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Abstract

Purpose Chiari malformation type II (CM-II) is a congenital anomaly commonly associated with myelomeningocele
(MMC), a severe form of open spina dysraphism. This study aimed to evaluate both supratentorial and infratentorial volumes
in MMC infants with and without CM-II.

Methods We conducted a single-center, retrospective study of 52 MMC infants treated between April 2006 and July 2023.
Infants were classified as non-CM-II or CM-II based on the presence of cerebellar displacement. All patients underwent
computed tomography (CT) at 0 months of age. Volumetric parameters included intracranial volume (ICV), lateral ventricles
volume (LVV), posterior cranial fossa volume (PCFV), cerebellum volume (CBMV), and brainstem volume (BSV). LVV
represented supratentorial structures, while PCFV, CBMYV, and BSV represented infratentorial structures.

Results CM-II was diagnosed in 30 infants (57.7%). Correlation analysis revealed significant negative correlations between
supratentorial (LVV) and infratentorial volumes (PCFV, CBMYV, and BSV), and positive correlations among volumes
within the same space(e.g., PCFV, CBMYV, and BSV). CM-II infants exhibited significantly larger ICV (p=0.04) and LVV
(»<0.001), but smaller PCFV (p<0.001) and CBMV (p <0.001) than non-CM-II infants. LVV was the best predictor for
distinguishing non-CM-II from CM-II (area under the curve=0.91).

Conclusion This study identified positive correlations within the same space and negative correlations between supratento-
rial and infratentorial volumes. LVV emerged as a critical indicator of CM-II, reflecting the relationship between reduced
infratentorial space and enlarged supratentorial ventricles (hydrocephalus). These findings provide insights into the patho-
physiology and clinical implications of CM-II in MMC patients.
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T2WI T2-weighted image
VPS Ventriculoperitoneal shunt
Introduction

Myelomeningocele (MMC) is the most severe form of open
spina dysraphism [1], accounting for 98.8% of open spina
dysraphism cases [2]. Open spina dysraphism is character-
ized by the exposure of neural tissue and/or meninges to the
external environment through a congenital bony defect [2].
Chiari malformation type II (CM-II) is a congenital anomaly
closely associated with MMC [3, 4], characterized by the
downward displacement of the cerebellar vermis, tonsils,
and medulla through the foramen magnum into the upper
cervical spinal canal [5, 6]. For the objective assessment of
CM-II using magnetic resonance imaging (MRI), previous
studies have proposed grading systems that evaluate the
visibility of the fourth ventricle or cisterna magna and the
presence or absence of cerebellar displacement below the
foramen magnum [7-9].

Previous studies have reported CM-II in nearly all MMC
cases [5, 10, 11], with symptomatic CM-II occurring in
10-30% of these patients [12, 13]. The most common symp-
tom is swallowing dysfunction [6]. Infants and children
under two years of age often present with cranial nerve and
brainstem signs, with respiratory difficulties being poten-
tially fatal [14]. The rate of CM-II decompression surgeries
ranges from 9 to 19% [12, 15].

In fetuses with MMC, cerebrospinal fluid (CSF) leakage
into the sac or amniotic fluid is thought to lead to hindbrain
herniation, known as CM-II [16]. This herniation is thought
to induce hydrocephalus through increased resistance to
cerebral venous outflow or abnormalities in CSF absorp-
tion or flow [17-20]. Therefore, it can be stated that a small
posterior cranial fossa, accompanied by hindbrain hernia-
tion, is a consequence of MMC, while hydrocephalus is a
consequence of the small posterior cranial fossa. In MMC
cases, a small posterior cranial fossa and hydrocephalus are
observed in 84% [21] and 85-90% of cases, respectively
[5]. Hydrocephalus is frequently associated with symptom-
atic CM-II [22]. These results suggest a close relationship
between infratentorial structural malformations (such as a
small posterior cranial fossa) and supratentorial structural
malformations (such as enlarged supratentorial ventricles).

Despite suggesting a close relationship between infraten-
torial and supratentorial malformations, previous stud-
ies have focused only on the area (mm?) [23] or volume
(mm®) [24, 25] of the posterior cranial fossa in CM-II
patients. They did not provide quantitative data on supra-
tentorial structures. This study aims to provide a compre-
hensive volumetric assessment of both supratentorial and
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infratentorial structures in MMC infants. Additionally, we
classified MMC infants with cerebellar displacement as
CM-II and those without as non-CM-II, aiming to demon-
strate volumetric differences between the two groups. We
analyzed head computed tomography (CT) images from
MMC infants who underwent postnatal repair surgery.
To minimize the growth effects, we used only CT images
obtained at 0 months of age.

