|

) <

The University of Osaka
Institutional Knowledge Archive

Title Context-Free Languages Revisited Yet Again

Author(s) |[Stirk, C. Ian

Citation | KPRAMARIEAKHFZL. 1987, 15, p. 103-132

Version Type|VoR

URL https://hdl. handle.net/11094/99103

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

CONTEXT-FREE LANGUAGES
REVISITED YET AGAIN

Ian C. Stirk

Introduction

At the beginning of an interesting paper, Gazdar (1982) points out some
misconceptions about the formal properties of grammars which have been
current in the linguistics community. One of these is that context-free
grammars may never have rules which rewrite non-terminal symbols as
zero. Another is that it makes no significant difference whether the rules of
grammars are used to generate derivations, or used as node admissibility
conditions for trees.

The first of these misconceptions can be cleared up without any very
complex argument. The language a"b" (that is, the language whose
grammatical strings consist of a number of a’s followed by the same number of
b’s) can be generated by a context—free grammar:

Ay — Ay A;
Az — AyA;
Ay = A1 A
A1 — a
Ag - b

Some of the symbols in this grammar are redundant. A, and Ay, for instance,

can only ever be rewritten as a and b respectively, so they might as well be
replaced by those terminal symbols wherever they occur:

— 103 —

Ian C. Stirk

Ay, — al;
A3 g Aob
Ao — ab

Now we notice that A; never dominates more than Agb, so it might as well be
replaced by Agb itself, leaving:

Grammar 1 Ag — alAg¢b
Ao — ab

Since this grammar will be a useful example later, too, it has been given the
label “grammar 1”. Getting to that simple grammar 1 illustrates an important
principle about context—free grammars, namely that the only non-terminal
symbols they need to have are those directly involved in recursion, like A in
this one, provided that we are only interested in their weak generative
capacity. Other symbols can just be replaced by whatever it is they are
rewritten as in the rules. This principle is, I believe, due to Bach in earlier
versions of his (1974). It applies only to context—free grammars, of course,
since in context-sensitive ones certain non—terminal symbols may be needed as
context. The principle may be immediately applied to the problem of
rewriting symbols as zero. If such a non-terminal symbol is rewritten only as
zero, then of course it can be replaced by zero everywhere: deleted, in other
words. If it may also be rewritten as something more substantial, it can be
replaced by that other thing. This will certainly take care of non—terminal
symbols not involved in recursion, but suppose a recursive symbol is rewritten
as zero by some rule? Notice first that grammar 1 could also be expressed in
this way:

Ao_’aAob
Ay — 2

The symbol 2 is frequently employed in mathematical linguistics to represent
the null string, and I will use it so. It is apparent that if X is a recursive

— 104 —

CONTEXT-FREE LANGUAGES REVISITED YET AGAIN

symbol, the grammar must contain a rule of the form X — oX . If it also
contains X — 4, this latter rule can just be replaced by X — a8, without making
any difference to generative capacity. This argument takes care of the first
misconception: languages still remain context—free even if their grammars
contain rules rewriting symbols as zero.

The same principle also provides simple informal proofs of such facts as
that the language a"b"c® cannot be context—free. If it were, then there would
be a grammar for it whose only non-terminal symbols were involved in
recursion. Consider some derivation generated by this grammar. Its
penultimate line must contain just one non-terminal symbol which is rewritten
to form the last line a”bncn, for some n. Since the non—terminal symbol which
is replaced is involved in recursion, then that penultimate line could also be a
line in other derivations where the symbol is used recursively. All of these
would have to end in grammatical strings, too, of course. Thus in that
penultimate line, the non—terminal symbol could not be among the a’s, b’s or ¢’
s because any recursion would upset the numbers of them, which must stay the
same. If it was between the a’s and the b’s, then the number of a's and b’s

could be kept the same, but the ¢’s would be left out. Similarly if it lay
between the b’s and the ¢’s. Thus a"bne? cannot be context-free. It is clear
too that if the strings of a language contain some point of symmetry, such as
the one between the a’s and the b’s in a™b", then the derivations of a grammar
all of whose non-terminal symbols were recursive would have to contain
non—terminal symbols at those points of symmetry. Otherwise recursion
would upset the symmetry on one side or the other. Grammar 1 illustrates
this.

