

Title	Artinian rings related to relative almost projectivity. II
Author(s)	Harada, Manabu
Citation	Osaka Journal of Mathematics. 1995, 32(3), p. 577-589
Version Type	VoR
URL	https://doi.org/10.18910/9910
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

ARTINIAN RINGS RELATED TO RELATIVE ALMOST PROJECTIVITY II

MANABU HARADA

(Received November 8, 1993)

Let R be an artinian ring. In [10], we have studied R on which the following condition holds: for R-modules M and N, if M is N-projective, then M' is always almost N-projective for every submodule M' of M. If M' is always N-projective in the above, then this property characterizes hereditary rings with $J^2=0$ [2] and [6], where J is the Jacobson radical of R.

We have investigated the above condition in [10], when i); M and N are local and ii): M is local and N is a direct sum of local modules. In this paper we give a characterization of R over which the above condition is satisfied for any R-modules M and N.

1. Preliminaries

In this paper R is always an artinian ring with identity, and every module is a finitely generated R-module. We shall use the same notations given in [10].

We have studied rings R over which the following condition is satisfied in [10]:

For any R-modules M and N

(#) if M is N-projective, then M' is always almost N-projective for every submodule M' of M.

We denote primitive idempotents in R by e, f, g, and so on. Assume that (#) holds whenever M and N are local. Then we have shown in [10] that R has the following structure:

 $J^3=0$ and for a primitive idempotent e with $eJ^2\neq 0$

 $(0) eR \supset eJ \simeq \sum_{K} \bigoplus (f_{k}R)^{(n_{k})} \bigoplus \sum_{J} \bigoplus S_{J},$

where the f_iR is a uniserial and projective module with $f_iJ^2=0$, $f_iJ\neq 0$ and the S_i is simple.

(If necessary, we use the following decomposition:

 $e_i R \supset e_i J \approx \sum_{K(1)} \bigoplus (f_{ik} R)^{(n_{ik})} \bigoplus \sum_{J(1)} \bigoplus S_{ij}.$

We shall use frequently the following theorem: [10], Theorem 1.

Theorem 0. Let R be artinian. Then (#) holds whenever M and N are local

578 M. Harada

if and only if i) $J^3=0$ and $(eR\supset)$ eJ has the decomposition (0), ii) if $e_1R \not\approx e_2R$, then $f_{1i}R \not\approx f_{2j}$ for any i and j, iii) fR/fJ is never isomorphic to any simple component of Soc(R) and iv) for any simple submodule S in $\sum_{K} \bigoplus (f_k R)^{(n_k)}$, $eReS = \sum_{K'} \bigoplus (f_k J)^{(n_k)}$ for some $K' \subseteq K$, where e and f are in (0).

2. Condition(#)

In this section we study (#) where M and N are any finitely generated R-modules. In this case gJ is almost projective for any primitive idempotent g, and hence R is a right almost hereditary ring [7], i.e. J is almost projective as a right R-module.

First we give

Proposition 1. Let R be right almost hereditary. Then the following are equivalent:

- 1) (#) holds whenever M and N are local.
- 2) (#) holds whenever M is local and N is a finite direct sum of local modules.

Proof. 1) \rightarrow 2). Since R is almost hereditarty, Soc(R) is almost projective by definition and Theorem 0. If gR/gJ is monomorphic to Soc(R), then gR is uniserial by [9], Theorem 1 and we have 2) by [10], Theorem 2.

Next we study (#) when M is local and N is any R-module. We use the decomposition (0) of eJ. Put $f_1R = fR$ and S = Soc(fR) = fJ.

Lemma 1. Assume that (#) holds whenever M is local and let $eR \supset fR \supset S$ be as above. Then 1) every element in $\operatorname{Hom}_R(S, S)$ is extensible to an element in $\operatorname{Hom}_R(fR, fR)$, and 2) S is neither isomorphic to any simple component of $\operatorname{Soc}(gR)$ nor any S_j in (0), where $gR \not\approx eR$, $gR \not\approx fR$ and $gJ \neq 0$.