Materials and methods
Patients and study setting

This retrospective study included patients with MMC treated
at our department between April 2006 and July 2023. All
patients underwent head and spinal CT imaging after birth
and received postnatal repair surgery at our department.
The first head CT, obtained at 0 months of age, was used
for intracranial volumetric evaluation. CT scans were per-
formed using Canon Aquilion until 2011, and Canon Aqui-
lion One (Canon Medical Systems, Otawara, Japan) from
2012 onwards. Five different CT protocols were employed,
as detailed in Supplemental Table 1.

Based on previous studies [7-9], we defined four grades
as follows: grade 0, normal; grade 1, visible fourth ventricle
and cisterna magna without cerebellar displacement below
the foramen magnum, with the possible vertical orientation
of the tentorium and the presence of tectal beaking; grade 2,
cerebellar displacement with effacement of the fourth ven-
tricle but a patent cisterna magna; and grade 3, cerebellar
displacement with effacement of both the cisterna magna
and the fourth ventricle. In this study, grades 0 and 1 were
classified as non-CM-II, while grades 2 and 3 were classi-
fied as CM-II, primarily based on the presence of cerebellar
displacement (Fig. 1).

Radiologists at our hospital determined the presence of
cerebellar displacement in MMC infants based on the first
head CT. If cerebellar displacement was unclear on the CT,
a head MRI obtained at 0 months was used to support the
diagnosis.

Data collection

We analyzed medical variables, including sex, gestational
week, birth weight, fetal diagnosis, cesarean section, days
until CT imaging, days until MMC repair, and the necessity
for a ventriculoperitoneal shunt (VPS). The necessity for a
VPS was determined by neurosurgeons at our department
based on a tense fontanelle or increasing head circumfer-
ence [26]. MMC lesions were categorized into four types
based on the involved vertebrae: thoracic (involving at least
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Head CT

Fig. 1 Representative CT and MRI images from non-CM-II or CM-II
infants. For a non-CM-II infant, sagittal midline views of head CT
(obtained on day 0 after birth) (a), head TIWI MRI (day 4) (b), and
lumbar T2WI MRI (day 0) (¢) are shown. No cerebellar displacement
is observed. The MMC lesion extends from S3 to S5, classified as a
sacral type. For a CM-II infant, sagittal midline views of CT (day 0)
(d), head TIWI MRI (day 7) (e), and lumbar T2WI MRI (day 0) (f) are
presented. Cerebellar displacement through the foramen magnum is

one thoracic vertebra), upper lumbar (1st and 3rd lumbar
vertebrae), lower lumbar (mainly among 3rd and 5th lum-
bar vertebrae), and sacral (localized to sacral vertebra). A
lumbosacral type, where the lesion ranges from the lower
lumbar to sacral vertebrae (e.g., from the fifth lumbar to
the third sacral vertebrae), was categorized as lower lum-
bar (Fig. 1). A lumbar MRI or CT performed before closure
surgery was used to assess the number of vertebrae affected
by MMC lesions and the presence of lumbar syringomyelia.
The surface longitudinal length of the MMC sacs was mea-
sured using a lumbar MRI at 0 months. MMC lesions were
defined as neural placode or impairment of epithelialization.

Volumetric evaluation

We defined five parameters for the quantitative assessment
of intracranial structures: intracranial volume (ICV), lateral
ventricles volume (LVV), posterior cranial fossa volume
(PCFV), cerebellum volume (CBMYV), and brainstem vol-
ume (BSV). LVV represented the volume of the bilateral

Head T1WI MRI

C Lumbar T2WI MRI

observed on both head CT and MRI (indicated by red arrowheads). The
MMC lesion extends from L4 to S3, classified as a lower lumbar type.
The areas indicated by blue arrows in the lumbar T2WI MRI images (¢
and f) show gauzes protecting the MMC lesions. CM-II, Chiari malfor-
mation type II; CT, computed tomography; MMC, myelomeningocele;
MRI, magnetic resonance imaging; T1WI, T1-weighted image; T2WI,
T2-weighted image

ventricles, and BSV included the medulla oblongata and the
pons. Head CT data in Digital Imaging and Communication
in Medicine (DICOM) format were imported into MATLAB
R2023a (MathWorks, Natick, MA, USA). The target areas
were manually segmented using the image segmenter app
in MATLAB. Representative segmentation of ICV, LVV,
PCFV, CBMYV, and BSV are shown in Fig. 2. We counted
the total number of pixels within segmentations, and to
obtain volume values (in milliliter, mL), the total number
of pixels was multiplied by the volume of one pixel. This
method aligns with our previous studies [27-31].

