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1. Introduction

We consider the periodic solutions of the Duffing equation which describes the
nonlinear forced oscillation:

(1.1) u’(t) + pu' (t) + ku(t) + e (t) = fo(t), t€R

where u, o are positive constants and « is a nonnegative constant, and f»(t) is a given
family of T-periodic external forces parameterized by A (> 0) which somehow rep-
resents the magnitude of fy. It is well-known that for any X there exists at least one
T-periodic solution of (1.1), and furthermore if the magnitude A is suitably small,
then this periodic solution is unique and asymptotically stable. As A increases,
we can observe by numerical computations that the solution loses its stability and
various bifurcation phenomena take place. In particular, the period-doubling bi-
furcations are observed as very important phenomena along the route toward a so
called “Chaos”. However, it is surprising that there have been no rigorous proofs
of existence of these bifurcation phenomena. Recently, Komatsu-Kano-Matsumura
[4] tried to detect a bifurcation phenomenon around a “linear probe” {(X,ux)}a>0
inserted into the product space (A, u), which is defined by

(12) { ux(t) := AU(t), U(t) : given T-periodic smooth function
: Fa(t) = w(2) + i (2) + wun (8) + @ (1)

Here we should note that u = wuy is a trivial solution of (1.1) corresponding to
fx for any A. Then, in the particular case U(t) = sin(2nt) (T = 1), studying the
linearized equation of (1.1) at u = uy

(1.3) V" (t) + pv' (t) + ko(t) + 3aX2U?(t)v(t) = 0

by the arguments of continued fractions, they showed that T-periodic solution bi-
furcates from at least three points of the probe {u)}>o under some condition on .
They also made a conjecture by numerical computations that there are countably
many bifurcation points of T-periodic solution. However, they could not obtain
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any results on period-doubling bifurcations. On the other hand, numerical compu-
tations in the case U(t) = sin(27t)+0.5, indicate that there might be countably many
bifurcation points of both T-periodic and 27T -periodic solutions. In this paper, we
shall try to explain these phenomena rigorously.

In fact, we show that for more general T-periodic functions U(t), only T-
periodic and 2T -periodic solutions can bifurcate from {uy}x>0, and under some
condition on u (see (2.2) below) there exist countably many bifurcation points of
T-periodic solution, and also do exist countably many bifurcation points of 27-
periodic solution (period-doubling bifurcations) except some particular cases. We
should emphasize that the condition (2.2) on p depends only on the number of zero
points of U over one period and their order, and that more zero points U has, less
restrictive is the condition on p, this somehow means, easier bifurcation phenomena
take place. We also show the asymptotic stability and instability of the trivial solu-
tion u) (t) alternates at each these bifurcation points. We further remark that the case
U(t) = sin(2nt) is really a particular one where only T-periodic solutions bifurcate
from {ux}x>0. The precise conditions and main Theorem are stated in Section 2.
In Section 3, we reformulate the problem in order to apply Crandall-Rabinowitz’s
Theorem [2] on bifurcation theory. In this process, eigenvalue problem of (1.3) plays
an essential role. In Section 4, we relate it to the Lyapunov exponent through the
Floquet Theory and show the properties of the Lyapunov exponent in making use
of the expansion theory by generalized eigen-functions established by Titschmarsh-
Kodaira. Finally from these properties and asymptotic analysis with respect to A,
which details are stated in Section 6, we prove main Theorem in Section 5.

2. Main Theorem

To state the main Theorem precisely, we assume that
(2.1)  U?(t) has N + 1 zero points {t;}, of n-th order on [to,to + T,

where tg < t; < -+ < ty = to+T. We define v = 1/(n + 2) and also define
S; = ftii_l |U(s)|ds. Then we have the following main theorem for the bifurcation
problem of periodic solution of (1.1) with (1.2).

Theorem 2.1. Suppose (2.1) and

N
2.2) g < T log (cot 1—/21> .
Then it holds the followings for the bifurcation solutions from the probe {uy}x>o.
(1)  There exist countably many bifurcation points, whose period is T or 2T. On

the other hand, mT -periodic (m > 3) solution does not bifurcate.
(2) Thecase N=1:



A BIFURCATION FOR THE DUFFING EQUATION 607

There exist \* and {\;}32, (A\* < Ao < A1--- — o0) such that the sequence of
bifurcation points for X > \* is coincident with {\;}5°,, where {\sm}, {Aam+1}
are T-periodic bifurcation points and {Agmi2}, {Aam+3} are period-doubling
bifurcation points. Moreover, it holds that if A\ € (Aam+1, Aam), then uy is
asymptotically stable, if A € (Aam,Aam1), then uy is unstable.

(3) Thecase N =2:
There exist countably many T-periodic bifurcation points, and also exist count-
ably many 2T-periodic bifurcation points except for the following two cases.
(i) When S; = S, the set of period-doubling bifurcation points is finite.
(ii) When S1/S: = (2p+1)/(2q+1) (p,q € N, S1 # S2), we assume instead

of (2.2),
(2.3) po Ly (1AL YIAR -4
: 2 ST 2 :
where

<~ . .2{cos(S1 + S2)A + cos(S; — Sa)Acos? v}
A = inf — .

A S VT
Then there also exist countably many period-doubling bifurcation points.
The stability of uy changes at any above bifurcation points.

