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Abstract

Background Glioblastoma multiforme (GBM) is the most lethal primary brain tumor for which novel therapies are needed.
Recently, chimeric antigen receptor (CAR) T cell therapy has been shown to be effective against GBM, but it is a personal-
ized medicine and requires high cost and long time for the cell production. CAR-transduced natural killer (NK) cells can be
used for "off-the-shelf" cellular immunotherapy because they do not induce graft-versus-host disease. Therefore, we aimed
to analyze the anti-GBM effect of CAR-T or NK cells targeting B7-H3, which is known to be highly expressed in GBM.
Methods CAR-T cells targeting B7-H3 were generated using previously reported anti-B7-H3 scFv sequences. Cord blood
(CB)-derived NK cells transduced with the B7-H3 CAR were also generated. Their anti-GBM effect was analyzed in vitro.
The antitumor effect of intracranial injection of the B7-H3 CAR-T or NK cells was investigated in an in vivo xenograft
model with patient-derived GBM cells.

Results Both B7-H3 CAR-T cells and CAR-NK cells exhibited marked cytotoxicity against patient-derived GBM cells
in vitro. Furthermore, intracranial injection of CAR-T cells and CAR-NK cells targeting B7-H3 resulted in a significant
antitumor effect against patient-derived GBM xenografts.

Conclusion Not only CAR-T cells but also CB-derived CAR-NK cells targeting B7-H3 may have the potential to eliminate
GBM cells.
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Introduction

Glioblastoma multiforme (GBM) is one of the most deadly
primary brain tumors, with an overall survival rate of
approximately 15-20 months despite standard treatments
such as surgery, radiotherapy, and chemotherapy [1]. This
highlights the urgent need for novel therapies to improve
patient outcomes. Chimeric antigen receptor (CAR) T cell
therapy for brain tumors is being investigated extensively
and has demonstrated clinical efficacy in early phase clini-
cal trials [2]. Targets such as interleukin-13 receptor alpha
2 (IL13Ra2), epidermal growth factor receptor variant I1I
(EGFRvVIII), human epidermal growth factor receptor 2
(HER2), GD2, CD70, CD147, EphA2, and B7-H3 are
being investigated in clinical trials [2-8]. In particular,
B7-H3 is considered an ideal target for CAR-T cell ther-
apy, as it is highly expressed in over 70% of GBM samples
[9, 10] but not in normal brain tissue [11]. Several CAR-T
cells targeting B7-H3 have been developed [12-15] and
are undergoing clinical trials.

Despite its potential, CAR-T cell therapy faces chal-
lenges such as high cost and long cell production time.
Unlike T cells, natural killer (NK) cells do not induce
graft-versus-host disease (GVHD) when infused into allo-
geneic donors and are not associated with cytokine release
syndrome or immune effector cell-associated neurotoxic-
ity syndrome, which are adverse effects of CAR-T cell
therapy [16, 17]. CAR-NK cell therapy targeting CD19 has
been shown to be clinically effective in studies of B-cell
malignancies [18, 19]. Several preclinical studies and one
clinical trial have been conducted on CAR-NK cell ther-
apy against GBM [20]. NK92 cell lines transduced with
CARs recognizing EGFRVIII [21, 22], HER2 [20, 23, 24],
and B7-H3 [25] have demonstrated efficacy in preclinical
GBM models. Human peripheral blood-derived CAR-NK
cells targeting EGFRVIII or CD73 and GD2 have shown
efficacy in GBM xenograft models [26, 27]. CB-derived
CAR-NK cells targeting B7-H3 have shown in vitro cyto-
toxicity against GBM cells [28]. In this study, we aimed to
develop CB-derived CAR-NK cells targeting B7-H3 and
investigate their in vivo antitumor effects after intracra-
nial injection into immunodeficient mice engrafted with
patient-derived GBM cells.

