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INTENSIONAL LOGIC WITHOUT TEARS 

Ian C. Stirk 

September 1 9 8 4 

Introduction 

W. V. Quine's "Methods of Logic" (Quine, 1974) is a 

goldmine of information for those seeking help with problems in 

formal logic. In chapter 29 (p 161) he outlines his "Main Method " 

of tackling problems of proof in first order predicate calculus. 

Quine is always at pains to eschew what he calls "m9nolithic" 

methods of proof, but the "Main Method" remains a very useful・ 

tool for demonstrating, by an almost mechanical procedure, that a 

set of premises is inconsistent. Logical truth may then be tested 

by showing the inconsistency of its negation, and it is not necessary 

to wait for the inspiration of a more elegant proof. 

I feel sure that many linguists would like to have some such 

useful technique for grappling among the formulae of intensional 

logic. It seems to me that Quine's Main Method (I shall drop the 

inverted commas from now on) may be extended without too much 

difficulty to cope with such elaborate forms of logic, and it is the 

purpose of this article to demonstrate that this is so. 

It is my belief that students of logic benefit most from a 

"hands on" approach to the subject -after trying things out one-

self, and falling into all the traps for the unwary, it is much ea-

sier to appreciate the need for rigour, and easier to understand 
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how such rigour is to be achieved. Now I must admit that I my-

self am, and no doubt always will be, just a student of logic, 

and as such prone to fall into traps. While I am convinced that 

the extension of the Main Method I present does work in in ten -

sional logic, I am not so confident that my presentation is flaw -

less, that my language and metalanguage are kept properly distinct, 

and so on. I would be grateful for any criticisms from interested 

readers. As for the English language, I have not drawn any dist-

inctions between "valid" and "logically true", or between "formu-

la" and "sentence". Whether I should have done is one of those 

things I am not so sure of. 

In a previous article (Stirk, 1982), I have already presented 

a simple introduction to the variation of the Main Method which is 

my starting point here, which I will not repeat. Rather, I will 

present an important example of the use of the method, toge1:her 

with a commentary to explain the procedure。 Readin conjunction 

with Quine's presentation, this should provide sufficient introduction 

to the technique. 

The Main Method in Higher Order Predicate Calculi 

In the second order predicate calculus, it is possible to 

define the relation of identity in the following way (see, for exam-

ple, Carnap, 1958, p 69) : 

(x)(y)(x = y.  (P)(Px Py)) 

It will be seen that I am using the elegant combination of dot and 

bracket notations explained in Quine (1974). The problem is to 
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show that the use of this definition is equivalent to the use of the 

following two axioms of identity (see Quine, 1974, p 221 et seq) : 

(x)(x = x) 

(x) (y) (P) (x = y. Px.コPy)

The second, of course, is the well -known Leibniz'law. The first 

part of the proof shows that the definition formula does indeed 

follow from the two axioms : 

1. (x)(x = x) 

2. (x) (y) (P) (x = y.  Px ．コ Py)
3. （ヨx)（ヨy)(x :f:. y. (P) (Px琴 Py).v. X = y.（ヨP)-(Px弄 Py))

4. a :f:. b. (P) (Pa == Pb). v. a = b. （ヨP)-(Pa旱 Pb)) 3 

10. a :;t:.b~ \ ~a=b 

11. (P)(Pa旱 Pb) 21.（ヨP)-(Pa圭 Pb)

12. [ (入x)(a=x)]a旱［（入x)(a= x)Jb 11 22. -(Fa旱Fb) 21 

13. a= a.旱． a= b 12 23. a= b. Fa.コFb 2 
14. a = a 1 24. FaコFb 20, 23 

15. a= b 13.14 25. a=b.-Fa.コーFb2 

16. N 10, 15 26. -Faコ-:Fb 20, 25 
27. FbコFa 26 

28. Fa == Fb 24, 27 
29. 炎 22,28 

The premise in line 3 above is the negation of the definition for-

mula, and the proof works by showing that this line is inconsistent 

with the axioms in lines 1 and 2. In line 4, the existential 

quantifiers of line 3 are instantiated with the letters "a" and " b ", 
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a "new" letter for the second instantiation in accordance with 

