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Abstract
Background Glioblastoma multiforme (GBM) is the most lethal primary brain tumor for which novel therapies are needed. 
Recently, chimeric antigen receptor (CAR) T cell therapy has been shown to be effective against GBM, but it is a personal-
ized medicine and requires high cost and long time for the cell production. CAR-transduced natural killer (NK) cells can be 
used for "off-the-shelf" cellular immunotherapy because they do not induce graft-versus-host disease. Therefore, we aimed 
to analyze the anti-GBM effect of CAR-T or NK cells targeting B7-H3, which is known to be highly expressed in GBM.
Methods CAR-T cells targeting B7-H3 were generated using previously reported anti-B7-H3 scFv sequences. Cord blood 
(CB)-derived NK cells transduced with the B7-H3 CAR were also generated. Their anti-GBM effect was analyzed in vitro. 
The antitumor effect of intracranial injection of the B7-H3 CAR-T or NK cells was investigated in an in vivo xenograft 
model with patient-derived GBM cells.
Results Both B7-H3 CAR-T cells and CAR-NK cells exhibited marked cytotoxicity against patient-derived GBM cells 
in vitro. Furthermore, intracranial injection of CAR-T cells and CAR-NK cells targeting B7-H3 resulted in a significant 
antitumor effect against patient-derived GBM xenografts.
Conclusion Not only CAR-T cells but also CB-derived CAR-NK cells targeting B7-H3 may have the potential to eliminate 
GBM cells.
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Introduction

Glioblastoma multiforme (GBM) is one of the most deadly 
primary brain tumors, with an overall survival rate of 
approximately 15–20 months despite standard treatments 
such as surgery, radiotherapy, and chemotherapy [1]. This 
highlights the urgent need for novel therapies to improve 
patient outcomes. Chimeric antigen receptor (CAR) T cell 
therapy for brain tumors is being investigated extensively 
and has demonstrated clinical efficacy in early phase clini-
cal trials [2]. Targets such as interleukin-13 receptor alpha 
2 (IL13Rα2), epidermal growth factor receptor variant III 
(EGFRvIII), human epidermal growth factor receptor 2 
(HER2), GD2, CD70, CD147, EphA2, and B7-H3 are 
being investigated in clinical trials [2–8]. In particular, 
B7-H3 is considered an ideal target for CAR-T cell ther-
apy, as it is highly expressed in over 70% of GBM samples 
[9, 10] but not in normal brain tissue [11]. Several CAR-T 
cells targeting B7-H3 have been developed [12–15] and 
are undergoing clinical trials.

Despite its potential, CAR-T cell therapy faces chal-
lenges such as high cost and long cell production time. 
Unlike T cells, natural killer (NK) cells do not induce 
graft-versus-host disease (GVHD) when infused into allo-
geneic donors and are not associated with cytokine release 
syndrome or immune effector cell-associated neurotoxic-
ity syndrome, which are adverse effects of CAR-T cell 
therapy [16, 17]. CAR-NK cell therapy targeting CD19 has 
been shown to be clinically effective in studies of B-cell 
malignancies [18, 19]. Several preclinical studies and one 
clinical trial have been conducted on CAR-NK cell ther-
apy against GBM [20]. NK92 cell lines transduced with 
CARs recognizing EGFRvIII [21, 22], HER2 [20, 23, 24], 
and B7-H3 [25] have demonstrated efficacy in preclinical 
GBM models. Human peripheral blood-derived CAR-NK 
cells targeting EGFRvIII or CD73 and GD2 have shown 
efficacy in GBM xenograft models [26, 27]. CB-derived 
CAR-NK cells targeting B7-H3 have shown in vitro cyto-
toxicity against GBM cells [28]. In this study, we aimed to 
develop CB-derived CAR-NK cells targeting B7-H3 and 
investigate their in vivo antitumor effects after intracra-
nial injection into immunodeficient mice engrafted with 
patient-derived GBM cells.