One of the misconceptions can thus be cleared up without invoking any
mathematically sophisticated argument. The other one, about node
admissibility conditions, is not so easy to dispose of. Gazdar (1982) refers to
Joshi and Levy (1977) as proof of his contention. This paper contains a long
and complex mathematical argument, and is therefore guaranteed to miss an
important audience of linguists. Of course mathematical proofs may be taken

- 105 —

Ian C. Stirk

for granted by those who do not wish to delve into them, but in that case some
of their important implications may be missed. After a great deal of trial and
error, | came up with a fairly straightforward informal proof, which is
presented in the next section. Also I hope to show that it could be formalized
to provide an alternative proof to Joshi and Levy’s: after all, informality must
not mean loss of rigour.

1t also seems to me that the method used in this proof has some interesting
linguistic applications. I have tried to say what they are in a purely
speculative conclusion.

Some Theorems

For reasons which will become clear below, it is often convenient to express
context—free grammars in what is known as Chomsky normal form. One
requirement of this is that terminal symbols be introduced only by rules of the
form X — ¢. Grammar 1 above can easily be made to fulfil this requirement by
introducing two new non—-terminal symbols A and A, thus:

Grammar 2 Ag — AjAdAz
Ao hd A1A2
Al - a
Ag — b

The other requirement is that the right-hand side of any rule, if not a single
terminal symbol, should consist of two non—terminal symbols. The rule Ay —
A1A0A; obviously violates this, but it is simple enough to introduce a further
symbol Az and break this rule into two, A¢ ~— AiAz and Az — AgAj, which
obviously have the same weak generating capacity as the single original rule.
In fact, a rule with n symbols on its right-hand side, such as X — YYz....Y,,
could be replaced by (n-1) rules as follows:

X — Y121

— 106 —

CONTEXT-FREE LANGUAGES REVISITED YET AGAIN

Zl d YzZz

Zn—l - Yn—lYn

where Z;..Z,, are new non-terminal symbols. This means that any
context-free grammar can be put into Chomsky normal form. The simple
example of grammars 1 and 2 will finally become

Grammar 3 Ay — AjA;
Az — AjA
Ao had A1A2
A1 - a
Az - b

This is familiar from the introduction! A typical labelled bracketing derived
from this grammar would look like this:

String 1 [, [a, @, [a, [a, [a, 2 Ja, [, D 1A, Ja, (4, D I, 1a, Ja,

The labelled bracketing, of course, gives the same information as a tree
structure, but seeing it in linear form might lead one to wonder whether a finite
state grammar could generate similar strings: a grammar containing rules like
X —[2 Y, for instance. The problem is, of course, that a finite state grammar
cannot incorporate an indefinitely large “memory” for previous parts of a
string as it is generated, whereas every left-hand bracket in something like
string 1 above must be correctly paired with a right-hand one, no matter how
many other symbols intervene. Notice that correctly paired strings of
brackets, such as the familiar (),[1, { }, may be generated by this particularly
simple context—free grammar:

Grammar4 X - XX, X—-»X), X—-[X], X— {X}, X—2

— 107 —

Ian C. Stirk

All such bracketings as ([){()}) are possible terminal strings, which is fine so
long as the “contents” of brackets are ignored, as well as any relations between
the different kinds. Grammars like the above are known as Dyck grammars,
and in general have the form:

Grammar 5 X — XX, X —cXc', X2

where X — ¢Xc¢' is a rule schema: one such rule is needed for each pair of
terminal symbols ¢, ¢’

These considerations lead one to wonder what could be done with the
intersection of a Dyck language and a finite state language. Languages are
regarded as sets of sentences, so the term intersection can be used in its usual
set-theoretical sense: in this case; to indicate the set of sentences common to
both languages. The Dyck grammar would ensure that all the sentences in
the set were correctly bracketed, while the finite state grammar would take
care of linear dependencies. In the example we have been using, the fact that
each]p, is followed by a]4, would be an example of one such dependency.
Unfortunately, the finite state grammars required for this turn out to be
intolerably complex, if not impossible to write.