the rules of the Main Method. The number " 3 " to the right 

indicates that the line was derived from line 3. In line 4, none 

of the quantifiers are prenex. Quine (1974) deals with this situa-

tion by providing rules for moving quantifiers to prenex position 

(p 118 et seq). Rather than use these, which are sometimes 

tricky to apply, I have preferred to use a tableau technique, as 

outlined in, for instance, Hodges (1977). This technique is 

guaranteed to "split up" lines in such a way that only prenex 

quantifiers ever need to be instantiated. In this case, the main 

connective of line 4 is an alternation, so here the tableau divides 

into two branches, one to test each side of the alternation. The 

left hand side is a conjunction which is separated as lines 10 and 

11. Similarly the right hand conjunction becomes two lines 20 

and 21. In line 12 the universal quantifier "P" is instantiated, 

a quantifier which ranges over first order predicates. The rules for 

instantiation are the same: a universal quantifier of this kind may 

be instantiated with any first order predicate. The difficulty now 

is to instantiate it with a predicate which is most likely to give 

rise to an inconsistency. This sometimes requires some ingenuity. 

The predicate chosen in 12, " (入 x)(a= x) ", is a suitable one -

line 15 is reached, which is inconsistent with 10. The inconsis-

tency is indicated by the sign "汲 ’',whichis borrowed from 

Lewis Carroll, who pioneered the tableau method in work which 

unfortunately remained unpublished. (See Bartley, 1977). 

The situation on the right hand branch is simpler. Here 

it is an existential quantifier in line 21 that needs instantiating. 

The neutral letter "F" is chosen, and once more an inconsistency 
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is reached, completing the proof. 

Proving that the definition formula implies the axioms is 

best done in two stages. First it is shown that " (x) (x = x) " 

can be derived : 

1. (x)(y)(x=y 

2. （ヨx)(x-c/:.x)

3. a c/-: a 2 

(P) (Px旱 Py))

4. a= a. 旱（P)(Pa旱 Pa) 1 

5. （ヨP)(Pa. -Pa. v. -Pa. Pa) 3, 4 

6. Fa. -Fa 5 

7. 匹 6
 

A simple matter. As for the derivation of Leibniz'law: 

1. (x)(y)(x=y.三（P)(Px三Py))

2. （ヨx)（ヨy)（ヨP)(x = y.  Px. -Py) 

3. a = b.  Fa. -Fb 

4. a = b.  == (P) (Pa == Pb) 

5. (P) (Pa== Pb) 

6. Fa== Fb 

4
 
，
 

2

1

3

5

 

7. Fb 3, 6 

8. l'l 3, 7 

Also quite straightforward. It seems that the Main Method will 

apply in such higher order calculi. The next step is to apply it 

to the various systems of modal logic. 
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Modal Propositional Calculus 

In this section I shall adopt the symbols "L" and "M" 

for the necessity and possibility operators respectively, following 

the example of Hughes and. Cresswell in their excellent standard 

textbook on modal logic (1968). Otherwise I shall continue to 

use Quine's notation: brackets will be required with "L" and 

"M" as they are with quantifiers in that notation. 

"L" may be read, "it is necessary that... " and "M ", 

"it is possible that... ". Bearing in mind the possible world 

interpretation, however, and with certain qualifications to be made 

clear later, they may be read, "for all possible worlds... " and 

"for at least one possible world... " re13pectively. It is this 

reading that gives the clue to a way of extending Quine's main 

method to cover modal logics too. Just as the existential quanti-

fier required instantiation with a new individual name, so "M" 

may be taken to require "instantiation" with a "new world", 

whereas "L" can be instantiated with any world. An example 

or two will make this more clear. 

Consider the premises : 

1. Lp 

2. M-p 

These make a good introductory example, since they are obviously 

inconsistent, bearing in mind that "Lp" is equivalent to "-M-

p ". As usual, the proof of inconsistency begins by assuming the 

premises to be true, this time in a particular world w1. The 

world will be represented by a rectangle surrounding any sentences 
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assumed or inferred to be true in it, with its name w1 in the top 

left-hand corner: 

W1 

1. Lp 

2. M-p 

Now the possibility operator in premise 2 is instantiated with a 

new world w2 : 

wl  

1. Lp 

2. M-p 

W2  

1. -p W1  2 

According to that second premise, there is at least one other 

world in which " -p " is true, and that is precisely what the 

diagram indicates. The significance of the arrow joining the two 

worlds will become clear later. As for notation, it seems conve -

nient to start a new numbering in each world; references to other 

worlds in justifying a line may be made by using a world number 

as well as a line number, as has been done above. 

