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Abstract  

Developing a generalized model for a robust prediction of nanotoxicity is critical for designing safe 

nanoparticles. However, complex toxicity mechanisms of nanoparticles in biological environments, 

such as biomolecular corona formation, prevent a reliable nanotoxicity prediction. This is 

exacerbated by the potential evaluation bias caused by internal validation, which is not fully 

appreciated. Herein, we propose an evidence-based prediction method for distinguishing between 

cytotoxic and noncytotoxic nanoparticles at a given condition by uniting literature data mining and 

machine learning. We illustrate the proposed method for amorphous silica nanoparticles (SiO2-

NPs). SiO2-NPs are currently considered a safety concern; however, they are still widely produced 

and used in various consumer products. We generated the most diverse attributes of SiO2-NP 

cellular toxicity to date, using >100 publications and built predictive models, with algorithms ranging 

from linear to nonlinear (deep neural network, kernel, and tree-based) classifiers. These models 

were validated using internal (4124-sample) and external (905-sample) datasets. The resultant 

categorical boosting (CatBoost) model outperformed other algorithms. We then identified 13 key 

attributes, including concentration, serum, cell, size, time, surface, and assay type, which can 

explain SiO2-NP toxicity, using the Shapley Additive exPlanation values in the CatBoost model. 

The serum attribute underscores the importance of nanoparticle–corona complexes for 

nanotoxicity prediction. We further show that internal validation does not guarantee generalizability. 

In general, safe SiO2-NPs can be obtained by modifying their surfaces and using low 

concentrations. Our work provides a strategy for predicting and explaining the toxicity of any type 

of engineered nanoparticles in real-world practice. 

 

KEYWORDS: literature data mining; machine learning; nanotoxicity; silica nanoparticles; external 

validation; CatBoost; corona 

  



Decades of nanotoxicological research have generated a significant amount of data in the literature. 

Literature data mining or meta-analysis has recently gained popularity for revealing relationships 

hidden in individual studies.1–8 Unlike the conventional method, which employed a limited dataset 

to analyze the toxicity of a given type or several types of nanoparticles, using properties such as 

particle size and concentration9–11 and omics-based biomarkers,12 or to predict other outcomes 

(cell association and adsorption profile),13,14 literature data mining generates knowledge by 

combining data from global evidence (aggregate of individual studies), thus expanding the 

generalizability to a wider range of experimental settings. This approach to developing data-driven 

models can be useful for environmental and health-risk analyses.1  

   Literature data mining for cellular toxicity has been reported for cadmium-containing quantum 

dots,1,2 carbon nanotubes,3 graphene,4 micro and nanoplastics,5 nanoparticles,6 phytosynthesized 

silvers,7 and zinc oxides.8 These reports presented models for analyzing or predicting nanotoxicity 

based on their physicochemical properties and experimental settings, using cross-validation or 

split-sample internal validation to avoid the risk of overlearning the relationships in the data 

collected. However, if the data collected from the literature contain errors and/or biases, cross-

validation or split-sample internal validation becomes biased.15 Biased validation can also arise 

from input data or samples that are not representative of the population.16 Consequently, models 

validated only internally often lead to misleadingly high predictive performance.17 Therefore, 

external validation, using an independently derived dataset, is essential for ensuring 

generalizability in prediction research.15–17  

   Because nanoparticles adsorb biomolecules present in biological fluids (e.g., serum) to form 

biomolecular coronas, nanoparticle-corona complexes, and not pristine nanoparticles, interact with 

biological systems,18 conceivably, nanoparticle–corona complexes should be considered while 

building nanoparticle toxicity models. However, none of the existing reports1–8 externally validate 

their models or evaluate the toxicological impact of preformed coronas in biological environments, 

which limits their generalizability in real-world practice. Hence, a cost-effective and rapid method 

is necessary for reliably developing a prediction model for nanotoxicity. 

   Amorphous silica nanoparticles (SiO2-NPs) are used in the manufacture of rubber, paints, 

cosmetics, biomedicine, and the food additive E551.19–22 Despite being considered a safety 



concern by the Scientific Committee on Consumer Safety (SCCS)23, SiO2-NPs are still widely 

produced and used;24–26 therefore, their safety deserves the highest priority. In vitro cytotoxicity 

testing has been effectively used to assess SiO2-NP safety and is the standard used to determine 

the biocompatibility of commercial medical devices.27,28 A review of in vitro studies reported that 

smaller SiO2-NPs tend to induce greater toxicities.29 Attributes such as concentration, exposure 

time, surface chemistry, and synthetic pedigrees may also mediate SiO2-NP toxicity.24–26 However, 

despite many in vitro toxicological studies, the global causes of SiO2-NP toxicity remain unclear.24  

   In this study, we propose a method for developing evidence-based prediction models that can 

distinguish between cytotoxic and noncytotoxic nanoparticles at a given condition based on global 

evidence. Literature-mined SiO2-NP cellular toxicity data were used to illustrate the feasibility of 

this goal. The method employed literature data mining, machine learning, and Shapley Additive 

exPlanations (SHAP) values30 with nested cross-validation (nCV)31 and internal and external 

validations as proofs of generalizability. To achieve generality and interpretability, we first compiled 

a highly heterogeneous main dataset of individual studies with various attributes and then built an 

interpretable prediction model using identified key attributes. The model satisfactorily predicted 

and explained independent external toxicity data, proving the validity and reliability of the method. 