But is it really necessary to generate a complete labelled bracketing?
Maybe a partial bracketing would be enough, provided it contained enough
information for reconstructing the complete one. In fact provided we know
that a bracketing was generated by a grammar in Chomsky normal form, a
knowledge of the left-hand brackets alone is sufficient, as may be illustrated by
first deleting all right-hand ones from String 1, and then showing that there is
only one way they could be reinserted:

String 2 [a,[a,2 [ala, (a2 [a,D (s, b

Right-hand brackets must obviously be placed after each terminal symbol, so
we immediately obtain:

String 3 (5, [a,2]1a, [a,[a, [a, 2 a, [, P s, [a,Dla,

— 108 —

CONTEXT-FREE LANGUAGES REVISITED YET AGAIN

The [4, a]a, and the [, b 5, immediately after the [, bracket form two
constituents, the only number allowed by the Chomsky normal form. This
means that a] must be placed immediately after the [, b]4,:

String 4 [a, [a, 2 1a, [a, [a, [a, 2]a, (4, D]a, Ja, [a, D 1a,

In a similar way, two constituents are now discernible after the | A, bracket, so
]a, must be placed:

String 5 [, [a,2 1a, [a, [a, [a, 2 14, [a, D 1a, Ja, (4, P Ia, Ia,

This leaves only the final J4 to go in, and string 1 is restored:

String 1 [a,[a, 214, [a, [a, [, 2 1a,[a, D la, Ia, [a, D la, Ia, la,

Obviously a quite automatic process. Going back now just to the lefthand
brackets of string 2,

String 2[5, [a,2 [la[a, 2 [ab [a, P

we see that these themselves form pairs. Because of the rule of the
context—free grammar Az — Ap Ag, a [Ay bracket must be succeeded later by a
[, and soon. If the symbols x; and x;" are chosen instead of [, and [4,, with
similar substitutions for the other brackets paired by the rules of grammar 3,
the above string might appear as:

String 6 x;aX; X:Xsaxz bxs'b
Now here the various x; and x; are paired in a manner suitable for the terminal
string of a Dyck grammar, but the symbols a and b come singly. This can

easily be remedied by a trick: each “a” is simply replaced by “aa’ ” and each
“b” by “bb" ”. Naturally a" and b’ are to be new terminal symbols. String 6

—109 —

Ian C. Stirk
now becomes
String 7 x;aa’ X; XXz aa x3 bb’ x’ bb’
which is of course a terminal string of the following Dyck grammar

Grammar 6 X — 41, X —> XX, X —aXa', X -—bXb', X - xXx,
X — XzXXg/ , X - X3XX3/

The problem now is to find a finite-state grammar which will interact suitably
with grammar 6, so that the intersection of their languages will be the language
generated by the original context-free grammar 3. It is helpful here to
express string 7 in tree form:

Tree 1

This tree structure enables us to see in rather an insightful way the relation
between strings like string 7 and the context—free grammar 3. It will be seen
that here the x; and x;" , which derived originally from left-hand brackets, have
been used to label certain branches of the tree, in fact those branches which
come from a “fork” in the tree. The order of elements in string 7 follows a
path through the tree, indicated by the arrowed curve. The initial “xjaa’”
takes us from the root of the tree down the left most branch to the leaf “aa””

After this we retrace our steps to the fork of the tree, and set off down the next
branch, labelled “x;" X2 X3....” in the string. By the time we come to the end of
the string, every part of the tree has been visited. This makes it clear how the

— 110 —

CONTEXT-FREE LANGUAGES REVISITED YET AGAIN

two dimensional tree structure is effectively “linearised” in string 7.

With this in mind, we can devise a suitable finite-state grammar. It is
convenient to use the same labels for non-terminal symbols as are used in the
context—free grammar, for a glance at tree 1 shows that for each context—free
rule of the form “Ay — AJA,.” there should be a finite-state one “Ao — x:A,”, in
order to start us off correctly down the leftmost branch of any tree. In fact for
the left-hand branch of any fork, there must be a rule “A, — xA” to
correspond to the context—free “A, — AA,". A glance at grammar 3 again
shows that the finite~state grammar should have these rules in it, in that case:

Ag— x1Ay, Az~ XA, Ap — X344

In order to get the leaves of the trees right, these rules will also obviously be
necessary:

Al nd aa', Az -~ bb’

It’s not so easy to see what needs to be done next. In tree 1, we see that in
tracing the path through, it is necessary to jump from each leaf to the fork
above, before continuing down a right-hand branch. This applies until the
rightmost leaf, when the path is complete. This consideration suggests that
these rules will find a place in the grammar:

Ay —aa'xy" Az, A;—aa'x As, A; —aa'x3’ Ay,
Ag — bb’ Xll As, Az — bb’ Xz’ Ag, Ag — bb’ X3’ Az

The finite-state grammar is now complete, and we can set it out as:

Grammar 7 A, — X144
A3 i Xng
Ao i X3A1
Al - aa’ Xl, A3
A1 - aa’ le Az

— 111 —

Ian C. Stirk

{

A aa’ x3' As
A, bb' x;" Az
Az ¥ bb’ Xz' Az
A, bb"x3" Ay
Ay aa’
A; — Dbb

|

{

!

