Osaka University Knowledge Archive

Title	Hausdorff condition for Brown-Peterson cohomologies
Author(s)	Yosimura, Zen-ichi
Citation	0saka Journal of Mathematics. 1988, 25(4), p. $881-890$
Version Type	VoR
URL	https://doi.org/10.18910/9887
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. library.osaka-u.ac.jp/

HAUSDORFF CONDITION FOR BROWN-PETERSON COHOMOLOGIES

Dedicated to Professor Hirosi Toda on his sixtieth birthday

Zen-ichi YOSIMURA

(Received October 9, 1987)

Let X be a $C W$-spectrum and $\left\{X_{\lambda}\right\}$ be the set of all finite subspectra of X. For any $C W$-spectrum E we have a natural morphism $\pi: E^{*} X \rightarrow \underset{\lambda}{\lim } E^{*} X_{\lambda}$ induced by the incusions $X_{\lambda} \subset X$. In [1, Theorem 1.8] Adams showed that the canonical morphism π is always an epimorphism. By making use of Adams' result we first prove that the spectral sequence $E_{2}^{s, t}={\underset{\lambda}{\lambda}}_{\lim ^{s}} E^{*} X_{\lambda} \Rightarrow E^{*} X$ collapses (Theorem 1), which has implicitly been given by Hikida [5]. Given a $C W$ spectrum E and an abelian group G we are interested in the Anderson dual spectrum $\nabla E(G)$ related by a universal coefficient sequence $0 \rightarrow \operatorname{Ext}\left(E_{*-1} X, G\right)$ $\rightarrow \nabla E(G)^{*}(X) \rightarrow \operatorname{Hom}\left(E_{*} X, G\right) \rightarrow 0$. For the canonical morphism $\pi: \nabla E(G)^{*} X$ $\rightarrow{\underset{Z}{\lambda}}_{\lim } \nabla E(G)^{*} X_{\lambda}$, a diagram chasing shows easily that Ker $\pi \cong{\underset{\sim}{\lambda}}^{\lim }$ Hom $\left(E_{*-1} X_{\lambda}, G\right)$ and Coker $\pi \cong \underset{\lambda}{\lim _{\lambda}^{2}} \operatorname{Hom}\left(E_{*-1} X_{\lambda}, G\right)$. Since the latter part is trivial by Adams' result, we can observe that there exists a short exact sequence $0 \rightarrow \underset{\lambda}{\lim ^{1}} \nabla E(G)^{*-1} X_{\lambda} \rightarrow \nabla E(G)^{*} X \rightarrow \underset{\lambda}{\lim _{\lambda}} \nabla E(G)^{*} X_{\lambda} \rightarrow 0$ (Theorem 4). This result was proved in [6, Theorem 1.1] under the restriction that E is of finite type.

A cohomology group $E^{*} X$ is said to be Hausdorff if $\pi: E^{*} X \rightarrow \underset{\lambda}{\lim } E^{*} X_{\lambda}$ is an isomorphism. We next give a sufficient condition under which $E^{*} X$ is Hausdorff, when E is a wedge sum $\vee_{\alpha} E_{\alpha}$ or a direct $\operatorname{limit} \underset{\vec{k}}{\lim _{k}} E_{k}$ of p-local $C W$ spectra of finite type (Proposition 8 and Theorem 9).

Let $B P$ denote the Brown-Peterson spectrum, and $B P\langle n\rangle, E(n), n \geq 0$, be the $B P$-related spectra. Their coefficient groups are $B P_{*}=Z_{(p)}\left[v_{1}, \cdots, v_{n}, \cdots\right]$, $B P\langle n\rangle_{*}=Z_{(p)}\left[v_{1}, \cdots, v_{n}\right]$ and $E(n)_{*}=Z_{(p)}\left[v_{1}, \cdots, v_{n}, v_{n}^{-1}\right]$. Using Wilson's splitting theorem we can restate Quillen's theorem [7, Theorem 5.7] that the torsion subgroup of $B P^{*} Y$ is generated as a $B P^{*}$-module by torsion elements of nonnegative degree if Y is a based finite $C W$-complex (Proposition 10). Combining

Theorem 9 with this result we finally give a sufficient condition on a based countable $C W$-complex X under which $\left(v_{n}^{-1} B P\right)^{m} X$ and $E(n)^{m} X$ are both Hausdorff (Theorem 13).

