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INTENSIONAL LOGIC WITHOUT TEARS

lan C. Stirk
September 1984

Introduction

W. V. Quine’s “ Methods of Logic” ( Quine, 1974) is a
goldmine of information for those seeking help with problems in
formal logic. In chapter 29 (p161) he outlines his *Main Method ”
of tackling problems of proof in first order predicate calculus.

Quine is always at pains to eschew what he calls “ monolithic”
methods of proof, but the “Main Method” remains a very useful
tool for demonstrating, by an almost mechanical procedure, that a
set of premises is inconsistent. Logical truth may then be tested

by showing the inconsistency of its negation, and it is not necessary
to wait for the inspiration of a more elegant proof.

I feel sure that many linguists would like to have some such
useful technique for grappling among the formulae of intensional
logic. It seems to me that Quine’s Main Method (I shall drop the
inverted commas from now on) may be extended without too much
difficulty to cope with such elaborate forms of logic, and it is the
purpose of this article to demonstrate that this is so.

It is my belief that students of logic benefit most from a
“hands on” approach to the subject —after trying things out one-
self, and falling into all the traps for the unwary, it is much ea-

sier to appreciate the need for rigour, and easier to understand



how such rigour is to be achieved. Now I must admit that I my-
self am, and no doubt always will be, just a student of logic,
and as such prone to fall into traps. While I am convinced that
the extension of the Main Method I present does work in inten-
sional logic, I am not so confident that my presentation is flaw-
less, that my language and metalanguage are kept properly distinct,
and so on. I would be grateful for any criticisms from interested
readers. As for the English language, I have not drawn any dist-
inctions between “valid” and “logically true”, or between “ formu-

”

la” and “sentence”. Whether 1 should have done is one of those
things I am not so sure of.

In a previous article (Stirk, 1982 ), I have already presented
a simple introduction to the variation of the Main Method which is
my starting point here, which I will not repeat. Rather, 1 will
present an important example of the use of the method, together
with a commentary to explain the procedure. Read in conjunction
with Quine’s presentation, this should provide sufficient introduction

to the technique.
The Main Method in Higher Order Predicate Calculi

In the second order predicate calculus, it is possible to
define the relation of identity in the following way (see, for exam-

ple, Carnap, 1958, p69) :
(Ox =y . = (P)(Px = Py))

It will be seen that I am using the elegant combination of dot and

bracket notations explained in Quine (1974 ). The problem is to



show that the use of this definition is equivalent to the use of the

following two axioms of identity (see Quine, 1974, p221 et seq) .

(x)(x = x)
(x)(y)(P)(x=y. Px. D Py)
The second, of course, is the well-known Leibniz’ law. The first

part of the proof shows that the definition formula does indeed

follow from the two axioms :

1. (x)(x = x)

2. (x)(y)(PY(x=1y . Px . DPy)

3. () y)(x#y . (P)(Px=Py) .v.x=y. (IP)—(Px=Py))

4. a#b. (P)(Pa=Pb) .v. a=b. (dP)—(Pa=Pb)) 3

10. a#b 20, a=D>b

1. (P)(Pa=Pb) 21. (3P)—(Pa=Pb)

12 [(Ax)(a=x)Ja=[(Ax)(a=x)]1b 11 22. —(Fa=Fb) 21

13. a=a.= . a=Db 12 23. a=b.Fa.DOFb 2

4. a=a 1 24. Fa JFb 20,23

15. a=b 13,14 25. a=b.—Fa.DO—~Fb 2

16. 4 10, 15 26. —Fa > —Fb 20,25
27. FbOFa 26
28. Fa=Fb 24, 27
29. -4 22,28

The premise in line 3 above is the negation of the definition for-
mula, and the proof works by showing that this line is inconsistent
with the axioms in lines 1 and 2. In line 4, the existential