(3) Thecase N > 3:
There exist countably many T-periodic bifurcation points. Furthermore, if

{S:}XN., are rationally independent, there also exist countably many period-
doubling bifurcation points. The stability of u) changes at any these bifurca-
tion points.

ReEMARK 1.  Throughout this paper, we use the notation “mT-periodic solu-
tion” (m € N) when the periodic solution has a period mT, but not any of T

(1<i<m-—1).

REMARK 2. If 8,/Sy # (2p+1)/(2¢ + 1) (p,q € N), it holds that A =
—2(1 4 cos? v7)/sin? vrr. Then we have

AEVIAPZA) g (et ).

1
og 3

which is consistent with the condition (2.2) .

ExampLE 1.  In the case U(t) = sin 2wt + 1, U2(t) has two zero points of forth
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order (N = 1, v = 1/6). Applying Theorem, if u/2 < log(2 + v/3), there exist
countably many both l-periodic and period-doubling bifurcation points.

ExampLE 2.  In the case U(t) = sin2nt + 0.5, U2(t) has three zero points of
second order, and S;/S, is not rational (N = 2, v = 1/4). Applying Theorem,
if 4/2 < 2log(1 + v/2), there exist countably many both I-periodic and period-
doubling bifurcation points.

ExampLE 3.  In the case U(t) = sin2wt, U%(¢) has three zero points, but
Sy = S2 (N =2, v = 1/4). So, Theorem implies the set of period-doubling
bifurcation points is finite. However, we can show a stronger result that the period-
doubling bifurcation point can not exist at all. In fact, since the period of U?(t)
is 1/2 in this case, the argument in the proof of (0) implies the period of any
bifurcation points can not be but 1/2 or 1. This explains why we could not detect
any results on period-doubling bifurcations in [4].

3. Reformulation of the problem

We first note that any periodic solution of (1.1) should have the period T =mT
for an m € N. Hence, for any fixed m € N, we look for the periodic solution of
(1.1) in the form :

3.1 u(t) = ua(t) + Av(t),

where v(t) is a T-periodic function. Then v(t) must satisfy the periodic problem

" ’ 2 1 3 —
32) V" (t) Ji/w () + kv(t) + AU?(t)v(t) + U(t)v2(t) + 3V (t)=0
v(t+T)=0v(t), te€R,

where we set A = 3aA2. To study the bifurcation problem to (3.2) around the
trivial solution v = 0, we make use of a following bifurcation theorem in Crandall-
Rabinowitz [2].

Theorem 3.1 (Crandall and Rabinowitz). Let X, Y be Banach spaces, V a
neighborhood of 0 in X and

F:(0,00)xV Y
have the properties for a Ag > 0

(a) F(A,0)=0 for A € (0,00),
(b) The partial derivatives Fy, F,, and Fy, exist and are continuous,
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(¢) N(Fy(Ao,0)) andY/R(Fy(Ao,0)) are one dimensional.
(d)  Far(Aog,0)zo € R(F;(Ao,0)), for a nontrivial zo € N(F,(Ag,0)).

Let Z be any complement of N (F,(Ag,0)) in X. Then there is a neighborhood
U of (Ao,0) in R x X, an interval (=6,6), and continuous functions ¢ : (—6,6) —
R, ¢ : (=6,6) — Z such that ¢(0) = Ay, ¥(0) =0 and

(33) FH0)NU = {wp(e), exo +eb(e) : [e] < 6} U{(),0): (A,0) € U}.

In order to apply Theorem 3.1, we define Banach spaces X and Y by

X ={ue C*R);ut) =ult+T),tec R},
Y ={u e C(R);u(t) =u(t +T),t € R},

with the norms

llul|x = max_|u"(t)] + max_[u'(t)] + max_|u(t)],
0<t<T 0<t<T 0<t<T
[[ully = max_[u(t)].
0<t<T

Also define F : (0,00) x X — Y by
1
(3.4 F(Av)=v" + ' + kv + A (U2v+U122 + 51)3) .

Then we have

Lemma 3.2. The hypotheses (a)—(d) of Theorem (3.1) are reduced to the
following three conditions in the present problem (3.2).
(i) A = Ay is a positive eigenvalue of the following linearized eigenvalue problem
of (3.2) atv =0:

(3.5) {v“ﬂ+uﬁﬁr+mﬁ)+AU%wuﬂ=o

v(it+T)=v(t), teR
(i)  The solution space of (3.5) is one dimensional.
(iii)

T
(3.6) [ wwseu o 2o,
0

where vy(t) is an eigenfunction of (3.5) with A = Ay and v§(t) is a nontrivial
solution of the adjoint problem to (3.5) with A = Ag :
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37) { 0" (t) — v’ (t) + Ko (t) + AU (t)u(t) = 0,

o(t+T)=o(t), teR

ReMARK 3.  The condition (iii) means that the eigenvalue A = Ag is simple.
Since our problem here is not self-adjoint, its condition is not trivial at all. We
shall give a nice criterion for it in the next section.

Proof of Lemma 3.2. It is clear that F((A,0) = 0 for A € (0,00). Moreover,
Fy, F, and F,, are easily proved to exist and be continuous. Especially, it holds
that

(3.8) Fy(A,0)v = v" 4+ uv’ + kv + AU?v,
3.9 Fpy(A,0)v = Uw.