1. Hausdorffness of cohomologies $\boldsymbol{E}^{*} \boldsymbol{X}$

1.1. Let X be a $C W$-spectrum and $\left\{X_{\alpha}\right\}$ be a directed system of subspectra ordered by the inclusions whose union $\cup X_{\infty}$ is the whole X. Let W denote the wedge sum $V_{\gamma} X_{\gamma}$, and W_{α} the wedge sum $\vee_{\gamma \leq \infty} X_{\gamma}$ for each α. Note that W_{α} is finite if X_{α} is finite. Given a $C W$-spectrum E the set $\left\{E^{*} W_{\alpha}\right\}$ of cohomology groups forms an inverse system such that

$$
\begin{equation*}
E^{*} W \cong \varliminf_{\alpha} E^{*} W_{\alpha} \quad \text { and } \quad \varliminf_{\alpha}^{\lim ^{q}} E^{*} W_{\alpha}^{-}=0 \quad \text { for any } \quad q \geq 1 \tag{1.1}
\end{equation*}
$$

(see [8, Proposition 1]).
Let Y_{α} denote the cofiber of the map $W_{\alpha} \rightarrow X_{\alpha}$ induced by the inclusions $X_{\gamma} \subset X_{\alpha}$. Then we have a short exact sequence $0 \rightarrow\left\{E^{*} X_{\alpha}\right\} \rightarrow\left\{E^{*} W_{\alpha}\right\} \rightarrow$ $\left\{E^{*+1} Y_{\alpha}\right\} \rightarrow 0$ of inverse systems, since the cofiber sequence $\Sigma^{-1} Y_{\alpha} \rightarrow W_{\infty} \rightarrow X_{\infty}$ splits. This yields a four-term exact sequence

$$
\begin{equation*}
0 \rightarrow \underset{\alpha}{\lim _{\alpha}} E^{*} X_{\omega} \rightarrow E^{*} W \rightarrow \underset{\lim _{\omega}}{ } E^{*+1} Y_{\infty} \rightarrow \underset{\lim ^{1}}{ } E^{*} X_{\alpha} \rightarrow 0 \tag{1.2}
\end{equation*}
$$

and isomorphisms

$$
\begin{equation*}
\lim _{\alpha}^{q} E^{*+1} Y_{\alpha} \underset{\leftrightarrows}{\leftrightarrows} \lim _{\alpha}^{q+1} E^{*} X_{\alpha} \quad \text { for any } \quad q \geq 1 \tag{1.3}
\end{equation*}
$$

by making use of (1.1).
Let Y be the cofiber of the map $W \rightarrow X$ induced by the inclusions $X_{\gamma} \subset X$. Obviously Y is the union of the directed system of subspectra Y_{α}. We inductively construct a $C W$-spectrum W_{s+1} and a map $W_{s+1} \rightarrow X_{s}$ and form a cofiber sequence $W_{s+1} \rightarrow X_{s} \rightarrow X_{s+1}$, by setting $X_{-1}=X$ and $W_{0}=W=V_{\gamma} X_{\gamma}$. Let \tilde{X}_{s} be the cofiber of the inclusion $X=X_{-1} \subset X_{s}$, and \tilde{X}_{∞} the union $\cup \tilde{X}_{s}$. Then there exists a commutative diagram

involving four cofiber sequences. We have an equivalence $\tilde{X}_{\infty} \rightarrow \Sigma X$ because $\xrightarrow[s]{\lim } \pi_{*} X_{s}=0$.

We now observe a spectral sequence associated with the increasing filtration $*=\tilde{X}_{-1} \subset \tilde{X}_{0} \subset \cdots \subset \tilde{X}_{s} \subset \cdots$, whose union is \tilde{X}_{∞} (see [2] or [3]). Given a $C W$ spectrum E we set

$$
\begin{aligned}
& Z_{r}^{s, t}=\operatorname{Ker}\left\{E^{s+t+1}\left(\tilde{X}_{s} / \tilde{X}_{s-1}\right) \rightarrow E^{s+t+2}\left(\tilde{X}_{s+r-1} / \tilde{X}_{s}\right)\right\} \\
& B_{r}^{s, t}=\operatorname{Im}\left\{E^{s+t}\left(\tilde{X}_{s-1} / \tilde{X}_{s-r}\right) \rightarrow E^{s+t+1}\left(\tilde{X}_{s} \mid \tilde{X}_{s-1}\right)\right\} \\
& E_{r}^{s, t}=Z_{r}^{s, t} / B_{r}^{s, t} \quad \text { for each } r, \quad 1 \leq r \leq \infty
\end{aligned}
$$

This spectral sequence converges to $E^{*} X \cong E^{*+1} \tilde{X}_{\infty}$, and its E_{1}-term is $E_{1}^{s, t}=E^{s+t+1}\left(\tilde{X}_{s} \mid \tilde{X}_{s-1}\right) \cong E^{s+t}\left(W_{s}\right)$. The differential $d_{r}^{s, t}: E_{r}^{s, t} \rightarrow E_{r}^{s+r, t-r+1}$ is defined to be the composition $Z_{r}^{s, t}\left|B_{r}^{s, t} \rightarrow Z_{r}^{s, t}\right| Z_{r+1}^{s, t} \cong B_{r+1}^{s+r, t-r+1} / B_{r}^{s+r, t-r+1} \rightarrow$ $Z_{r}^{s+r, t-r+1} / B_{r}^{s+r, t-r+1}$. Therefore the differential $d_{1}^{s, t}$ is just the composition $E^{s+t}\left(W_{s}\right) \rightarrow E^{s+t+1}\left(X_{s}\right) \rightarrow E^{s+t+1}\left(W_{s+1}\right)$. By making use of (1,2) and (1.3) it is easily verified that

$$
\begin{equation*}
E_{2}^{s, t} \cong{\underset{\underset{\omega}{\infty}}{ }{ }^{s} E^{t} X_{\infty} .} \tag{1.4}
\end{equation*}
$$