The proof is now simple enough to complete. According 

to the first premise, " p " is true in every world, so it is true 
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in w 2 as well as w 1 : this provides the expected inconsistency, as 

shown below in the completed proof: 

W1  

1. Lp 

2. M-p 

W2  

1. -p W1  2 

2. p W1  1 

3. N 1, 2 

In the next few examples, I shall give first a complete 

symbolic proof, followed by any necessary commentary. 

This, while simple, is quite instructive: 

W1  

1. M (p. -p) 

W2  

1. p. -p W1  1 

2. 只 l

Since the single premise "M (p. -p)" turns out to be inconsistent, 
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its negation, "L(p v -p)", must be logically true. "p v -p" 

is of course a tautology, and a moment's reflection shows that all 

tautologies are necessarily true in this logic, for a similar proof 

will hold in each case. 

This next proof has particular importance: 

W1  

1. Lp 

2. MM-p 

W2  

1. M-p W1  2 

W3  

1. -p W2  1 

There would be an inconsistency in w3 if we added a second line 

" 2. p w1 1 ". Whether this addition is justified or not depends 

on how we interpret the sentence "Lp". True, reading "L" as 

" in all possible worlds" suggests that "p" should be true in w3 

also, but there is also the possibility of interpreting "L" in such 

a way that only worlds directly connected to w1, like w2 in the 

diagram, are " accessible " to it. In that case, " L " is read as 

"in all accessible worlds ", and the "Lp" in w1 means only 

that "p" must be true in w2, but not necessarily in w3, in 

this example. The system of modal propositional calculus which 
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arises from this interpretation is generally known as " system T". 

The example above shows that the premises "Lp" and "MM-p" 

can consistently both be true in T. The arrows in the diagram 

show the "accessibility relation" holding between worlds -w2 is 

accessible from w1, but w3 is not. If w3 were also accessible 

from w1, we would have the following situation: 

W1  

1. Lp 

2. MM-p 

W2  

1. M-p W1  2 

W3  

1

1

2

 ，
 

2

1

 

w

w

l

 

p
 
-

P

只

．
．
 

1

2

3

 

The accessibility of w3 from w1 can be assured by supposing the 

accessibility relation to ・be transitive. The two premises turn out 

inconsistent under this supposition, showing that " -(Lp. -MMp)", 

or“LpコLLp", is logically true in this system, which usually 

has the label S 4. More details about the various systems may be 

found in Hughes & Cresswell (1968). My purpose here is merely 

to show how the Main Method is easily extended to cover them. 
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The diagrams which result are closely related to the semantic 

tableaux given by Hughes and Cresswell, but it is important to 

bear in mind a vital difference. The Main Method proceeds by 

assuming that a set of premises is true, and showing that this 

leads to inconsistency -Hughes and Cresswell, following Kripke, 

assume that a formula is false and follow the trail from there to 
inconsistency. The results are the same as far as propositional 

calculi are concerned, but only the Main Method is suitable for 

predicate calculi. For the sake of consistency of approach, then, 

I use the Main Method procedure for modal propositional calculi 

also. 

Some more examples. The formula "Mpコ LMp" is not 

logically true in S 4: 

W1  

1. Mp 

2. ML-p 

W2  W3  

1. p W1  1 l. L-p w1  2 

The transitivity of the accessibility relation does not help in brin-

ging about any inconsistency here. If the relation is made reflexive, 

though, as well as transitive, then all worlds in a diagram will 

be made accessible to each other, and an inconsistency will be 

found: 
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W1  

1. Mp 

2. ML-p 

／ 
W2  し_,.--Iw,L L-p 1. p W1 1 W1  2 

2. -p W3  1 

3. 只 W2  1, 2 

Double arrows are used to show the reflexivity of this system, 

designated S 5. This is the most important system for our purpo-

ses, since it figures in Montague (1970), as will be seen恥low.

