 
following prior treatment. We defined  WT1126-specific 
CTLs as  CD3+,  CD8+,  WT1126  tetramer+, and lineage 
marker (CD4, CD14, CD16, CD19, and CD56)-negative 
cells (abbreviated as  WT1126-CTLs) (Fig. 1a). Because the 
frequencies of  WT1126-CTLs in PB are generally as low 
as 1/10,000 to 1/1,000 of those in  CD8+ T cells, we per-
formed fluorescence-activated cell-sorting in at least one 
million PBMCs to accurately measure the frequencies and 
obtain  WT1126-CTLs sufficient to analyze their TCR β-chain 
variable repertoires. The frequencies of  WT1126-CTLs 
were 0.007–0.122% (median: 0.026%) and 0.009–0.079% 
(median: 0.016%) in PTs and HVs, respectively, without 
statistically significant difference (Fig. 1b) [22].

Differences in the phenotypes of  WT1126‑specific 
CTLs between PTs and HVs

We examined the phenotypes of the  WT1126-specific CTLs 
[22].  WT1126-specific CTLs were categorized into four 
distinct subtypes, corresponding to the four differentiation 
stages, based on the cell surface expression of CD45RA 
and CCR7: (i) naïve cells,  CD45RA+  CCR7+; (ii) cen-
tral memory,  CD45RA−  CCR7+; (iii) effector memory, 
 CD45RA−  CCR7−; and (iv) effector,  CD45RA+  CCR7−. 
Most of the  WT1126-specific CTLs in all seven PTs exhib-
ited higher percentages of effector memory (36.6–50.0%, 
median: 40.0%) and effector (11.4–85.7%, median: 27.4%) 
phenotypes (Fig. 2a). Notably,  WT1126-specific CTLs of 
86.0%, 94.4%, and 92.8% in PTs 1, 4, and 7, respectively, 
showed extremely differentiated phenotypes (effector mem-
ory and effector). However, most of the  WT1126-specific 
CTLs in all five HVs predominantly exhibited a naïve phe-
notype (36.7–63.4%, median: 58.1%) (Fig. 2b). Significant 
differences were found in the proportions of CTLs with 
naïve (P = 0.0008) and effector phenotypes (P = 0.0336) 
between PTs and HVs (Fig. 2c). Cell surface expression of 
exhausted markers in  WT1126-specific CTLs was assessed 
using specimens for which abundant numbers of samples 
had been stored. The frequencies of exhausted PD-1+ 
LAG-3+ and PD-1+ Tim-3+ T cells in PT4 were 0.0% and 
0.2%, respectively, which were comparable to those in HVs 
(Fig. 2d). Conversely, the frequency of PD-1 single positive 
in PT4 was higher than that of HV1 and HV3.

Oligoclonal expansion of  WT1126‑CTLs

We examined the TCR repertoire of  WT1126-CTLs by 
sequencing the CDR3 regions of TCR β-chains of the indi-
vidual single-cell sorted CTLs to investigate the difference 
in the diversity of  WT1126-CTLs between PTs and HVs. 

https://www.imgt.org/IMGT_vquest/input
https://www.imgt.org/IMGT_vquest/input
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A total of 59, 66, 46, 66, 88, 73, and 35 CDR3 sequences 
were obtained from PTs 1, 2, 3, 4, 5, 6 and 7, respectively, 
and 53, 57, 77, 79, and 85 CDR3 sequences from HVs 
1, 2, 3, 4 and 5, respectively (Table 1). The CDR3 usage 
frequency was considered to be accurately determined 
since the amplification efficiency of the CDR3 sequences 
was > 80%. Figure 3a schematically shows the concept of 
TCR repertoire clonality (abbreviated as clonality). In the 
case where the WT1-CTLs were occupied by only one 
clone, the clonality was calculated to be infinitely close 
to 1.000 (0.9999) but not 1.0; whereas, clonality 0 meant 
that no clones were present. Figures 3b and 3c show the 
usage frequencies of CDR3 sequences of TCR β-chains 
of the  WT1126-CTLs and the clonality in PTs and in HVs, 
respectively. TCR β-chains detected more than twice in 
each sample were considered expanded clones (ECs). PTs 
not only had more types of ECs than HVs, but in some 
cases, such as PT1 and PT7, a single EC accounted for a 
high percentage. Figure 3d graphically shows the clonality 
of PTs and HVs. Clonality was significantly higher in PTs 
than in HVs (P < 0.05).