Since we used head CT scans obtained at 0 months, it
was difficult to differentiate between the cervical spine cord
and herniate cerebellum (Supplemental Fig. 1). Therefore,
any brain tissue herniating into the spinal canal through the
foramen magnum was excluded from segmentation. It is
important to note that this study measured structural vol-
umes only within enclosed spaces, such as the intracranial
cavity.

@ Springer
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Fig. 2 Representative segmentations. Original head CT a b
images and segmentations of intracranial volume (ICV), 1oV
lateral ventricles volume (LVV), posterior cranial fossa (N ’ oL
volume (PCFV), cerebellum volume (CBMV), and @ @ PCFV
brainstem volume (BSV) are shown. Representative o 7] '. @ CBMV
CT images and their corresponding segmentations are E G ® Bsv
presented (a and b). All CT images and segmentations © é
are displayed (¢, d, e, f, g, and h). The CT images and %, 3
segmentations are from a CM-II infant, the same infant 6—
presented in Fig. 1d and e, and 1f. The calculated vol- v N ‘ 6
umes for each segmentation are presented in the bottom
right corner of each panel. CM-II, Chiari malformation
type II; CT, computed tomography
Y Original Images d ICV Segments
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e 00
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Statistical analyses

Categorical data were presented as frequencies (per-
centages), and continuous variables were expressed as
mean +standard deviation for normally distributed vari-
ables and as median with 1st-3rd quartiles for non-normally
distributed variables. Spearman correlation coefficients
were used to assess parameter correlations, and the chi-
squared test was used to compare categorical variables.
The unpaired T-test was employed for parametric distri-
butions, and the Wilcoxon rank-sum test was utilized for

@ Springer

non-parametric distributions. Bonferroni correction was
applied for multiple comparisons. P-values <0.05 and cor-
rected p-values (cp.)<0.05 were considered statistically
significant. The receiver operating characteristic (ROC)
curve was used to classify two groups, determining the area
under the curve (AUC) and cut-off values (COV) using the
maximal Youden index (sensitivity + specificity— 1). Statis-
tical analyses were performed using MATLAB R2023a’s
Statistical and Machine Learning Toolbox.
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Results
Baseline characteristics

We enrolled 52 Japanese infants with MMC (27 females,
51.9%) (Table 1), with a median follow-up of 8.11 years
(3.95-11.66) as of September 30, 2023. The most common
type of MMC was sacral (51.9%). The mean surface lon-
gitudinal length of the MMC sacs was 41.23 + 18.66 mm.
Closure surgeries were performed one day after birth
(median 1.00 days). Lumbar syringomyelia was observed

in 38.5% of cases, and 71.2% of infants required VPS.
This population is the same as in our previous study [31].

Infants with MMC were born at an average of 38.10
gestational weeks (with one data point missing, Table 1).
Forty-three infants (82.7%) were born at term (37 weeks
0 days through 41 weeks 6 days), while two infants were
born at 35 gestational weeks and six infants at 36 gesta-
tional weeks. The first CT scans after birth, used for volu-
metric calculations, were performed on day 0 (median:
0.00 days). Of these, 47 scans (90.4%) were obtained
before closure surgery, while five were performed after

Table 1 Baseline data of enrolled infants with MMC and comparison between MMC without CM-II and with CM-II, and between CM-II without
operation and with operation

Total non-CM-II CM-II p values non-Operation Operation p
(n=52) (n=22) (n=30) with CM-II with CM-II values
(n=26) (n=4)