The following examples demonstrate the logical truth of 

various more complicated sentences in the three systems, and 

illustrate certain helpful modifications to the basic Main Method. 

Firstly, it will be shown that "L (LpコLq)V L (Lqっ Lp)"is 

logically true in S 5 : 
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W1  

1. M (Lp 

2. M (Lq 

W2  

1. M-q W1  1 

W4  

1. -q W2  1 

2. q W3  1 

3. 只 1, 2 

M-q) 

M-p) 

W3  

1. Lq W1  2 

Proofs involving more complex expressions can become overfull of 

worlds and festooned with arrows. It is possible to make useful 

simplifications by remembering that "LpコLLp"is logically true 

in S 4 and S 5, and that " MpコLMp"is logically true in S 5. 

The previous proof looks simpler as: 
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wl  

1. M (Lp. M-q) 

2. M (Lq. M-p) 

W2 

1. Lp w1  1 

2. M (Lq. M -p) w, 2, S 5 

W3  

1. M-p W22  

2.Lp W11,S4 

3. N 1, 2 

Here I have indicated the use of "LpコLLp" by writing "S 4" 

to the right of the line that depends on this use; "S 5" 

similarly shows a use of " Mpコ LMp".

The next example shows how the tableau method for 

alternation may be adapted to modal calculi. It seems best here 

to draw a clear vertical line dividing the diagram in two after 

each alternation, for of course as usual each branch must be 

considered quite separately. This particular proof shows that 

"M  (pコq)苧． Lpコ Mq" is logically true in T: 
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W1  

1. M (pコq)。 Lp. L-q.v: L(p. -q). Lpコ Mq

11. M (pコq) 21. L (p. -q) 1 

12. Lp 22. Lpコ Mq 1 

13. L-q 23. MI -p v M¥  q 22 

101. M-p 22 111. Mq 22 

｛ i t 
W2  W3  W4  

1. pコq W1  11 1. -p w』01 1. q w, 111 

2. p W1  12 2. p. -q w晶l 2. p.-q w,21 

3. -q W1  13 3. N 1, 2 3. N 1, 2 

4. 只 1, 2, 3 

The following example shows that " L (pコ Lq)コL(Mpコq)"

is logically true in S 5: 
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W1  

1. L (pコ Lq)

2. M (Mp. -q) 

W2  

1. Mp W1 2 

2. -q W1 2 

3. q W33  

4. 只 2, 3 

W3  

1. p W2  1 

2. pコLq w, 1, S4 

3. Lq 1, 2 

In order to shorten this proof, it was useful to remember the 

reflexive property of S 5, and return from w3 to w2, writing 

"q" as the third line of w2 as a consequence of w3 3, instead 

of going on to further worlds. 

In the first order predicate calculus the Main Method 

requires that existential quantifiers should be instantiated before 

universal ones whenever possible, in order to reach a speedier 

conclusion. An analagous rule, that "M" should be instantiated 

before "L", does not apply. This may be seen by showing that 

"L(Lp V Lq)コ．Lpv Lq" is logically true in T. That is of course 

trivially the case, but a rigid application of the Main Method 
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results in: 

W1  

1. L(Lp V Lq) 

2. M-p 

3. M-q 

W2  W3  

1. p W1  2 1. -q W1  3 

2. Lp v Lq W1  1 2. Lp v Lq W1  1 

3. Lq 1, 2 3. Lp 1, 2 

The inconsistency has been missed here. Instantiating w1 1 first 

gives better results: 

W1  

1. L (Lp V Lq) 

2. M-p 

3. M-q 

4. Lp v Lq 1 

~I~ 
11. Lp I 21. Lq 

W2  W3  

1. -p W1  2 1. -q W1  3 

2. p W1  11 2. q W1  21 

3. 双 1, 2 3. 只 1, 2 
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The Main Method as applied to modal propositional calculus does 

not work quite so mechanically as it does for first order predicate 

calculus. 