Clear correlation between effector phenotype 
and clonality of  WT1126‑specific CTLs in PTs

We evaluated the correlation between the phenotype 
and clonality of  WT1126-specific CTLs in PTs and HVs 
(Fig.  4). The frequency of the effector phenotype of 
 WT1126-specific CTLs positively correlated with the 
clonality of  WT1126-specific CTLs in PTs (P = 0.0110, 
 R2 = 0.7557); whereas, the frequency of the naïve pheno-
type of  WT1126-specific CTLs in PTs tended to be nega-
tively correlated with the clonality of  WT1126-specific 
CTLs (P = 0.0943,  R2 = 0.4593) (Fig. 4a). However, the 
frequencies of the central memory and effector memory 
phenotypes did not correlate with clonality, and no cor-
relation was found between the phenotype and clonality 
of  WT1126-specific CTLs in HVs (Fig. 4b). Therefore, 
these results indicate that  WT1126-specific CTLs prolifer-
ated in the immune response against the WT1 antigen of 
tumor cells in PTs, may differentiate from naïve to termi-
nal effector phenotypes, and may clonally expand during 
this cell differentiation in association with the continuous 

Fig. 1  Frequency of 
 WT1126-specific CTLs in  CD8+ 
T cells. a  WT1126-specific CTLs 
were defined by flow cytom-
etry as  CD3+,  CD8+,  WT1126 
 tetramer+, and lineage markers 
(CD4, CD14, CD16, CD19, 
and CD56)-negative cells. b 
Frequencies of  WT1126-specific 
CTLs in  CD8+ T cells. Bars 
indicate the median values of 
the frequencies. No significant 
difference was found in the fre-
quencies. WT1; Wilms’ tumor 
protein 1; CTLs, cytotoxic 
T-lymphocytes; PTs, patients 
with WT1-expressing tumor; 
HVs, healthy volunteers; ns, not 
significant
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proliferation of  WT1126-specific CTLs, leading to higher 
clonality of  WT1126-specific CTLs.

Discussion

This study demonstrated for the first time that the clonality 
of  WT1126-specific CTLs was significantly higher in PTs 
than in HVs, although the frequency of  WT1126-specific 

CTLs did not differ significantly between the groups. Most 
of the  WT1126-specific CTLs in all seven PTs exhibited 
effector memory and effector phenotypes; whereas, most of 
the  WT1126-specific CTLs in all five HVs exhibited naïve 
phenotypes. The frequency of the effector phenotype of 
 WT1126-specific CTLs in PTs positively correlated with CTL 
clonality, whereas that of the naïve phenotype of CTLs nega-
tively correlated with clonality. No correlation was found 
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Fig. 2  Phenotypes of  WT1126-specific CTLs Phenotypes of 
 WT1126-specific CTLs in seven PTs (a) and five HVs (b). 
 WT1126-specific CTLs were classified into four distinct subtypes 
based on the four differentiation stages according to the cell sur-
face expression of CD45RA and CCR7 as follows: (i) naïve cells, 
 CD45RA+  CCR7+; (ii) central memory,  CD45RA−  CCR7+; (iii) 
effector memory,  CD45RA−  CCR7−; and (iv) effector,  CD45RA+ 
 CCR7−. c Subtype frequency in  WT1126-specific CTLs. Box plots 

represent median ± 25th percentile, with whiskers representing min/
max values. Red boxplots: PTs; blue boxplots: HVs. P-values were 
obtained using a two-way ANOVA followed by Sidak’s multiple 
comparison test. d The exhaustion state of  WT1126-specific CTLs 
in PT4, HV1, and HV3. *P < 0.05, ***P < 0.001. ns, not significant. 
WT1, Wilms’ tumor protein 1; CTLs, cytotoxic T-lymphocytes; PTs, 
patients with WT1-expressing tumor; HVs, healthy volunteers; N/A, 
not assessable (less than 10 cells)
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between the phenotype and clonality of  WT1126-specific 
CTLs in HVs.