Material and Methods
Cell Lines and Cord Blood Cells

The U87MG cell lines (RRID: CVCL_0022) were pur-
chased from the American Type Culture Collection
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(Manassas, VA, USA). These cells were cultured in
DMEM high glucose media (Thermo Fisher Scientific,
Waltham, MA, USA), supplemented with 10% fetal bovine
serum (FBS). Patient-derived tumor cell lines were estab-
lished and maintained in a serum-free culture medium that
included epidermal growth factor (EGF) and basic fibro-
blast growth factor, as detailed in our previous study [9].

Cord blood (CB) cells were sourced from the Kinki Cord
Blood Bank and Hyogo Cord Blood Bank, after obtaining
informed consent. The conduct of this study was approved
by the institutional review boards of Osaka University
Graduate School of Medicine, Kinki Cord Blood Bank, and
Hyogo Cord Blood Bank.

Animal Experiments

Six-week-old male NOD/Shi-scid IL2Rynull (NOG) mice
were purchased from the Central Institute for Experimental
Animals, Kawasaki, Japan. The conduct of animal experi-
ments was sanctioned by the Institutional Animal Care
and Use Committee at Osaka University Medical School
(Approval numbers 03—071-000 and 04-028-002). All ani-
mal-related procedures were performed in strict adherence
to the guidelines of the Animal Experiment Committee at
Osaka University.

Flow Cytometry and Sorting

To assess the expression of B7-H3 on the surface of the
target cell line, cells were stained with an anti-B7-H3 anti-
body (MIH42; BioLegend, San Diego, CA, USA, RRID:
AB_10720987) in phosphate-buffered saline supplemented
with 1% FBS at 4 °C for 30 min. The cells were then
washed and incubated with a PE-conjugated goat antimouse
IgG secondary antibody (Poly4053; BioLegend, RRID:
AB_315010) at 4 °C for an additional 30 min. Following
another washing step, the cells were analyzed using a BD
FACS Canto II, BD FACS Celesta, or FACS Aria II flow
cytometer (BD Biosciences, Franklin Lakes, NJ, USA). Flow
cytometry data were processed using the FlowJo software
(BD Biosciences, RRID: SCR_008520). The antibodies uti-
lized for staining included anti-CD3 Cy7PE (UCHT1; Bio-
Legend, RRID: AB_439781), anti-CD56 PE (HCD56; Bio-
Legend, RRID: AB_604101), and goat antihuman F(ab')2
Alexa Fluor 647 (109-607-003; Jackson ImmunoResearch,
West Grove, PA, USA, RRID: AB_2337903). Cetuximab
(Merck Biopharma, Darmstadt, Germany), targeting the
epidermal growth factor receptor (EGFR), was biotinylated
using the Biotin Labeling Kit (Dojindo, Kumamoto, Japan)
for staining purposes.
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Generation of B7-H3-Knockout (KO) US87MG
Cells

We established B7-H3-KO U87MG cells using the
CRISPR-Cas9 system. crRNA was synthesized using the
design tool from Integrated DNA Technologies (IDT, Cor-
alville, IA, USA). The selected target sequence was AGT
GCCACCACTGGGTCTTC. A ribonucleoprotein (RNP)
complex was prepared by combining crRNA, tracrRNA
(IDT, catalog no. 1072533), and TrueCut Cas9 protein V2
(Thermo Fisher Scientific). This RNP complex was then
electroporated into US7MG cells (5 x 10°) using the NEPA
21 electroporator (Nepa Gene, Ichikawa, Japan) [29]. Cells
devoid of B7-H3 expression were isolated using FACS.