Modal Predicate Calculi 

Introducing modality into predicate calculi presents us with 

a number of arbitrary choices, whose consequences may be explo-

red with a simply extended Main Method. How far should the 

populations of individuals in each world overlap? Should the uni-

versal quantifier range just over the population of a particular 

world, or over all possible individuals? As an example, let us 

explore some of the circumstances under which the well -known 

Bare an formula, " (x) LFxコL(x) Fx", is or is not logically 
true. The following situation will certainly a.rise: 

W1  

1. (x) LFx 

2. M （ヨx)-Fx 

W2  

1.（ヨx)-Fx w1 2 

2. -Fa 

The next step would be to go back to w, and instantiate the 

universal quantifier in line I with "a", yielding "LFa", which 
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would result in an inconsistency in w2 : 

W1 

1. (x) LFx 

2. M（ヨx)-Fx 

3. LFa 1 

W2 

1. （ヨx)-Fx W1 2 

2. -Fa 1 

3. Fa W1 3 

4. 只 2, 3 

This proof will only go through if the individual denoted by "a" 

is in the population of w1 as well as w2. In the simplest case, 

we could specify that every world has the same population, so 

that the Barcan formula would be logically true whether the modal 

system is T, S 4 or S 5. 

A more complicated possibility is to suppose that the 

population of w2 is larger than that of w1, so that "a", intro-

duced in line w2 2, does not figure in w1. As a result, line w心

is no longer justified, if the universal quantifier in line w1 1 is 

taken as referring only to the population of w1. No inconsistency 

arises now, so the Barcan formula is not logically true in this 

system. This is so whether it is T or S 4 that is under considera-

tion. The condition is, roughly speaking, that if world j is 

accessible from world i, then the population of j should be larger 
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than that of i. This condition, known as the inclusion require-

ment, cannot hold in S 5, where the accessibility relation is 

reflexive, so under this interpretation the Barcan formula must be 

logically true when lower predicate calculus is added to S 5. 

A difficulty that arises when worlds have different 

populations is that of the status of, say, the sentence "Fa" in a 

world where "a" is not a member of the population. The most 

austere logical view is to demand that sentences must always be 

either true or false, and Kripke has shown that it is possible to 

build a model of modal predicate calculus on this basis. In this 

model,. different worlds may have quite different populations, so 

the Barcan formula is not logically true even in S 5. Much 

more surprising is that even a formula like " (x) FxコFy", where 
"y" refers to some individual, is not logically true in Kripke 

semantics. This is because "Fy" may be false in some w0rld 

where "y" is not a member of the population -a world where 

"(x) Fx" is nevertheless true. 

One way around this apparently paradoxical result, at 

least in cases where the inclusion requirement holds, is to main-

tain that sentences like "Fy" above are neither true nor false 

but undefined in worlds not containing " y ". A thorough 

investigation of this notion is to be found in Hughes and Cresswell 

(1968), p 170 et seq. I will abandon further discussion of it 

here, since Montague seems to favour Kripke semantics in general, 

and in his (1970) employs a simple system where each world has 

the same population of "possible individuals". It should be appa-

rent, though, that the Main Method may be used to explore any 

of these models. 
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Even in the very simplest model, a curious result may 

arise which deserves to be known as "Quine's Paradox". A 

particularly succinct statement and discussion of it is to be found 

in Ayer (1973), p 196 et seq. The paradox is that things that 

are identical are necessarily identical, or, symbolically, that 

"(x)(y)[x=y.コL(x=y) J" is logically true. The Main Method 

demonstration runs as follows : 

W1  

1.（ヨx)（ヨy)[x=y. M(xcf:y)J 

2. (x) (y) (P) (x = y. Px. コPy)

3. a = b 

7. a=b.L(a=a).コL(a= b) 
8. (x) L (x=x) 

9. L (a=a) 

10. L(a=b) 

Axiom 

4. M (a c:f-; b) 1 

5. (P) (a = b. Pa.コPb) 2 

6. a=b.[(入x)L(a=x)]a.コ［ （入x)L(a=x)Jb 5 

6 

Theorem 

，
 

，
 

7
 
，
 

8

3

 

"

-
W2  

1. a * b W1  4 
2. a = b W1 10 

3. 炎 1, 2 
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The proof is quite straightforward, although it will be noticed that 

I have introduced an unproved theorem in line w1 8, instead of 

the simple axiom of identity " (x) (x = x)". Of course axioms 

must be taken as true in every world, so it is permissible to 

assert the logical truth of " L (x) (x = x)", and I leave the proof 

of the formula "L (x) (x = x)コ(x)L(x=x)", justifying the 
theorem, as an exercise for the interested reader. It is quite a 

simple exercise - unlike so many writers, I am genuinely trying 

to save space for more important matters, and not just avoiding 

the discussion of something horribly difficult. 