1.2. Let X be a $C W$-spectrum and $\left\{X_{\lambda}\right\}$ be the set of all finite subspectra of X. For any $C W$-spectrum E the inclusions $X_{\lambda} \subset X$ induce a natural morphism

$$
\begin{equation*}
\pi: E^{*} X \rightarrow \underset{\lambda}{\lim } E^{*} X_{\lambda}, \tag{1.5}
\end{equation*}
$$

which is always an epimorphism (see Adams [1, Theorem 1.8]).
A cohomology group $E^{*} X$ is said to be Hausdorff if π is an isomorphism. The following collapsing theorem has implicitly been obtained by Hikida [5].

Theorem 1. Let X be a $C W$-spectrum and $\left\{X_{\alpha}\right\}$ be a set of subspectra whose union is X. Assume that $E^{*} X_{\alpha}$ is Hausdorff for each α. Then the spectral sequence $E_{2}^{s, *}=\underset{\lim _{a}^{s}}{ } E^{*} X_{\infty} \Rightarrow E^{*} X$ collapses.

Proof. Consider the commutative diagram

Then we have an isomorphism

$$
Z_{2}^{s, *} / Z_{\infty}^{s, *}=\operatorname{Im} \tilde{\varphi} / \operatorname{Im} \tilde{\varphi}^{\prime} \cong \operatorname{Im} \tilde{\eta} \cong \operatorname{Im} \eta .
$$

Therefore it is sufficient to show that the morphism η is trivial, in order to observe that all the differentials $d_{r}, r \geq 2$, are trivial. Notice that the composition $\pi \cdot \eta: E^{*}\left(X_{s+1} / X_{s-1}\right) \rightarrow E^{*}\left(X_{s}\right) \rightarrow \underset{\alpha}{\lim _{\alpha}} E^{*}\left(X_{s, \alpha}\right)$ is trivial because $E^{*}\left(X_{s+1, \alpha}\right) \rightarrow$ $E^{*}\left(X_{s, \alpha}\right)$ is trivial for each α. We here consider the commutative diagram
with exact rows. The central arrow π_{2} is an isomorphism by (1.1), and the left one π_{1} is an epimorphism by virtue of (1.5) because $E^{*+s}\left(X_{s-1, \alpha}\right)$ is Hausdorff whenever $E^{*}\left(X_{\alpha}\right)$ is Hausdorff. Hence it is easily checked that $\operatorname{Ker} \pi \cdot \varphi^{\prime \prime}=$ $\operatorname{Ker} \varphi^{\prime \prime}$. This implies that $\operatorname{Ker} \pi \cdot \eta=\operatorname{Ker} \eta$. Therefore we can show that the morphism η is trivial as desired.

As an immediate result we have
Corollary 2. Let X be a $C W$-spectrum and $\left\{X_{\lambda}\right\}$ be the set of all finite subspectra of X. For a fixed integer $m, E^{m} X$ is Hausdorff if and only if ${\underset{\lambda}{\lambda}}^{q} E^{m-q} X_{\lambda}$ $=0$ for all $q \geq 1$.
1.3. Let E be a $C W$-spectrum and G an arbitrary abelian group G. Then there exists a $C W$-spectrum $\nabla E(G)$ related by a universal coefficient sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Ext}\left(E_{*-1} X, G\right) \rightarrow \nabla E(G)^{*} X \rightarrow \operatorname{Hom}\left(E_{*} X, G\right) \rightarrow 0 \tag{1.6}
\end{equation*}
$$

for any $C W$-spectrum X (see [9]). The spectrum $\nabla E(G)$ is the function spectrum $F(E, \nabla S(G))$.