In mouse models, the clonal expansion of T cells induced 
by strong TCR signals, including the foreign antigen OVA 
peptide, has been reported to exhibit differentiated phe-
notypes, such as effector memory and effectors [24, 25]. 
However, there have been no reports of spontaneous and 
clonal proliferation of CTLs specific for overexpressed pro-
tein antigens such as WT1 in the PB of solid tumor patients. 
All patients underwent surgery, chemotherapy, and/or radio-
therapy before PBMC samples were collected. Therefore, a 
large amount of WT1 antigen was likely released from col-
lapsed WT1-expressing tumor cells during these treatments, 
which endogenously induced WT1-specific CTLs, followed 
by clonal expansion in association with cell proliferation and 
differentiation from naïve to memory phenotypes. The early 
administration of the WT1 peptide vaccine after tumor col-
lapse is expected to cause rapid clonal expansion of WT1-
specific CTLs, which can attack WT1-expressing tumors 
and lead to a favorable clinical response. Moreover, PTs 1 
and 7, who received the modified  WT1235 peptide vaccine 
relatively early (5–7 weeks after pretreatment) and showed 
high clonality, achieved partial response and stable disease, 
respectively. This suggests epitope spreading due to tumor 
disruption from prior therapy.

Epitope and antigen spreading have been reported to 
be favorable prognostic factors for many cancer immuno-
therapies [26–28]. However, no clear predictors of favorable 
clinical response were found in our study because of the 
small number of patients analyzed. Therefore, we hope to 
increase the number of patients analyzed in the near future 
to identify prognostic factors. In all HVs, a small number of 
 WT1126-specific  CD8+ T cells showed clonality (Fig. 3c). 
This clonality may indicate the existence of a tumor immune 
surveillance system involving WT1-specific  CD8+ T cells. 
Cancer immunoediting is an essential process where the 
immune system suppresses or promotes tumor development 
via the following three processes: elimination, equilibrium, 
and escape [29]. During the elimination process, the innate 
and adaptive immune systems cooperate to suppress tumors. 
Tumor-specific  CD8+ T cells recognize and destroy tumor 

antigen-expressing tumor cells. This immunosurveillance 
system leads to tumor disappearance. In HVs, in whom 
clinically apparent tumors are absent, the tumor elimination 
process may effectively operate and thoroughly eradicate 
newly appearing tumors via tumor-specific  CD8+ T cells.

Several studies have reported the clonal expansion of 
tumor-infiltrating lymphocytes specific to TAAs, such as 
Melan-A, MART-1, and NY-ESO-1, in patients with solid 
tumors [30–32] and WT1-specific  CD8+ T cells in the PB 
and BM of patients with AML [19, 33]. However, no reports 
of clonal expansion of TAA-specific  CD8+ T cells in the PB 
of patients with solid tumors before tumor antigen-target-
ing immunotherapy administration have been documented. 
 CD8+ T cells recognize TAAs presented by antigen-present-
ing cells, such as dendritic cells in the LNs, and infiltrate the 
tumor site via the peripheral bloodstream. Since circulating 
 CD8+ T cells serve as a source of tumor-infiltrating  CD8+ T 
cells, exhaustion of circulating  CD8+ T cells is a key factor 
in determining the cytotoxicity of tumor-infiltrating  CD8+ 
T cells. Oliveira et al. demonstrated that the same clones 
as those in circulating  CD8+ T cells could be detected in 
tumor-infiltrating  CD8+ T cells and that the exhaustion state 
of the clones may be an indicator of the patient’s disease 
status and responsiveness to immune checkpoint block-
ade [34]. Therefore, we evaluated the exhaustion state of 
 WT1126-specific  CD8+ T cells from PT4 cells, which con-
tained abundant samples for further analysis. The frequen-
cies of exhausted PD-1+ LAG-3+ and PD-1+  Tim3+ T cells 
were 0.0% and 0.2%, respectively, which were comparable 
to those in healthy donors (Fig. 2d). These results indicate 
that the clonally expanded  WT1126-specific  CD8+ T cells 
in the PB of the patient were not exhausted and that they 
could be activated through subsequent WT1 peptide vac-
cination, leading to tumor reduction. Therefore, phenotypic 
analysis of clonally expanded WT1-specific  CD8+ T cells 
may be useful for predicting the clinical effect of the WT1 
peptide vaccine. However, due to the limited sample size in 
our study, no definitive answer exists, and further research 
is required to address this issue.