Proof. Assume that $\operatorname{Soc}(gR)$ contains a simple component isomorphic to S via θ for some primitive idempotent g. Take $fR \oplus gR$ and its submodule $\widetilde{S} = \{s + \theta(s) | s \in S\}$ and put $N = (fR \oplus gR)/\widetilde{S}$. If $gR \not\approx eR$, eR/S is N-projective by [1], p. 22, Exercise 4 and [10], Lemma 6. Hence fR/S is almost N-projective by (#). However fR/S is not N-projective by [1], p. 22, Exercise 4. Therefore N is decomposable by [3], Theorem 1. Let $N = N_1 \oplus N_2$. Suppose $gR \not\approx fR$. Then we can assume $N_1/J(N_1) \approx fR/fJ$ and $N_2/J(M_2) \approx gR/gJ$. Further $N = \widetilde{f}R + \widetilde{g}R$, where $\widetilde{f}R \approx fR$ and $\widetilde{g}R \approx gR$. Since $|N| = |\widetilde{f}R| + |\widetilde{g}R| - 1$, we obtain a) $N_1 \approx \widetilde{f}R$ or b) $N_2 \approx \widetilde{g}R$ via the projections. In a) $N = \widetilde{f}R \oplus N_2$, and hence θ^{-1} is extensible to an element in $\operatorname{Hom}_R(gR, fR)$, and in b) $N = N_1 \oplus \widetilde{g}R$, and hence θ is extensible to an element in $\operatorname{Hom}_R(gR, gR)$. We obtain the similar result even if $gR \approx fR$. Hence from the above observation we obtain 1) and that S is never isomorphic to

any simple component of $\operatorname{Soc}(e'R)$ and $\operatorname{Soc}(f'R)$ form Theorem 0, where $e'R \not\approx eR$, $f'R \not\approx fR$ and $e'J^2 \neq 0$, $f'J \neq 0$. Finally assume $S \approx S_1 \subseteq eR$, where S_1 is a simple module in (0). Take $(fR \oplus eR/(fJ)^{(n_1)})/\widetilde{S}$. Since $eRe(fJ) \subseteq (fJ)^{(n_1)}$, eR/S is $(fR \oplus eR)/(\widetilde{S} \oplus (fJ)^{(n_1)})$ -projective. Similarly to the above we obtain an extension of θ (or θ^{-1}) in $\operatorname{Hom}_R(fR, eR/(fJ)^{(n_1)})$ (or in $\operatorname{Hom}_R(eR/(fJ)^{(n_1)}, fR)$). However there are no extensions of θ by Theorem 0, a contradiction.

If R is left QF-2 in the above, then any element in $\operatorname{Hom}_R(S, S)$ is extensible to an element in $\operatorname{Hom}_R(eR, eR)$ by [10], Lemma 13, however this fact is not true in lemma 1 (see Proposition 3 and Example 2 below). Under the assumption (#) we can state the content of Lemma 1 as follows:

let S' be a simple submodule in gR, then any element in $\operatorname{Hom}_R(S, S')$ is extensible to an element in $\operatorname{Hom}_R(fR, gR)$, where g is any primitive idempotent.

Finally we study (#) for any R-modules M and N. We start with studying a structure of N. Let $eR \supset eJ \approx \sum \bigoplus (f_iR)^{(n_1)} \bigoplus \cdots$ be as in (0). We consider the condition:

(*) the properties in Lemma 1 and Theorem 0 hold.

We fix primitive idempotents e and $f = f_i$ above. Take a projective module T and put $T = (eR)^{(p)} \oplus (fR)^{(q)} \oplus \sum g_j R$, where $g_j R \not\approx eR$ and $g_j R \not\approx fR$ for all j.

Lemma 2. Assume (*). Let T, e and f be as above. If T/C is indecomsable, then T = fR or q = 0.

Proof. Assume $q \ge 1$. Consider the decomposition $T = (fR) \oplus T'$, where $T' = (eR)^{(p)} \oplus (fR)^{(q-1)} \oplus \sum \oplus g_j R$, and use the same notations as in [10], Lemma 10 for this decomposition. We may assume $C \subseteq J(T)$ (note that T is a lifting module). Suppose $C_1 = 0$ and $C^1 = fJ$. Put $C^1 = xR$; xk = x for a primitive idempotent k and let $\theta: C^1 = C^1/C_1 \approx C^2/C_2 \subseteq J(T')/C_2$ be the ismorphism. Then $\theta(x) = x_1 + x_2 + x_3 + C_2$, where $x_1 \in (eJ)^{(p)}$, $x_2 \in (fJ)^{(q-1)}$, $x_3 \in \sum \oplus g_j J$ and $x_i k = x_1$ for all i. Since $x_1 J = 0$ for all i form iii) in Theorem 0, $\theta: xR \approx (x_1 + x_2 + x_3)R \subseteq T'$, i.e., $(x_1 + x_2 + x_3)R \oplus C_2 = C^2$. Therefore θ is extensible to an element θ' in $Hom_R(fR, T')$ by the properties in Lemma 1 (note $(x_1 + x_2 + x_3)R \subseteq x_1 R \oplus x_2 R x_3 R)$. As a consequence $T = T' \oplus fR(\theta') \supseteq C = C \cap T' \oplus C \cap fR(\theta')$, provided $C_1 = 0$. If $C_1 \neq 0$, $C_1 = C^1$, and hence T = fR, since T/C is indecomposable. Accordingly we know that if T/C is indecomposable, T = fR or q = 0.