Therefore, we have N (F,(Ag,0)) coincides with the eigen space of (3.5) A = Ag and
the condition Fj,(Ao,0)vg ¢ R(F,(Ao,0)) is equivalent to that the equation

(3.10) Y'(8) + py' () + sy(t) + AU )y (1) = U (t)vo ().

has no solution. Now, let’s define F;(Aq,0) : X — Y by

(3.11) F} (Ao, 0)v = v" — pv’ + kv + AU?v.

Then, the standard argument of the ordinary differential equaitons says that
(3.12)  dim N(F,(Ao,0)) = dim N(F;(Ag,0)) = dim(Y/R(F, (Ao, 0)),

and a necessary and sufficient condition that the equation (3.10) has no solution is
that the right hand side of (3.10) is not orthogonal to N(F; (Ao, 0)). Therefore, we
can easily see the condition (c) is reduced to (ii), and the condition (d) is reduced
to (iii). Thus the proof is completed. O

4. Eigenvalue problem of the linearized equation

In this section, we investigate the eigenvalue problem (3.5) in details. To do
that, we generally study the linearized equation

(4.1) V" (t) + pv' (t) + ko(t) + AU?(t)v(t) = 0.

We set v(t) = e #t/24(t), then (4.1) becomes

(4.2) w”(t) + (—%2 +rK+ AU2(t)) w(t) =0
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which is a type of so called Hill’s equation. The equation (4.2) also has the matrix
form

w’ 0, 1 w
“ () = (- 2aa, o) ()

To consider the original problem (3.5), we may seek the solution of (4.2) of the
form e#*/24(t), where  is periodic of period T = mT. Let ®,(t) be a fundamental
matrix for (4.3),

(D1t ) ¢a(t,A)
(4.4) q’A(t)—(¢'1(t,A) ¢Z(t,A))

where {#;(t, A)}2_, are given by the solutions of initial value problem to (4.2) with
initial data ®,(0) = E. By the Floquet’s Theory and the fact @5 (mT) = (®5(T))™,
we can see that the equation (4.1) has an mT-periodic solution if and only if @, (T)
has a characteristic root e*T/ 2Wm, Where w,, is a primitive m-th root of 1, but not
any i-th root for 1 < ¢ < m — 1. Note that det®,(¢t) = 1 for ¢ > 0, because the trace
of the coefficient matrix of (4.3) is zero. Then, the characteristic roots of ®5(7T') are
given by the roots of characteristic equation

(4.5) o> —A(A)o+1=0,

where A(A) is a trace of ®,(T'), that is, A(A) = ¢1 (T, A) + ¢5(T, A). If |A(A)] < 2,
then the roots of (4.5) are complex conjugates of magnitude 1. Therefore, there
does not exist the root of the form e*T/2w,,. If A(A) > 2, then the roots of (4.5)
are real and given by €*M7T and e *MT for some z(A) > 0. Therefore, in order
for one of the roots to have the form e*T/2w,,, m = 1 (w; = 1), 2(A) = u/2
and A(A) = e*T/2 4 e #T/2_ Then only T-periodic solution of (4.1) exists. If
A(A) < —2, then the roots of (4.5) are real and given by —e*"7 and —e—*MT
for some z(A) > 0. In the same way as above, m = 2 (w2 = —1), 2(A) = p/2
and A(A) = —(e#T/2 + e=#T/2) is only the case the problem (4.1) has 2T-periodic
solution, but not other periodic solutions. z(A) is explicitly given by the formula

AW 1AL+ IAF 4
T 2 '

_ 1 oen? -
(4.6) z(A) = T cosh — =

We also define z(A) = 0 for |A(A)] < 2. Then, z(A) coincides with so called
“Lyapunov exponent” of the solution of (4.1). By these consideration above, we
have next lemma.

Lemma 4.1.  For the linearized equation (4.1), it holds the followings.
(i) mT(m > 3)-periodic solution does not exist.
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(ii) T-periodic solution exists at A = Aq if and only if A(Ag) = e*T/2 4 e=+T/2,

(iii) 2T -periodic solution exists at A = Mg if and only if A(Ag) = —(eFT/24e#T/2),
Then, this 2T -periodic solution is T-anti-periodic solution, i.e. u(t) = —u(t+T)
fort € R.

(iv) The set of such Ay as in (ii) and (iii) is discrete and countable at most.

(v)  The solution space corresponding to (ii) and (iii) is one dimensional.

(vi) If z(A) > p/2 resp. (2(A) < &), the solution of (4.1) grows resp. (decays)
exponentially.

REMARK 4. It is well known that if A = Ag is a bifurcation point, Ag must
be a eigenvalue of linearized problem. Hence, (i) implies that mT (m > 3)-periodic
solution does not bifurcate from {u }x>o.