quantifiers of line 3 are instantiated with the letters “a”and “b7”,
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a new letter for the second instantiation in accordance with
the rules of the Main Method. The number “ 3 7 to the right
indicates that the line was derived from line 3. In line 4, none
of the quantifiers are prenex. Quine (1974 ) deals with this situa-
tion by providing rules for moving quantifiers to prenex position
(p118 et seq). Rather than use these, which are sometimes
tricky to apply, I have preferred to use a tableau technique, as
outlined in, for instance, Hodges (1977 ). This technique is
guaranteed to “split up” lines in such a way that only prenex
quantifiers ever need to be instantiated. In this case, the main
connective of line 4 is an alternation, so here the tableau divides
into two branches, one to test each side of the alternation. The
left hand side is a conjunction which is separated as lines 10 and
11 . Similarly the right hand conjunction becomes two lines 20
and 21. In line 12 the universal quantifier “P” is instantiated,
a quantifier which ranges over first order predicates. The rules for
instantiation are the same: a universal quantifier of this kind may
be instantiated with any first order predicate. The difficulty now
is to instantiate it with a predicate which is most likely to give
rise to an inconsistency. This sometimes requires some ingenuity.
The predicate chosen in 12, “(Ax)(a=x)”, is a suitable one —
line 15 is reached, which is inconsistent with 10. The inconsis-
tency is indicated by the sign “ m ”, which is borrowed from
Lewis Carroll, who pioneered the tableau method in work which
unfortunately remained unpublished. (See Bartley, 1977).

The situation on the right hand branch is simpler. Here
it is an existential quantifier in line 21 that needs instantiating.

The neutral letter “F” is chosen, and once more an inconsistency



is reached, completing the proof.
Proving that the definition formula implies the axioms is
best done in two stages. First it is shown that “(x)(x=x)"

can be derived:

L x)ym&x=y . = (P)(Px=Py))
2. (Ix)(x=#x)

3. axa 2
4 a=a . = (P)(Pa=Pa) 1
5 (3P) (Pa. ~Pa .v. —Pa.Pa) 3,4
6. Fa.—Fa 5
7 B 6

A simple matter. As for the derivation of Leibniz’ law:

L (x)(y)(x=y . = (P)(Px=Py))

2. (3x)Fy)yEHP)(x=y . Px . =Py)

3. a=b . Fa . —Fb 9
4. a=Db . = (P)(Pa=Pb) 1
5. (P) (Pa=Pb) 3,4
6. Fa=Fb 5
7. Fb 3,6
8 = 3.7

Also quite straightforward. It seems that the Main Method will
apply in such higher order calculi. The next step is to apply it

to the various systems of modal logic.



Modal Propositional Calculus

In this section I shall adopt the symbols “L” and “M?7
for the necessity and possibility operators respectively, following
the example of Hughes and Cresswell in their excellent standard
textbook on modal logic (1968 ). Otherwise I shall continue to
use Quine’s notation: brackets will be required with “L” and
“M?” as they are with quantifiers in that notation.

“L” may be read, “it is necessary that...” and “M?7”,
“it is possible that...” . Bearing in mind the possible world
interpretation, however, and with certain qualifications to be made
clear later, they may be read, “for all possible worlds...” and
“for at least one possible world...” respectively. It is this
reading that gives the clue to a way of extending Quine’s main
methéd to cover modal logics too. Just as the existential quanti-
fier required instantiation with a new individual name, so “M?”
may be taken to require “instantiation” with a “new world”,
whereas “L” can be instantiated with any world. An example
or two will make this more clear.

Consider the premises:

1. Lp
2. M-p

These make a good introductory example, since they are obviously
inconsistent, bearing in mind that “Lp” is equivalent to “~M-—
p”. As usual, the proof of inconsistency begins by assuming the
premises to be true, this time in a particular world w,. The

world will be represented by a rectangle surrounding any sentences



assumed or inferred to be true in it, with its name w, in the top

left—hand corner:

Wy
1. Lp
2. M—p

Now the possibility operator in premise 2 is instantiated with a

new world w, :

Wy
1. Lp
2. M—-p
Wy
1. —p wy 2

According to that second premise, there is at least one other

173

world in which —p” is true, and that is precisely what the
diagram indicates. The significance of the arrow joining the two
worlds will become clear later. As for notation, it seems conve-
nient to start a new numbering in each world; references to other
worlds in justifying a line may be made by using a world number
as well as a line number, as has been done above.