Material and Methods

Cell Lines and Cord Blood Cells

The U87MG cell lines (RRID: CVCL_0022) were pur-
chased from the American Type Culture Collection 

(Manassas, VA, USA). These cells were cultured in 
DMEM high glucose media (Thermo Fisher Scientific, 
Waltham, MA, USA), supplemented with 10% fetal bovine 
serum (FBS). Patient-derived tumor cell lines were estab-
lished and maintained in a serum-free culture medium that 
included epidermal growth factor (EGF) and basic fibro-
blast growth factor, as detailed in our previous study [9].

Cord blood (CB) cells were sourced from the Kinki Cord 
Blood Bank and Hyogo Cord Blood Bank, after obtaining 
informed consent. The conduct of this study was approved 
by the institutional review boards of Osaka University 
Graduate School of Medicine, Kinki Cord Blood Bank, and 
Hyogo Cord Blood Bank.

Animal Experiments

Six-week-old male NOD/Shi-scid IL2Rγnull (NOG) mice 
were purchased from the Central Institute for Experimental 
Animals, Kawasaki, Japan. The conduct of animal experi-
ments was sanctioned by the Institutional Animal Care 
and Use Committee at Osaka University Medical School 
(Approval numbers 03–071-000 and 04–028-002). All ani-
mal-related procedures were performed in strict adherence 
to the guidelines of the Animal Experiment Committee at 
Osaka University.

Flow Cytometry and Sorting

To assess the expression of B7-H3 on the surface of the 
target cell line, cells were stained with an anti-B7-H3 anti-
body (MIH42; BioLegend, San Diego, CA, USA, RRID: 
AB_10720987) in phosphate-buffered saline supplemented 
with 1% FBS at 4  °C for 30  min. The cells were then 
washed and incubated with a PE-conjugated goat antimouse 
IgG secondary antibody (Poly4053; BioLegend, RRID: 
AB_315010) at 4 °C for an additional 30 min. Following 
another washing step, the cells were analyzed using a BD 
FACS Canto II, BD FACS Celesta, or FACS Aria II flow 
cytometer (BD Biosciences, Franklin Lakes, NJ, USA). Flow 
cytometry data were processed using the FlowJo software 
(BD Biosciences, RRID: SCR_008520). The antibodies uti-
lized for staining included anti-CD3 Cy7PE (UCHT1; Bio-
Legend, RRID: AB_439781), anti-CD56 PE (HCD56; Bio-
Legend, RRID: AB_604101), and goat antihuman F(ab')2 
Alexa Fluor 647 (109–607-003; Jackson ImmunoResearch, 
West Grove, PA, USA, RRID: AB_2337903). Cetuximab 
(Merck Biopharma, Darmstadt, Germany), targeting the 
epidermal growth factor receptor (EGFR), was biotinylated 
using the Biotin Labeling Kit (Dojindo, Kumamoto, Japan) 
for staining purposes.
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Generation of B7‑H3‑Knockout (KO) U87MG 
Cells

We established B7-H3-KO U87MG cells using the 
CRISPR-Cas9 system. crRNA was synthesized using the 
design tool from Integrated DNA Technologies (IDT, Cor-
alville, IA, USA). The selected target sequence was AGT 
GCC ACC ACT GGG TCT TC. A ribonucleoprotein (RNP) 
complex was prepared by combining crRNA, tracrRNA 
(IDT, catalog no. 1072533), and TrueCut Cas9 protein V2 
(Thermo Fisher Scientific). This RNP complex was then 
electroporated into U87MG cells (5 ×  106) using the NEPA 
21 electroporator (Nepa Gene, Ichikawa, Japan) [29]. Cells 
devoid of B7-H3 expression were isolated using FACS.