 

Results and Discussion 

Overview of the Method 

Figure 1 illustrates the framework for an evidence-based prediction of the toxicity of engineered 

nanoparticles, with SiO2-NPs as the test platform and cytotoxicity as the toxicity metric. The input 

attributes (SiO2-NP physicochemical properties, experimental settings, and cell types) and binary 

output responses (cytotoxic or noncytotoxic), i.e., data that closely reflected the actual experiments, 

were first manually collected from the literature and tabulated. To provide a cost-effective and rapid 

screening model in risk assessment for biocompatibility evaluation, the cytotoxic response was 

standardized using the definition of cytotoxicity issued by the International Standard Organization 

(ISO) in ISO 10993-5, i.e., the cytotoxic effect (positive label) was defined as more than 30% cell-

viability reduction.27,28 All attributes were initially used to train the predictive model (generating an 

output response from the input attributes), using multiple machine-learning algorithms. SHAP 



values were then used to identify the key attributes that contributed to SiO2-NP toxicity. To 

demonstrate generalizability, the predictive model had to undergo three critical validations: nCV, 

internal validation, and external validation. Unlike the optimistically biased estimates from non-

nested cross-validation (CV), those from nCV prevent data leakage, using an inner-loop CV nested 

in an outer CV to select a model (hyperparameter tuning via grid search) and an outer CV to 

evaluate the tuned model.31 

 

 
 
Figure 1. Framework of an evidence-based prediction method. In vitro cellular toxicity data were 
collected from published literature and standardized. Nested cross-validation, internal validation, and 
external validation were used to prove generalizability. 
 

Literature Data Curation and Nested Cross-validation (nCV) 

We obtained cell-viability data for 4124 samples, along with 32 categorical and 4 continuous 

attributes describing the relevant SiO2-NP cellular toxicity, from 115 articles published between 

2004 and 2016 (Figure 2). Based on the ISO-10993-5 definition, 35% of the 4124 samples were 

cytotoxic and 65% were noncytotoxic. Table 1 lists the collected attributes. The distribution of the 

attributes is shown in Supporting Information Figure S1. Compared with the datasets of cadmium-

containing quantum dots (3028 samples, 24 attributes)1,2 and nanoparticles (2986 samples, 15 

attributes),6 our dataset was 36% and 38% larger, respectively, and our attributes were 50% and 

140% more diverse, respectively. 

 



 
 
Table 1. Attributes of silica nanoparticles 
 

No. Attributes Definition 
SiO2-NP Physicochemical Properties 
1 Primary_size The average size of SiO2 in the dry state measured by transmission electron 

microscopy (TEM), scanning electron microscope (SEM), or particle sizer. 
2. Primary_size_verification The primary size of SiO2 verified by the individual study, verified elsewhere (cited in 

previous publication), or not verified (directly used from manufacturer’s specifications). 
3. Surface_area The total area of SiO2 surface measured by Brunauer–Emmett–Teller (BET) method 

or calculated by 6 𝑑𝑟$ 	, where d is primary size in mm, r is density in g/cc. 
4. Hydrodynamic_size_water The average hydrodynamic size of SiO2 measured by dynamic light scattering in 

water. 
5. Hydrodynamic_size_culture The average hydrodynamic size of SiO2 measured by dynamic light scattering in 

culture medium. 
6. Hydrodynamic_size_serum The average hydrodynamic size of SiO2 measured by dynamic light scattering in 

medium containing serum. 
7. Zeta_potential_water The electrical potential of SiO2 at the slipping plane or interface between SiO2 surface 

and its water. 
8. Zeta_potential_PBS/HBSS The electrical potential of SiO2 at the slipping plane or interface between SiO2 surface 

and its phosphate buffered saline (PBS) or Hank’s balanced salt solution (HBSS). 
9. Zeta_potential_culture The electrical potential of SiO2 at the slipping plane or interface between SiO2 surface 

and its culture medium. 
10. Zeta_potential_serum The electrical potential of SiO2 at the slipping plane or interface between SiO2 surface 

and its medium containing serum. 
11. PDI_water Polydispersity index (PDI), a measure of broadness of SiO2 weight distribution in 

water. 
12. PDI_culture Polydispersity index (PDI), a measure of broadness of SiO2 weight distribution in 

culture medium. 
13. Surface_modification The SiO2 surface modifier, e.g., chitosan, carboxyl, and amine. 
14. Surface_charge_water The electrical charge of SiO2 present at an interface in water. 
15. Surface_charge_culture The electrical charge of SiO2 present at an interface in culture medium. 
16. SiO2-NP_synthesis The SiO2 synthetic pedigrees produced at high (e.g., pyrolytic) or low (colloidal) 

temperature. 
17. SiO2-NP_source The source of SiO2 obtained from in-house or commercial. 
18. SiO2-NP_shape The shape of SiO2, either sphere or rod. 
19. SiO2-NP_label The label of SiO2 including fluorescein-5-isothiocyanate (FITC), rhodamine, and 

iodine-125. 
Experimental Settings 
20. Concentration  A measured quantity of SiO2 in μg/mL for exposure to cells. 
21. Exposure_time The exposure duration of SiO2 to cells.  
22. SiO2-NP_medium_serum The SiO2 medium containing different serum concentrations (e.g., serum-free, 10% 

fetal bovine serum [FBS], and bovine serum albumin [BSA]) for dilution or storage 

(prior exposure to cells). 
23. Assay_viability  An assay for measuring the cell viability, such as 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyl-2H-tetrazolium bromide or MTT. 
24. Viability_indicator Cell viability indicator, e.g., tetrazolium, lactate dehydrogenase (LDH), and adenosine 

triphosphate (ATP). 
25. Viability_mechanism  Cell viability testing methods including structural cell damage, cell growth, and cellular 

metabolism. 
26. Interference_testing The interference of SiO2 with cell viability assay systems, either performed or not 

performed by the individual study. 
27. Positive_control The use of positive control inducer, either included or not included by the individual 

study. 
28. Positive_control_inducer A replicate containing all components of a test system and treated with a 

chemical/particle known to induce a positive response. 
29. Exposure_medium The culture medium used during SiO2 exposure to cells. 
Cell Types 
30. Cell_organ Refers to organ or tissue from which cells originated. 
31. Cell_id Identifies a specific cell, e.g., A549, RAW 264.7, and HeLa. 
32. Cell_morphology Refers to morphology of cells, mostly based on american type culture collection 

(ATCC), e.g., epithelial, endothelial, and fibroblast. 
33. Cell_culture The culture of cells, either primary cells (isolated from parental tissue) or cell lines 

(originated from primary cells). 
34. Cell_source The source of cells including human, mouse, rat, pig, and hamster. 
35. Cell_age The age of cells including embryonic and nonembryonic. 
36. Cell_disease The disease stage of cells, either carcinoma or non-carcinoma. 