We consider following modules: $Z = (fR)^{(m)} \oplus fI$ and $U = V \oplus fI$, where V is a submodule of $(fR)^{(m)}$. Similarly to Lemma 2 we have

Lemma 3. Assume iii) in Theorem 0. Let U be as above and X a

580 M. Harada

submodule of U. Then $X \subseteq V$ or $U = V \oplus fJ(\theta)$ and $X \supset fJ(\theta)$, where $\theta \in \operatorname{Hom}_R(fJ, V)$.

More generally we consider $Z^*=(fR)^{(p)}\oplus (fJ)^{(q)}$ and $U^*=V^*\oplus (fJ)^{(q)}$, where V^* is a submodule of $(fR)^{(p)}$.

Corollary. Assume iii) in Theorem 0. Let U^* be as above and X^* a submodule of U^* . Then we obtain the following decomposition of U^* : $U^* = V^* \oplus (fI)^{(q')} \oplus Y_1 \oplus \cdots \oplus Y_{q-q'}$, and $X^* \supset Y_1 \oplus \cdots \oplus Y_{q-q'}$, where $Y_i \approx fI$ for all $i, X^* \subset V^* \oplus Y_1 \oplus \cdots \oplus Y_{q-q'}, Z^* = (fR)^{(p)} \oplus (fI)^{(q')} \oplus Y_1 \oplus \cdots \oplus Y_{q-q'}$ and $U^* = V^* \oplus (fI)^{(q')} \oplus Y_1 \oplus \cdots \oplus Y_{q-q'}$.

This corollary means that there exists an automorphism σ of Z^* such that $Z^* = (fR)^{(p)} \oplus (fJ)^{(q')} \oplus (fJ)^{(q-q')} \supset \sigma(U^*) = V^* \oplus (fJ)^{(q')} \oplus (fJ)^{(q-q')} \supset \sigma(X^*) \oplus (fJ)^{(q-q')}$.

We shall denote the above situation by the diagram:

Next we study a structure of a submodule M' of an R-module M under (*). Let P be a projective cover of M, i.e.,

(2)
$$M \approx P/Q$$
 and $M' \approx P'/Q$ for some submodule P' of P .

Then we have a decomposition of P such that $P=P_1\oplus P_2$, $P'=P_1\oplus P_2\cap P'$ and $P'_2=P_2\cap P'\subset J(P_2)$. Let

(2') $P_2 = (e_1 R)^{(a_1)} \oplus (e_2 R)^{(a_2)} \oplus \cdots \oplus (f_{11} R)^{(b_{11})} \oplus \cdots \oplus (f_{1s_1} R) \oplus (f_{21} R)^{(b_{21})} \oplus \cdots \oplus (f_{2s_2} R)^{(b_{2s_2})} \oplus \cdots \oplus \sum \oplus gR$, where the e_i , the f_1 are given in (0) and $gJ^2 = 0$ ($e_i R \not\approx e_j R$, $f_{ik} R \not\approx f_{js} R$ if $i \neq j$ and $gR \not\approx f_{ik} R$ for all i).

Consider $J(P_2)$ and rearrange it as follows:

$$J(P_2) = (D_{11}^{(a_1)} \oplus (f_{11}J)^{(b_{11})}) \oplus (D_{12}^{(a_1)} \oplus (f_{12}J)^{(b_{12})}) \oplus \cdots \oplus (D_{1s_1}^{(a_1)} \oplus (f_{1s_1}J)^{(b_{ls})}) \oplus (D_{21}^{(a_2)} \oplus (f_{21}J)^{(b_{21})}) \oplus \cdots \oplus \sum \oplus gJ, \text{ where } D_{ij} = (f_{ij}R)^{(n_{ij})}.$$

Put $E_{ij'}=D_{ij}^{(a_i)} \oplus (f_{ij})^{(b_{ij})}$ and $F=\sum \oplus gJ$. Then from (*) we know that any simple sub-factor modules of $E_{ij'}$ are not isomorphic to any ones of $E_{st'}$ and F for

 $\{i, j\} \neq \{s, t\}$. Hence we obtain

(3)
$$P_2' = \sum \bigoplus P_{2ij}' \bigoplus P_0$$

$$Q^2 = \sum \bigoplus Q_{ij'}^{2'} \bigoplus Q_0^2 \text{ and }$$

$$Q_2 = \sum \bigoplus Q_{2ij}' \bigoplus Q_{20} \text{ (see [10], Lemma 10 for } Q_1 \text{ and } Q^2\text{),}$$

where $E'_{ij} \supset P'_{2ij} \supset Q''_{ij} \supset Q'_{2ij}$ and $F \supset P_0 \supset Q_0^2 \supset Q_{20}$. We may observe $E'_{11} \supset P'_{211} \supset Q''_{11} \supset Q''_{211}$ for the fixed (1,1) without loss of generality. From Corollary to Lemma 3 we have

where $b_{11} = a_0 + b_1 + c_1 + d_1$.