Let X be a $C W$-spectrum and $\left\{X_{\lambda}\right\}$ be the set of all finite subspectra of X. We here consider the commutative diagram

with exact rows. The right arrow π_{2} is an isomorphism, and the left one π_{1} satisfies that $\operatorname{Ker} \pi_{1} \cong \underset{\lim _{\lambda}^{1}}{ } \operatorname{Hom}\left(E_{*-1} X_{\lambda}, G\right)$ and $\operatorname{Coker} \pi_{1} \cong \underset{\lim ^{2}}{ } \operatorname{Hom}\left(E_{*-1} X_{\lambda}, G\right)$. As is easily seen, $\operatorname{Ker} \pi \cong \operatorname{Ker} \pi_{1}$ and Coker $\pi \cong \operatorname{Coker} \pi_{1}$. Therefore we have a short exact sequence

$$
\begin{equation*}
0 \rightarrow \underset{\lambda}{\lim _{\lambda}^{1}} \operatorname{Hom}\left(E_{*-1} X_{\lambda}, G\right) \rightarrow \nabla E(G)^{*} X \xrightarrow{\pi}{\underset{\lambda}{\lim }} \nabla E(G)^{*} X_{\lambda} \rightarrow 0 \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\underset{{\underset{\mathrm{lim}}{ }}^{2}}{ } \operatorname{Hom}\left(E_{*} X_{\lambda}, G\right)=0, \tag{1.8}
\end{equation*}
$$

since the morphism π is always an epimorphism by (1.5).

Lemma 3. Let X be a $C W$-spectrum and G an abelian group. Then $\underset{\lambda}{\lim ^{q}} \operatorname{Hom}\left(E_{*} X_{\lambda}, G\right)=0$ for all $q \geq 2$.

Proof. We use the cofiber sequence $W_{s+1, \lambda} \rightarrow X_{s, \lambda} \rightarrow X_{s+1, \lambda}$ of finite $C W$ spectra for each λ, which is constructed by setting $X_{-1, \lambda}=X_{\lambda}$ and $W_{0, \lambda}=\vee_{\mu_{\leq \lambda}} X_{\mu}$. This induces a short exact sequence

$$
0 \rightarrow \operatorname{Hom}\left(E_{*} X_{s, \lambda}, G\right) \rightarrow \operatorname{Hom}\left(E_{*} W_{s+1, \lambda}, G\right) \rightarrow \operatorname{Hom}\left(E_{*+1} X_{s+1, \lambda}, G\right) \rightarrow 0
$$

Notice that $\underset{\lambda}{\lim ^{q}} \operatorname{Hom}\left(E_{*} W_{s+1, \lambda}, G\right)=0$ for all $q \geq 1$ (see [8, Proposition 1]). Then it is shown that ${\underset{\star}{\lambda}}_{\lim ^{q}} \operatorname{Hom}\left(E_{*+1} X_{s+1, \lambda}, G\right) \cong \underset{\lambda}{\lim _{\lambda}^{q+1}} \operatorname{Hom}\left(E_{*} X_{s, \lambda}, G\right)$ for any $q \geq 1$, and hence $\underset{\lambda}{\lim ^{q}} \operatorname{Hom}\left(E_{*} X_{\lambda}, G\right) \cong \underset{\lambda}{\lim _{z}} \operatorname{Hom}\left(E_{*+q-2} X_{q-3, \lambda}, G\right)$ for each $q \geq 1$. By applying (1.8) to X_{q-3} we obtain the result as desired.

We now prove the following result, which was given in [6, Theorem 1.1] under the restriction that E is of finite type.

Theorem 4. Let E be an arbitrary $C W$-spectrum and G any ahelian group. Let X be a $C W$-spectrum and $\left\{X_{\lambda}\right\}$ be the set of all finite subspectra of X. Then, i) there exists a short exact sequence

$$
0 \rightarrow \underset{\lambda}{\lim _{\lambda}^{1}} \nabla E(G)^{*-1} X_{\lambda} \rightarrow \nabla E(G)^{*} X \rightarrow \underset{\lambda}{\lim _{\lambda}} \nabla E(G)^{*} X_{\lambda} \rightarrow 0,
$$

iii) $\underset{\lambda}{\lim _{\lambda}^{q}} \nabla E(G)^{*} X_{\lambda}=0$ for any $q \geq 2$.

Proof. Use the long exact sequence $\cdots \rightarrow \underset{\lambda}{\underset{l_{\lambda}}{q}} \operatorname{Ext}\left(E_{*-1} X_{\lambda}, G\right) \rightarrow$ $\underset{{\underset{\mathrm{lim}}{ }}^{q}}{ } \nabla E(G) * X_{\lambda} \rightarrow \underset{\lambda}{\lim _{\lambda}^{q}} \operatorname{Hom}\left(E_{*} X_{\lambda}, G\right) \rightarrow \underset{{\underset{\lambda}{\lambda}}^{\lim }}{ }{ }^{q+1} \operatorname{Ext}\left(E_{*-1} X_{\lambda}, G\right) \rightarrow \cdots$ and the isomorphisms ${\underset{خ}{\lambda}}^{q} \operatorname{Ext}\left(E_{*} X_{\lambda}, G\right) \cong{\underset{\lambda}{\lim }}^{q+2} \operatorname{Hom}\left(E_{*} X_{\lambda}, G\right)$ for any $q \geq 1$. The results ii) and iii) are now immediate from Lemma 3. Moreover the result i) is obtained from (1.7) combined with ii).