Development of Chimeric Antigen T Cells
targeting B7-H3

The anti-B7-H3 chimeric antigen receptor (B7-H3 CAR)
was developed using the anti-B7-H3 single-chain vari-
able fragment (scFv) BRCA84D (MG27A; US patent
#8,802,091 B2) from MacroGenics Inc. (Rockville, MD,
USA). As a control, we also created CAR-T cells target-
ing CD19 using the reported sequences of an anti-CD19
monoclonal antibody [30]. The isolated cDNAs for the
variable regions of the x light chain and heavy chain were
combined with the transmembrane domain of CD8a, cyto-
plasmic domains of CD28 and CD3(, T2A peptides, and
truncated EGFR sequence through overlapping PCR [31].
The B7-H3 CAR construct was then inserted into a ret-
roviral vector. To produce viral supernatants, 293 T cells
(RRID: CVCL_0063) were co-transfected with the retro-
viral vector gag-pol and VSV-G envelope plasmids using
Lipofectamine 2000 reagent (Thermo Fisher Scientific).
Supernatants containing the retrovirus were collected after
48 and 72 h.

Activated T cells were then subjected to retroviral trans-
duction with the B7-H3 CAR construct. Peripheral blood
mononuclear cells (PBMCs) from a single donor were
initially activated using anti-CD3 (OKT3; eBioscience,
San Diego, CA, USA; RRID: AB_468854) and anti-CD28
(CD28.2; eBioscience; RRID: AB_468926) antibodies and
cultured in X-VIVO 15 medium (LONZA, Basel, Swit-
zerland) supplemented with 5% human serum AB (Gem-
iniBio, West Sacramento, CA, USA). On the following
day, recombinant human IL-2 (Shionogi Pharma, Osaka,
Japan) was added to the cultures at a final concentration
of 100 IU/mL. Cells were harvested 2 days post-activation
and subjected to retroviral transduction using RetroNectin
(Takara Bio, Kusatsu, Japan). Non-treated 48 well plates

were coated with 20 pg/ml RetroNectin. The retroviral titer
was 3.5 x 10° cfu/ml.

After transduction, the cells were maintained in culture
medium with 100 IU/mL IL-2 for 7 days. The efficiency of
CAR transduction was assessed by staining the cells with a
biotin-conjugated anti-tEGFR antibody and streptavidin-PE
(BioLegend).

Development of CAR-NK Cells Targeting
B7-H3 (B7-H3 CAR-NK cells)

K562 cells, engineered to express membrane-bound IL-15
and 4-1BB ligand (K562-mb15-41BBL cells; RRID: CVCL_
C7IM), were provided by St. Jude Children’s Research Hos-
pital [32]. The cDNAs encoding the B7-H3 variable regions
were linked with CD28 and CD3{ cDNAs through overlap-
ping PCR. Additionally, T2A-IL-15 cDNA was integrated
into the CAR construct. T cells were eliminated using CD3
MicroBeads (Miltenyi Biotec, Bergisch Gladbach, Ger-
many). The T cell-depleted CB mononuclear cells were acti-
vated with 100 Gy-irradiated K562-mb15-41BBL cells and
cultured in the presence of 20 IU/mL IL-2. After 1 week, a
retrovirus carrying the B7-H3 CAR-T2A-IL-15 cDNA was
introduced into CB-derived NK cells using RetroNectin. The
retronectin concentration was 20 pg/ml. Retroviral tier was
4.5x10° cfu/ml. Subsequently, the cells were re-exposed
to 100 Gy-irradiated K562-mb15-41BBL cells, cultured
for another week, and then prepared for subsequent experi-
ments. The efficiency of CAR transduction was assessed by
staining the cells with a goat antihuman F(ab')2 Alexa Fluor
647 antibody.

Cytokine Release Assays

Cytokine expression by B7-H3 CAR-T or control T cells,
co-cultured with U87MG and U7MG B7-H3 KO cells, was
evaluated using Quantikine ELISA kits for IL-2 and IFN-y
(R&D Systems Inc., Minneapolis, MN, USA). Effector and
target cells, at a 1:1 effector/target (E/T) ratio (1 X 10° each),
were co-cultured for 24 h in triplicate wells.