The existence of Quine's paradox means that the usual 

axioms, or the definition, of identity cannot simply be imported 

into a modal predicate calculus. In the next section it will be 

seen how Montague deals with the difficulty in constructing his 

intensional logic. 

Intensional Logic 

We are now near the goal of using the Main Method as a 

tool for tackling intensional logic. I shall use the version presented 

in Montague (1970), since it is the one most familiar to linguists. 

Montague's notation is hardly ideal, and it differs markedly from 

the one I have used up to now, but nevertheless I shall use it for 

convenience of reference to Montague's original work. 

The major difficulty we face with this logic is that it is not 

axiomatized. I do not know if anyone has yet found a suitable set 

of axioms for this version of intensional logic. What Montague 
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provides is a recursive definition of the concepts of intension and 

extension (1970, pp 258-9). Instead of being able to set down 

straightforward axioms and definitions, as with, say, identity 

above, it is necessary to formulate statements and definitions 

which can be justified by referring to Montague's rules. The ways 

of doing this will, I hope, become clear as we proceed. 

Montague's original recursive definition contained an error, 

fortunately not fatal, which is corrected by a footnote under 

Thomason's editorship (1970, p 259 footnote 10). Also I wish 

to simplify matters slightly for the logic by omitting any reference 

to time, that is Montague's set of moments J and the partial 

ordering :S:. This makes it convenient to repeat Montague's 

definition here, incorporating Thomason's correction and making 

the obvious simplifications: 

(1) If ct is a constant, then ct名i,g is F (ct) (i). 

(2) If ct is a variable, then ct名i,g is g (ct). 

(3) If ct E MEa and u is a variable of type b, then 

［入 uct]名i,g is that function h with domain Db,A,I such 

that whenever x is in that domain, h (x) is ct叩，g',

where g'is theダーassignmentlike g except for the possible 

difference that g'(u) is x. 

(4) If ct E ME <a,b > and /3E MEa, then [ ct (/3) ]名 1'g IS 

“名i,g (/3名i,g)  (that is, the value of the function 

a名i,g for the argument/3名i,g). 

(5) If ct,/3E MEa' then [ ct=/3 ]名i,g is 1 if and only if 

“名i,g is /3名i,g.  

(6) If豆 E ME,, then [這］名i,g is 1 if and only if ff 
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is O ; and similarly forへ，'v,→,ー・

¥7) If豆 c ME, and u is a variable of type a, then 

['vUfo］名i,g is I if and only if there exists Xe Da,A,I 

such that豆名i,g'isI, where g'is as in (3); and 

similarly forへU尻

(8) If fa c ME,, then [ ］名i,g is I if and if f1名i',g 

is I for all i'c I, and similarly for◇尻

(9) If a c ME a then [ ~ a JS. i, g is that function h with 

domain I such that whenever i c I, then h (i) = a名i,g 

It will be noticed that in (81 I have included a clause dealing 

with the possibility operator“◇ ”,which Montague does not 

employ in (1970), but which is indispensable for us. As well 

as that, it is necessary to introduce items to serve for instantiating 

variables in the Main Method. Using u and v as variables of type 

e, and x and y as variables of type <s, e>, as Montague does 

on page 260 of his (1970), k and 1 will be used as possible 

values of g (x), and a and b as possible values of g (u). Thus 

k and 1 are members of D<s,e >,A,I and a and b are members of 

De,A,I・

As a simple initial example I will show that 

“口へu[ u=v~ u J" is logically true: 
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W1 

1. ◇Vu[ U #V̂ U ] 

二
W2 

1. V u [ U # V̂U ] wl l 

2. a # V̂a 1 

3. "a= { <w1, a>, <w2, a>} Defn 

4. V ̂a = a 3, Defn 

5. N 2, 4 

That seems to work in a fairly straightforward way. "Defn" at 

the end of a line means of course that Montague's definition has 

been appealed to. In the case of line w2 3 here, we remember 

that "a" denotes a member of the set A of possible individuals, 

and has the same extension in each possible world. The intension 

is exhibited in line w2 3 : it is the function h mentioned in clause 

9. Line w2 4 follows from w2 3 and clause 10 of Montague's 

definition. 