Let $\left\{A_{\alpha}\right\}$ be a directed system of abelian groups and G be any abelian group. Then there exists a four-term exact sequence

$$
\begin{aligned}
0 \rightarrow \underset{\omega}{\lim ^{1}} \operatorname{Hom}\left(A_{\alpha}, G\right) \rightarrow \operatorname{Pext}\left(\underset{\omega}{\left(\lim _{\rightarrow}\right.} A_{\alpha}, G\right) & \rightarrow \underset{\alpha}{{\underset{L i m}{\alpha}}^{\lim }} \operatorname{Pext}\left(A_{\alpha}, G\right) \\
& \rightarrow \underset{{\underset{\omega}{\alpha}}^{\lim ^{2}} \operatorname{Hom}\left(A_{\alpha}, G\right) \rightarrow 0}{ }
\end{aligned}
$$

(see [6, Proposition 1.4]). Hence we have
Corollary 5. For a fixed integer $m, \nabla E(G)^{m} X$ is Hausdorff if G is algebraically compact or if $E_{m-1} X$ is pure projective.

Proof. Our hypothesis implies that $\operatorname{Pext}\left(E_{m-1} X, G\right)=0$ and hence $\underset{{\underset{\mathrm{lim}}{\lambda}}^{1}}{ } \operatorname{Hom}\left(E_{m-1} X_{\lambda}, G\right)=0$.

Corollary 6. For a fixed integer $m, \nabla E(G)^{m} X$ is Hausdorff if G is torsion free and $\operatorname{Ext}\left(E_{m-1} X /\right.$ Tor, $\left.G\right)=0$ where Tor stands for the torsion subgroup.

Proof. If $\operatorname{Ext}\left(E_{m-1} X /\right.$ Tor, $\left.G\right)=0$, then $\underset{\lambda}{\lim _{\lambda}^{1}} \operatorname{Hom}\left(E_{m-1} X_{\lambda} /\right.$ Tor, $\left.G\right)=0$, which means that ${\underset{\lambda}{\lambda}}_{\lim ^{1}} \operatorname{Hom}\left(E_{m-1} X_{\lambda}, G\right)=0$ when G is torsion free.

2. Brown-Peterson and BP-related cohomologies

2.1. Let E be a p-local $C W$-spectrum. We simply write ∇E instead of $\nabla E(G)$ when $G=Z_{(p)}$, the integers localized at p. If E is of finite type, then the canonical map $E \rightarrow \nabla^{2} E$ is an equivalence (see [4] or [9]) where $\nabla^{2} E$ stands for $\nabla(\nabla E)$.

Let $\left\{E_{\alpha}\right\}$ be a family of p-local $C W$-spectra of finite type where α runs over an arbitrary indexing set, and E be the wedge sum $\vee E_{\alpha}$. For any finite $C W$-spectrum Y we have a commutative diagram

involving two universal coefficient sequences (1.6), in which the vertical arrows are induced by the inclusions $E_{\alpha} \subset E$. Applying again the universal coefficient sequences (1.6) for any finite $C W$-spectrum Y, we obtain natural isomorphisms

$$
\begin{align*}
& \operatorname{Hom}\left(\nabla E_{\alpha *} Y, Z_{(p)}\right) \cong \operatorname{Hom}\left(\operatorname{Hom}\left(E_{\alpha}^{*} Y, Z_{(p)}\right), Z_{(p)}\right), \tag{2.1}\\
& \operatorname{Ext}\left(\nabla E_{\alpha *-1} Y, Z_{(p)}\right) \cong \operatorname{Ext}\left(\operatorname{Ext}\left(E_{\alpha}^{*} Y, Z_{(p)}\right), Z_{(p)}\right)
\end{align*}
$$

and moreover a natural exact sequence

$$
\begin{align*}
0 \rightarrow \operatorname{Hom}\left(\operatorname{Hom}\left(E^{*} Y, Z_{(p)}\right), Z_{(p)}\right) & \rightarrow \operatorname{Hom}\left(\nabla E_{*} Y, Z_{(p)}\right) \tag{2.2}\\
& \rightarrow \operatorname{Hom}\left(\operatorname{Ext}\left(E^{*+1} Y, Z_{(p)}\right), Z_{(p)}\right)
\end{align*}
$$