Development of Chimeric Antigen T Cells 
targeting B7‑H3

The anti-B7-H3 chimeric antigen receptor (B7-H3 CAR) 
was developed using the anti-B7-H3 single-chain vari-
able fragment (scFv) BRCA84D (MG27A; US patent 
#8,802,091 B2) from MacroGenics Inc. (Rockville, MD, 
USA). As a control, we also created CAR-T cells target-
ing CD19 using the reported sequences of an anti-CD19 
monoclonal antibody [30]. The isolated cDNAs for the 
variable regions of the κ light chain and heavy chain were 
combined with the transmembrane domain of CD8α, cyto-
plasmic domains of CD28 and CD3ζ, T2A peptides, and 
truncated EGFR sequence through overlapping PCR [31]. 
The B7-H3 CAR construct was then inserted into a ret-
roviral vector. To produce viral supernatants, 293 T cells 
(RRID: CVCL_0063) were co-transfected with the retro-
viral vector gag-pol and VSV-G envelope plasmids using 
Lipofectamine 2000 reagent (Thermo Fisher Scientific). 
Supernatants containing the retrovirus were collected after 
48 and 72 h.

Activated T cells were then subjected to retroviral trans-
duction with the B7-H3 CAR construct. Peripheral blood 
mononuclear cells (PBMCs) from a single donor were 
initially activated using anti-CD3 (OKT3; eBioscience, 
San Diego, CA, USA; RRID: AB_468854) and anti-CD28 
(CD28.2; eBioscience; RRID: AB_468926) antibodies and 
cultured in X-VIVO 15 medium (LONZA, Basel, Swit-
zerland) supplemented with 5% human serum AB (Gem-
iniBio, West Sacramento, CA, USA). On the following 
day, recombinant human IL-2 (Shionogi Pharma, Osaka, 
Japan) was added to the cultures at a final concentration 
of 100 IU/mL. Cells were harvested 2 days post-activation 
and subjected to retroviral transduction using RetroNectin 
(Takara Bio, Kusatsu, Japan). Non-treated 48 well plates 

were coated with 20 μg/ml RetroNectin. The retroviral titer 
was 3.5 ×  106 cfu/ml.

After transduction, the cells were maintained in culture 
medium with 100 IU/mL IL-2 for 7 days. The efficiency of 
CAR transduction was assessed by staining the cells with a 
biotin-conjugated anti-tEGFR antibody and streptavidin-PE 
(BioLegend).

Development of CAR‑NK Cells Targeting 
B7‑H3 (B7‑H3 CAR‑NK cells)

K562 cells, engineered to express membrane-bound IL-15 
and 4-1BB ligand (K562-mb15-41BBL cells; RRID: CVCL_
C7IM), were provided by St. Jude Children’s Research Hos-
pital [32]. The cDNAs encoding the B7-H3 variable regions 
were linked with CD28 and CD3ζ cDNAs through overlap-
ping PCR. Additionally, T2A-IL-15 cDNA was integrated 
into the CAR construct. T cells were eliminated using CD3 
MicroBeads (Miltenyi Biotec, Bergisch Gladbach, Ger-
many). The T cell-depleted CB mononuclear cells were acti-
vated with 100 Gy-irradiated K562-mb15-41BBL cells and 
cultured in the presence of 20 IU/mL IL-2. After 1 week, a 
retrovirus carrying the B7-H3 CAR-T2A-IL-15 cDNA was 
introduced into CB-derived NK cells using RetroNectin. The 
retronectin concentration was 20 μg/ml. Retroviral tier was 
4.5 ×  106 cfu/ml. Subsequently, the cells were re-exposed 
to 100 Gy-irradiated K562-mb15-41BBL cells, cultured 
for another week, and then prepared for subsequent experi-
ments. The efficiency of CAR transduction was assessed by 
staining the cells with a goat antihuman F(ab')2 Alexa Fluor 
647 antibody.