Next we observe $D_{11} \supset P_{211} \supset Q_{11}^2 \supset Q_{211}$. We put $f_{11} = f$. Then from [4], Lemma 5

$$P_{211}$$
 fR fJ 0

where $e_1 + e_2 + e_3 = a_1 n_{11}$.

Further from Corollary to Lemma 3 we have

where $e_2 = h_1 + g_1 + e'_2$.

We observe the left side of the above diagram : $(fR)^{(e_1)} \supseteq H \supseteq I$. From (*) and [4], Lemma 5 we have

$$(fR)^{(e_1)}(=E) \qquad \begin{array}{cccc} i_1 & i_2 & e_1' \\ fR & fR & fR & fR \end{array}$$

$$H \qquad fR \qquad fJ \qquad 0$$

where $e_1 = i_1 + i_2 + e'_1$.

We apply Lemma 3 to I and $H = H_1 \oplus fJ$, where $H_1 = (fR)^{(i_1)} \oplus (fJ)^{(i_2-1)}$. Then $I \subset H_1$ of $I \supset fJ(h)$ for some $h \in \operatorname{Hom}_R(fJ, H_1) \subset \operatorname{Hom}_R(fJ, E_1)$, where $E_1 =$

 $((fR)^{(i_1)} \oplus (fR)^{(i_2-1)}) \oplus fR \subseteq E$. From (*) h is extensible to $\widetilde{h} \in \operatorname{Hom}_R(fR, E)$. Hence $E = E_1 \oplus fR(\widetilde{h}) \supset H_1 \oplus fJ(h)$ and $I \supset fJ(h)$. Repeating this argument we may assume

where $i_2 = i_1 + i'_2$.

Applying again [4], Lemma 5 to the left corner of the above diagram we have finally

where $i_1 = k_1 + k_2 + i'_1$ and f rums over all the idempotents in (0). From the above we have

Now we come back to (2). M'=P'/Q and $P'Q=(P_1/Q_1\oplus P_2'/Q_2)/(Q/Q_1\oplus Q_2)$ and $Q/(Q_1\oplus Q_2)=Q^2/Q_2(\theta)$ for some $\theta\in \operatorname{Hom}_R(Q^2/Q_2,Q^1/Q_1)$. Since P_0 is semisimple, Q_0^2/Q_{20} is a direct summand of P_0/Q_{20} . Now $P_2'/Q_2=\sum_f((fR/fJ)^{(k_2f)}\oplus\cdots\oplus(fR)^{(i_2f)}\oplus\cdots)\oplus P_0/Q_{20}\supseteq Q^2/Q_2=\sum_f((fR/fJ)^{(k_2)}\oplus\cdots\oplus(fJ)^{(i_2f)}\oplus\cdots\oplus(fJ)^{(i_2f)}\oplus\cdots)\oplus Q_0^2/Q_2$. We compare direct summands of P_2'/Q_2 and Q_2'/Q_2 . Then we know that only one summand $(fJ)^{(i_2f)}$ of Q_2'/Q_2 is a proper submodule of $(fR)^{(i_2f)}$, which is a direct summand of P_2'/Q_2 for each f. Consider $\theta|(fJ)^{(i_2f)}$. Since $Q\subseteq J(P)$, we know from a similar argument in the proof of Lemma 2 that $\theta|(fJ)^{(i_2f)}$ is induced from an $\theta'\in \operatorname{Hom}_R(fJ^{(i_2f)},P_1)$, and hence $\theta|(fJ)^{(i_2f)}$ is extensible to $\theta\in \operatorname{Hom}_R((fR)^{(i_2f)},P_1/Q_1)$. Therefore

Lemma 4. Let M' be as above and assume (*). Then $M' = P'/Q \approx P_1/Q_1 \oplus \sum_f \oplus ((fR)^{(e'f_1)} \oplus (fR/fJ)^{((j'_1+i'_2)_f)} \oplus (fJ)^{((b_1+e'_2)_f)}) \oplus \widetilde{S}$, where \widetilde{S} is a direct sum of simple components of Soc(R).

Theorem. Let R be artinian. Then the following are equivalent:

- 1) (#) holds whenever M is local.
- 2) (#) holds for any finitely generated R-modules.
- 3) R is a right almost hereditary ring with (*).

Proof. 1) \rightarrow 3) This is given by Lemma 1 and Theorem 0.