Cytotoxicity Assay

The ability of CAR-NK cells to lyse tumor cells was deter-
mined using the °'Cr release assay. Briefly, 1 x 10° target
cells were labeled with 200 pCi of [*'Cr] sodium chro-
mate (GE Healthcare, Chicago, IL, USA) for 2 h at 37 °C.
The labeled target cells (1 X 10%) were then incubated with
effector cells for 4 h at E/T ratios of 0.8, 2.4, and 7.2. The
amount of >'Cr released in the harvested supernatants was
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measured using a gamma counter. Maximum and sponta-
neous >!Cr release was ascertained by incubating 1x 10*
labeled targets in 1% Triton X-100 and culture medium,
respectively, in triplicate wells. The percentage of specific
lysis was calculated using the following formula: [(specific
ICr release — spontaneous 31Cr release) / (maximum °'Cr
release — spontaneous >Cr release)] x 100.

In Vivo Xenograft Murine Models

We established orthotopic patient-derived xenografts using
NOD/Shi-scid IL2Ry-KO mice (NOG). The mice were anes-
thetized with isoflurane, after which a skull burr hole was
created using a drill. Subsequently, 2x 10> GDC519 cells,
labeled with GFP/luciferase, were injected into the right
cerebrum using a stereotactic injector (Muromachi Kikai,
Osaka, Japan). The injection site in the cerebrum was located
1 mm anterior to the bregma, 2 mm to the right, and 2 mm
deep. Five-day post-tumor injection, tumor engraftment in
the head was confirmed using the in vivo imaging system
(IVIS) (PerkinElmer Inc., Waltham, MA, USA) following
the administration of 150 pL of luciferin (Promega, Madi-
son, WI, USA). Six days after the tumor injections, 2 X 100
B7-H3 CAR-T cells or B7-H3 CAR-NK cells were injected

[ VH [ VL [ CD28 | CD3Z | T2A [ tEGFR |

% of MAX

at the same site. Tumor volume was assessed weekly using
IVIS, and the mice were ethically euthanized when they dis-
played neurological symptoms. In the analysis, we randomly
assigned mice to the treatment or control group.

Statistical Analysis

Statistical analysis was conducted using the JMP soft-
ware (version 16.0; SAS Institute, Cary, NC, USA; RRID:
SCR_008567). An unpaired two-tailed Student's 7-test was
utilized for comparisons between groups. Results with
P <0.05 were considered statistically significant.

Results

B7-H3 CAR-T cells exhibited anti-GBM effect in vitro
and in vivo

We constructed B7-H3 CAR consisting of scFv derived
from a previously reported anti-B7-H3 monoclonal antibody
BRCAS84D (MG27A) [33] and the cytoplasmic domains
of CD28 and CD3(, and transduced the B7-H3 CAR
into human T cells (Fig. 1A, B). The B7-H3 CAR-T cells

T
10 0 10 10 10 -10° 0 lﬁ} 10 10°

U87MG B7-H3-KO GDC519
B D U87MG U87MG
wild-type B7-H3-KO wild-type B7-H3-KO
30000 % % 30000 4000 * k 4000
10° 3 — |
] 90.8
'y E 20000 20000 ’_g
¥ ~
g 3 — gzooo 2000
a g > =
o d E 10000 10000 3
CRI; o 10° 104 10° ol o - - o | Y
Control CAR Control CAR Control CAR Control CAR

Fig. 1 Generation of B7-H3 CAR-T cells. (A) CAR construct target-
ing B7-H3. VH: variable regions of heavy chain, VL: variable region
of light chain. (B) A representative flow cytometric analysis showing
B7-H3 CAR transduction efficiency in T cells 7 days after transduc-
tion. (C) Flow cytometric analysis of B7-H3 expression in the indi-
cated cells. The blue histogram indicates the isotype control. (D)
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Secretion of IFN-y and IL-2 by B7-H3 CAR-T cells or CD19 CAR-T
cells (used as a control targeting an irrelevant antigen) after co-cul-
ture with either wild-type or B7-H3-knockout (KO) U87MG cells. A
representative result from three independent experiments is shown.
Data are expressed as mean+SEM. *P<0.05 and **P <0.01, deter-
mined by a two-tailed Student’s #-test
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produced IFN-y and IL-2 when co-cultured with U§7MG
cells but not when co-cultured with B7-H3-deficient
U87MG cells, which were generated using CRISPR-Cas9
(Fig. 1C, D).