Sex (n)
Male (%) 25 (48.1) 11 (50.0) 14 (46.7) 0.81 14 (53.8) 0(0.0) *0.04
Female (%) 27 (51.9) 11 (50.0) 16 (53.3) 12 (46.2) 4 (100.0)
Gestational week *1 38.10+1.50 38.52+1.63 37.80+1.3 0.09 37.96+1.28 36.75+1.50 0.09
Weight at birth (g) 2870.46+547.15  2932.18+437.72 2825.20+618.65 0.49 2867.00+578.68 2553.50+891.98 0.35
Fetal diagnosis (n)
Yes (%) 37(71.2) 11 (50.0) 26 (86.7) *0.004 23 (88.5) 3(75.0) 0.46
No (%) 15 (28.8) 11 (50.0) 4(13.3) 3(11.5) 1(25.0)
Caesarean sec-
tion*2 (n)
Yes (%) 24 (50.0) 7 (35.0) 17 (60.7) 0.08 15 (62.5) 2 (50.0) 0.64
No (%) 24 (50.0) 13 (65.0) 11 (39.3) 9(37.5) 2 (50.0)
Days of life at the 0.00 (0.00-1.00) 0.50 (0.00-1.00)  0.00 (0.00-1.00) 0.40 0.00 (0.00-1.00)  0.50 (0.00-1.00) 0.75
initial CT
Days of life at 1.00 (0.50-2.00) 1.00 (0.00-2.00)  1.00 (1.00-2.00) 0.55 1.00 (1.00-2.00)  1.50 (0.50-2.50) 0.63
MMC repair
Days from the CT  1.00 (0.00-1.00) 0.00 (0.00-1.00) 1.00 (0.00-1.00) 0.13 1.00 (0.00-1.00)  1.00 (0.00-2.00) 0.76
to MMC repair
MMC lesion type
(n)

Thoracic type (%) 12 (23.1) 1(4.5) 11 (36.7) *<0.001 9 (34.6) 2 (50.0) 0.50

Upper lumbar type 3 (5.8) 0(0.0) 3 (10.0) 3 (11.5) 0(0.0)
(%)

Lower lumbar 10 (19.2) 1(4.5) 9 (30.0) 7(26.9) 2 (50.0)
type (%)

Sacral type (%) 27 (51.9) 20 (90.9) 7(23.3) 7 (26.9) 0(0.0)
MMC lesion verte- 3.50 (3.00-5.50) 3.00 (2.00-3.00)  5.00 (3.00-8.00) *<0.001 5.00 (3.00-8.00)  5.00 (3.00-7.00) 0.78
brae count
Syringomyelia (n)
Yes (%) 20 (38.5) 7(31.8) 13 (43.3) 0.40 12 (46.2) 1(25.0) 0.43
No (%) 32 (61.5) 15 (68.2) 17 (56.7) 14 (53.8) 3(75.0)
Necessity of VPS (n)
Yes (%) 37 (71.2) 8(36.4) 29 (96.7) *<0.001 25(96.2) 4 (100.0) 0.69
No (%) 15 (28.8) 14 (63.6) 1(3.3) 1(3.8) 0(0.0)

Mean and standard deviation values are presented for parametrically distributed variables, analyzed using unpaired T-tests. For non-parametric
variables, median values along with the Ist and 3rd quartiles are provided, and analysis is conducted using the Wilcoxon rank-sum test. Cat-
egorical variables are compared using the chi-squared test. Statistical significance is determined at p < 0.05, denoted by an asterisk

CM-II, Chiari malformation type II; CT, computed tomography; MMC, myelomeningocele; VPS, ventriculoperitoneal shunt

*]1 Missing data were observed in one case; the result was obtained from 51 cases

*2 Missing data were observed in four cases; the results were obtained from 48 cases
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surgery. For nine cases, both CT and MRI were needed
to assess cerebellar displacement (Supplemental Fig. 2,
which details the radiologists’ experience in pediatric
radiology). A total of 30 cases (57.7%) were classified
as CM-II. Four cases (7.7%) required foramen magnum
decompression with C1 laminectomy due to respiratory
difficulties (Supplemental Fig. 3), with surgery per-
formed at an average of 3.50 + 3.42 months after birth.

Prenatal MMC diagnosis was made in 37 cases
(71.2%); among these, fetal MRIs were performed in 32
cases (86.5%). In 26 cases (81.3%), the prenatal diagno-
sis of CM-II or non-CM-II was consistent with the post-
natal diagnosis (Supplemental Fig. 4).