Cytokine Release Assays

Cytokine expression by B7-H3 CAR-T or control T cells, 
co-cultured with U87MG and U87MG B7-H3 KO cells, was 
evaluated using Quantikine ELISA kits for IL-2 and IFN-γ 
(R&D Systems Inc., Minneapolis, MN, USA). Effector and 
target cells, at a 1:1 effector/target (E/T) ratio (1 ×  105 each), 
were co-cultured for 24 h in triplicate wells.

Cytotoxicity Assay

The ability of CAR-NK cells to lyse tumor cells was deter-
mined using the 51Cr release assay. Briefly, 1 ×  106 target 
cells were labeled with 200 μCi of  [51Cr] sodium chro-
mate (GE Healthcare, Chicago, IL, USA) for 2 h at 37 °C. 
The labeled target cells (1 ×  104) were then incubated with 
effector cells for 4 h at E/T ratios of 0.8, 2.4, and 7.2. The 
amount of 51Cr released in the harvested supernatants was 
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measured using a gamma counter. Maximum and sponta-
neous 51Cr release was ascertained by incubating 1 ×  104 
labeled targets in 1% Triton X-100 and culture medium, 
respectively, in triplicate wells. The percentage of specific 
lysis was calculated using the following formula: [(specific 
51Cr release − spontaneous 51Cr release) / (maximum 51Cr 
release − spontaneous 51Cr release)] × 100.

In Vivo Xenograft Murine Models

We established orthotopic patient-derived xenografts using 
NOD/Shi-scid IL2Rγ-KO mice (NOG). The mice were anes-
thetized with isoflurane, after which a skull burr hole was 
created using a drill. Subsequently, 2 ×  105 GDC519 cells, 
labeled with GFP/luciferase, were injected into the right 
cerebrum using a stereotactic injector (Muromachi Kikai, 
Osaka, Japan). The injection site in the cerebrum was located 
1 mm anterior to the bregma, 2 mm to the right, and 2 mm 
deep. Five-day post-tumor injection, tumor engraftment in 
the head was confirmed using the in vivo imaging system 
(IVIS) (PerkinElmer Inc., Waltham, MA, USA) following 
the administration of 150 μL of luciferin (Promega, Madi-
son, WI, USA). Six days after the tumor injections, 2 ×  106 
B7-H3 CAR-T cells or B7-H3 CAR-NK cells were injected 

at the same site. Tumor volume was assessed weekly using 
IVIS, and the mice were ethically euthanized when they dis-
played neurological symptoms. In the analysis, we randomly 
assigned mice to the treatment or control group.

Statistical Analysis

Statistical analysis was conducted using the JMP soft-
ware (version 16.0; SAS Institute, Cary, NC, USA; RRID: 
SCR_008567). An unpaired two-tailed Student's t-test was 
utilized for comparisons between groups. Results with 
P < 0.05 were considered statistically significant.

Results

B7‑H3 CAR ‑T cells exhibited anti‑GBM effect in vitro 
and in vivo

We constructed B7-H3 CAR consisting of scFv derived 
from a previously reported anti-B7-H3 monoclonal antibody 
BRCA84D (MG27A) [33] and the cytoplasmic domains 
of CD28 and CD3ζ, and transduced the B7-H3 CAR 
into human T cells (Fig. 1A, B). The B7-H3 CAR-T cells 

Fig. 1  Generation of B7-H3 CAR-T cells. (A) CAR construct target-
ing B7-H3. VH: variable regions of heavy chain, VL: variable region 
of light chain. (B) A representative flow cytometric analysis showing 
B7-H3 CAR transduction efficiency in T cells 7 days after transduc-
tion. (C) Flow cytometric analysis of B7-H3 expression in the indi-
cated cells. The blue histogram indicates the isotype control. (D) 

Secretion of IFN-γ and IL-2 by B7-H3 CAR-T cells or CD19 CAR-T 
cells (used as a control targeting an irrelevant antigen) after co-cul-
ture with either wild-type or B7-H3-knockout (KO) U87MG cells. A 
representative result from three independent experiments is shown. 
Data are expressed as mean ± SEM. *P < 0.05 and **P < 0.01, deter-
mined by a two-tailed Student’s t-test
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produced IFN-γ and IL-2 when co-cultured with U87MG 
cells but not when co-cultured with B7-H3-deficient 
U87MG cells, which were generated using CRISPR-Cas9 
(Fig. 1C, D).