- 3) \rightarrow 2). Assume that M is N-projective. Put M = P/Q, where P is a projective cover of M. For any submodule M' of M we can suppose M' = P'/Q for some $P' \subset P$. From Lemma 4, M' is a direct sum of the following modules:
- 1) P_1/Q_1 , 2) projective module, 3) simple component of Soc(R) and 4) fR/fJ, where fR is given in (0).

From the proof of Theorem 1 in [6], p.813 we know that P_1/Q_1 is N-projective in cases 2) and 3) from (*). We assume 4), i.e. M'=fR/fJ. First we suppose that N is indecomposable. For the fixed f above (and hence e) we apply Lemma 2. Let N=T/C; T is a projective cover of N. We use the same notations as in Lemma 2. If T=fR, then M' is trivially almost N-projective (cf. Theorem 0). Hence we assume q=0 from Lemma 2. Take any element θ in $\operatorname{Hom}_R(fR, T)$. Then $\theta=\theta_1+\theta_2$ where $\theta_1\in\operatorname{Hom}_R(fR,(eR)^{(p)})$, and $\theta_2\in\operatorname{Hom}_R(fR,\Sigma\oplus g_jR)$. Here we recall the proof of Lemma 4. First we consider the decomposition: $e_iR\supseteq e_iJ\approx \sum_k \oplus (f_{ik}R)^{(n_{ik})} \oplus \Sigma \oplus S_{ij}$ as in (0). Let

$$\mu_k^i : e_i I \rightarrow (f_{ik}R)^{(n_{ik})}$$

be the projection of $e_i J$ onto the kth component $(f_{ik}R)^{(n_{ik})}$. Next we take the decomposition of P_2 in (2'). Let

$$\xi_q^p: J(P_2) \rightarrow e_p J$$

be the projection of $J(P_2)$ onto the radical $e_p J$ of the qth component of $(e_p R)^{(a_p)}$

584 M. HARADA

in (2'). we recall the situation where the case 4) occurs. If we carefully observe it, then we know that it comes from P_{2jk} and (6), i.e., $f_{jk}=f$, $e=e_j$ and $e_jR\supset e_jJ\approx (f_{jk}R)^{(n_{jk})}\oplus \cdots$, and $0\neq \mu_k^j\xi_x^j(Q^2)\subset (f_{jk}R)^{(n_{jk})}$ for some $x(\text{note }Q^2\subset J(P_2))$. Since $Q^2\subset J(P_2)$, there exists a simple submodule S in Q^2 such that $\mu_k^j\xi_k^j(S)\neq 0$ from Theorem 0 and [10], Corollary to Lemma 2. Further since S is simple, $\xi_x^j(S)\subset \sum_q \oplus (f_{jq}R)^{(n_{jq})}\oplus \sum_t \oplus S_{jt}$) from (*). To the above e and f we consider a homorphism

(9)
$$\Theta: P \xrightarrow{\pi} P_2 \xrightarrow{\lambda} eR \xrightarrow{\theta} eR \subset T,$$

where π is the projection, λ is the projection onto eR such that $\lambda|J(P_2) = \xi_k^j$, θ is any homorphism and the last eR is the any direct component of $(eR)^{(p)}$ in T. Since P/Q is N = T/C-projective, $\Theta(Q) \subset C$. Further since $\xi_k^j(S)$ in non-zero and simple and $\mu_k^j \xi_k^j(S) \neq 0$, $eRe \xi_k^j(S) \supset (f_{jk}J)^{(n_{jk})}$ by Theorem 0. Moreover $\xi_k^j(S) = \lambda \pi(S)$, and hence $(f_{jk}J)^{(pn_{jk})} \subset \sum_{\theta \in (eRe)^{(p)}} \theta \xi_k^j(S) = \sum_{\theta} \theta \lambda \pi(S) = \sum_{\theta} \Theta(S) \subset \sum_{\theta} \Theta(Q) \subset C$. As a consequence $\theta_1(fJ) \subset (f_{jk}J)^{(pn_{jk})} \subset C$, and clearly $\theta_2(fJ) = 0$. Accordingly M' is T/C-projective. Finally let $N = \sum_{\theta} \bigoplus_{i=1}^{n} M_i$; the N_i are indecomposable. Then M' is almost N_i -projective as above. If M' = fR/fJ is not N_i -projective, $N_i = fR/A$ from [3], Theorem 1. Hence M' is almost N-projective by [5], Theorem. Thus we have shown the implicantion.

2) \rightarrow 1). This is trivial.

Here we apply Theorem to special hereditary algebras. Let R be a hereditary algebra over a field K. Assume

(10)
$$eRe = eK$$
 for any primitive idempotent e.

Corollary. Let R be a basic hereditary algebra as above. Then the following are equivalent:

- 1) (#) holds when M and N are local.
- 2) (#) holds when M is local and N is a direct sum of local modules.
- 3) i) $J^3=0$, ii) J is a direct sum of uniserial modules, and iii) $R/\operatorname{Soc}(R)$ is left serial.