The proof is now simple enough to complete. According

to the first premise, “ p 7 is true in every world, so it is true



in w, as well as w,: this provides the expected inconsistency, as

shown below in the completed proof:

Wy
1. Lp
2. M—-p

Wo
I. —p w2
2. p w, 1
3. R 1, 2

In the next few examples, I shall give first a complete
symbolic proof, followed by any necessary commentary.

This, while simple, is quite instructive:

Wy
L M(p.—p)

W2
1. p.—p wy 1
2 R 1

Since the single premise “M(p.—p)” turns out to be inconsistent,



its negation, “L(p v —p)” , must be logically true. “p v —p”
is of course a tautology, and a moment’s reflection shows that all
tautologies are necessarily true in this logic, for a similar proof
will hold in each case.

This next proof has particular importance:

Wy

1. Lp

2. MM-p
W

1. M—-p w, 2
Wa

1. —p w, 1

There would be an inconsistency in w,; if we added a second line
“«9o. p w;17”. Whether this addition is justified or not depends
on how we interpret the sentence “Lp”. True, reading “L7” as
“in all possible worlds” suggests that “p” should be true in ws
also, but there is also the possibility of interpreting “L” in such
a way that only worlds directly connected to wy, like w, in the
diagram, are “accessible” to it. In that case, “L7” is read as
“in all accessible worlds 7, and the “Lp” in w; means only

that “p” must be true in w,, but not necessarily in ws, in

this example. The system of modal propositional calculus which



arises from this interpretation is generally known as “system T7”.
The example above shows that the premises “Lp” and “MM-—p”
can consistently both be true in T. The arrows in the diagram
show the “accessibility relation” holding between worlds — w, is
accessible from w;, but w, is not. If w, were also accessible

from w, , we would have the following situation:

Wy
1. Lp
2. MM-p
Wa
1 M—p w, 2
W3
1. —p Wo 1
2. p w1
3 = 1, 2

The accessibility of wy from w, can be assured by supposing the
accessibility relation to be transitive. The two premises turn out
inconsistent under this supposition, showing that “ — (Lp. —~MMp)”,
or “LpDLLp”, is logically true in this system, which usually
has the label S4. More details about the various systems may be
found in Hughes & Cresswell (1968 ). My purpose here is merely

to show how the Main Method is easily extended to cover them.



The diagrams which result are closely related to the semantic
tableaux given by Hughes and Cresswell, but it is important to
bear in mind a vital difference. The Main Method proceeds by
assuming that a set of premises is true, and showing that this
leads to inconsistency —Hughes and Cresswell, following Kripke,
assume that a formula is false and follow the trail from there to
inconsistency. The results are the same as far as propositional
calculi are concerned, but only the Main Method is suitable for
predicate calculi. For the sake of consistency of approach, then,
I use the Main Method procedure for modal propositional calculi
also.

Some more examples. The formula “Mp D LMp?” is not

logically true in S4:

Wy
1. Mp
2. ML-p

Wo W3

1. p wy 1 1. L—-p w2

The transitivity of the accessibility relation does not help in brin-
ging about any inconsistency here. If the relation is made reflexive,
though, as well as transitive, then all worlds in a diagram will
be made accessible to each other, and an inconsistency will be

found :



Wy
1. Mp
2. ML-p

//

W, W
1. p w1 Py 1. L-p w2
2. —p w3l
308w, 1,2

Double arrows are used to show the reflexivity of this system,
designated S5. This is the most important system for our purpo-
ses, since it figures in Montague (1970 ), as will be seen helow.