Proof.  From the previous arguments, (i), (ii) and (iii) are clear. Since A(A)
is a holomorphic function of A and the characteristic roots of ®,(T) are distinct
for |[A(A)| > 2, we can show (iv) and (v). Finally, (iv) follows from the fact that
the Lyapunov exponent of the equation (4.1) is equal to z(A) — u/2. J

In the rest of this section, we further investigate the properties of A(A) and
2(A). For the Hill’s equation (4.2), although the weight function U? is not uni-
formly positive, usual classical arguments such as oscillatory property of A(A) and
expansion theory by generalized eigenfunctions for singular boundary value prob-
lem hold with proper modification (cf. Coddington-Levinson [1], Yosida [7]). For
oscillatory property of A(A), it holds

Proposition 4.2. There exist {\;}52, and {p;}2, satisfying —oo < Ao <
P < pe <AL S A < v < iy < gl < Ap < Apy1 <— oo and the following
properties

A(A)<-2  forAe U(Hi,ﬂiwkl)a
i=1
47 A(N)>2  for A€ (—00,20) U (A Ais),

=1

JA(A)] <2 for other cases

Now, define

E={AeR;|a()| <2},
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and let L be a operator in L?,(R) defined by

1 d2 ”2
=g (g (5 7))

where L?,, denotes the weighted L2-space defined by

L}2(R) = {h(t);/R|h(s)|2U2(s)ds < oo} .

Then, we can see that L is a self-adjoint operator in L?ﬂ, the spectrum of L coincides
with X, and the resolvent set coincides with R\ . In particular, if A ¢ X, by the
above argument on ®,(T") and A(A), there are two independent solution of (4.2)
wi(t) (t € R) such that w} (¢) (resp. wy (t)) decays at the rate e~ (resp. e*(A)t)
as t — +oo (resp. t — —oo), and (*wi(0), wf' (0)) is an eigenvector of ®,(T).
Then, the solution of

(4.8) (L-ADg=f in L.

which is equivalent to
d2 2
(4.9) —Eg+(%—n~AUz)g:U2f

is concretely constructed by the Green function in the form
(4.10) o(6) = [ Galt, U (0) (o),
R

where

wi (Hw; (s)

GA(t,S) = GA(S,t) = [w+ w_]
A ™A

t> s,
and [w},wy] is the Wronskian.
Now, we are ready to state the key lemma in this paper.

Lemma 4.3. For A ¢ %, dz/dA can be represented in the form

dz

T
(“.11) G=-1 | eatnnrimn
0

REMARK 5.  This formula was first given by Johnson-Moser [3]. They an-
alyzed the corresponding formula in the case of the Schrédinger operator L =
—d?/dt* + q(t) for almost periodic ¢(t).
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Proof.  We first consider the left hand side of (4.11). Because

dz 1 flé
dA T(eTz(A) — e=T=(A)) dA’

(4.12)

we may consider dA/dA(= 90¢1/IA + O¢,/OA). Substituting ¢, to (4.2) and differ-
entiating with respect to A, we obtain

91, <~ - AU2) 99 _ 24,
(4.13) 8¢3A 8¢, oA
1 _ R j—
S0 =0, Z2(0) =0.

Hence, from the variation-of-constants formula, 8¢, /9A(T) is given by

3¢1

(4.14) / (61(T)ba(s) — d2(T)1(5)}U2(5)h (5)ds,

and in the same way, it holds

3(152

(@.15) 2(7) = / {B1(T)da(s) — dH(T)b1(5)}U()ha(s)ds.

Thus we have

dz 1 T
(4.16) A~ T(eT#(A) — e~Tz(A)) X /0 {=¢2(T)61(s)

+ (61(T) — ¢3(s))b1(s)$2(s) + 61 (T)p3(s) }U?(s)ds

Next we consider the right hand side of (4.11). If wE (0) # 0, we can normalize w7

so that wi (0) = 1, and we can represent wi in terms of {¢;}?_, as
(4.17) wi (t) = $1(t, A) + cE(A)ga(t, A)

for some constants ¢*(A). Recalling the fact that *(wE(0), wf,(o)) is the eigen
vector of @, (T), we have wi(T) = eFT#A) and the coefficient ¢*(A) is given by

e¥T2(N) — (T, A)

4.18 ct(A) =

(19) W="—s5an

Substituting the relations (4.17) and (4.18) into (4.16), we can show the right hand
side of (4.11) and (4.16) coincides each other. In the case w}’\'(O) = 0, we nor-

malize wi so that w]\u(O) = 1, w; (0) = 1. Then we have w} (t) = ¢,(t,A) and

wy (t) = ¢1(t, A). And it holds that ¢; (T, A) = eT=, ¢, (T,A) = 0, ¢o(T, A) = 0 and
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#5(T, A) = e~T=. Therefore we also have the equality (4.11). The case wy (0) =0
can be similarly treated. Thus the proof is completed. ]

According to the expansion theory by generalized eigen-functions established
by Weyl, Stone, Titschmarsh and Kodaira, G4 (s, t) has the following representation;

Gals,t) = /E lei,jszm(séé_)aij(t,s>a¢j(d§>,

(4.19)

where {o;;} is a matrix valued Stieltjes measure which is nonnegative definite.
Substituting this to (4.11), we have

Lemma 44. Forany A ¢%, dz/dA also has a representation

dz a(d§)
(4.20) EK__/Zﬁ—A’

where o (d€) is a nonnegative Stieltjes measure satisfying [ 1/(1+ |€])o(d€) < oo.

By this lemma, we have

2 de
(4.21) d—jé:—/zﬁ<0

for A ¢ I, that is, z(A) is a convex function on R\ ¥. Finally, we give a nice
criterion for the condition (3.6).

Lemma 4.5. For any eigenvalues A = Ay of (4.1), it holds that

T
(4.22) j—i(Ao) 40 / vo(t)us (U (£)dt # 0,
0

where vy and vj are as in Lemma 3.2.