 
 



    
 
Figure 2. Data preparation: 80% of the main dataset containing all the attributes was trained and cross-
validated using 10-fold nCV to develop the predictive model. The remaining 20% was used to internally 
validate the predictive model and identify the key attributes. Finally, 100% of the main dataset was used 
to build the final predictive model employing the identified key attributes to predict the independent 
dataset. 
 
   We performed nCV on 80% of the main dataset to obtain an early unbiased estimate of the 

accuracy of the predictive models (see Methods and Figure 2), and we found that tree-based 

classifiers exhibited a good fit to the data and outperformed linear, deep neural network (DNN), 

and nonlinear kernel classifiers, with CatBoost providing the highest nCV accuracy of 91.0±1.5% 

(Table 2).  

 
Table 2. Prediction-error comparisons: Internal validation (All 36 attributes and 824 samples) 
 

Machine Learning nCV10-fold Accuracy AUC-ROC Recall Precision 
Linear      
 LDA 74.5±2.5% 75.2% 82.6% 56.2% 68.0% 
 LR 82.3±1.9% 83.4% 89.8% 73.3% 78.4% 
 Ridge 75.4±2.3% 75.3% 82% 52.7% 70.0% 
Nonlinear      
 DNN 75.2±1.7% 75.7% 82.7% 61.8% 67.1% 
Kernel      
 KNN 85.3±1.8% 84.6% 82.5% 75.3% 80.0% 
 SVM  84.3±1.8% 83.0% 87% 70.5% 79.2% 
Tree-based      
 DT 87.3±1.8% 85.6% 86.0% 81.5% 78.5% 
 Extra Trees 86.9±1.8% 85.6% 94.1% 76.7% 81.5% 
 RF 88.1±1.9% 87.4% 94.5% 79.5% 84.1% 
 CatBoost 91.0±1.5% 90.4% 96.3% 85.6% 87.1% 
 GB 90.3±2.0% 89.1% 95.3% 83.6% 85.3% 
 LightGBM 90.0±1.6% 90.1% 95.8% 84.9% 86.7% 
 XGBoost 90.2±1.7% 89.9% 95.8% 84.9% 86.4% 

 
Footnotes: LDA, linear discriminant analysis; LR, logistic regression; DNN, deep neural network; KNN, 
k-nearest neighbors; SVM, support vector machine; DT, decision tree; Extra Trees, extremely 



randomized trees; RF, random forest; CatBoost, categorical boosting; GB, gradient boosting; LightGBM, 
light gradient boosting machine; XGBoost, extreme gradient boosting. 
 
 
Internal Validation and Attribute Importance 

Split-sample internal validation using unbiased representative samples provides an unbiased 

estimate of the generalization performance of predictive models on unseen data. Table 2 presents 

the statistical scores of the internal test set (see Methods and Figure 2), with accuracy and area 

under the receiver operating characteristic curve (AUC-ROC) as the primary evaluation metrics. 

Tree-based classifiers exhibited satisfactory accuracies of 85.6–90.4% and excellent AUC-ROCs 

of 94.1–96.3% (except for Decision Tree [DT], with 86.0%), while linear, DNN, and nonlinear kernel 

classifiers exhibited 75.2–84.6% accuracies and 82–89.8% AUC-ROCs. CatBoost outperformed 

the other algorithms (accuracy: 90.4%, AUC-ROC: 96.3%, recall: 85.6%, and precision: 87.1%). 

   We applied attribute importance for attribute selection using SHAP values via CatBoost. Based 

on attribute importance (Figure 3A), we identified the top 13 attributes that provided the optimal 

predictive accuracy (Figure 3B) and arranged them in the order of importance: concentration, SiO2-

NP_medium_serum, cell_morphology, cell_organ, primary_size, cell_id, exposure_time, 

surface_modification, hydrodynamic_size_water, cell_source, assay_viability, surface_area, and 

viability_indicator (see Table 1 and Supporting Information Figure S1). 



 
 
Figure 3. Attribute importance for silica nanoparticles, based on CatBoost. (A) Global interpretability 
for the average absolute SHAP value magnitudes. (B) Predictive accuracy of internal validation with 
incrementally increasing attributes. (C) Local interpretability, with each dot corresponding to a sample 
of silica nanoparticle cellular toxicity obtained from 100% of the main dataset. (D) The prediction 
probability of CatBoost to output a noncytotoxic class at a given condition of concentration attribute 
alone, using 100% of the main dataset. 
 

   We subsequently rebuilt the predictive models using the 80% of the main dataset and the 

identified key attributes and evaluated their performance. Table 3 presents the statistical scores of 

nCV and internal validation (the internal test set), using the 13 key attributes. Instead of using all 

the attributes (Table 2), comparable performance was obtained using only the 13 key attributes, 

with CatBoost providing the best performance (accuracy: 90.7%, AUC-ROC: 95.9%, recall: 85.6%, 

precision: 87.7%, and nCV: 90.3±1.9%). Other tree-based classifiers (random forest [RF], gradient 

boosting [GB], light gradient boosting machine [LightGBM], and extreme gradient boosting 

[XGBoost]) also exhibited high scores (accuracy >88%, AUC-ROC >94%, recall >81%, precision 

>85 %, and nCV >88%).  