Experiment should convince the reader that strings that can be generated both
by this grammar and grammar 6 all contain, among other things, a number of
occurrences of “a” followed by the same number of occurrences of “b”. The
“other things”, of course, are the x;and x;' , aswellasa’ andb’. If these could
just be struck out, we would end up with just the same strings as the
context—free grammar 3 generates. The striking out may be accomplished by
a mechanism known, for group-theoretical reasons, as a “homomorphism”.
This may be regarded as a function from strings into other strings. Calling the

“« n

function “h”, it is to have the property that, when “«” and “g” are strings,
h{cf) =h(a) h(B)
The particular function we require is defined by:

h(c)=c, where “c” is either “a” or “b”
h(c)=24, otherwise

Obviously, h(xjaa” x;" xpx3aa’ x3° bb’ x;bb’) =aabb, and this homomorphism
will work in general to reduce strings generated by grammars 6 and 7 to
terminal strings of grammar 3.

It should be clear by now that the method we have been developing can be
generalized to apply to any context—free grammar in Chomsky normal form.
The recipe for determining the finite-state grammar is:

(1) Include a rule X; — x,Y; for every rule X; — Y;Z; of the context—free
grammar, where X; is a new terminal symbol.

(2) Include rules of the form X — cc' x;" Z; for every rule of the context—free
grammar of the form X — ¢, and for every rule of the form X; — YZ..

— 112 —

CONTEXT-FREE LANGUAGES REVISITED YET AGAIN

(3) Includearule X — cc¢’ for each rule of the form X — ¢ in the context—free
grammar.
The homomorphism can also be easily extended:
h{c)=c, where “c” is a terminal symbol of the context—free
grammar;
h(c)=2, otherwise.

These final results may be compared with what Salomaa (1973, p69) labels
Theorem 7.4, and the proof which follows it. For convenience, I repeat
Salomaa’s statement of the theorem, but call it Theorem 1.

Theovem 1:

Every context—free language equals a homomorphic image of the
intersection of a regular language and a Dyck language.

“Regular language” is synonymous with “finite~state language”.

Theorem 1 has some importance in mathematical linguistics, and has been
used by Salomaa (1971) to give a mathematically far more elegant proof of the
Peters—Ritchie result on the generative power of transformational grammars
than that in Peters and Ritchie (1973) .

The method of constructing appropriate finite-state languages given above
depends of course on the context—free grammar being given in Chomsky
normal form. Itis possible to dispense with this condition, if only something a
little more complex than a Dyck language is used as the set to be intersected.
Grammar 2 will serve quite well as an illustration of this. A typical tree
structure derived from this grammar would be:

2“[&0\
X12 ’ XZI
A1/ }‘(l 1}2
| .
Tree 2 a /A{ bb
X3 X3
s AN
Al AZ

— 113 —

Ian C. Stirk

Various branches are already labelled with x; and ;" in anticipation. The tree
divides into three at the root, and it will be seen that the leftmost branch is
labelled x39, to suggest that it has fwo “companions”, x;" and x2". Rules for
the finite—state grammar are not hard to devise, following a similar recipe to
the one given above:

Grammar 8 Ao — X124

Ao i X3A1

Ay — aa'x3 A
Ay — aa'xy Ag
A — aa'x’ A;
Ay — bb'xs’ A
Ag — bb’ X1' Ao
Ag i bb' Xz' Ag
Ay — ad

A; — bb

Clearly one derivation from these rules would be the string:
String 8 X222’ X; Xsaa' x3 bb” x5 bb’
If the rule X — x3.Xx;” Xx;' were added to a Dyck grammar, to give:

Grammar 9 X—1, X—XX, X—aXa', X—>bXb', X—-x:Xx3', X
— x12Xx1" X%’

then strings like string 8 could be generated by it. It is not hard to see that the
intersection of the languages generated by grammars 8 and 9 is just the
context-free language we want. The method we have used can clearly be
generalized. For any context—free rule of the form X, — WxYiZy, then a
finite-state rule Xy — x;Wiwould be needed, together with rules of the form X
—>cc” % Yyand X — c¢” xj Zx for every context-free rule of the form X —
c. Furthermore, the Dyck grammar needs supplementing with a rule X — xj

— 114 —

CONTEXT-FREE LANGUAGES REVISITED YET AGAIN

Xx' Xxy'. Infuture, such grammars will be called “extended Dyck grammars”. The
process of generalization need not stop here: no matter hOV}/' many symbols
there are on the right-hand side of some context—free rule, we may
accommodate them with extra terminal symbols of the form x;_x and its
“companions” %', x;’ etc.