The following examples demonstrate the logical truth of
various more complicated sentences in the three systems, and
illustrate certain helpful modifications to the basic Main Method.
Firstly, it will be shown that “L (LpDOLg) v L (LgDLp)” is
logically true in S5:



W

Proofs involving more complex expressions can become overfull of
worlds and festooned with arrows.

simplifications by remembering that

in S4 and S5, and that

The previous proof looks simpler as:

1. M(Lp M-q)
2. M (Lg M-p)
Wa W3
M-q w1 1. Lq w,2
Wy
—q w1
q Wy 1
R 1, 2

It is possible to make useful
“LpDLLp” is logically true
“Mp DLMp” is logically true in S5.




Wy
. M(Lp . M—q)
2. M(Lqg . M-p)

2. M(Lg . M—p) w,;2S85

1. M—p Wa 2
2. Lp w; 1,84

Here I have indicated the use of “Lp D LLp” by writing “S4”
to the right of the line that depends on this use; “S5”
similarly shows a use of “Mp D LMp?”.

The next example shows how the tableau method for
alternation may be adapted to modal calculi. It seems best here
to draw a clear vertical line dividing the diagram in two after
each alternation, for of course as usual each branch must be
considered quite separately. This particular proof shows that

“M(pDq) = . LpDOMq” is logically true in T:



Wi

1. M(pDgq) . Lp . L—g.v:L(p.—q) . LpDO Mg

1. M(pDaq) 1 21. L{(p.—-q) 1
12. Lp 1 22. Lp D Mg 1
13. L—gq 1 23. M-pv Mq 22

101. M-p22 111. Mg 22

W W Wy
1. pDgq w11 1. -p w,101 1. q wlll
2. p w; 12 2. p. -q w21 2. p--q w21
3. —gq w; 13 3w 1,2 3= 1,2
4 = 1,2, 3

The following example shows that “L (p DLgq) DL(MpDqg)”
is logically true in S5:



Wy
1. L({(pDLg)
2. M(Mp . —-q)
Wy
1. Mp Wy 2
2. —q wy 2
3. w3 3
4. 2,3
W3
. p wa
2. pDOLlg w1, S4
3. Lg 1, 2

In order to shorten this proof, it was useful to remember the

reflexive property of S5, and return from wy to wW,, writing

« ”

q” as the third line of w, as a consequence of w;3, instead
of going on to further worlds.

In the first order predicate calculus the Main Method
requires that existential quantifiers should be instantiated before
universal ones whenever possible, in order to reach a speedier
conclusion. An analagous rule, that “M?” should be instantiated
before “L” , does not apply. This may be seen by showing that
“L(LpvLqg)>D.Lp v Lq”is logically true in T. That is of course

trivially the case, but a rigid application of the Main Method



results in:

Wy
1. L(Lp v Lg)

2. M—p
3. M—q
] / \\Ws\
1. —p w2 1. —q w, 3
2. Lp v Lg w1 2. Lp v Lg w1
3. Lq 1, 2 3. Lp L2

The inconsistency has been missed here. Instantiating w; 1 first

gives better results:

W1
1. L{Lp v Lg)
2. M—p
3. M—q
4. Lp v Lg 1
11 Lp/ 21. Lg
Wa Wy
-p w2 . -q w,;3
p wy 11 2. q w,; 21
3. = 1 2 1, 2




The Main Method as applied to modal propositional calculus does
not work quite so mechanically as it does for first order predicate

calculus.

Modal Predicate Calculi

Introducing modality into predicate calculi presents us with
a number of arbitrary choices, whose consequences may be explo-
red with a simply extended Main Method. How far should the
populations of individuals in each world overlap? Should the uni-
versal quantifier range just over the population of a particular
world, or over all possible individuals? As an example, let us
explore some of the circumstances under which the well —known
Barcan formula, “ (x)LFxDL(x)Fx”, is or is not logically

true. The following situation will certainly arise:

Az
1. (x)LFx
2. M (3dx) —Fx
W
1. (3x) —Fx w, 2
2. —Fa 1

The next step would be to go back to w, and instantiate the

universal quantifier in line | with “a”, yielding “LFa”, which



would result in an inconsistency in W, .