 

Table 3. Prediction-error comparisons: Internal validation (13 key attributes and 824 samples)  
 

Machine Learning nCV10-fold Accuracy AUC-ROC Recall Precision 
Linear      
 LDA 74.1±2.2% 73.9% 80.4% 48.6% 68.6% 
 LR 74.7±2.1% 73.3% 80.2% 45.5% 68.6% 
 Ridge 74.4±2.1% 73.9% 80% 46.9% 69.5% 
Nonlinear      
 DNN 74.2±2.9% 76.3% 83.7% 67.3% 66.4% 
Kernel      
 KNN 85.1±1.9% 85.2% 82.8% 74.7% 82.0% 
 SVM 85.2±1.9% 85.2% 89% 73.3% 82.9% 
Tree-based      
 DT 86.3±1.5% 87.3% 86.2% 81.2% 82.6% 
 ET 86.5±2.0% 86.1% 94.1% 77.1% 82.4% 
 RF 88.1±2.0% 88.8% 94.9% 81.2% 86.5% 
 CatBoost 90.3±1.9% 90.7% 95.9% 85.6% 87.7% 
 GB  89.4±2.0% 89.0% 95.1% 83.2% 85.3% 
 LightGBM 88.5±1.6% 89.1% 95.1% 82.9% 85.8% 
 XGBoost 89.4±1.5% 89.7% 95.4% 83.9% 86.6% 

 
Footnotes: LDA, linear discriminant analysis; LR, logistic regression; DNN, deep neural network; KNN, 
k-nearest neighbors; SVM, support vector machine; DT, decision tree; Extra Trees, extremely 
randomized trees; RF, random forest; CatBoost, categorical boosting; GB, gradient boosting; LightGBM, 
light gradient boosting machine; XGBoost, extreme gradient boosting. 
 

   Finally, we built the final predictive models using 13 key attributes from 100% of the main dataset 

(4124 samples) and obtained robust nCV accuracy (Table 4). We then analyzed the SHAP-value 

distribution of the 13 key attributes across the samples. According to the SHAP local explanation 

summary (Figure 3C), a larger SiO2-NP primary size, the presence of 10% fetal bovine serum 

(FBS) in the SiO2-NP medium (prior exposure to cells), surface-modified SiO2-NPs, and cells with 

epithelial morphologies could cause less cytotoxic effects. In contrast, a higher concentration of 

SiO2-NPs, a higher exposure time and surface area, a hydrodynamic size less than 26 nm in water, 

the absence of serum in the SiO2-NP medium, and the presence of blood cells, macrophage cells, 

mouse cells, and a tetrazolium viability indicator with an MTT assay (Supporting Information Figure 

S2) possibly caused a higher cytotoxicity. Supporting Information Figure S2 presents a complete 

summary of the local explanation. Although concentration was identified as a leading attribute 

determining SiO2-NP toxicity, SiO2-NPs with concentrations >5 μg/mL alone could not be used for 

an accurate prediction, as shown in Figure 3D. Notably, 97.7% of SiO2-NPs with concentrations 

≤5 μg/mL were associated with noncytotoxicity. No obvious thresholds were identified for other 

continuous attributes (Supporting Information Figure S3). Additionally, we identified a single DT 

with an nCV accuracy of 73.4±1.9% (Supporting Information Figure S4) for a simple guidance on 



SiO2-NP toxicity; however, to maximize the predictive power of our final model, we recommend 

using all 13 key attributes when using our model via Google Colab. 

 

Table 4. Prediction-error comparisons: External validation (13 key attributes and 905 samples) 
 

Machine Learning nCV10-fold Accuracy AUC-ROC Recall Precision True 
Positive 

False 
Positive 

True 
Negative 

False 
Negative 

Linear          
 LDA 73.6±2.4% 65.2% 70.2% 64.4% 38.2% 145 235 445 80 
 LR 74.4±2.5% 64.4% 64.1% 57.8% 36.4% 130 227 453 95 
 Ridge 74.3±1.8% 65.3% 70% 63.6% 38.1% 143 232 448 82 
Nonlinear          
 DNN 75.3±2.1% 65.5% 68.1% 52.4% 36.3% 118 205 474 107 
Kernel          
 KNN 86.5±1.4% 74.0% 71.7% 67.1% 48.4% 151 161 519 74 
 SVM 86.3±2.1% 75.9% 46% 3.1% 100.0% 7 0 680 218 
Tree-based          
 DT 87.7±1.6% 67.4% 59.7% 44.0% 36.9% 99 169 511 126 
 Extra Trees 87.5±1.8% 82.3% 88.4% 57.8% 66.7% 130 65 615 95 
 RF 88.7±1.6% 85.1% 91.4% 48.4% 85.2% 109 19 661 116 
 CatBoost 90.5±1.6% 88.1% 92.0% 72.4% 78.0% 163 46 634 62 
 GB 89.8±1.4% 87.8% 90.2% 66.2% 81.4% 149 34 646 76 
 LightGBM 89.3±1.3% 82.0% 88.1% 67.6% 62.8% 152 90 590 73 
 XGBoost 89.6±1.4% 84.5% 88.4% 61.3% 72.3% 138 53 627 87 

 
Footnotes: A model that always generates a noncytotoxic class affords an accuracy of 75.1% (680/905). 
LDA, linear discriminant analysis; LR, logistic regression; DNN, deep neural network; KNN, k-nearest 
neighbors; SVM, support vector machine; DT, decision tree; Extra Trees, extremely randomized trees; 
RF, random forest; CatBoost, categorical boosting; GB, gradient boosting; LightGBM, light gradient 
boosting machine; XGBoost, extreme gradient boosting. 
 
 

External Validation 

An independent dataset (905 samples) was generated separately from the main dataset. Thus, 

predicting and explaining the independent dataset made this task more challenging, valuable, and 

relevant for real-world practice. The external validation results (Table 4) demonstrated that 

CatBoost allowed for a satisfactory generality and delivered the highest performance (accuracy: 

88.1%, AUC-ROC: 92.0%, recall: 72.4%, and precision: 78.0%), followed by GB, RF, and XGBoost 

(accuracies >84% and AUC-ROCs >88%). However, RF showed the worst recall (48.4%) among 

the tree-ensemble classifiers; therefore, unlike the boosting algorithms (CatBoost, GB, XGBoost, 

and LightGBM) with >61% recall, RF was deemed unsuitable for identifying all positive samples. 