Proof.  Put vg(t) = e #*/2wy(t), then wo(t) satisfies (4.2). So, wo(t) is equal
to e Kt/ wy, (t) except for constant factor. In the same way, v(t) is equal to
e#*/2w} (t) up to constant factor. Therefore, we have

T T
(4.23) /0 vo(t)vg (1) U?(t)dt # 0 <=>/0 wi (Hwy, (U (t)dt # 0.

Hence, noting vy and vj are T-anti-periodic function for m = 2, Lemma 4.3 implies
Proposition 4.5. d
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5. Nonlinear Problem and Proof of Theorem

We turn to the nonlinear equation (3.2). By the last two lemmas and Theorem
3.1, we obtain the following basic properties of the bifurcation points of (3.2).

Theorem 5.1.  On each interval I of R\ %, say I = (Xig, Aig+1) (tesp. [ =
(igy Mig+1)), if 14/2 < maxper z(A), there exist exactly two bifurcation points of
nonlinear problem (3.2) with m = 1 (resp. m = 2). The bifurcating solution of
(3.2) is T-periodic (resp. 2T -periodic). Furthermore, at each of two eigenvalues does
alternate the asymptotic stability of the trivial solution v = 0.

Proof.  If u/2 < maxpes 2(A), the convexity of z(A) implies that the graph
of z(A) transversally intersects the line z = p/2 at exactly two points on I. The
all hypotheses of Lemma 3.2 holds for m = 1 (resp. m = 2). Hence, these two
points are bifurcation points of the solution with period T' (resp. 2T"). For m = 2,
note that the bifurcating solution is really 27-periodic, but not T-periodic. In fact,
since the eigenfunction vy of (4.1) with m = 2 and A(Ap) < —2, is T-anti-periodic,
so the bifurcating solution of the form evg + e(€) is 2T-periodic when & is small
enough. O

In order to prove the main Theorem, Theorem 5.1 suggests that all we need is
to study the asymptotic properties of A(A) as A — oo. In fact, if we can prove

(5.1) limsup A(A) > 2
A—oo
(5.2) (resp. liAm inf A(A) < —2)

then the Theorem implies there exist countably many bifurcation points of T-
periodic solution (resp. 27-periodic solution) of (3.2) provided

1 A+ \/IA]2 -4

~
T %% 2

(5.3)

VIS

<

where A is the left hand side of (5.1) (resp. (5.2)). For the asymptotic properties of
A(A), we admit the following Proposition for the moment. The proof will be given
in the next section.

Proposition 5.2.  Suppose U (t) satisfies the hypotheses of Theorem 2.1. Then
it holds the followings.
(1) Thecase N =1:

_ 2 cos(S1vV/A)

sinvw

(5.9 A(A) (I1+0(1)) as A— o



A BIFURCATION FOR THE DUFFING EQUATION 617

(2) Thecase N=2:

55) A(A) = 2{cos((S1 + Sz)\/K) -|S—uc1(2)sy(7(rsl - 52)\/K) cos? v}

X (14+o0(1)) as A— oo

(3) ThecaseN > 3:

. 1
(5.6) limsup A(A) > —

> — {(1 4 cosvm)N + (1 — cosvm)N}
A—oo sin” v

and if {S;}, are rationally independent, then

-1

N

- {(@ + cosvm)N 4 (1 — cosvm)N}
sin® v

5.7 liAm inf A(A) <

In the case N =1, (5.4) implies

limsup A(A) = — 2
(58) A—o0 smuvm

liminf A(A) = —— 2

A—oo sin v

Since |A| equals to 2/ sin v for both cases, if 1/2 < 1/T log(cot(v7/2)), there exsit
countably many bifurcating points of not only T-periodic solution, but also 27-
periodic solution. Furthermore, the sequence of bifurcating points {);}52, have the
property for A > 3\*,

T —periodic T —periodic

e N, et N
A< A <A i Ai Ai A Ai Ai
<A < Al < Ajg2 < A3 < Ajpg < Ajps < Ajge < Ajpr - — 00
| ——— N—————
2T —periodic 2T —periodic

In the case N = 2, (5.5) implies

2
(59) limsup A(A) = 2+ 08" vm)

A—oo sin® v
lim inf A(A)
A—oo
2(1 + cos? vmr) S, 2p+1
—_—, -~ ) ) € N7
sin’ v 52#2q+1 P4
=4 -2, S1=25

2(cos(S1 + S2)A + cos(S; — S2)A cos? vm)

sin? v

other cases

inf)\
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Therefore, if p/2 < 2/Tlog(cot(vr/2)), there exists countably many bifurcating
points of T-periodic solution. And if S;/Ss # (2p+1)/(2¢+ 1) (p,q € N), there
also exists countably many period-doubling bifurcation points. But, if S; = Sa,
then the set of period-doubling bifurcation points is finite. In other cases, under the
weak condition (2.3), we can show that there exists countably many period-doubling
bifurcation points. In the case N > 3, (5.6) and (5.7) imply that

(5.10) |A] > {(@ + cosvm)N + (1 — cosvm)V}.

sin™ v

Hence, if u/2 < N/T log(cot(vm/2)), there exists countably many bifurcating points
of T-periodic solution. And if {S;}X, are rationally independent, then there also
exists countably many period-doubling bifurcation points. Thus, main Theorem
can be proved.