Furthermore the following are equivalent:

- 4) (#) holds for any R-modules.
- 5) i) 3) holds, ii) J^2 is square-free and iii) any simple component $(\approx fJ)$ of J^2 is never isoomorphic to any simple ones which are not contained in J^2 , except fJ in fR, where f is a primitive idempotent given in (0). In this case (H) in [6] holds.

Proof. 1) \longleftrightarrow 2) Since Soc(R) is projective, this is clear from [10], Theorem 2.

1) \longleftrightarrow 3) Since R is hereditary, iii) in Theorem 0 always holds and i), ii) in the

proposition are equivalent to i) in Theorem 0. Further iii) in the proposition is equivalent to ii), iv) in Theorem 0.

4) \longleftrightarrow 5) This is clear from the assumption (10), Lemma 1 and Theorem 0. The last statement is clear from [6], Theorem 2.

3. QF-2 rings

In this section we study a left QF-2 ring with (#) as right R-modules (cf. [10], Proposition 3).

Lemma 5. Let R be left QF-2. Further assume that (#) holds as right R-modules when M is local and N is a direct sum of local modules. Then Soc(R) is almost projective, and hence R is right almost hereditary, (cf. Example 4 below).

Proof. Let $eR \supset eJ$ be as (0). Then for any submodule X of eJ we have $X = \sum_i \oplus X_i \oplus X'$ by Theorem 0 and [10], Lemma 13, where $X_i = X \cap (f_iR)^{(n_i)}$ and $X' = X \cap (\sum \oplus S_j)$. Further $X_i \approx (f_iR)^{(m_i)} \oplus (f_iJ)^{(m'_i)}$ by [4], Lemma 5, where $n_i \geq m_i + m'_i$. Let Y be a submodule of X_i . Then after changing direct decomposition of $(f_iR)^{(m_i)} \oplus (f_iJ)^{(m'_i)}$, we can assume $Y = \sum_i \oplus f_iR \cap Y \oplus \sum_j \oplus f_jJ \cap Y$ again by [4], Lemma 5. Now we prove the lemms. Let gR/gJ be monomorphic to Soc(R) for a primitive idempotent g. Then gR is uniserial by [10], Lemma 9. First we shall show that gR is injective if $gJ \neq 0$. Let k be any primitive idempotent and take any diagram

$$0 \rightarrow \underset{\alpha}{\overset{\downarrow}{\underset{\rho}{\longrightarrow}}} kR$$

In order to show that gR is injective, we may assume by [8], Lemma 1* that $\rho(K)$ is simple and $K \subseteq kJ$.

a)
$$kI^2 \neq 0$$
.

Then $kR \supset kJ$ have the structure (0). Then from the initial observation and ([4], Lemma 5), $K/\rho^{-1}(0)$ is isomorphic to one of S_j , f_iJ and f_iR/f_iJ for some i and j in (0). However the last case does not occur by assumption. Hence $gR \subseteq kR$ or $gR \approx kR$ by [10], Corollary to Lemma 13, provided $\rho \neq 0$. In the former case $gR \approx f_jR$ in (0) for some j. On the other hand $\overline{f}_iR \approx gR/gJ$ is not isomorphic to any simple component of Soc(R), a contradiction. Therefore $\rho = 0$ in this case. Assume $gR \approx kR$. Then kR is uniserial, and hence ρ is a monomorphism by assumption and K is simple. Accordingly ρ is extensible to an element in $Hom_R(kR, gR)$ by [10], Lemma 13.

b)
$$kJ^2 = 0$$
.

Then $kR \subseteq gR$ or $kR \approx gR$ by [10], Corollary to Lemma 13, provided $\rho \neq 0$, and hence kR is uniserial. Then ρ is extensible to an element in $\operatorname{Hom}_{R}(kR,gR)$ by [10], Lemma 13.

Thus we have shown that gR is injective. Finally we shall show that gR/gJ is injective if $gJ^2 \neq 0$. In the above diagram we replace gR with gR/gJ^2 .

a')
$$kI^2 \neq 0$$
.

Then since $K/\rho^{-1}(0) \approx \{S_j, f_k J, f_k R/f_k J\}$ as the initial observation and gJ is projective, $f_i R/f_i J \approx gJ/gJ^2$ for some i by Theorem 0. Hence $gR \approx kR$ by Theorem 0. As a consequence we may assume gR = kR. Since gJ is projective, ρ is given by an element θ' in $\operatorname{Hom}_R(gJ,gJ)$ (which induces $\operatorname{Hom}_{RR}(gJ^2,gJ^2)$). Then $\theta' \in \operatorname{Hom}_R(gJ^2,gJ^2)$ is extensible to θ in $\operatorname{Hom}_R(gR,gR)$ by [10], Lemma 13. Now consider $(\theta-\theta')|gJ$. Since $(\theta-\theta')(gJ^2)=0$, $(\theta-\theta')|gJ=0$ by Theorem 0. Hence ρ is extensible to $\nu\theta$: $gR \rightarrow gR/gJ^2$, where ν : $gR \rightarrow gR/gJ^2$ is the natural epimorphism.

b')
$$kI^2 = 0$$
.