Significant differences were found when comparing
non-CM-II and CM-II cases. In MMC with CM-II, the
rate of fetal diagnosis and VPS were higher (chi-square
test, p=0.004, and p<0.001, respectively), and the
MMC lesion vertebrae count was higher (Wilcoxon rank-
sum test, p <0.001). The type of MMC lesions also dif-
fered significantly (chi-square test, p <0.001): 90.9% of
MMC cases without CM-II were sacral type, compared
to only 23.3% of those with CM-II. No significant differ-
ences were found between CM-II cases without and with
the operation, except for sex (chi-square test, p=0.04)
(Table 1). All four operated cases were female, possibly
influencing the results.

Correlation analysis between continuous variables

We analyzed correlations between ICV, LVV, PCFV,
CBMYV, BSV, and MMC lesion vertebrae count (Table 2).
Significant positive correlations were found between
ICV and LVV (r=0.67, p<0.001), as well as among
the infratentorial structures: PCFV and CBMV (r=0.94,
p<0.001), PCFV and BSV (r=0.68, p<0.001), and
CBMV and BSV (r=0.67,p <0.001). Significant negative

Table 2 Correlation coefficients between parameters

correlations were observed between supratentorial (LVV)
and infratentorial structures (PCFV, CBMV, and BSV),
including LVV and PCFV (r = -0.69, p<0.001), LVV
and CBMV (r = -0.56, p<0.001), and LVV and BSV
(r = -0.30, p<0.03). The MMC lesion vertebrae count
demonstrated significant positive correlations with ICV
(r=0.51,p<0.001) and LVV (r=10.66, p <0.001), along
with a significant negative correlation with PCFV (r =
-0.37, p=0.0006).

Intracranial volumetric assessment

The median values of five intracranial parameters and the
ratio of the sum of CBMV and BSV divided by PCFV are
presented in Table 3. Results from all infants (»=52), non-
CM-II infants (n=22), CM-II infants (n=30), non-oper-
ation CM-II infants (n=26), and operation CM-II infants
(n=4) are included. Significant differences were observed
between non-CM-II and CM-II groups, but not between
non-operation and operation groups.

The CM-II group had significantly higher values for ICV
(»=0.04), LVV (p<0.001), and the ratio of CBMV +BSV
to PCFV (p=0.01), and significantly lower values for
PCFV (»p<0.001) and CBMV (p <0.001). Thus, the CM-II
group exhibited larger intracranial cavity and supratento-
rial structures, and smaller infratentorial structures than
the non-CM-II group. Individual volumetric data in three-
dimensional space (LVV, PCFV, and MMC lesion vertebrae
count) revealed two distinct groups: non-CM-II and CM-II
(Supplemental Fig. 5).

Distribution plots with box-and-whisker plots for non-
CM-II (n=22), non-operation in CM-II (n=26), and opera-
tion CM-II (n=4) showed that non-CM-II had statistically
lower ICV, LVYV, the ratio of CBMV +BSV to PCFV, and
MMC lesion vertebrae count than non-operation CM-II
(c.p=0.048,<0.001,0.03, and 0.002 respectively, Wilcoxon

Parameters Icv LVV PCFV CBMV BSV MMC
lesion verte-
brae count

ICV -0.14 (p=0.32) -0.05 (p=0.72)

LVV 0.67 (*p<0.001) -0.69 (*p<0.001) -0.56 (*p<0.001) -0.30 (*p=0.03)

PCFV -0.37
(*p=0.006)

CBMV 0.94 (*p<0.001) -0.26
(»=0.06)

BSV 0.13 (p=0.35) 0.68 (*»<0.001) 0.67 (*p<0.001) -0.13
(»=0.34)

MMC lesion verte-
brae count

0.51 (*p<0.001)  0.66 (*p<0.001)

Correlation coefficients between parameters are shown with corresponding p-values. Significant p-values are denoted with an asterisk (*). Posi-
tive correlation coefficients are demonstrated below the diagonal line, and negative correlation coefficients are presented above the diagonal line

BSV, brainstem volume; CBMYV, cerebellum volume; ICV, intracranial volume; LVV, lateral ventricles volume; MMC, myelomeningocele;

PCFYV, posterior cranial fossa volume
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Table 3 Baseline volumetric data and comparison between MMC without Chiari malformation and with Chiari malformation, and between Chiari

malformation without operation and with operation

Total non-CM-II CM-II pvalues  non-Operation Operation
(n=22) (n=30) with CM-II with CM-II values
(n=26) (n=4)