It should on the other hand be the case that“◇Vx[x#でxJ,,

is consistent in the logic. This means that we should not find a 

contradiction when we try : 
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□[ X c,C ""x] 
f 

W2  

1. V X [ X ::j:: AVX J W1  1 

2. k # ^VK 1 

Let k be { <w1, a>, <w2, b>} 

3. "k = b Defn 

4. A"'k = Ab= { <w1, b>, <w2, b>} 3, Defn 

Here we seem to need a metalinguistic statement, the one that 

begins "Let.. ". This defines what we want "k" to be. It is 

a member of D<s,e>,A,I, and its definition is in accordance with 

that. The other uses of Montague's definition are similar to those 

in the previous proof; it will be seen that no inconsistency is 

reached. 

Once some demonstrations of this kind have been made, 

it is possible to use the Main Method in a more "normal" way. 

Here is a more substantial example. On page 265 of his (1970), 

Montague claims that the formula "□[o(x)+→a* cvx)J" is a 
consequence of his meaning postulate (3) on page 263. It is, 

interestingly, actually equivalent to the meaning postulate. The 

first proof shows that the postulate implies the formula: 
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W1 

1. VM八x□[o (x)← M {vx} J 
2. Vx◇[  o (x)八→む（な）． v.→o(x)八む (Vx)] 

3. ◇ ［o (k)八→ o*(vk). V. →o (k)八む (vk)J 2 

4. 八x [o(x)<→ N {パ｝ ］ 1 

t 
W2 

1. o(k□~.v. ミロロ＼八企r- ~k) 
w, 3 

10. o (k) 20. →a (k) 
11. →む (vk) 21. o.,1: ("k) 

12. o (k) - N { vk} W1 4 etc. 

13. N{vk} 10, 12 

14. → 8 (̂vk) 11 

15. 6 (^vk) ←► N { v ~ "k } w 1 4 

16. 八x[x=-~x] Th. 

17. 6 (̂vk) -~ N {vk } 15, 16 

18. →N{"k} 14, 17 

19. 只 13, 18 

The various steps in this proof should be clear enough. I have 

taken the liberty of introducing dots into Montague's notation, to 

avoid having to count brackets. Line w2 14 follows from line w211 

because of the definition of "似”givenby Montague on page 265 

of his (1970). Line w2 16 is labelled "Th. " for "theorem" : it 
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was demonstrated above that "□,¥u[u ="Au]" is logically true, 
and it should be clear that the same proof would go through for 

variables of any type, according to the recursive definition. In 

the right hand branch I have written only " etc" after line 21, 

since, with appropriate changes of sign, it is similar to the left 

hand side. " N " represents an instance of the variable " M ", 

discussed by Montague (1970, p 260). 

The equivalence is established by showing that the impli-

cation holds in the opposite direction: 

W1 

1. 八x□[o (x)←→心び x) J 
2. 八MVx◇[o (x)八→ M{"x}.v. →o(x)八M｛双｝］

3. Vx◇[  o (x)八→ ＾心ドx}.v.-io(x)八＾む｛汲｝］ 2 

4. ◇ ［o (k)八→む ("'k).v.-,o(k)八釘： （ツ k)J 3 

l 
W2 

1. 8 (／  k) 八~ o*('k)_.v. ¥,  0 、(k-) 八釘'Ck)W14 

10. o (k) o (k) 

11.→む ("k) 21. む (vk)

12. o (k) +→心召k) W1 1 etc. 

13. 只 10, 11, 12 

Once again, when this proof branches, the right hand side is 

similar to the left. The only tricky point in this one is instantia-
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ting the "八M" in line w1 2. Only the choice of "'仇”will

do. 