We then evaluated the antitumor effects of B7-H3 CAR-T
cells using orthotopic xenografts with GDC519 cells, estab-
lished from a patient’s GBM tumor cells [9]. We injected
GDC519 cells, expressing GFP and luciferase, into the
brains of mice (Fig. 2A). After confirming tumor engraft-
ment by IVIS imaging on day 5 following tumor cell injec-
tion, we administered B7-H3 CAR-T cells or control CAR-T
cells into the brain on day 6 (Fig. 2B). Tumor burden was
significantly reduced in mice treated with B7-H3 CAR-T
cells compared with that in mice treated with control CAR-T
cells (Fig. 2C). The survival of the mice treated with the
B7-H3 CAR-T cells was significantly longer than that of
mice treated with the control T cell (Fig. 2D). No apparent
toxicity was observed in mice treated with the B7-H3 CAR-T
cells or control T cells.

A
I.C.injection  I.C. injection
GDiSlS CATTS
day-6 day0 day7 weekly
imaging
B

Fig.2 Antitumor effect of B7-H3 CAR-T cells in vivo. (A) Experi-
mental design. i.c.: intracranial injection. (B) Bioluminescence imag-
ing of mice treated with either B7-H3 or CD19 CAR-T cells (n=5
per group). Avg.=average, p=photons; sr=steradian, Min=mini-
mum. (C) Quantification of whole body luminescence. (D) Survival

Cord blood-derived NK cells transduced
with B7-H3 CAR exerted anti-GBM effect
in vitro

B7-H3 CAR-NK cells and secreting IL-15 were developed
according to the method described in previous studies
(Fig. 3A) [17, 23]. Briefly, CB mononuclear cells were
stimulated with irradiated K562 cells expressing 4-1BB
ligand and membrane-bound IL-15, and cultured in a
medium supplemented with IL-2. After 7 days of cul-
ture, the cells were retrovirally transduced with B7-H3
CAR-T2A-IL-15 and then restimulated with K562-stim-
ulator cells. After 2 weeks of culture, NK cell expansion
was more than 80-fold (Fig. 3B). The efficiency of CAR
transduction was over 80% (Fig. 3C). B7-H3 CAR-NK
cells exhibited significant cytotoxicity against U§7MG
cells and the patient-derived GBM cell line GDC519, but
not against B7-H3-KO U87MG cells (Fig. 3D).
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curves of mice treated with either B7-H3 or CD19 CAR-T cells. T
cells for these experiments were derived from a single donor. Data are
expressed as mean+ SEM. *P <0.05 and **P <0.01, determined by a
two-tailed Student’s #-test (C) and log-rank test (D)
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Fig.3 Generation of B7-H3 CAR-NK cells. (A) The construct used
to generate B7-H3 CAR-NK cells. (B) Growth curve of NK cells
transduced with the anti-B7-H3 CAR-NK construct or the CD19
CAR (C) A representative flow cytometric analysis of CD56 and CD3
expression and CAR transduction efficiency in B7-H3 CAR-NK cells

A
1.C. injection 1.C. injection
T5-19 CAR-NKs
day-6 day0 day7 :"[f:gki'r‘]/g
B
Day B7-H3 CAR-NK CD19 CAR-NK
-1
7
14
21
28
35

Fig.4 Antitumor effect of B7-H3 CAR-NK cells in a mouse xeno-
graft model. (A) Experimental design. (B) Bioluminescence imag-
ing of mice receiving either B7-H3 or CD19 CAR-NK (control)
cells. Avg.=average, p=photons, sr=steradian, Min=minimum.
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7 days after transduction. (D) >'Cr release assay to evaluate specific
target cell lysis by the B7-H3 CAR-NK cells versus control CAR-
NK cells (CD19 CAR-NK cells), performed in technical triplicates.
E/T =eftector/target ratio
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(C) Quantification of whole body luminescence. Data are expressed
as mean + SEM. *P <0.05 and **P <0.01, determined by a two-tailed
Student’s r-test
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Cord blood-derived NK cells transduced
with B7-H3 CAR exerted anti-GBM effect
in vivo