With 64.4–75.9% accuracies, the linear, DNN, nonlinear kernel, and DT classifiers were difficult to 

fit to the independent dataset. The support vector machine (SVM) only predicted the majority 

noncytotoxic class (true positives: 7, false positives: 0, true negatives: 680, and false negatives: 

218) and exhibited the worst AUC-ROC and recall of 46% and 3.1%, respectively, indicating that 



it misclassified the independent cytotoxicity data 54% of the time and failed to identify all positive 

samples.  

   To confirm and elucidate the influence of serum in predicting SiO2-NP toxicity, we rebuilt the 

predictive models using 12 key attributes by excluding the SiO2-NP_medium_serum attribute. In 

general, the results indicated substantially worse performance (CatBoost: accuracy, 80.7%; AUC-

ROC, 84.4%; recall, 53.3%; precision, 63.2%; and nCV, 88.7±1.3%), underscoring the importance 

of nanoparticle–corona formation in biological environments containing various serum 

concentrations for a highly accurate prediction (Supporting Information Table S1). Meanwhile, 

Supporting Information Figure S5 shows that the predictive models generally exhibited a lower 

performance when all 36 attributes were used, indicating that attribute selection was essential to 

preventing overfitting while dealing with a truly independent test set.  

   External validation is crucial for the real-world implementation of a highly accurate 

generalization.15–17 The CatBoost model consistently demonstrated satisfactory performance for 

both internal validation (accuracy: 90.7%, AUC-ROC: 95.9%, recall: 85.6%, and precision: 87.7%; 

nCV: 90.3±1.9%) and external validation (accuracy: 88.1%, AUC-ROC: 92.0%, recall: 72.4%, and 

precision: 78.0%; nCV: 90.5±1.6%). Thus, CatBoost provided a more promising algorithm for the 

generalizability of nanotoxicity than the previously used RF or DT.1,3–8 In contrast, DT and kernel 

classifiers that performed well on internal validation showed unexpectedly poor performance for 

external validation, highlighting its pivotal role. 

 

Complex Relationships of SiO2-NP Attributes with Cellular Toxicity 

We selected CatBoost to represent the prediction results of external validation. We then performed 

hierarchical clustering and grouped the independent datasets by their explanation similarity (SHAP 

values) for heterogeneity visualization (Figure 4A). Supporting Information Figures S6-S7 show 

the prediction errors for 905 samples (55 sets of experiments). Figures 4B and 4C present two of 

the 55 sets of experiments as representative samples. Decision plots of the correctly classified and 

misclassified samples are shown in Supporting Information Figure S8. To ensure the applicability 

of the model in real-world practice, we quantitatively elucidated the CatBoost process that 

generates the output cytotoxicity response from the input key attributes using SHAP values. The 



rational decision-making shown in Figures 4D–G and Supporting Information Rationality illustrates 

the complex attribute relationships of a potential SiO2-NP hazard while inducing toxicity in cellular 

machinery. The underlying mechanisms related to concentration, time, size, surface, cell, and 

serum attributes could be triggered by the cellular uptake of SiO2-NPs.32–36 The role of serum 

attribute in the prediction of SiO2-NP toxicity is clear; preformed coronas in the presence of the 

serum may mitigate SiO2-NP toxicity. Corona formation alters the ability of cell receptors to 

recognize SiO2-NPs and, by lowering the SiO2-NP surface energy, prevents silanols [≡Si–OH and 

=Si(OH)2] from interacting efficiently with the biomembranes, thereby reducing the SiO2-NP uptake 

efficiency.34–36 However, the absence of the serum can cause more cytotoxic effects, because the 

surface silanols of the SiO2-NPs can then directly interact with and disrupt the cellular membranes 

via hydrogen bonding and electrostatic interactions. In fact, a specific surface-silanol pattern, 

referred to as “nearly free silanol”, promotes membranolysis by interacting with 

phosphatidylcholine (a biomembrane lipid), regardless of silica crystallinity,37 supporting that 

surface modification can reduce SiO2-NP toxicity.  

 



 

 
 
Figure 4. Prediction errors generated by the CatBoost model upon external validation. (A) SHAP 
heatmap plot. Samples with similar SHAP-value-based explanations were grouped together via 
hierarchical clustering. Increasing and decreasing cytotoxicity by attribute value are indicated in red and 
blue, respectively. The force plot at the top corresponds to the ratios of attribute values with a negative 
magnitude (blue) to those with a positive magnitude (red); f(x) = 0 corresponds to the predicted 
cytotoxicity. Samples predicted to be cytotoxic and noncytotoxic are shown in the red and green regions, 
respectively. (B and C) Prediction errors of each sample from two of the 55 sets of experiments. Red 
and green markers indicate cytotoxicity and noncytotoxicity, respectively. Correctly classified samples 
have either a green or red marker, whereas misclassified samples have markers that are a combination 
of both colors. (D and E) Two examples of correctly classified samples. The positive values of f(x) = 
2.812 and f(x) = 1.44 correspond to the cytotoxic class and were generated from the sum of the base 
value (–1.764) and the additive contributions of each attribute value (3.21 + 1.47 + …. – 0.27 in f(x) = 
2.812 and 1.33 – 0.71 + …. + 0.14 in f(x) = 1.44). They explain which attribute value corresponded to 
the predicted cytotoxicity values of 2.812 and 1.44 from the base value; for example, in f(x) = 2.812, 
concentration: 500 μg/mL increased the base value by 3.21, whereas SiO2-NP_medium_serum: 
10%_FBS decreased it by 0.81. The base value was the average cytotoxicity value of the entire main 
dataset. (F and G) Two examples of misclassified samples. The positive and negative values of f(x) = 
0.251 and f(x) = –1.838 correspond to the cytotoxic and noncytotoxic class, respectively. 