At first glance, Montague (1970) p 265 seems to suggest 

that meaning postulate (2) also implies "□[ o (x)←＞ら("X) ] "• 

This is not the case, however, as the following demonstration 

suggests: 

W1 

1. 八xl][o (x)--'> Vu x Û ] 

2. VX◇[  o (x)八ーむ (vX). V.→ o(x)八似("X) ] 

3. ◇ ［o (k)八→ o*(vk). V. o (k)八む (vk)J 2 

t 
W2 

1. o (k)／ 八~ o*("k)_.v. ＼,  8(k)八ら， (vk) W1 3 

10. 6 (K) 6 (K) 

11.→ o* (vk) 21. む ("'k)

12. o(k)→ Vu k u wl l 22. 6 (̂VK) 20 

13. Vu k = Au 10, 12 

14. k = Aa 13 

15. 8 (̂a) 10, 14 

16. 心（a) 15 

17. →似（a) 11, 14 

18. x 16, 17 

In the course of this proof, I have tacitly used the definition of 
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“む”inmoving from line w2 15 to w2 16, and elsewhere. The 

derivation of line w217 uses the fact, proved above, that 

“八x□[ x = V'x J ". It is also assumed that line w2 14 sanctions 
the substitution of "'a" for "k", something that strictly speaking 

requires a proof based on the definitions. 

Nevertheless, it is clear that although an inconsistency is 

revealed on the left hand side, there is no way of reaching one 

on the right, for the simple reason that "'"k" may not be the 

same as "k ". All that can be proved, it seems, is that postulate 

(2) implies "八X□[ o (x)→ o*（..,. x) J ", a weaker statement 
than the one Montague presents. 

Interestingly, though, this weaker formula seems to be 

sufficient, at least in deriving Montague's simpler examples (1970, 

p 266 et seq). Although we cannot state "八X□［む（ゾx)→ o(x)]",
it is possible to write "八u□ ［む（u)-----;.O ('u) J ", which follows 
directly from the definition of " o* ". The following examples show 

that this, together with the weak formula, is enough to demonstrate 

the equivalence of "V x [ man'(x)八 walk'(x) J" and 

"Vu[man'*(u)八 walk'*(u) ]". 

1. Vx[man'(x)八 walk'(x)]

2. 八u[, man'オ,(u) v,  walk'* (u) J 

3. 八x□[ man'(x)→ man'*びx)J
4. 八X□［walk'(x)→ walk'*だx)J
5. man'(k)八 walk'(k)

6. man'(k)→ man'*ぐk)

7. walk'(k)→ walk'*びk)

8. man'オ,(vk)八 walk'*びk)

Theorem 

Theorem 

7
 
，
 

6
 ，
 

3

4

5
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9., man'*びk)V → walk'* (vk) 

10. x 

，
 

，
 

2

8

 

There is no need to draw a rectangle round this, since all the 

action takes place in just one world. In deriving line g, the 

variable " u " was instantiated by "vk" : I suppose this is not 

strictly according to the rules, but it only suppresses an obvious 

intermediate step of stating that ""k" is, say, "a". 

The proof continues, using the definition of "む”only:

1. Vu [man'* (u)八 walk'*(u) J 

2. 八x［→man'(x) v→ walk'(x) J 

3. 八U□[man'* (u)→ man'Cu)] 
4. 八u□[walk'* (u)→ walk'Cu) I 
5. man'オ，（a)八 walk'*(a) 

6. man'* (a)→ man'(Aa) 

7. walk'* (a)→ walk'(Aa) 

8. man'Ca)八 walk'Ca)

9. →man'Ca) v→walk'(Aa) 

10. M 

Defn. ofむ

Defn. of似

1 

3 

4 

5, 6, 7 

2 

8, 9 

Once again the proof is compressed by instantiating "x" directly 

with " ~a", to produce line 9. 
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Conclusion 

I hope that the examples given have adequately shown the 

power and value of the extended Main Method in the field of 

intensional logic. Without doubt it could be extended further to 

deal with moments of time, and the operators "W" and "H", 

if a suitable notation were devised. Many textbooks use some 

system of "natural deduction" in elementary logic, which in some 

ways is similar to the Main Method. But I have never seen 

natural deduction employed in intensional logic, and I feel it 

would be far too involved and unwieldy to cope with the complex-

ities. The Main Method sometimes needs some ingenuity in appli-

cation, but nothing out of the ordinary. It is at the very least a 

handy compass when one's intuitions are all at sea. 
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