W)
1. (x)LFx
2. M(dx) —Fx
3. LFa 1
W2
1. (dx)~-Fx w;2
2. —Fa 1
3. Fa w, 3
4. = 2,3

”

This proof will only go through if the individual denoted by “a
is in the population of w; as well as w,. In the simplest case,
we could specify that every world has the same population, so
that the Barcan formula would be logically true whether the modal
system is T, S4 or SbH.

A more complicated possibility is to suppose that the
population of w, is larger than that of w,, so that “a”, intro-
duced in line w, 2, does not figure in w,. As a result, line w3
is no longer justified, if the universal quantifier in line w, 1 is
taken as referring only to the population of w,. . No inconsistency
arises now, so the Barcan formula is not logically true in this
system. This is so whether it is T or S4 that is under considera-
tion. The condition is, roughly speaking, that if world j is

accessible from world i, then the population of j should be larger



than that of i, This condition, known as the inclusion require-
ment, cannot hold in S5, where the accessibility relation is
reflexive, so under this interpretation the Barcan formula must be
logically true when lower predicate calculus is added to S5.

A difficulty that arises when worlds have different

populations is that of the status of, say, the sentence “Fa” in a

[Tl

world where “a” is not a member of the population. The most
austere logical view is to demand that sentences must always be
either true or false, and Kripke has shown that it is possible to
build a model of modal predicate calculus on this basis. In this

model, ’different worlds may have quite different populations, so

the Barcan formula is not logically true even in S5. Much
more surprising is that even a formula like “ (x)Fx D Fy”, where
“y” refers to some individual, is not logically true in Kripke

semantics. This is because “Fy” may be false in some world

13 1

where “y” is not a member of the population —a world where
“(x)Fx” is nevertheless true.

One way around this apparently paradoxical result, at
least in cases where the inclusion requirement holds, is to main-
tain that sentences like “Fy” above are neither true nor false
but undefined in worlds not containing “y”. A thorough
investigation of this notion is to be found in Hughes and Cresswell
(1968 ), pl170 et seq. I will abandon further discussion of it
here, since Montague seems to favour Kripke semantics in general,
and in his (1970 ) employs a simple system where each world has
the same population of “possible individuals”. It should be appa-
rent, though, that the Main Method may be used to explore any

of these models.



Even in the very simplest model, a curious result may
arise which deserves to be known as “Quine’s Paradox”. A
particularly succinct statement and discussion of it is to be found
in Ayer (1973), p196 et seq. The paradox is that things that
are identical are necessarily identical, or, symbolically, that
“Ux)(y)Lx=y. DL (x=y)]” is logically true. The Main Method

demonstration runs as follows:

Wy
L F0)@lx=y. M(x#y)]
2. ()M PX(x=y . Px . DPy) Axiom
3. a=5>, 1
4 M(a#b) 1
5. (P)(a=b . Pa . DO Pb) 2
6. a=b .[(Ax)L(a=x)Ja. OD{(Ax)L(a=x)]b 5
7. a=b . L(a=a) . D L(a=b) 6
8 (x)L(x=x) Theorem
9. L(a=a) 8
10. L (a=b) 3,7 9

Wo
1. a=b w, 4
2. a = w,-10
3. R i, 2




The proof is quite straightforward, although it will be noticed that
I have introduced an unproved theorem in line w, 8, instead of
the simple axiom of identity “(x)(x = x)”. Of course axioms
must be taken as true in every world, so it is permissible to
assert the logical truth of “L(x)(x=x)”, and I leave the proof
of the formula “L(x)(x=x) DO (x)L(x=x)", justifying the
theorem, as an exercise for the interested reader. It is quite a
simple exercise — unlike so many writers, I am genuinely trying
to save space for more important matters, and not just avoiding
the discussion of something horribly difficult.