Occasionally rules of the form X — Y, with only one non—terminal symbol
on the right-hand side may be found in context—free grammars, for the purpose
of establishing grammatical classes. To deal with this in our system, we
would need an x; with no “companion” at all, just so that a branch labelled “x;”
would appear in the reconstructed tree-structure. This is possible too, if we
just include rules like X — x; in the extended Dyck grammar. And in that
case, we could drop such terminals as “aa’ ” in favour of a rule X — a, and so
on. For instance, grammar 8 above could be altered by removing each

.t 1

occurrence of “a’” and “b’”, while grammar 9 would become:
Grammar 10 X = XX, X —a, X—b, X —oxXx3, X — xpXx; Xxo

Notice that the rule X — 2 become superfluous: there will no longer be
“superfluous” X’s that need removal.

How far could Dyck grammars be extended, by adding different sorts of
rules? It is not difficult to prove a theorem which goes some way towards
answering this question:

Theorem 2 :
The intersection of a context—free language and a finite-state language is
context-free.

This theorem is essentially the one to be found in Salomaa (1973, p59) as
Theorem 6.7. 1 will give an informal presentation of Salomaa’s proof.

Consider some string belonging to the intersection of the two languages, of
this form:

- 115 —

Ian C. Stirk

where the a; are terminal symbols (not necessarily distinct). Since this typical
string is generated by a finite-state grammar as well as a context-free one, we
could think of one of those familiar state diagrams:

The underlying idea of the proof is actually to construct a context-free
grammar that will generate only the intersection of the two languages. To be
sure that every terminal string could be generated by the finite-state grammar
too, state diagrams are actually built into the form of the rules of the
constructed grammar. Non-terminal symbols will be thought of as ordered
triples of the form (v, s;, s;) where v is a member of the vocabulary, terminal or
non—terminal, of the original finite-state grammar. The constructed grammar
will have one set of rules of this sort:

(A) For each symbol c in the terminal vocabulary, and rule s; — cs;j in the
finite-state grammar, there will be a rule (c, s;, s;) — c.

This means that the final twigs and leaves of a tree derived from the
constructed grammar will look like this, for the typical terminal string:

(a1, so, 81) (az, 81, 82) (a3, Sz, 83) (@n, Sut, Sn)
Tree 3 ! | [T I
a1 a as an

It will be seen how the line of triples “imitates” the state diagram: the first
bracket shows a transition from the initial state to s, the second a transition
from s; to sy and so on. Now in the original context—free grammar, we can
suppose that terminal symbols come from rules of the form X — c. These
rules will be taken over into the constructed grammar by arranging:

(B) There will be a rule of the form (X, s;, §y) ~ (¢, sy, 8;) for each rule X —

c of the original context—free grammar and every pair of non-terminal
symbols s, s of the finite-state grammar.

— 116 —

CONTEXT-FREE LANGUAGES REVISITED YET AGAIN

This may seem rather extravagant: after all, if there are, say, k states in the
finite-state grammar, then for each rule X — c there will be k? rules of the
above type. Furthermore, not every (c, s;, s;) on the right-hand side can be
rewritten. According to (A) above, (c, s;, 8;) can only be rewritten if the
finite-state grammar has a rule s; — cs;. But it follows from the usual formal
definition (see for example, Salomaa, 1973 p9) that only strings of ferminal
symbols which can be generated by a grammar are to count as part of the
language. We can use this as a useful filter device: those derivations which
end up with any “wrong” triples (c, s;, ;) can just count as “discarded”. With
that problem out of the way, it only remains to arrange that the leaves of each
tree are dominated by triples containing a correct sequence of states from sg to
Sn-

This is not so hard to do if we specify that the grammar of the original
context-free language be given in Chomsky normal form. The constructed
grammar then includes rules like this:

(C) There will be a rule of the from (X, s;, sw) — (Y, s;, $}(Z, s, si) for each
rule of the original grammar X — YZ and each triple of non—terminal
symbols of the finite-state grammar s;, sj, Sg.

Again an extravagant number of rules. But it will be noticed that these rules
ensure that at each bifurcation of the tree, the second state number in each
bracket will be the same as the first state number in the bracket to the right.
Thus there will be a proper sequence of states in triples as we look from left to
right in any tree.