We here recall Zeeman's Theorem [10, Theorem 1 ii)], which says that the natural embedding $\oplus P_{\alpha} \rightarrow\left(\oplus P_{\alpha}\right)^{* *}$ is an isomorphism if P_{α} is a free $Z_{(p)}-$ module for each α, where $\operatorname{Hom}\left(\operatorname{Hom}\left(A, Z_{(p)}\right), Z_{(p)}\right)$ is shortly written $A^{* *}$ for any $Z_{(p)}$-module A. Let $\left\{A_{\alpha}\right\}$ be a family of finitely generated $Z_{(p)}$-modules. Zeeman's Theorem implies easily that the canonical morphism

$$
\begin{equation*}
\underset{\alpha}{\oplus} A_{\alpha}^{* *} \rightarrow\left(\underset{\alpha}{\oplus} A_{\infty}\right)^{* *} \tag{2.3}
\end{equation*}
$$

is an isomorphism. Let T_{α} denote the torsion subgroup of A_{α}. Choose a free resolution $0 \rightarrow R_{\alpha} \rightarrow P_{\infty} \rightarrow T_{\infty} \rightarrow 0$, then we have a commutative diagram

with exact rows. Applying Zeeman's Theorem again it follows immediately that $\operatorname{Hom}\left(\operatorname{Ext}\left(\underset{\alpha}{\oplus} T_{\alpha}, Z_{(p)}\right), Z_{(p)}\right)=0$, and hence

$$
\begin{equation*}
\operatorname{Hom}\left(\operatorname{Ext}\left(\underset{\alpha}{\oplus} A_{\alpha}, Z_{(p)}\right), Z_{(p)}\right)=0 . \tag{2.4}
\end{equation*}
$$

Lemma 7. Let Y be a finite $C W$-spectrum and E be a wedge sum of p-local $C W$-spectra of finite type. Then there exists a natural exact sequence

$$
0 \rightarrow \operatorname{Tor} E^{*} Y \rightarrow E^{*} Y \rightarrow \operatorname{Hom}\left(\nabla E_{*} Y, Z_{(p)}\right) \rightarrow 0
$$

where Tor $E^{*} Y$ denotes the torsion subgroup of $E^{*} Y$.
Proof. Consider the commutative square

The top arrow is an isomorphism by (2.1) and the left one is an isomorphism by (2.3). Moreover the bottom one is also an isomorphism, by putting (2.2) and (2.4) together. Therefore the right arrow becomes an isomorphism. Making use of this isomorphism and (2.1) we obtain an exact sequence

$$
0 \rightarrow \oplus_{\infty}^{\oplus} \operatorname{Tor} E_{\alpha}^{*} Y \rightarrow \underset{\infty}{\oplus} E_{\alpha}^{*} Y \rightarrow \operatorname{Hom}\left(\nabla E_{*} Y, Z_{(p)}\right) \rightarrow 0
$$

as desired.
2.2. Let X be a $C W$-spectrum and E be a wedge sum of p-local $C W$ spectra of finite type. Consider the exact sequences $0 \rightarrow$ Tor $E^{*} X_{\lambda} \rightarrow E^{*} X_{\lambda} \rightarrow$ $\operatorname{Hom}\left(\nabla E_{*} X_{\lambda}, Z_{(p)}\right) \rightarrow 0$ for all the finite subspectra X_{λ} of X. By use of Lemma 3 and Theorem 4 ii) we have an exact sequences

$$
\begin{align*}
{\underset{\mathrm{Lim}}{\lambda}}^{1} \operatorname{Tor} E^{*} X_{\lambda} \rightarrow{\underset{\lambda}{\lim }}^{1} E^{*} X_{\lambda} & \rightarrow \underset{\lambda}{\lim ^{1}} \nabla^{2} E^{*} X_{\lambda} \tag{2.5}\\
& \rightarrow \underset{\lambda}{\lim ^{2}} \operatorname{Tor} E^{*} X_{\lambda} \rightarrow \underset{\lambda}{\lim ^{2}} E^{*} X_{\lambda} \rightarrow 0
\end{align*}
$$

and isomorphisms

$$
\begin{equation*}
{\underset{\lambda}{\lim }}^{q} \operatorname{Tor} E^{*} X_{\lambda} \cong{\underset{\lambda}{\lim }}^{q} E^{*} X_{\lambda} \quad \text { for any } \quad q \geq 3 \tag{2.6}
\end{equation*}
$$

Proposition 8. Let X be a $C W$-spectrum and E be a wedge sum of p-local $C W$-spectra of finite type. For a fixed integer m we assume that $\nabla^{2} E^{m} X$ is Hausdorff
and that ${\underset{خ}{\lambda}}^{\lim ^{q}}$ Tor $E^{m-q} X_{\lambda}=0$ for all $q \geq 1$. Then $E^{m} X$ is Hausdorff.
Proof. By making use of (2.5), (2.6) and Corollary 2 we observe that $\underset{\lambda}{\lim ^{q}} E^{m-q} X_{\lambda}=0$ for each $q \geq 1$ under our hypothesis, and hence that $E^{m} X$ is Hausdorff.