The existence of Quine’s paradox means that the usual
axioms, or the definition, of identity cannot simply be imported
into a modal predicate calculus. In the next section it will be
seen how Montague deals with the difficulty in constructing his

intensional logic.

Intensional Logic

We are now near the goal of using the Main Method as a
tool for tackling intensional logic. 1 shall use the version presented
in Montague (1970), since it is the one most familiar to linguists.
Montague’s notation is hardly ideal, and it differs markedly from
the one I have used up to now, but nevertheless 1 shall use it for
convenience of reference to Montague’s original work.

The major difficulty we face with this logic is that it is not
axiomatized. I do not know if anyone has yet found a suitable set

of axioms for this version of intensional logic. What Montague



provides is a recursive definition of the concepts of intension and
extension (1970, pp258—9). Instead of being able to set down
straightforward axioms and definitions, as with, say, identity
above, it is necessary to formulate statements and definitions
which can be justified by referring to Montague’s rules. The ways
of doing this will, I hope, become clear as we proceed.
Montague’s original recursive definition contained an error,
fortunately not fatal, which is corrected by a footnote under
Thomason’s editorship (1970, p259 footnote 10). Also I wish
to simplify matters slightly for the logic by omitting any reference
to time, that is Montague’s set of moments J and the partial
ordering <C. This makes it convenient to repeat Montague’s
definition here, incorporating Thomason’s correction and making

the obvious simplifications:

(1) If o is a constant, then ah& is F(a&) (i).

(2) If @ is a variable, then a%"8 is g(a).

{3 If e ME, and u is a variable of type b, then
[ Aua 3%%¢ is that function h with domain D, a,; such
that whenever x is in that domain, h(x) is a%h8 ,
where g’ is the . —assignment like g except for the possible
difference that g’ (u) is x.

(4) If e ME.,,, and f¢ ME,, then Ta(f)]obe is
a®he (f%he ) (that is, the value of the function
a¥"¢ for the argument F%h& ).

(5) If ¢,fe ME,, then [a=pf]%¢ is | if and only if
ashe s B

{6) If ¢ ME,, then [ —& ]%%8 is | if and only if &



is O; and similarly for A, v, —, <> .

7 If #¢ ME, and u is a variable of type a, then
[~vug 1948 is | if and only if there exists x€D, a4
such that & %b%¢ is |, where g’ is as in (3); and
similarly for ~ug#.

@8 If e ME,, then [[J& J%"8 is | if and if &%"s
is 1 for all i* ¢ I, and similarly for $o.

(9) If ae ME, then [ ~a ]%4¢ is that function h with

domain I such that whenever i ¢ I, then h(i)=a""® ,

It will be noticed that in (8) I have included a clause dealing
with the possibility operator “<{>”, which Montague does not
employ in (1970), but which is indispensable for us. As well
as that, it is necessary to introduce items to serve for instantiating
variables in the Main Method. Using u and v as variables of type
e, and x and y as variables of type <s,e>>, as Montague does
on page 260 of his (1970), k and ! will be used as possible
values of g'(x), and a and b as possible values of g (u). Thus
k and | are members of D .. o, and a and b are members of
Deoa -

As a simple initial example I will show that

“Ud~ulfu=v~ul]” is logically true:



Wy

1. OVulu=viu]

Wa
1. VuluzYiul w1
2. a¥“-a 1
3. Aa={<w1,a> , <w2,a>} Defn
4. Vra = a 3, Defn
5. ® 2, 4
That seems to work in a fairly straightforward way. “Defn” at

the end of a line means of course that Montague’s definition has
been appealed to. In the case of line w,; 3 here, we remember
that “a” denotes a member of the set A of possible individuals,
and has the same extension in each possible world. The intension
is exhibited in line w,3: it is the function h mentioned in clause
9. Line w, 4 follows from w, 3 and clause 10 of Montague’s
definition.