6. Proof of Proposition

Before the proof of the Proposition, we introduce some notations. Let R, [t, s]
be a 2-by-2 matrix defined by ®,(t)®,"(s). And let’s denote U2(t) by p(t). Then
we may assume that zero points of p(t) are 0 = to < t; < --- < ty = T, without
loss of generality. We would like to investigate the asymptotic behavior of A(A),
making use of the order at zero points of p(t). In the case N = 1, p(t) has two zero

A

points on [0,T]. From (2.1), there exist 8,3 > 1 such that

p(t) = C1t"(1 + CatP + O(t?#)) as t—0,

(6.1) - - ~ ~
p(t) = C1(T —t)"(1 + Co(T —t)P +O((T - t)?#)) as t—T

In order to decrease zero points of p(t) on [0,T], we separate the interval [0, T] by
T/2. We define p(t) = p(T —t), and the fundamental matrix for

2

6.2) w”(t) — %w(t) + kw(t) + Ap(t)w(t) =0
by Ba(t) = (%} gﬁg %?Eiﬁ%) , with initial data &, (0) = E.
1\ 2\b

Then, making use of EI;A (t), we have
-1
®A(T) = Ra [%T] Ra EOJ .
63) _ ( $1(T/2,A)  —¢a(T/2,A) ) o («m(T/z,A

_ (QQ(T/Z,A) ¢ZZ(T/2,A))(¢1(T/2,A) b2
$1(T/2,A) ¢1(T/2,A) ) \ 1 (T/2,A) ¢

~—

¢2 (T/2’ A) )
$5(T/2, )

T/2,A)
T/2,A))

~—

~

—~
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which implies

T\ ~ (T T\ ~ (T
6o am=-a(3)a (5)+a(3)a(%)
T\ ~ (T , (T\— (T
(7 ()4 ()5 ()
We may consider {¢;(T/2,A)};=12, since similar arguments hold for

{6:(T/2, A)}i=1,2. On the interval [0,T/2], we introduce the following change of
variable and function, so called Liouville transformation:

t
(6.5) variable : T = / vV p(s)ds,
0

(6.6) function :  g(z) = p(t)/4w(t).

By this transformation, (4.2) is reduced to

(6.7) 9"(z) + (A - Q(x))g(z) =0,

where Q(z) = (u?/4 — k)p~(t) — p=3/%(t)(p~'/4(t))”. From (6.1), it holds that

(n+4)

68) Q) = o= Cy

" {1 S :&ﬂj 2 =Bews 4 o )}

as t — 0. According to (6.5), we have the relation t and x

2
__1_ 2 T nt2
(69) t= Cl n2 (m) SIJ’_‘%

Cy -L 2\ "% 3 18
X1l ——=___(C, "2 —_ ntz 4+ OQ(xn+2
{ nt2B+2 ! <n+2) z7 + 0 )}

as £ — 0. Combining (6.8) with (6.9), we have the behavior of Q(z) near z = 0,

(6.10) Q(z) = Qo(z)

8,8(B2 - 1)02 —vp —2vf3,.2vB vB }
><{1_n(n+4)(n+2ﬁ+2)cl (2v) P2 + O0(z™7) ¢,

as ¢ — 0, where Qo(z) = —n(n + 4)v?/(4z?) and v = 1/(n + 2).
Let’s set ®;(z) = p'/%(t)¢i(t) (i = 1,2), then {®;(x)}i=1 2 satisfy (6.7). Espe-
cially, if Q(z) = Qo(z), the solutions of (6.7) are explicitly given by A, /zJ_,(vAz)
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and Bn\/EJ,,(\/Kx), where J, is a v-th Bessel function and A,,, B,, are determined,
so that {¢;(t)};=1, satisfy the initial condition ®,(0) = E by the form,

1 v/2
An= ST =v)(n+ 2)™/2cY/?,

1 —nv -V
B = =T+ v)(n+2)7" 0.

Making use of these solutions, we should note that {®;(z)};=12 also satisfy the
following integral equation:

(6.11)

A(VA)
/ VAz) ~ (A(VAz) B/As))Q(5)01 (s)ds,

@ﬂz)—

(6.12)

®,(z) = A~ B(v/Az)
\/_/ B(VAz) — (A(VAz)B(V/As))Q(s)®z(s)ds.

Here é(:r) = Q(z) — Qo(z), A(y) = Any/yJ-.(y) and B(y) = Bn\/yJ,(y). Taking
notice that
(6.13) A,B,2 = 1

m  sinvmw

and A(y), B(y) have the asymptotic properties

400) = Any[Zeos (v =252 @ o), yon
(6.14) 7; s
Bw) = By Eeos (v - 2r) 1400, v,

the following lemma holds.

Lemma 6.1. ®,(z) satisfies that

1-2v
4

(6.15) |®1(z) — Az)| = o(A™

) A — oo,
for any fixed x. ®5(x) satisfies that

* B(vVAz)| =

(6.16) |®o(x) —

for any fixed x.
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Proof.  Consider the function ®;(z), since similar arguments hold for ®;(z).
Let’s set y = v/Az and define the successive approximations {@gm)(y)}ﬁzo by

oV (y) = A~

)7
6.17) {2 (y) = % /0 " (A(:)B)
—-A(y)B(z ))Q(\/_) ™V (z)dz, form > 1.