We then evaluated the antitumor effects of B7-H3 CAR-T 
cells using orthotopic xenografts with GDC519 cells, estab-
lished from a patient’s GBM tumor cells [9]. We injected 
GDC519 cells, expressing GFP and luciferase, into the 
brains of mice (Fig. 2A). After confirming tumor engraft-
ment by IVIS imaging on day 5 following tumor cell injec-
tion, we administered B7-H3 CAR-T cells or control CAR-T 
cells into the brain on day 6 (Fig. 2B). Tumor burden was 
significantly reduced in mice treated with B7-H3 CAR-T 
cells compared with that in mice treated with control CAR-T 
cells (Fig. 2C). The survival of the mice treated with the 
B7-H3 CAR-T cells was significantly longer than that of 
mice treated with the control T cell (Fig. 2D). No apparent 
toxicity was observed in mice treated with the B7-H3 CAR-T 
cells or control T cells.

Cord blood‑derived NK cells transduced 
with B7‑H3 CAR exerted anti‑GBM effect 
in vitro

B7-H3 CAR-NK cells and secreting IL-15 were developed 
according to the method described in previous studies 
(Fig. 3A) [17, 23]. Briefly, CB mononuclear cells were 
stimulated with irradiated K562 cells expressing 4-1BB 
ligand and membrane-bound IL-15, and cultured in a 
medium supplemented with IL-2. After 7 days of cul-
ture, the cells were retrovirally transduced with B7-H3 
CAR-T2A-IL-15 and then restimulated with K562-stim-
ulator cells. After 2 weeks of culture, NK cell expansion 
was more than 80-fold (Fig. 3B). The efficiency of CAR 
transduction was over 80% (Fig. 3C). B7-H3 CAR-NK 
cells exhibited significant cytotoxicity against U87MG 
cells and the patient-derived GBM cell line GDC519, but 
not against B7-H3-KO U87MG cells (Fig. 3D).

Fig. 2  Antitumor effect of B7-H3 CAR-T cells in vivo. (A) Experi-
mental design. i.c.: intracranial injection. (B) Bioluminescence imag-
ing of mice treated with either B7-H3 or CD19 CAR-T cells (n = 5 
per group). Avg. = average, p = photons; sr = steradian, Min = mini-
mum. (C) Quantification of whole body luminescence. (D) Survival 

curves of mice treated with either B7-H3 or CD19 CAR-T cells. T 
cells for these experiments were derived from a single donor. Data are 
expressed as mean ± SEM. *P < 0.05 and **P < 0.01, determined by a 
two-tailed Student’s t-test (C) and log-rank test (D)
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Fig. 3  Generation of B7-H3 CAR-NK cells. (A) The construct used 
to generate B7-H3 CAR-NK cells. (B) Growth curve of NK cells 
transduced with the anti-B7-H3 CAR-NK construct or the CD19 
CAR (C) A representative flow cytometric analysis of CD56 and CD3 
expression and CAR transduction efficiency in B7-H3 CAR-NK cells 

7 days after transduction. (D) 51Cr release assay to evaluate specific 
target cell lysis by the B7-H3 CAR-NK cells versus control CAR-
NK cells (CD19 CAR-NK cells), performed in technical triplicates. 
E/T = effector/target ratio

Fig. 4  Antitumor effect of B7-H3 CAR-NK cells in a mouse xeno-
graft model. (A) Experimental design. (B) Bioluminescence imag-
ing of mice receiving either B7-H3 or CD19 CAR-NK (control) 
cells. Avg. = average, p = photons, sr = steradian, Min = minimum. 