Then $\rho=0$ by assumption. Therefore gR/gJ is almost projective by [9], Theorem 1.

Thus J is almost projective from (*), and hence R is right almost hereditary.

Proposition 2. Let R be a left QF-2 ring. Then the following are equivalent:

- 1) R is a right almost herditary ring such that $J^3=0$ and if $eJ^2 \neq 0$ for a primitive idempotent e, then eJ has the decomposition (0).
 - 2) R is right almost hereditary and (#) holds when M and N are local.
 - 3) (#) holds when M is local and N is a direct sum of local modules.
 - 4) (#) holds for any R-modules M and N, (cf. Example 4 below).

Proof. 1) \longleftrightarrow 2). This is given in [10], Proposition 3.

- 2) \rightarrow 3). This is clear from Proposition 1.
- 3) \rightarrow 4). Since R is right almost hereditary by Lemma 5, we obtain 4) by Theorem and [10], Lemma 13.
 - 4) \rightarrow 2). This is clear from Theorem.

We shall add one more property when R is left QF-2. Let $eR \supset eJ \approx (fR)^{(n)} \oplus \cdots$ as in (0), and put $eJ \supset \sum_{i \leq n} \oplus u_i fR \approx fR^{(n)}$, where $u_i fR \approx fR$. We identify $(fR)^{(n)}$ with $\sum \oplus u_i fR$.

Lemma 6. Assume 1) and 2) in [10], Lemma 13 and (0). Let N_1 and N_2 be submodules in $(fR)^{(n)}$, which are isomorphic to fR and hence $\theta: N_1 \rightarrow N_2$ be an isomorphism. Then θ is given by an element z in eRe.

Proof. Let $eR \supset fR \supset S = Soc(fR)$. Then from 1), 2) and [10], Lemma 6 we obtain

- a) every automorphism of S is extensible uniquely to an automorphism of fR (cf. a') in the proof of Lemma 5). Put $S_i = \operatorname{Soc}(N_i)$ for i = 1, 2.
- b) Assume $N_1 = u_1 fR$ and $S_1 = S_2$. Let $S_1 = xR$ and $N_2 = yR$; $y = eyf \in (fR)^{(n)}$. Then $y = u_1 w_1 + \dots + u_n w_n$; the w_1 are units or zero in fRf by 2). Then $x = yr = u_1 w_1 + \dots + u_n w_n r$ for some $r \in R$. On the other hand $x = u_1 r'$ for some $r' \in fR$. Hence $w_2 = \dots = w_n = 0$ (cf. the proof of [10], Lemma 13), and $N_1 = N_2$.
- c) Assume $N_1 = u_1 fR$ and $\theta' : N_2 \rightarrow N_1$. Then $\theta' | S_2$ is extensible to $z_t \in \operatorname{Hom}_R(eR, eR)$, the left-sided multiplication of z, by 1). Further $zN_2 = N_1$ from b), and z is a unit by [10], Lemma 6. Consider $z_t \theta'^{-1} | S_1 = 1_{s_1}(z_t \theta'^{-1} : N_1 \rightarrow N_1)$. Then from a) $z_t \theta'^{-1} = 1_{N_1}$, and $z_t | N_2 = \theta'$. Since $u_1 fR \approx N_1 \approx N_2$, we obtain a unit z_i in eRe such that $z_{1t} : N_1 \rightarrow u_1 fR$ and $z_{2t} : N_2 \rightarrow u_1 fR$ from c). Hence again by c) $z_{2t} \theta z_{1t}^{-1} = z_t$ for some z, and $\theta = (z_2^{-1} z z_1)_t$.

Concerningly Proposition 2, we have

Proposition 3. Let R be artinian. Assume that $J^3=0$ and $(eR\supset)eJ$ has the demomposition (0). Then the following are equivalent:

- 1) i) Let S_i be a simple submodule of h_iR for i=1, 2. If $\theta: S_1 \rightarrow S_2$ is isomorphic, then θ is extensible to an element in $\operatorname{Hom}_R(h_1R, h_2R)$ or in $\operatorname{Hom}_R(h_2R, h_1R)$, where h_1 , h_2 are primitive idempotents, ii) fR/fJ is never monomorphic to $\operatorname{Soc}(R)$, where f appears in (0).
 - 2) R is left QF-2. (cf. Example 3.)