First, we deal with the case 8 > 1. From (6.17) with m = 1, it follows that

B (y)] = } / (2)B) — A(y)B())D (TK) (2)dz
(6.18) < -vp
% /Oy<A<z)B<y) + A(y)B(2))Coz~2?P A(2)dz|,

where C’z is some positive constant. From the definition of A(z) and B(z), it holds
for any 0 < y < 1 that

=2y B84 1
20 (y) <ATTFEA ﬁCQCJg

4 1 1 1 1 1
( 2 —v, 24V i_y _+y) 242085 —v l
0

(6.19) | 281
< 1— —vf _eP = o i-vi2p
= CaCra, 5505 - 1)

1=, .3 CQ I _v4208
AT AT Gy

where C; is a positive constant. In the same way, an induction implies that

X

1oy Co "
2 (m) 3 mvp Q -—u+2mu,@
(6.20) |21 ()| < Cy <21/2(ﬂ— 1) mly

for any 0 < y < 1. On the other hand, for large y (> 1), according to the asymptotic
property (6.14), we have

(1) vpB L
(6.21) 1217 (y)| < {CJ 202(8 — 1)

+f "(A(=)B() + A(y)B(z))éBz—zﬂ"ﬂA(z)dzi}
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1-2v

(A~"7 AP
6(?? ~_ 1 —142vp3 1
X C.]—2V2(B__ 0 +0aCol— +2yﬁ(y 1) vB# 5
- A_1—42UA—ViB
Co —~ 1
L X{C‘]m +CACQ10gy} (U,B— 5)

Hence, there exist some constants Cy and C such that the following inequality holds
for any 6 (0 < 6 < 1).

1-2v ,

A="7 ATVPC,C (1/ﬁ<1

(6.22) 121 ()] < { A-EEEABC Oy

1-2v _

AT NBC Oy 8

In the same way, from an induction, we have

A- 1-3v A_mz/ﬁCOCm (Uﬂ < %)
m 1—-2v -_m C m 1

623) [ (y)| < { ATFEATFCos (3) y° (Vﬂ=§>
1—2v Cm 1

A3 A—muﬁ’co_'ym(—1+2uﬂ) (U,B> _)
m! 2

Therefore, the series - _, @gm)(y) is absolutely and uniformly convergent on any
compact interval in [0,00). Hence, we can obtain the following estimate.

1-2v

(6.24) |®1(z) — A~ A(VAz)|
<Y |8 (VAz)|

4

1—2v 1
A~"3 ATVP2C,C (Vﬂ < 5)
<L ATTFEC,CARG- Yy (yﬁ = %)
A= T Cy(exp(CA— 2z~ 1+2vB) — 1) (1/[3 > %)

Thus, we can show that

1—42:/) A_> oo,

—2v

(6.25) |®1(z) — A~

A(VAz)| = o(A™
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for any fixed z. Next we consider the case 8 = 1. From (6.10), the coefficient of
=2+ of Q(z) is equal to 0. Therefore Q(z) = 0(z~2+%) as x — 0. It means
that the proof of 3 = 2 is consistent with one of the case § = 1. Thus the proof is
completed. OJ

Now, we return to the proof of Proposition 5.2. From Lemma 7.1 and (6.14),

we have
T Cia [T\ 1 2
@)Y o
X cos (/? Vp(y)dyvA — 1- 2V7r> (1+0(1))
(6.26) 0 !

1
T 142y T\ * 2
Sl S Y B,/ 2
¢2(2> Tp 2) -
T
2

X COS < A Vo(y)dyVvA — 1+ 2y7r> (14 0(1))

4

as A — oo. In the same way,
— T 1—2v T —% 2
Z)l=A""T (= iy
A (5) =20 () a7
T 1—2v
xcos | [ Vo(y)dyvA — 7" (14 0(1))

1
—~ /(T 1+2v T\ * 2
)= A ll B../Z
¢2(2) : ,,(2) Ry

T
xcos</Z \/p(y)dy\/_—l—zmj'fr) (1+0(1)

(6.27)

as A — oo. According to (6.4), we have

A(A) Aan%cos(Slx/K)(1+o(1))

_ 2eos(51VA) (1+0(1))

(6.28)

as A — oo. Thus, we can prove the case NV = 1. Next we consider the case N = 2.
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For N = 2, it holds that

®4(T) = RA[T,t1]Ra[t1,0]

(6.29) t+T 171 t+T ¢ -1 t
=RA[‘; ,T] RA[“; ,tl]RA[g,tl] RA[g,O].

As in the proof of the case N = 1, we have
(6.30) Rp [ti, ti—l]

-1
tiil +t; tii1 +t;
— R, [L,ti] Ry [LL%H]

2 2
2
A,B,— cos(S’i\/K), A_”Banz cos(Si\//—\ —vm)
= 271- WQ (1+0(1))
A"AnAn; cos(Si\/K + vn), Aan; cos(Si\/K)

as A — oo, fori=1,2 (0 =1ty < t; <ty =T). Calculating from (6.29) and (6.30),
we have

_ 2{cos((51 + S2)VA) + cos((Sy — S2)V/A) cos? vrr} (1+o

sin® v

(6.31) A(A) (1)

as A — oo.