 

   Despite evidence from various individual studies showing that biomolecular corona fingerprints 

can predict biological behaviors of nanoparticles,12,13,14 previous literature data mining reports1–8 

failed to recognize that nanoparticles rapidly form protein coronas in less than 30 s, once in contact 

with biological fluids.38 Thus, nanoparticle–corona complexes interact with cells,18,34–36 not pristine 

nanoparticles, in the presence of serum. We hypothesize that incorporating the biological medium 

attribute (e.g., SiO2-NP_medium_serum attribute) is a prerequisite for accurately predicting 

nanotoxicity. This is supported by the observation that not only is the SiO2-NP_medium_serum 

attribute closely correlated to SiO2-NP toxicity, but its omission also causes a substantial and 

general drop in predictive performance. These observations warrant a reconsideration of 

nanotoxicity models, as developing predictive toxicity models for engineered nanoparticles without 

considering preformed coronas in biological environments has limited success.  

   Evidence shows that SiO2-NPs produced at high temperatures (pyrolytic) are more toxic than 

those produced at low temperatures (colloidal).24 However, we could not identify the SiO2-

NP_synthesis attribute as a key attribute, possibly because only one study directly compared 

pyrolytic and colloidal SiO2-NPs with different synthetic pedigrees under identical conditions.39 

More in-depth investigations are required to confirm the influence of synthetic pedigrees, including 

variations in size, surface, cell, assay, and biological media, on SiO2-NP toxicity. This study did 

not include all possible individual studies. Future research may expand on this study by including 

more studies, to develop a more powerful and generalizable predictive model for SiO2-NP toxicity. 

Although we contemplated utilizing the target cellular dose or the number of particles as the 

concentration attribute, we encountered a limited amount of data in the literature that provided 

such information. Consequently, we used the administered concentration as the concentration 

attribute in our models, which enabled a larger sample size and better generalizability. However, 

it is crucial to acknowledge that actual cellular dose or number of particles may offer greater 

accuracy in predicting cellular toxicity. Therefore, future research may consider incorporating 

cellular dose or number of particles data, if obtainable. Additionally, the physicochemical properties 

of SiO2-NPs could be characterized more comprehensively, as many unmeasured 

(not_determined) values were found in the collected data (Supporting Information Figure S1). 



Despite efforts to adhere to ISO 10993-5 in assay selection, the MTT assay might not be entirely 

reliable for predicting the toxicity of some nanoparticles, including SiO2-NPs. This might limit the 

accuracy of our predictive models, underscoring the importance of utilizing multiple assays to fully 

assess nanoparticle toxicity. It should be noted that our current in vitro findings cannot be directly 

extrapolated to in vivo outcomes. While we presented an extended framework for in vivo studies 

in Supporting Information Figure S9, we recognize the challenge of establishing in vitro-in vivo 

correlation (IVIVC) and the need for future prediction research in this area. Different nanoparticles 

show different toxicity profiles, and to define the scope of a predictive model appropriately, a 

specific type of nanoparticles should be used while building the model. Finally, future studies 

should avoid exaggerated claims of accurate predictions of nanotoxicity spectra while using limited 

datasets without external validation. 

 

Conclusions 

Distinguishing between cytotoxic and noncytotoxic engineered nanoparticles is important for 

nanosafety. A derived CatBoost model revealed key SiO2-NP attributes for predicting toxicity: 

concentration, SiO2-NP_medium_serum, cell_morphology, cell_organ, primary_size, cell_id, 

exposure_time, surface_modification, hydrodynamic_size_water, cell_source, assay_viability, 

surface_area, and viability_indicator. It established an evidence-based prediction method capable 

of predicting SiO2-NP toxicity, using the aforementioned key attributes derived from global 

evidence. This was achieved via extensive literature data mining, covering 115 publications, and 

the generation of the largest dataset to date, containing 36 of the most diverse attributes of SiO2-

NP cellular toxicity and 4124 samples, in addition to an independent dataset containing 905 

samples.  

   Developing a reliable and robust general predictive model is a challenge for nanotoxicological 

research. A computationally attractive means of addressing this task is to aggregate information 

provided by global evidence, so that the generalizability can be extended to inter-laboratory 

settings. Despite a considerable interest therein, there is no proven method to reliably predict 

nanotoxicity. Herein, we developed an evidence-based prediction method capable of 

distinguishing between cytotoxic and noncytotoxic nanoparticles at a given condition, based on 



global evidence. We used SiO2-NPs to illustrate the reliable development of predictive models from 

scratch and identified the key attributes (concentration, serum, cell, size, time, surface, and assay) 

contributing to SiO2-NP toxicity. In general, safe SiO2-NPs can be obtained by modifying their 

surfaces (e.g., carboxyl and chitosan) and using low concentrations (e.g., ≤5 μg/mL). We 

demonstrated the application of CatBoost40 (unbiased boosting) as an effective tool for nanotoxicity 

prediction. To ensure the applicability of the CatBoost model in real-world practice, we elucidated 

its interpretability while generating cytotoxicity responses using the key attributes and highlighted 

the cruciality of external validation. Certain models that performed well on internal validation 

performed poorly on the independent dataset, indicating that internal validation does not guarantee 

generalizability. We further showed that the incorporation of biological media attributes, such as 

serum, can predict nanotoxicity accurately, owing to the formation of nanoparticle–corona 

complexes. Through a comprehensive analysis of global evidence, we incorporated generalized 

key attributes that may not be readily apparent in individual studies into the CatBoost model. This 

model can be a valuable tool for researchers to design experiments to predict and explain the 

potential toxicity of SiO2-NPs under specific conditions and guide the development of safer SiO2-

NPs. 

   Regarding the future prospects of the method developed in this study, in a broader context, the 

method of integrating literature data mining, machine learning, and SHAP values with nCV and 

internal and external validations as proofs of generalizability has the potential to provide a generic 

and open platform to examine any type of engineered nanoparticles, to predict not only their toxicity 

but also other biological outcomes in more complex systems, such as changes in nanoparticle 

uptake into cells owing to differences in the types of biomolecules forming the corona and 

absorption, distribution, metabolism, and excretion (ADME) processes (Supporting Information 

Figure S9). Consequently, this study could contribute to the design and application of safe 

nanoparticles as biomaterials and provide guidance for reliable and explainable predictions in the 

field of nanoinformatics. 