We injected GDC519 cells, expressing GFP and luciferase,
into the mouse brain. After confirming tumor engraftment
using VIS imaging on day 5 after tumor cell injection, we
administered B7-H3 CAR-NK cells or the control CAR-
NK cells into the brain on day 6 (Fig. 4A). Tumor bur-
den was significantly reduced in mice treated with B7-H3
CAR-NK cells compared with that in mice treated with the
control CAR-NK cells (Fig. 4B, C).

Discussion

The efficacy of cord blood CAR-NK cells has been demon-
strated in clinical trials against hematological cancers [18,
34, 35]. The anti-GBM efficacy of CAR-NK cells has been
previously documented [20-24, 26-28, 36, 37]. B7-H3
has been reported to be a promising target for CAR-T/NK
cells [9, 13, 14, 28, 38, 39]. Consistent with these previous
reports, in this study we demonstrated that CB-derived
B7-H3 CAR-NK cells have the potential to eliminate
GBM cells in vivo using a GBM patient-derived xeno-
graft model, although it remains unclear whether treatment
with the B7-H3 CAR-NK cells improves the survival of
the mice and needs to be clarified in the future. While
several previous preclinical experiments have used com-
mercially available GBM cell lines such as U§7MG and
U251 [21, 26, 27, 37], we used a patient-derived xenograft
model, which more accurately reflects the characteristics
of patient tumors [40, 41], similar to some previous studies
[20, 22, 25, 36].

Although we did not directly compare the efficacy of
CAR-T cells and CAR-NK cells targeting B7-H3, the
results of the in vivo xenograft model suggested that the
effect of CAR-NK cells was modest compared to CAR-T
cells. The duration of in vivo persistence of CAR-NK cells
has been reported to be shorter than that of CAR-T cells
[42], although we did not investigate this. The potential
of in vivo persistence of CAR-NK cells needs to be clari-
fied in the future. In addition, more extensive analysis of
the phenotypes and biological activities of CAR-NK cells
will be required in the future. Furthermore, the toxicity of
B7-H3 CAR-NK cells is difficult to study in a xenograft
model and will need to be tested in syngeneic GBM mod-
els. It may be important to develop methods to improve the
antitumor efficacy of CAR-NK cell therapy against GBM.
Regulation of the tumor microenvironment is important to
enhance the antitumor efficacy of cancer immunotherapy

including CAR-T cell therapy [43-45]. For example,
the interaction between tumor-associated macrophages
(TAMs) and T cells has been suggested by single-cell
RNA-seq analysis of GBM samples [46]. Regulation of
macrophages and other cell types in the tumor microenvi-
ronment will also be important to enhance the efficacy of
CAR-NK cells. However, the interaction between CAR-NK
cells and other immune cells present in the tumor micro-
environment cannot be analyzed in the xenograft model
using immunodeficient mice. Future studies using murine
CAR-T/NK cells in syngeneic murine GBM models are
needed. The limitation of this study is that we performed
the CAR-T/NK cell in vivo experiment using only a single
donor-derived cells. Future studies using multiple donor
cord blood are needed. In addition, we did not analyze the
phenotype of NK cells before and after CAR transduction.
Since the NK cell population contains several subsets with
different potentials [47], the character of B7-H3 CAR-NK
cells should be clarified in the future.

In conclusion, CB-derived B7-H3 CAR-NK cells dem-
onstrated an antitumor effect against GBM in a xenograft
model generated with patient-derived GBM cells, although
more detailed analysis of the B7-H3 CAR-NK cells and their
improvement are needed in the future.
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