ICV (mL) 407.50 376.05 431.20 *0.04 431.20(373.90— 400.50(314.50— 0.48
(353.55-490.45)  (344.00-421.20)  (368.80-594.10) 594.10) 1049.90)

LVV (mL) 33.18 4.67 (3.16-19.75)  79.57 *<0.001  79.57 75.11 0.98
(6.32-120.67) (31.40-219.56) (41.56-219.56) (30.58-723.45)

PCFV (mL) 21.35 25.60 17.35 *<0.001 18.45 12.80 (8.30-19.15) 0.17
(16.65-25.60) (21.80-27.90) (14.50-21.40) (14.70-21.40)

CBMV (mL) 13.79 15.75 11.72 (8.61-14.80) *<0.001  12.28 (9.99-14.80) 7.09 (4.98-11.99) 0.12
(10.62-16.00) (13.75-18.51)

BSV (mL) 2.86 (2.49-3.33)  3.04 (2.64-3.26) 2.58 (2.19-3.40) 0.05 2.64 (2.39-3.40) 1.93 (1.76-2.72) ~ 0.08

(CBMV+BSV) 0.79 (0.76-0.83)  0.76 (0.69-0.82) 0.80 (0.78-0.84) *0.01 0.80 (0.78-0.84) 0.79 (0.71-0.87)  0.69

/ PCFV

Median values with 1st-3rd quartiles are presented for each segmentation data. Statistical significance is determined using the Wilcoxon rank-

sum test at p <0.05, denoted by an asterisk

BSV, brainstem volume; CBMYV, cerebellum volume; CM-II, Chiari malformation type II; ICV, intracranial volume; LV, lateral ventricles
volume; MMC, myelomeningocele; PCFV, posterior cranial fossa volume

a b d e f
2000 ICV LW 30 CBMV 5 BSV (CBMV+BSV)/PCFV MMC lesion
e 1500 P *0.002 1 o0 4 —_
25 45t T —09 12 0.002
1500 - - - E10
. 1000 20 ° Q
E 0.048 E *<0.001 £ 52 f g 8 °
. o ° E
Sl b BT P B 5 Eod L
g S Ty F g DI
. o9 10 = "L
5001 : @ @ ] 2
o » .
'z% 0 fesd 5 15 0
0o 1 2 o 1 2 o 1 2 12 0o 1 2 0o 1 2 0o 1 2

Fig. 3 Differences among three MMC groups. The box-and-whisker
plots overlaid with beeswarm plots are presented for three groups: (0)
non-CM-II group (n=22), (1) CM-II not requiring operation group
(n=26), and (2) CM-II requiring operation group (n=4). The num-
bers correspond to those presented on the x-axis. Results are presented
for intracranial volume (ICV) (a), lateral ventricles volume (LVV)
(b), posterior cranial fossa volume (PCFV) (¢), cerebellum volume

rank-sum test corrected by Bonferroni correction, as shown
below) (Fig. 3a, b and f, and 3g). Conversely, non-CM-II
had higher CBMV (c.p=0.02) (Fig. 3d). Non-CM-II had
higher PCFV than both non-operation and operation CM-II
groups (c.p=<0.001 and 0.02, respectively) (Fig. 3c).

ROC analysis

ROC analysis distinguished non-CM-II (n=22) and CM-II
(n=30) using five volumetric parameters. LVV had the high-
est AUC (0.91, COV =24.22mL, sensitivity 0.90, specific-
ity 0.82). PCFV was second (AUC=0.88, COV=21.64mL
sensitivity 0.82, specificity 0.80) (Fig. 4a).

For differentiating CM-II cases without operation (n =26)
and with operation (n=4), LVV had the lowest AUC (0.62,
COV=32.65mL sensitivity 0.77, specificity 0.50). High
performance was demonstrated by infratentorial structures:

(CBMYV) (d), brainstem volume (BSV) (e), the ratio of CBMV +BSV
to PCFV (f), and MMC lesion vertebrae count (g). The Wilcoxon rank-
sum test is used, and acquired p-values are corrected by Bonferroni
correction, multiplied by three, for multiple comparisons. Statistically
significant corrected-p values <0.05 are denoted with an asterisk.
CM-II, Chiari malformation type II; MMC, myelomeningocele

PCFV (AUC=0.82, COV=9.42mL, sensitivity 1.00,
specificity 0.50), CBMV (AUC=0.85, COV=8.84mL,
sensitivity 0.77, specificity 0.75), and BSV (AUC=0.87,
COV=1.99mL, sensitivity 0.92, specificity 0.75) (Fig. 4b),
with BSV showing the highest performance.