Proof. 2) \rightarrow 1). This is clear from [10], Lemma 13.

- 1) \rightarrow 2). Let S_1 and S_2 be simple left R-modules of $Rh(Jh \neq 0)$ for a primitive idempotent h. Suppose $S_i \approx R \overline{k}_i$ for i=1. 2, where the k_i are primitive idempotents. Put $S_i = Rx_i$ with $k_ix_ih = x_i \in J$. Then $k_iR \supset x_iR$ and there exists a homomorphism $\phi_i:hR \rightarrow x_iR$.
- a) $k_iJ^2=0$ for i=1, 2. Then $x_1R \approx \overline{h}R$ since $x_i \in k_iJ$ and the x_iR are local. Hence there exists z in k_2Rk_1 (or in k_1Rk_2) such that $zx_1=x_2$ (or $zx_2=x_1$) by assumption. As a consequence $S_2=S_1$.
- b) $k_1J^2 \neq 0$ and $k_2J^2 = 0$. Then $x_2R \approx \overline{h}R$ as above. If $x_1R \approx \overline{h}R$, then $S_1 = S_2$ as in a). Suppose that x_1R is not simple. Since $x_1R \subset k_1J$ and x_1R is local, x_1R is projective by (0), and hence $x_1R \approx hR$, which is a contradiction to iii) in Theorem 0 for $x_2R \approx \overline{h}R$.
- c) $k_iJ^2 \neq 0$. Since x_iR is local, x_iR is simple or projective by iii) in Theorem 0. Hence again from iii) in Theorem 0 we obtain two cases $\alpha x_1R \approx x_2R\overline{h}R$ and $\beta x_1R \approx x_2R \approx hR$ (and $k_1R \approx k_2R$). Then from Lemma 6 and the arguent in a) we obtain $S_1 = S_2$ in both cases. Hence R is left QF-2.

588

M. HARADA

We note the following fact:

the class of rings with (#) for local modules M and $N \supseteq$ the class of rings with (#) for local module M and any direct sum of local modules N \supseteq the class of rings with (#) for any finitely generated R-modules. See the following examples.

4. Examples

Let $L\supset K$ be fields.

1.

$$R_1 = \begin{pmatrix} K & K & K & K \\ 0 & K & K & 0 \\ 0 & 0 & K & P \\ 0 & 0 & 0 & R \end{pmatrix}, \text{ where } P = L, K \text{ or } O \text{ and } e_{13}e_{34}P = 0 = e_{23}e_{34}P.$$

If P=L, then R_1 satisfies the conditions in Theorem 0, but the conditions in [10], Theorem 2. If P=K, R_1 satisfies the conditions in [10], Theorem 2, but R_1 is not almost hereditary. If P=0, then R_1 satisfies the conditions in Theorem.

2.

$$R_2 = \begin{pmatrix} K & L & L \\ 0 & L & L \\ 0 & 0 & L \end{pmatrix}.$$

 R_2 satisfies the condition in Theorem, but not left QF-2.

- 3. $R_3 = eK \oplus fK \oplus aK \oplus bK \oplus cK \oplus caK$, where $\{e, f\}$ is the set of mutually orthogonal primitive idempotents with 1 = e + f, a = eaf, b = ebf, c = fce, and ca = cb. Then $R(=R_3)$ is a left QF-2 ring with $J^3 = 0$, but 1) in Proposition 3 does not hold as right R-modules. However R satisfies 1) in Proposition 3 as left R-modules, but not right QF-2.
- 4. As above $R_4 = eK \oplus fK \oplus gK \oplus aK \oplus abK \oplus bK \oplus cK$, where a = eaf, b = fbe and c = ecg. Then $R(=R_4)$ is left serial and (#) holds for local modules M and N, however R is not right almost hereditary.

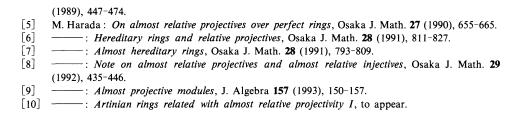
References

^[1] T. Albu and C. Nastasescu: Relative finiteness in module theory, Monographs Textbooks Prue and Appl. 84, Marcel Dekker Inc. New York and Basel.

^[2] K.R. Fuller: Ralative projectivity and injectivity classes by simple modules, J.London Math. Soc. 5 (1972), 423-431.

^[3] M. Harada and T. Mabuchi: On almost relative projectives, Osaka J. Math. 26 (1989), 837-848.

^[4] M. Harada and A. Tozaki: Almost M-projectives and right Nakayama rings, J. Algebra 122



Department of Mathematics Osaka City University Sumiyoshi-ku, Osaka 558 Japan