In conclusion, this is the first demonstration of spontane-
ous clonal expansion of WT1-specific CTLs in circulating 
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Fig. 3  T-cell repertoire clonality of  WT1126-specific CTLs (a) 
Schema of the concept of TCR repertoire clonality. In cases where 
only one WT1-CTL clone occupies the whole, the clonality is calcu-
lated to be infinitely close to 1.000 (0.9999) but not 1.0. A clonal-
ity of 0.000 indicates no clonal expansion. Clonality 0.500 includes 
various types of clonal expansion. The clonalities of  WT1126-specific 
CTLs are shown in PTs (b) and HVs (c). Individual clones are 
shown in different colors. Sequences with clonally expanded clones 
in each donor are shown in the same color except light  gray. Light 
gray indicates CTLs with unique amino acid residues, that is, unex-
panded CTL clones. (d) Graphical representation of the clonality of 
 WT1126-specific CTLs in PTs (n = 7) and HVs (n = 5). Bars indicate 
the median value of the clonality. Differences in clonality between 
PTs and HVs were significant (*P < 0.05). P-values were obtained 
using the Mann–Whitney U test. WT1; Wilms’ tumor protein 1; 
CTLs, cytotoxic T-lymphocytes. PTs, patients with WT1-expressing 
tumor; HVs, healthy volunteers; TCR, T-cell receptors
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Fig. 4  Correlation between the subtype of  WT1126-specific CTLs and 
clonality Correlation between the subtype of  WT1126-specific CTLs 
and clonality is shown for PTs (n = 7) (a) and HVs (n = 5) (b). Small 
numbers represent patient numbers. Red circles represent the top 
three PTs in terms of clonality, and blue circles represent the remain-
ing PTs.  R2 denotes Pearson’s correlation. P values were obtained 

using two-sided t tests. WT1; Wilms’ tumor protein 1; CTLs, cyto-
toxic T-lymphocytes. PTs, patients with WT1-expressing tumor; 
HVs, healthy volunteers; N, naïve  (CD45RA+  CCR7+); CM, central 
memory  (CD45RA−  CCR7+); EM, effector memory  (CD45RA− 
 CCR7−); E, effector  (CD45RA+ CCR7.−)

T cells in patients with solid tumors. These results suggest 
that the WT1 protein in tumor cells is highly immunogenic, 
thereby stimulating endogenous naïve-type  WT1126-CTLs 
and enabling them to clonally expand and differentiate 
into effector-type  WT1126-CTLs. The presence of clonally 
expanded  WT1126-specific CTLs with advanced differentia-
tion stages in the PB of solid tumor patients prior to WT1 
peptide vaccine therapy suggests that these CTLs may rap-
idly trigger tumor attack after WT1 peptide vaccine admin-
istration. Although our study cannot draw definitive conclu-
sions due to the limited number of samples, further analysis 
of a larger number of samples may provide us with not only 
proof-of-concept for ongoing WT1 peptide vaccine clini-
cal trials, but also a basis for predicting therapeutic efficacy 
before initiating WT1 peptide vaccine therapy.
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