It should on the other hand be the case that “{ONVx[x#™x]”
is consistent in the logic. This means that we should not find a

contradiction when we try:



Wy

1. O vxrlx#™x]

Wa
1. Vx[x# "] wy 1
2. ko= ~vk 1
Let k be {<Wl ,a>, <w,, b>1l
3. “k=5b Defn
4 “k="b={<w,, b>, <w;, b>} 3 Deh

Here we seem to need a metalinguistic statement, the one that
begins “Let..”. This defines what we want “k” to be. It is
a member of D .. A, and its definition is in accordance with
that. The other uses of Montague’s definition are similar to those
in the previous proof; it will be seen that no inconsistency is
reached.

Once some demonstrations of this kind have been made,
it is possible to use the Main Method in a more “normal” way.
Here is a more substantial example. On page 265 of his (1970),
Montague claims that the formula “[J[ 0 (x) <> 0, (*x)]” is a
consequence of his meaning postulate (3) on page 263. It is,
interestingly, actually equivalent to the meaning postulate. The

first proof shows that the postulate implies the formula:



Wy

L VMAx(OL 0 (x) <=M {¥x} ]

2. VO LO(x) A0, (Vx) ov . =0 (x) Ady (¥x)]

3. OL8k) A= 0, k) ov. —8 (k) A Sy (k)] 2

4. /\XI:}[S(X)«—)N{"X}] 1
Wo

L8 (k) A = 8, (k).v. =d(k) A 0,Ck) w3
10. 8 (k) 20. — 9 (k)

1. — 0, (k) 21. 4, (k)

12. 5(k)<—>N{"k} w, 4 etc.

13, N{Vk} 10,12

4. — 0 (k) 11

15. & (k) <> N{v~“k} w, 4

16, Nx[lx=>"x] Th.

17 0 (k) <> N{Yk} 1516

18, —N{"k} 14, 17

19. ® 13,18

The various steps in this proof should be clear enough. 1 have
taken the liberty of introducing dots into Montague’s notation, to
avoid having to count brackets. Line w, 14 follows from line w,11
because of the definition of “ §,” given by Montague on page 265
of his (1970). Line w, 16 is labelled “Th.” for “theorem?” : it



was demonstrated above that “[JAu[u=%"ul]” is logically true,
and it should be clear that the same proof would go through for
variables of any type, according to the recursive definition. In

“etc” after line 21,

the right hand branch 1 have written only
since, with appropriate changes of sign, it is similar to the left
hand side. “N?” represents an instance of the variable “M?”,
discussed by Montague (1970, p260).

The equivalence is established by showing that the impli-

cation holds in the opposite direction:

Wy
L Ax[OL0(x) <> 0, (Vx) ]
2. AMVzOLd(x) A M{"x}.v. ﬂ@(x)/\M{Vx}]
3. \/x()[()‘(x)A’ﬂ“ﬁ*{vx}.v.’wﬁ(x)/\”5*{")(}] 2
4. OLo(k) N8, (Yk) .v. 2 d(k) A 0,(CTk) ] 3
Wo
L 6 (k) A —0,Ck) .v._ =38 (k) A 0,Ck) w4
10. 0 (k) 20,10 (k)
1. =0, k) 2. 0, (Vk)
122 6 (k)< 0,"k) w1 etc.
13. = 10,11, 12

Once again, when this proof branches, the right hand side is

similar to the left. The only tricky point in this one is instantia-
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ting the “AM?” in line w, 2. Only the choice of “~9,” will
do.