It still remains to ensure that the leftmost state will be so and the rightmost
one s,. This of course is decided right at the root of the tree, before any
bifurcation takes place at all. All we need to do, then, is to specify that the
initial symbol of the constructed grammar be (X, so, Sn) Where X is the initial
symbol of the original context—free grammar.

Now imagine a typical tree structure derived from this constructed
grammar. Because of the way the initial symbol has been chosen, and the
nature of (B) and (C) above, it will be seen that if each triple was deleted except

— 117 —

Ian C. Stirk

for its first member, a typical tree of the original context—free grammar would
remain. This means that the constructed grammar can only generate strings
which could have been generated by the original one. Each tree will end in the
way pictured in tree 3 above. Because of (A), there can only be a complete
terminal string if the sequence of states and symbols illustrated in tree 3
corresponds to a state diagram of the finite-state grammar. Thus any
terminal string belongs to the intersection of the two languages, as required,
while the constructed grammar is certainly context—free.

Readers who are dissatisfied with introducing a filter device into the
constructed grammar, in view of the strictures against them in, say, Gazdar
(1982) should note that they are really harmless in the case of context—free
grammars. In any particular case, rules containing non-terminal symbols
which do not get rewritten may be eliminated from the grammar. The method
is similar to the way in which superfluous non-terminal symbols were removed
in the introduction, and I will leave the details to those dissatisfied readers.

That completes the proof of theorem 2. The following theorem is rather
easier to prove:

Theorem 3:

The language consisting of the images according to a deletion
homomorphism of the sentences of a context-free language is also
context-free.

By “deletion homomorphism” I mean something like the one considered
before, where certain symbols in a string are deleted while others are left
unchanged.

Consider some context—free grammar G and an arbitrary deletion
homomorphism. A new grammar is formed just like G except that every rule of
the form X — ¢, where ¢ is a terminal symbol deleted by the homomorphism, is
replaced by a rule X — 1. Deletion rules are quite proper in a context-free
grammar, as we noted before, so the new grammar is certainly context-free.
But it generates precisely the homomorphic image of the original language, as

—118—

CONTEXT-FREE LANGUAGES REVISITED YET AGAIN

required.

Actually theorem 3 holds for arbitrary homomorphisms, not just for
deletion ones, but the proof becomes more complicated, and the generalisation
is unnecessary for our purposes. Details may be found in chapter 1, section 3
of Salomaa (1973).

Theorems 2 and 3 are readily combined to give theorem 4:

Theorem 4:

The language consisting of the images according to a deletion
homomorphism of the strings in the intersection of a context-free language and
a finite-state language is also context—free.

What this means, returning to previous discussion, is that as long as the
extended Dyck grammar remains context—free, the homomorphism of the
intersection of its language with the finite-state language will also remain
context-free.

At first sight, this may not seem a very exciting result. Dyck languages
exhibit a very special form of context—freeness, and to express context—free
languages in general in terms of them, as theorem 2 does, is something
unexpected and interesting. This point of interest just seems to have been
discarded.

If we know that some string belongs to a Dyck language, and scan it from
left to right, we can be sure, on coming across some x;, thatanx;” will turn up
later to match it. In a way, we can look at this as some kind of promise and
fulfilment: the x; promises the later occurrence of x;' .

This is rather reminiscent of the nature of context-sensitive rules. An
example will help:

T — UV-W
T — YZ

Imagine tracing out a path round a tree, of the kind illustrated in tree 1

— 119 —

Ian C. Stirk

above. If the context—sensitive rules are being observed, then if you come
across a node T followed closely by nodes U and V, you can be certain that at
some later stage a W will follow. In that case, why not try to express this kind
of context—sensitivity with some form of extended Dyck grammar? If we use
the symbol “y” to mean something like, “a context-sensitive rule is being
applied; context to come”, while “y’ ” signifies “here is the context”, might not
a Dyck-like grammar help to produce just the right sentences? Let’s try to
work out some details.

Firstly, the finite-state grammar. In the ordinary way of things, this
would need to contain a rule of the form T — x;U, to correspond to T — UV.
Let us alter this slightly to T — yx;U. Elsewhere in the context-sensitive
grammar, of course, there must be a rule which expands W. Inthe finite-state
grammar too there would have to be a rule of the form W —, but in its place
we are going to introduce two rules:

W — ..., the rule as before, and also
W — y'.... where the right-hand side is preceded by y" .