DICOM slice width

Due to the retrospective nature of this study, we were unable
to maintain consistency in the slice width of CT scans. The
DICOM slice width ranged from 1 mm to 6 mm, with a
median of 5.00 (5.00-5.33) mm, and 80.8% of the scans
had a slice width of 5 mm (Supplemental Table 1). Slice
width correlated significantly positively with ICV (r=0.38,
p=0.006) and LVV (»=0.40, p=0.003). However, no
significant correlation was found between slice width and
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Fig. 4 Receiver operating characteristic (ROC) curves. ROC curves
were generated using the five volumetric parameters-intracranial vol-
ume (ICV), lateral ventricles volume (LVV), posterior cranial fossa
volume (PCFV), cerebellum volume (CBMV), and brainstem vol-

infratentorial structures like PCFV (r = -0.04, p=0.78),
CBMV (r=0.05, p=0.72), and BSV (r=0.07, p=0.59).

Discussion

Previously, we established baseline intracranial volume data
for MMC infants in relation to hydrocephalus [31]. Using
the same cohort and focusing on CM-II, this study aimed to
assess both supratentorial and infratentorial structural vol-
umes comprehensively. Positive correlations were observed
among infratentorial structures, while negative correla-
tions were found between supratentorial and infratentorial
structures. Additionally, statistical differences were noted in
the volumetric comparison between non-CM-II and CM-II
infants. Finally, ROC analysis demonstrated LVV as the
best marker for distinguishing non-CM-II from CM-II.
Previous volume assessments of the posterior cranial
fossa have been conducted in both normal populations
[29, 32] and those with conditions like achondroplasia [33]
and Chiari malformation type I [34]. However, volumet-
ric assessments for CM-II are limited and have primarily
focused on infratentorial structures [24, 25]. This study pro-
vides comprehensive volumetric data of both supratentorial
and infratentorial structures in relation to CM-II infants.
Since an infant’s ICV grows rapidly, nearly doubling by
one year of age [30], we used head CT data obtained at 0
months to minimize the effects of growth and ensure con-
sistent measurement conditions. Although our volumetric
data were smaller than those previously reported [25], this
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ume (BSV)-to discriminate between non-CM-II infants (n=22) from
CM-II infants (n=30) (a), and to distinguish CM-II infants who did
not require surgery (n=26) from those who did (n =4) (b) CM-II, Chi-
ari malformation type II; MMC, myelomeningocele

discrepancy might be due to differences in segmentation
methods. Unlike the previous study [25], we excluded the
cerebellum herniating into the spinal canal from volume
calculation. This exclusion was necessary because we could
not differentiate the herniating cerebellum from the cervical
spinal cord, which is a notable limitation of this study. Addi-
tionally, as 82.7% of infants were born at term, the influence
of gestational weeks is expected to be minimal.

The CM-II morbidity rate among MMC infants in this
study (57.7%) differs from historical reports, which associ-
ate nearly all MMC cases with CM-II [5, 10, 11]. Grading
systems have been used to objectively describe the severity
of CM-II [7-9], and we referred to these studies. We clas-
sified MMC infants into non-CM-II or CM-II based on the
presence of cerebellar displacement. Consequently, MMC
infants with no cerebellar displacement but with other CM-
II-specific findings, such as tectal beaking, were classified
as non-CM-II. The reason for using these diagnostic criteria
is that, since we only used CT and MRI imaging obtained
at 0 months, it was difficult to accurately detect CM-II-spe-
cific findings other than cerebellar displacement. Addition-
ally, considering the increasing incidence of hydrocephalus
associated with MMC over time [18, 31, 35, 36], CM-II
incidence and severity could also vary postnatally. These
factors may contribute to the lower CM-II rate observed in
our study. Nonetheless, this is a notable limitation.