Let $\left\{E_{k}\right\}_{k \geq 0}$ be a directed sequence of p-local $C W$-spectra of finite type and E be the wedge sum $\vee E_{k}$. When the mapping telescope is denoted by $\underset{\vec{k}}{\lim _{k}} E_{k}$, there exists a natural short exact sequence $0 \rightarrow E^{*} Y \rightarrow E^{*} Y \rightarrow\left(\underset{\vec{k}}{\lim _{k}} E_{k}\right)^{k} Y \rightarrow 0$ for any finite $C W$-spectrum Y. We use (2.5), (2.6) and Corollary 2 again to obtain

Theorem 9. Let $\left\{E_{k}\right\}_{k \geq 0}$ be a directed sequence of p-local CW-spectra of finite type and E denote the wedge sum $\vee E_{k}$. Let X be a $C W$-spectrum and $\left\{X_{\lambda}\right\}$ be the set of all finite subspectra of X. For a fixed integer m we assume that $\nabla^{2} E^{m} X$ is Hausdorff and that ${\underset{\lambda}{\lim _{\lambda}^{q}}}^{\text {a }}$ Tor $E^{m-q} X_{\lambda}=0={\underset{\lambda}{4}}_{\lim ^{q+1}}$ Tor $E^{m-q} X_{\lambda}$ for any $q \geq 1$. Then $\left(\underset{k}{\lim } E_{k}\right)^{m} X$ is Hausdorff.

Proof. Under our hypothesis we observe that $\underset{\lambda}{\lim ^{q}} E^{m-q} X_{\lambda}=0=$ $\underset{\lambda}{\lim ^{q+1}} E^{m-q} X_{\lambda}$ for any $q \geq 1$. This implies that $\underset{\lambda}{\lim _{\lambda}^{q}}\left(\underset{k}{\lim } E_{k}\right)^{m-q} X_{\lambda}=0$ for each $q \geq 1$. The desired result is now immediate.
2.3. Let $B P$ be the Brown-Peterson spectrum for a fixed prime p. This is an associative and commutative ring spectrum whose coefficient ring is $B P_{*}=$ $Z_{(p)}\left[v_{1}, \cdots, v_{n}, \cdots\right]$ with degree of $v_{n}=2\left(p^{n}-1\right)$. For any $n \geq 0$ there are $B P$ related spectra $B P\langle n\rangle$ constructed in [7]. These are associative $B P$-module spectra with $B P\langle n\rangle_{*}=Z_{(p)}\left[v_{1}, \cdots, v_{n}\right]$, and related by the cofiber sequences $\Sigma^{2\left(p^{n}-1\right)} B P\langle n\rangle \xrightarrow{\cdot v_{n}} B P\langle n\rangle \rightarrow B P\langle n-1\rangle$ where $\cdot v_{n}$ denotes the multiplication by v_{n}. Consider the map $g_{n}: B P \rightarrow B P\langle n\rangle$ inducing the canonical projection in homotopy. Based on Wilson's splitting theorem [7, Theorem 5.4] we get
$g_{n}: B P^{m} X \rightarrow B P\langle n\rangle^{m} X$ is split epic for $m<2\left(p^{n}+\cdots+p+1\right)$ if X is a based $C W$-complex, and hence
$g_{n} ; B P^{*} Y \rightarrow B P\langle n\rangle^{*} Y$ is split epic for all but finitely many degrees
if Y is a based finite $C W$-complex.

In [7, Theorem 5.7] Wilson proved Quillen's Theorem that $B P^{*} Y$ is generated as a $B P^{*}$-module by elements of non-negative degree if Y is a based finite $C W$-complex. We here give faithfully an imitation of his proof to show

Proposition 10. Let Y be a based finite $C W$-complex. Then the torsion
subgroup Tor $B P^{*} Y$ is generated as a $B P^{*}$-module by torsion elements of nonnegative degree.

Proof. Let y be a torsion element of $B P^{m} Y$ for some negative degree m. Then we can find a positive integer n and an element z_{n} of $B P\langle n\rangle^{m+2\left(p^{n}-1\right)} Y$ such that $g_{n}(y)=v_{n} \cdot z_{n}$. Note that z_{n} is a torsion element. Since g_{n} is split epic in degree $m+2\left(p^{n}-1\right)$ by virtue of (2.7) we can pick a torsion element w_{n} of $B P^{m+2\left(p^{n}-1\right)} Y$ with $g_{n}(y)=g_{n}\left(v_{n} \cdot w_{n}\right)$. Continue this process to show that y is represented as a finite sum $\Sigma_{n \geq 1} v_{n} w_{n}$ where w_{n} are all torsion elements. Now the result follows by downward induction on the degree m of y.

Let X be a based $C W$-complex which is countable. Then it has an increasing filtration $*=X_{-1} \subset X_{0} \subset \cdots \subset X_{k} \subset \cdots$ of finite subcomplexes such that $\cup X_{k}=X$.