No matter what the details of the extended Dyck grammar are, it will certainly

«, r

require that every string containing a “y” must include a “y’ ” companion. In
the finite-state grammar that we are developing, a “y” must appear if T is
developed as UV, and in that case the option for W containing “y’ ” must be
chosen if the string is to be grammatical. If T is expanded as YZ, however,
there is no “y”, and it is immaterial whether or not W is selected later. This is
just the situation required by the context-sensitive rules. Rules are
unordered, of course, so T may freely be expanded as YZ; on the other hand, if
it is expanded as UV, there must be a “W” later in the tree. Notice, in
passing, that this method of dealing with context—sensitivity easily solves the

problem of the formal nature of “elsewhere” in rules such as:

T — UV-W
T — YZ, elsewhere

- 120 —

CONTEXT-FREE LANGUAGES REVISITED YET AGAIN

The use of “elsewhere” seems to be an underhand way of bringing in rule
ordering. If in the finite-state grammar W is only expanded as “y”,
however, the elsewhere condition is simply satisfied, since an occurrence of
“y" " without “y” would be ungrammatical.

Now back to the main problem. I spoke above of situations where there
must bea “W” “later in the tree”. What does this phrase actually mean? The
possible positions of “y” and “y"” in a string are governed by the extended
Dyck grammar, and we must turn now to that. Suppose that in addition to the

usual rules of a Dyck grammar (given in grammar 5 above), we have these:

X — Xle

X~y

X = ¥
Both “y” and “y’ ” are now introduced, but without further rules which might
move X; and X» apart, they could only occur next to each other. Of course we
can introduce what rules we like, as long as they remain context—free and each
X, has an X, paired with it. The following seem to be the most liberal we
could allow, under the conditions:

v,y rulesl X; — XXX

X2 g XXgX
X1 - ZXll’
Xz d ZXZZ,

The third and fourth of these rules are in fact rule schemata. The symbols z,
z are to range over all the pairs x;, xi' required in the particular case.
Remember that the ¢, ¢’ used in grammar 5 were to range over «ll terminal
symbols, not just the x;, ;" pairs.

Now we can investigate just what things might intervene between “y” and
vy " in the tree structure. The simple answer seems to be, anything! The
following schematic tree will illustrate this:

“

— 121 —

Ian C. Stirk

/S AA
Tree 4 U/Y \V

JAN AN

Imagine tracing a path round this tree structure, a path which will of course be
represented by a terminal string of the extended Dyck language including y
andy’ . Before wereach T, and y itself, there will be some x; for the branch or
branches on which T lies. The rules of the form X; — 2zXjz" will allow for
these x;. Later we come to the vague triangles beyond U and V. Whatever is
in them, though, can only be “complete” structures with x; and associated x; .
These are taken care of by the possibilities for “X” in the rule X;—XX;X.
After the triangle below V, we must pass up into upper reaches of the tree to
the right of T. Here there must be some x;’ to correspond with the x; that
came before T. But the rules X; — zX;z' have already taken care of these.
_There are still possibilities for more complete “X” structures before we reach
W: these are shown by the central triangles. Finally, as we come down
branches towards W itself, there will be some x; not to be “redeemed” by x;’
until beyond the W triangle. These may be dealt with by the rules X, — zX,

z.
As if that wasn’t enough, there is another possibility not well illustrated by

tree 4:
T
7\
U v

W may actually occur somewhere in the tree structure below U or V. In this
case the original context-sensitive rule T — UV/-W is being interpreted as a

122 —

CONTEXT-FREE LANGUAGES REVISITED YET AGAIN

“domination predicate”, and should be written T — UV/s (—W) according to
the notation used by Gazdar (1982). Joshi and Levy (1977) use a similar
notation. The meaning of this particular domination predicate is that T may
be rewritten as UV as long as there would then be a path in the branches of the
tree leading from T to W. Looking at tree 5 we see that there must be such a
path, passing through either U or V on the way. Section 3 of Gazdar (1982)
contains a more full description of such predicates.

There certainly seems no great problem in establishing context-sensitive
rules in this framework. The particularly interesting thing, of course, is that
since we are still dealing with the intersections of context—free and finite-state
languages, the resulting languages are still context-free, in spite of the
context-sensitivity!