 

Methods 

Literature Data Mining 



Two published review papers on SiO2-NP toxicity were used for the literature data assessment: 

the Napierska et al. review26 and the Murugadoss et al. review,25 which covered studies published 

until 2010 and 2016, respectively. The literature was chosen based on population, intervention, 

comparison, outcomes, and study design or the PICOS framework41 of evidence-based medicine 

to ensure homogeneity and reliability, wherein (1) the population comprised human or mammalian 

cells; (2) the intervention and comparison were amorphous non-mesoporous SiO2-NPs vs. 

negative control, with reported concentration, exposure time, and primary size ≤1000 nm; (3) the 

outcome was cytotoxicity (percentage of cell viability); and (4) the study design was an in vitro 

toxicological study. The exclusion criteria included non-mammalian or co-cultured cells, crystalline 

or mesoporous SiO2-NPs, abstract articles, and other non-relevant studies. In these two reviews, 

61 studies met our inclusion criteria; therefore, their reference lists were reviewed for further 

potential literature, and 54 additional eligible studies were identified. In total, 115 studies were 

included.  

   The relevant SiO2-NP attributes and cell-viability data were carefully extracted to generate 4124 

samples and 36 attributes. The mean cell viability was extracted from either the text or graphs 

using WebPlotDigitizer42 and converted to “1” (<70% cell viability, cytotoxic) and “0” (≥70% cell 

viability, noncytotoxic) labels. To facilitate the rapid screening of SiO2-NPs for cellular toxicity 

without cumbersome experiments, the administered concentration (a measured quantity of SiO2 

in μg/mL for exposure to cells) was used as the concentration attribute. Unless otherwise reported, 

the surface area (m2/g) was calculated (surface area = 6 𝑑𝑟$ , where d is primary size in mm, r is 

density in g/cc). Owing to missing data in the literature, hydrodynamic size, zeta potential, and 

polydispersity index (PDI) were presented as ranges (categorical attributes). For example, if the 

hydrodynamic size in water is 18.3 nm, then it will be assigned as “Hydrodynamic_size_water: <26 

nm,” which served as a feature. The missing value in the hydrodynamic size attribute is presented 

as the value not_determined, which served as a feature input for the predictive models. For each 

categorical attribute, a dummy feature (binary vector) was created and one of the dummy features 

was removed to prevent a dummy-variable trap (Supporting Information Table S2). A feature is a 

specific value of an attribute, for example SiO2-NP_medium_serum is an attribute; “SiO2-

NP_medium_serum: serum_free” is a feature of the SiO2-NP_medium_serum attribute. Feature 



scaling was performed using Min-Max normalization for DNN classifier and z-score normalization 

for linear and nonlinear-kernel classifiers. 

 

Machine Learning  

Thirteen well-established machine-learning algorithms were used (1) linear discriminant analysis 

(LDA), (2) logistic regression (LR), (3) ridge classifier, (4) DNN, (5) k-nearest neighbors (KNN), (6) 

SVM, (7) DT, (8) CatBoost, (9) extremely randomized trees (extra trees), (10) GB, (11) LightGBM, 

(12) RF, and (13) XGBoost. Algorithms 1–3 are linear; 4 is nonlinear; 5 and 6 are nonlinear kernels; 

and 7–13 are nonlinear tree-based classifiers. A fixed random_state of 2022 was used whenever 

possible during model development. Machine-learning algorithms were implemented using the 

scikit-learn (version 1.0.2), tensorflow (version 2.10.0), CatBoost (version 1.0.4), LightGBM 

(version 3.3.2), and XGBoost (version 1.5.1) packages in Python 3.10. 

   The entire main dataset (containing 4124 samples) was first shuffled and then split into training 

(80%) and internal test (20%) sets by applying random stratified sampling (Figure 2). Binary 

classification predictive models were initially built using 80% of the main dataset, which contained 

all the attributes, using the 13 machine-learning algorithms. The predictive models were cross-

validated using 10-fold nCV, and the data were split into 10 parts in a stratified manner. One part 

was used as the validation set and the remaining as the training set. The training set was 

exhaustively tuned to obtain the optimal hyperparameters using 10-fold GridSearchCV in scikit-

learn within specific ranges (Supporting Information Tables S3 and S4). The best grid search 

model was then fitted to the training set, and the predictive accuracy for the validation set was 

calculated. This process was repeated for each of the 10 parts, and 10 predictive-accuracy values 

were obtained and averaged as the nCV accuracy.  

   Internal validation was performed for each algorithm using 20% of the main dataset as the 

internal test set, which was entirely independent of the building or fine-tuning of the predictive 

models. The optimal hyperparameters of each algorithm were updated by applying 10-fold 

GridSearchCV to the training set, and the best model was used to predict the internal test set. The 

SHAP values were then applied to the training set to uncover the key attributes. The final predictive 

models were built using 100% of the main dataset and the identified key attributes, and the optimal 



hyperparameters of each algorithm were updated by applying 10-fold GridSearchCV to the entire 

shuffled main dataset. The nCV accuracy for the entire main dataset was also calculated. The 

optimal hyperparameters were tentative, depending on the input data for the grid search 

(Supporting Information Tables S3 and S4).  

   The evaluation metrics were based on accuracy (1 − !"	$	!%
!"	$	&"$	!%$&%

), AUC-ROC (area under the 

curve of the true-positive rate or recall [ !"
!"	$	&%

] vs. false-positive rate [ &"
&"$	!%

]), recall, and precision 

+ !"
!"	$	&"

,, where TP, TN, FP, and FN represent true positive, true negative, false positive, and false 

negative, respectively. 