At first glance, Montague (1970 ) p 265 seems to suggest
that meaning postulate (2) also implies “[J[ 0 (x) <> 0, (¥x)]".
This is not the case, however, as the following demonstration

suggests:

Wi
L Ax[JL0(x)— Vu x="u]
2. VxOLO(x) N0, (x) wv. 718 (x) A 0, ("x) ]
3. QL) A1 0, k) .v. 19 (k) A0, k)] 2

Wa

LK) A= 3, (V) .v.m 0 (k) A S, (k) w, 3

10. 0 (k) 20.>— 6 (k)

1. — 0, (k) 21. 0, (Vk)

12 0(k) — Vu k="u w;1 22. 0 (k) 20
13. Vu k="u 10,12

14 k=ra 13

15. 0 (ra) 10, 14

16. 9, (a) 15

17. = 0, (a) 11, 14

18. 1 16, 17

In the course of this proof, I have tacitly used the definition of
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“0,” in moving from line w,15 to w,16, and elsewhere. The
derivation of line w,17 uses the fact, proved above, that
“Ax[JLx=>"x]”. It is also assumed that line w,14 sanctions
the substitution of “~a” for “k”, something that strictly speaking
requires a proof based on the definitions.

Nevertheless, it is clear that although an inconsistency is
revealed on the left hand side, there is no way of reaching one
on the right, for the simple reason that “~Yk” may not be the
same as “k”. All that can be proved, it seems, is that postulate
(2) implies “Ax[J[ §(x)— 0,(Yx)]”, a weaker statement
than the one Montague presents.

Interestingly, though, this weaker formula seems to be
sufficient, at least in deriving Montague’s simpler examples (1970,
p266 et seq). Although we cannot state “ Ax[ ][ 0, (Vx) =0 (x)]7,
it is possible to write “Au[J[ 04 (u) — 8 ("u)]”, which follows
directly from the definition of “ §,”. The following examples show
that this, together with the weak formula, is enough to demonstrate
the equivalence of “\/x[man’ (x) A walk’ (x) 17 and
“Vulman', (u) A walk’y, (u) 7.

. Vx[man' (x) A walk’ (x)]

2. NAul 7 man’, (u) v owalk’, (u) ]

3. AxU[ man’ (x) — man’, (¥x)] Theorem
4. NAxJ[walk’ (x) — walk’ , (¥x) ] Theorem
5. man’ (k) A walk’ (k) 1

6. man’ (k) — man’, (Vk) 3

7. walk’ (k) — walk’, (k) 4

8 man’, (Vk) A walk’, (Vk) 56,17
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9. —man’, (Vk) v = walk’, (Vk) 2

10. ® 8 9

)

There is no need to draw a rectangle round this, since all the

action takes place in just one world. In deriving line 9, the

«“

variable “u” was instantiated by “Yk?”

: 1 suppose this is not
strictly according to the rules, but it only suppresses an obvious
144

intermediate step of stating that ““k?” is, say, a”,

The proof continues, using the definition of “ d,” only:

Lo Vulman’, (u) A walk’, (u)]

2. Ax[ man’ (x) v owalk’ (x)]

3. Au[d[ man’, (u)—> man’ ("u) ] Defn. of 0,
4, Aul[J[ walk’, (u) — walk’ ("u) Defn. of d,
5. man’, (a) A walk’, (a) 1

6. man’, (a) — man’ ("a) 3

7. walk’, (a) — walk’ ("a) 4

8 man’ ("a) A walk’ ("a) 56,7

9. —man’ ("a) v mwalk’ ("a) 2

10. 5 8,9

<

Once again the proof is compressed by instantiating “x” directly

with “~a”, to produce line 9.
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Conclusion

I hope that the examples given have adequately shown the
power and value of the extended Main Method in the field of
intensional logic. Without doubt it could be extended further to
deal with moments of time, and the operators “W?” and “H”,
if a suitable notation were devised. Many textbooks use some

system of ¢

‘natural deduction” in elementary logic, which in some
ways is similar to the Main Method. But I have never seen
natural deduction employed in intensional logic, and I feel it
would be far too involved and unwieldy to cope with the complex-
ities. The Main Method sometimes needs some ingenuity in appli-
cation, but nothing out of the ordinary. It is at the very least a

handy compass when one’s intuitions are all at sea.
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