Correlation analysis confirmed several empirically known
relationships. Significant positive correlations were found
among volumetric parameters within the same space, such
as the infratentorial space: PCFV, CBMYV, and BSV. Positive
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correlations between ICV and LVV have been reported in
the pediatric population [30], and our results showed similar
positive relationships. This suggests that enlarged supraten-
torial ventricles contribute to an increase in ICV. Conversely,
supratentorial parameters like LVV showed significant neg-
ative correlations with infratentorial parameters like PCFV,
CBMY, and BSV, consistent with previous findings [25].
As noted in the introduction, enlarged supratentorial ven-
tricles (hydrocephalus) may be considered a consequence of
a small posterior cranial fossa. Considering the benefits of
prenatal closure for MMC fetuses- such as higher resolution
rates for hindbrain herniation [37] or cerebellar ectopia [8§]
and a 50% lower shunt placement rate [37-39]-it is evident
that there is a close relationship between the supratentorial
and infratentorial malformations caused by MMC.

In MMC cases, thoracic-level lesions were associated
with smaller CBMV compared to lumbar/sacral lesions
[24], and lower MMC levels correlated with reduced inci-
dence of CM-II [25]. Increased ventricular size on fetal MRI
has been linked to larger spinal defects [9]. In our study,
CM-II infants exhibited a higher prevalence of thoracic
lesions, lower sacral lesions, and greater MMC lesion verte-
brae counts than non-CM-II infants. Our correlation analy-
sis showed that higher MMC lesion vertebrae counts were
associated with smaller PCFV and larger LVV. We inferred
that more severe spinal conditions lead to more severe intra-
cranial malformations.

Our volumetric comparison between non-CM-II and
CM-II cases corroborated previous findings, indicating a
smaller PCFV in CM-II [24, 25]. Additionally, our study
demonstrated a larger ratio of CBMV+BSV to PCFV
in CM-II compared to non-CM-II infants. This suggests
reduced CSF space in the posterior fossa associated with
CM-II-related posterior fossa constriction, as indicated by
an absence of visible CSF signal [40]. Despite our expecta-
tion that PCFV would most effectively distinguish non-CM-
II from CM-II, LVV exhibited superior performance in ROC
analysis. The well-established association between CM-II
and hydrocephalus [3, 13, 22, 25, 40] is further supported
by our findings, offering new insights into this relationship.

The rate of CM-II-related operations in MMC cases
has been reported to range from 9.2% [15] to 19.0% [12],
whereas in our study, it was 7.7%. Although we found no
volumetric differences between CM-II cases that under-
went an operation and those that did not, our ROC analysis
highlighted that BSV was most effective in distinguishing
between these groups. An autopsy showed severe bulbar
derangement [13], and infants and children younger than
two years old often exhibit cranial nerve and brainstem signs
[14], such as dysphagia [6]. These results align our ROC
findings with established evidence. However, it’s important

to note that the sample size of CM-II cases requiring surgery
was small (n=4).

Our study has several limitations. First, CT scans used for
volumetric calculation should ideally have been obtained
before closure surgery to exclude or minimize the effects
of the surgery. However, in five cases, CT scans were per-
formed after surgery. Additionally, five different CT proto-
cols were used, and we were unable to ensure consistency
in the slice width of CT images for volume calculation. Sec-
ond, since the parts of the cerebellar displacement through
the foramen magnum were excluded from the volumetric
calculations, CBMV may have been underestimated. Given
that previous studies have used MRI for volume calculation
[25], MRI provides sufficient spatial resolution to detect
herniated cerebellum. However, in this study, obtaining a
head MRI at 0 months for all cases was challenging. Third,
to establish precise diagnostic criteria, we focused solely on
the presence of cerebellar displacement. As a result, MMC
infants with CM-II-specific imaging findings other than cer-
ebellar displacement were classified as non-CM-II, which
could lead to a lower CM-II rate. Finally, it is a single-cen-
ter, retrospective analysis without standardized criteria for
CM-IlI-related surgeries. The decision for surgery was based
on the clinical judgment of neurosurgeons at our institution.

Conclusions

This study offered a comprehensive assessment of both
supratentorial and infratentorial volumes in MMC infants,
revealing significant volumetric differences between non-
CM-II and CM-II groups. A notable negative correlation
was observed between supratentorial and infratentorial
structure volumes. LVV was identified as the most effec-
tive parameter for distinguishing between non-CM-II and
CM-II infants. These findings emphasize the importance
of evaluating CM-II through a combined assessment of
both supratentorial and infratentorial malformations.
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