 

External Validation 

The final predictive models were used to predict the independent datasets derived from external 

studies published between 2017 and 2022.32,43,52–61,44,62–66,45–51 Specifically, Gong et al. (2017)43 

exposed HaCaT cells to 15-nm SiO2-NPs for 24 h (nine samples). Similarly, Liu et al. (2017)44 

subjected A549 cells to 15-nm SiO2-NPs over a period of 24 h (eight samples), whereas Nishijima 

et al. (2017)45 put 10–1000-nm SiO2-NPs in contact with THP-1 cells for 6–24 h (105 samples). 

THP-1 cells were exposed to 50-nm SiO2-NPs for 22 h (four samples) by Premshekharan et al. 

(2017).46 Meanwhile, Vicente et al. (2017)47 subjected K17 and HDF cells to SiO2-NPs with 

diameters of 20–500-nm for 24 h (88 samples). Kusaczuk et al. (2018)48 examined the effects of 

exposing 7–20-nm SiO2-NPs to LN229 cells for 24 and 48 h (42 samples), while Zang et al. 

(2018)49 separately exposed A549 cells to 20- and 100-nm SiO2-NPs for 24 h (14 samples). In 

another study, Du et al. (2019)50 subjected N9, bEnd.3, and HT-22 cells to 50–300-nm SiO2-NPs 

for a period of 24 h (36 samples). Similarly, the effects on HEK293 and hippocampal cells when 

exposed to SiO2-NPs of various diameters (10–400-nm) for various times (0.08–24 h) were 

investigated by Kamikubo et al. (2019)51 (93 samples). Similarly, Kim et al. (2019)32  exposed 

HepG2, A549, and SW480 cells to 20–50-nm SiO2-NPs for 0.5–24 h (148 samples). Lee et al. 

(2019)52 subjected HUVEC cells to 20–50-nm SiO2-NPs for 24 h (28 samples), whereas Ren et al. 

(2019)53 examined the effects of 57.66-nm SiO2-NPs on GC-2spd cells over a period of 24 h (seven 

samples). Crucho et al. (2020)54 exposed HeLa cells to 35-nm SiO2-NPs for 24 h (seven samples), 



while Liu et al. (2020)55 placed BEAS-2B cells in contact with 15-nm SiO2-NPs for 12 h (seven 

samples). Meanwhile, A549 cells were exposed to 25-nm SiO2-NPs for 24–72 h (18 samples) by 

Nazarparvar-Noshadi et al. (2020).56 Tada-Oikawa et al. (2020)57 subjected Caco-2 cells with 30-

nm SiO2-NPs for 24 h (25 samples), and Wang et al. (2020)58 observed the effects of 16.75-nm 

SiO2-NPs on BEAS-2B cells over periods of 24 and 48 h (ten samples). Similarly, Cui et al. (2021)59 

exposed H9c2 cells to 60-nm SiO2-NPs for 6–48 h (24 samples). The effects of exposing SH-SY5Y 

cells to 63-nm SiO2-NPs were examined for periods of 3–24 h (25 samples) by Hou et al. (2021),60 

while the influence of 16–51-nm SiO2-NPs on NRK cells for 24 h (12 samples) was investigated 

by Ruan et al. (2021).61 More recently, Hou et al. (2022)62 exposed BV2 cells to 48.53-nm SiO2-

NPs for 3–24 h (16 samples), while Kim et al. (2022)63 subjected HepG2 cells to 20-nm SiO2-NPs 

for a period of 24 h (ten samples). Similarly, Liang et al. (2022)64 observed the effects of 50-nm 

SiO2-NPs on L-02 cells for 24 h (seven samples). Finally, Ma et al. (2022)65 exposed BEAS-2B 

cells to 51.58-nm SiO2-NPs for 24 h (six samples), and Zhang et al. (2022)66 subjected R28 cells 

to 15- and 50-nm SiO2-NPs for periods of 12 and 24 h (20 samples). 

   Moreover, to verify the final predictive models, we included in-house experiments, which were 

performed by independent researchers using SiO2-NPs with primary sizes of 10-, 30-, 50-, 70-, 

100-, 300-, and 1000-nm (136 samples). SiO2-NPs were obtained from Micromod 

Partikeltechnologie (Rostock, Warnemünde, Germany). The hydrodynamic sizes and zeta 

potentials of the SiO2-NPs were measured using a Zetasizer Nano-ZS (Malvern Instruments Ltd.). 

The hydrodynamic sizes of the 10-, 50-, and 100-nm SiO2-NPs in water were 18.3, 48.4, and 99.8 

nm, respectively; their zeta potentials were –15.6, –17.3, and –22.3 mV, respectively, and their 

primary sizes were as indicated by the manufacturer. The hydrodynamic sizes and zeta potentials 

of the 30-, 70-, 300-, and 1000-nm SiO2-NPs were previously published.67,68 Experimental details 

on the exposure of A549, SH-SY5Y, TM4, BeWo, and RAW 264.7 cell lines to SiO2-NPs are 

provided in Supporting Information Table S5. 

 

Shapley Additive exPlanations (SHAP) 

Attribute importance was determined based on the global feature importance defined by the SHAP 

values:30,69 



𝜙' =
(
|&|!
∑ |𝑆|! (|𝐹| − |𝑆| − 1)! [𝑓+∪{'}6𝑥+∪{'}8 − 𝑓+(𝑥+)]+⊆&\{'} , where 𝐹, 𝑆, 𝑥+, 𝑓+∪{'},  and 𝑓+	 represent 

the set of all features, a subset of 𝐹,	the values of the input features in the set S, a trained model 

with that feature present, and a trained model with that feature withheld, respectively. The SHAP 

value 𝜙'  of the feature 𝑖  was generated by averaging the marginal contributions of all the 

permutations of a feature set. A higher mean absolute SHAP value indicated a more predictive 

feature. In this study, features with positive SHAP values drove the output of the model towards 

cytotoxicity, and vice versa, thus explaining the rationality of decision-making in prediction. 
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