Finally we consider the case N > 3. Note that for any {S;}¥, there exist a
sequence {A;}32, /" oo such that

(6.32) lim cos(S;4/Aj) =1 forany1<i<N.
]——»OO

In fact, such a sequence can be taken as follows. Reordering the indicies, {S1,1,52,1,
+++Sr1} (1 < r < N) denote a maximal subset of {S;}, whose components
are rationally independent. For each 1 < k < r, {Sk,1,Sk,2, -, Skn,} denote
a subset of {S;}N., whose components are rationally dependent for Sy ;. Since
{(ef2mS1am ei2mS2am ... ei2nSram).m € N} is dense in S x S x .-+ x S, there

v
r

exist a sequence {Kj }321 /" oo such that

(6.33) lim cos (Si\/K]) =1 forany1<:<r.

J—o0

However, since Sj; is rationally dependent for Sy ;, there exist px, qx,; € N such
that Sx1/Sk,1 = qk1/pk,i. Therefore, we define {A;}32, " oo so that \/?\—J =
[Mi<k<r Ha<icn, Pra(A;)1/2, then {A;}52, satisfies the equality (6.32). Now, simi-
larly as in (6.30), we have for such a sequence,

Aanz, A]._"Ban2 Cos VT
(6.34) RA]. [ti, ti—l] = 2 a Tl'2 (1 + 0(1))
A;-’AnAn p cos v, A,.B, -
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as A — oo, for any 1 <i < N. If we assume that
1 2\ -1
(6.35) RAj [tkao] = 5 (Aan;r‘>

2
AnB,=C(v,k), A;"Bangcz(u, k)
Ty 97 (1+o0(1))
A;AnAn;C"’(y, k), A.B,=C'(v,k)
™

X

as A — oo, for 1 < k < N — 1, where C*(v, k) = (1 + cosvm)* + (1 — cosvm)* and
C?(v,k) = (1 4+ cosvm)® — (1 — cosvm)*. Then it holds that

R, [tk41,0] = Rp;[tks1, te]Ra,[te, 0],

k—1
1 2
"2 (A"Bn‘)

A, B — Aj_"Bangcoswr)
T

A"A A, — cos v, A, B, 3
T

A, B, C1 (v, k), A;"B,,ancz(u, k)
™ (1+0(1))

(6.36)

A A A 02 (v, k), Aan%CI(u, k)

2:2)

104
2
( AnB, cl (v, k+1), A;”Ban%CQ(u,k—i- 1)

2 (I+0(1))
AY AL A, C2(1/k+1) AnB,=C'(v,k+1)
™

as A — oo. From an induction, we have

CIJ'A].(T) = RAj [tN,O]
N-1
(6.37) _1 ( A, BnE)
2 s

2

AnBn,=C'(v,N), A;”B,Bn,C?(v,N)

x T 9 (1+0(1))
Ay A, A, C? (v, N), Aan;Cl (v,N)
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as A — oo, which implies
1
(6.38) limsup A(A) > —z—{(1 +cos vm)N¥ + (1 — cosvm)V}.
A—oo sin” vw

If {S;} are rationally independent, by the similar arguments above, there exist
a sequence {A;}52, /" oo such that

. =1 for 1<i<N-1,
(6.39) jlggocosSm/Aj—{ — 1 for i=N

As in the previous case, we have

N-1
(640) @,,(T) = —71 (Aan2>

™

2
A,B,=C'(v,N), A]._"Banzcz(u, N)
™ ™

X 9 9 (1+0(1))
AYAnA,=C?*(v, N), AnB,=C'(v,N)
J ™ T
as A — oo, which implies
(6.41) liminf A(A) < ——x—{(1 + cos vr)N + (1 = cosvm)N}.
A—oo s vm
Thus the proof is completed. O

References

[1] E.Coddington and N. Levinson: Theory of Ordinary Differential Equations, McGraw-Hill,
New York, 1955.

[2] H.G. Crandall and P.H. Rabinowitz: Bifurcation from simple eigenvalues, J. Funct. Anal.
8 (1971), 321-340.

[3] R. Johnson and J. Moser: The Rotation Number for Almost Periodic Potentials, Comm.
Math. Phys. 84 (1982), 403—438.

[4] Y. Komatsu, T. Kano and A. Matsumura: A4 Bifurcation phenomenon for the periodic
solution of the Duffing equation, J. Math. Kyoto Univ. 37-2 (1997), 191-209.

[5] Y. Ueda: The Road to Chaos, Aerial Press, Inc.

[6] M. Yamaguti, H. Yosihara and T.Nishida: Periodic solutions of Duffing equation, Kyoto.
Univ. Res. Inst. Math. Sci. Kokyuroku. 673 (1988).

[7] K. Yosida: Lectures on differential and Integral Equations, Interscience Publishers, Inc.
New York, 1960.



A BIFURCATION FOR THE DUFFING EQUATION 627

Y. Komatsu

Department of Mathematics
Graduate school of Science
University of Osaka
Toyonaka, Osaka 560, Japan

S. Kotani

Department of Mathematics
Graduate school of Science
University of Osaka
Toyonaka, Osaka 560, Japan

A. Matsumura

Department of Mathematics
Graduate school of Science
University of Osaka
Toyonaka, Osaka 560, Japan