(C) Quantification of whole body luminescence. Data are expressed 
as mean ± SEM. *P < 0.05 and **P < 0.01, determined by a two-tailed 
Student’s t-test
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Cord blood‑derived NK cells transduced 
with B7‑H3 CAR exerted anti‑GBM effect 
in vivo

We injected GDC519 cells, expressing GFP and luciferase, 
into the mouse brain. After confirming tumor engraftment 
using IVIS imaging on day 5 after tumor cell injection, we 
administered B7-H3 CAR-NK cells or the control CAR-
NK cells into the brain on day 6 (Fig. 4A). Tumor bur-
den was significantly reduced in mice treated with B7-H3 
CAR-NK cells compared with that in mice treated with the 
control CAR-NK cells (Fig. 4B, C).

Discussion

The efficacy of cord blood CAR-NK cells has been demon-
strated in clinical trials against hematological cancers [18, 
34, 35]. The anti-GBM efficacy of CAR-NK cells has been 
previously documented [20–24, 26–28, 36, 37]. B7-H3 
has been reported to be a promising target for CAR-T/NK 
cells [9, 13, 14, 28, 38, 39]. Consistent with these previous 
reports, in this study we demonstrated that CB-derived 
B7-H3 CAR-NK cells have the potential to eliminate 
GBM cells in vivo using a GBM patient-derived xeno-
graft model, although it remains unclear whether treatment 
with the B7-H3 CAR-NK cells improves the survival of 
the mice and needs to be clarified in the future. While 
several previous preclinical experiments have used com-
mercially available GBM cell lines such as U87MG and 
U251 [21, 26, 27, 37], we used a patient-derived xenograft 
model, which more accurately reflects the characteristics 
of patient tumors [40, 41], similar to some previous studies 
[20, 22, 25, 36].

Although we did not directly compare the efficacy of 
CAR-T cells and CAR-NK cells targeting B7-H3, the 
results of the in vivo xenograft model suggested that the 
effect of CAR-NK cells was modest compared to CAR-T 
cells. The duration of in vivo persistence of CAR-NK cells 
has been reported to be shorter than that of CAR-T cells 
[42], although we did not investigate this. The potential 
of in vivo persistence of CAR-NK cells needs to be clari-
fied in the future. In addition, more extensive analysis of 
the phenotypes and biological activities of CAR-NK cells 
will be required in the future. Furthermore, the toxicity of 
B7-H3 CAR-NK cells is difficult to study in a xenograft 
model and will need to be tested in syngeneic GBM mod-
els. It may be important to develop methods to improve the 
antitumor efficacy of CAR-NK cell therapy against GBM. 
Regulation of the tumor microenvironment is important to 
enhance the antitumor efficacy of cancer immunotherapy 

including CAR-T cell therapy [43–45]. For example, 
the interaction between tumor-associated macrophages 
(TAMs) and T cells has been suggested by single-cell 
RNA-seq analysis of GBM samples [46]. Regulation of 
macrophages and other cell types in the tumor microenvi-
ronment will also be important to enhance the efficacy of 
CAR-NK cells. However, the interaction between CAR-NK 
cells and other immune cells present in the tumor micro-
environment cannot be analyzed in the xenograft model 
using immunodeficient mice. Future studies using murine 
CAR-T/NK cells in syngeneic murine GBM models are 
needed. The limitation of this study is that we performed 
the CAR-T/NK cell in vivo experiment using only a single 
donor-derived cells. Future studies using multiple donor 
cord blood are needed. In addition, we did not analyze the 
phenotype of NK cells before and after CAR transduction. 
Since the NK cell population contains several subsets with 
different potentials [47], the character of B7-H3 CAR-NK 
cells should be clarified in the future.

In conclusion, CB-derived B7-H3 CAR-NK cells dem-
onstrated an antitumor effect against GBM in a xenograft 
model generated with patient-derived GBM cells, although 
more detailed analysis of the B7-H3 CAR-NK cells and their 
improvement are needed in the future.
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