Lemma 11. Let X be a based countable CW-complex. Then

$$
\varliminf_{k}^{\lim ^{1}}\left(\underset{m}{\oplus} \operatorname{Tor} B P^{m} X_{k}\right)=0 .
$$

Proof. The inverse system $\left\{\underset{m \geq 0}{\oplus} \operatorname{Tor} B P^{m} X_{k}\right\}$ satisfies the Mittag-Leffler condition since each abelian group $\underset{m \geq 0}{\oplus} \operatorname{Tor} B P^{m} X_{k}$ is finite. Therefore the inverse system $\left\{\left(B P^{*} \otimes \underset{m \geq 0}{\oplus} \operatorname{Tor} B P^{m} X_{k}\right)\right\}$ satisfies the Mittag-Leffler condition, too. This implies that $\left.\underset{k}{\lim } B P^{*} \otimes \underset{m \geq 0}{(\underset{\sim}{*}} \operatorname{Tor} B P^{m} X_{k}\right)=0$. On the other hand, Proposition 10 says that the natural morphism $B P^{*} \otimes\left(\underset{m \geq 0}{\oplus} \operatorname{Tor} B P^{m} X_{k}\right) \rightarrow \underset{m}{\oplus} \operatorname{Tor} B P^{m} X_{k}$

Let $C_{n} Y$ denote the cokernel of the morphism $g_{n}: \underset{m}{\oplus}$ Tor $B P^{m} Y \rightarrow$ \oplus_{m} Tor $B P\langle n\rangle^{m} Y$. If Y is a based finite $C W$-complex, then the abelian group $C_{n} Y$ is finite by virtue of (2.8). As an immediate result we have

Corollary 12. Let X be a based countable $C W$-complex. Then

$$
{\underset{k}{\lim }}^{1}\left(\oplus \operatorname{Tor} B P\langle n\rangle^{m} X_{k}\right)=0 \quad \text { for each } \quad n .
$$

Let E be an associative $B P$-module spectrum. Then we can form a $C W$ spectrum $v_{n}^{-1} E$ defined to be the mapping telescope $\underset{\vec{l}}{\lim \Sigma^{-2 k\left(p^{n}-1\right)} E \text { of the map }, ~}$ $\cdot v_{n}: E \rightarrow \Sigma^{-2\left(p^{n}-1\right)} E$. This is a weak associative $B P$-module spectrum such that $\left(v_{n}^{-1} E\right)_{*} X \cong v_{n}^{-1} B P_{*_{B P}} \otimes E_{*} X$. Particularly $v_{n}^{-1} B P\langle n\rangle$ is denoted by $E(n)$.

Theorem 13. Let X be a based countable $C W$-complex and t be a fixed integer with $0 \leq t<2(p-1)$. Assume that $H_{m} X \otimes Q=0$ for all m with $m \equiv t$ $\bmod 2(p-1)$. Then $\left(v_{n}^{-1} B P\right)^{m+1} X$ and $E(n)^{m+1} X$ are both Hausdorff when $m \equiv t$
$\bmod 2(p-1)$.
Proof. Set $E=V_{k} \Sigma^{-2 k\left(p^{n-1}\right)} B P$ or $\vee_{k} \Sigma^{-2 k\left(p^{n-1}\right)} B P\langle n\rangle$. Then $\pi_{m} \nabla E=0$ unless $m \equiv 0 \bmod 2(p-1)$. Thus our hypothesis on X implies that $\nabla E_{m} X \otimes Q$ $=0$ if $m \equiv t \bmod 2(p-1)$. By means of Corollary 6 we see that $\nabla^{2} E^{m+1} X$ is Hausdorff if $m \equiv t \bmod 2(p-1)$. By virtue of Lemma 11 and Corollary 12 we now apply Theorem 9 to obtain that $E^{m+1} X$ is Hausdorff when $m \equiv t \bmod 2(p-1)$.

References

[1] J.F. Adams: A variant of E.H. Brown's representability theorem, Topology 10 (1971), 185-198.
[2] J.F. Adams: Stable homotopy and generalized homology, Chicago Lecture in Math., Univ. of Chicago Press, 1974.
[3] S. Araki and Z. Yosimura: A spectral sequence associated with a cohomology theory of infinite CW-complexes, Osaka J. Math. 9 (1972), 351-365.
[4] A.K. Bousfield: Cohomology localizations of spaces and spectra, to appear.
[5] M. Hikida: Relations between several Adams spectral sequences, Hiroshima Math. J. 19 (1988), to appear
[6] M. Huber and W. Meier: Cohomology theories and infinite CW-complexes, Comment. Math. Helv. 53 (1978), 239-257.
[7] W.S. Wilson: The Ω-spectrum for Brown-Peterson cohomology Part II, Amer. J. Math. 97 (1975), 101-123.
[8] Z. Yosimura: On cohomology theories of infinite $C W$-complexes I, Publ. Res. Inst. Math. Sci. 8 (1972), 295-310.
[9] Z. Yosimura: Universal coefficient sequences for cohomology theories of CW-spectra II, Osaka J. Math. 16 (1979), 201-217.
[10] E.C. Zeeman: On direct sums of free cycles, J. London Math. Soc. 30 (1955), 195-212.