There still may be a problem in constraining the rules sufficiently. After
all, the intention may be that a rule like T — UV/~W is only supposed to take
effect when W is in an adjacent branch of the tree to the right of T, like this:

\
’ \

/ \
v

Xj

Tree 6 T/X \

Z&
Zi/\ A
If T and W are adjacent, then the linking branch is the one labelled x,
somewhere above T and W. As we go round the tree, moving round from T
towards the x; branch, we should not come across any other x;' branch whose
companion X; occurs before T. Moreover, as we go on from x; to W, we

should come across x; type branches only, with no x;’ intervening. All these
conditions can be met if the liberal y, y* rules 1 above are replaced by these:

v,y rules2 X — xXix' Xs
X; — XXX
Xz - Z XgXZ'

— 123 —

Ian C. Stirk

It seems that the rules can be suitably constrained in general. As a further
example, consider the domination predicate T — UV/3(-W), illustrated in tree
5. Here it is essential that W be dominated by T. Tracing the usual path
round the tree, then as we go up the right hand side of the quadrilateral, past V,
and then past T, we must eventually come to a fork and a branch labelled with
some x; . W will certainly be dominated by T if it comes between the
companion x; and X;' on this path. Thus we need rules of this kind:

y,y rules3 X — xXiXgxi
X; —» XXX
X, = XXX
X, = zX7
Xy = zXp7

Clearly all kinds of possibilities can be allowed for by suitably juggling with the
rules of the extended Dyck grammar. It would need some improved notation,
at least, to go into them further, and I will not do so here. Some general points
should be noted, though.

For one thing, I have tacitly been assuming context—free grammars in
Chomsky normal form, since each extension of the Dyck grammar has been
added to the rules of grammar 5. There is no necessity for this however:
there is no reason why the v, v* rules should not mix with those of the form X
— XpXx; Xxo'. Only the complexity of the final extended Dyck grammar
would increase, unless a really elegant notation could be found, at least.

In the examples above, only context of the form “~“W” was mentioned.
This is easily amended. For context left and right, for instance, then rather
than just “y” and “y’” we could do with, say, “vi’, “v2’, and “y3”, with
appropriate rules to introduce them. There is no need to stop at y3: with
extra y; we could introduce far more complex kinds of context if required, as in
these examples:

y

T — UV/A-B and §(C_D)
T — UV/A-B or 5(C__D)

— 124 —

CONTEXT-FREE LANGUAGES REVISITED YET AGAIN

It has already been mentioned that “elsewhere” rules can be accommodated.
Of course another way to express, say,

T—-UV/_W
T —YZ elsewhere

is to write
T—-UVI_W
T — YZ/not (__W)

With “and”, “or” and “not” available, then any Boolean combination of
contexts can be dealt with.

In view of all this, then what kind of contexts cannot be allowed? There
must be something, since context—sensitive grammars are provably more
powerful than context—free ones. The answer is already hidden in diagrams
like tree 4. Thinking again of the string which describes a path taken round
the tree, we know that it will be grammatical as long as y and y' occur in it in
accordance with the rules of the extended Dyck grammar. What may be
hidden in the triangles below U and V and W does not make any difference.
This means that the context-sensitive rules are being used as node admissibility
conditions , to use the terminology of McCawley (1968), and not as conditions
applicable just in a particular line of a “derivation” in Chomsky’s sense.

These remarkable results are the ones summarized by Joshi and Levy
(1977) as their theorem 3.1 (p276). Our quite informal proof of it above is quite
different from theirs, which is based on the theory of finite automata. Ihopeit
is clear that the informal proof could be formalized, with no more than purely
technical difficulties. If that is so, we may be entitled to reproduce Joshi and
Levy's theorem here, with the label “theorem 5.

Theorem 5 :
Let G be a finite set of local transformations and (G), the set of trees

— 125 —

Ian C. Stirk

analyzable by G. Then the string language L ((G)) is context—free.

A “set of local transformations” is a context-sensitive grammar in which
Boolean combinations of proper analyses and domination predicates are
allowed. “Analyzable by G” means that the rules of G are interpreted as node
admissibility conditions.

Pure Speculation

It seems to me that this method of language intersection affords not only an
alternative proof of Joshi and Levy’s theorem, but also may have some promise
in the investigation of natural language. I want to mention certain
possibilities now as a conclusion to this article, even though they remain as yet
purely speculative.

Although the possibility of context—sensitive rules which do not affect the
context—freeness of a language is pointed out with great clarity in his (1982),
Gazdar makes virtually no use of them in the remainder of that paper. They
take no place either in the methods employed in Gazdar, Klein, Pullum and Sag
(1985). Instead, a great deal of space is devoted to ways in which features may
be “passed down” from node to node in the branches of tree structures, thus
effectively linking various parts of a terminal string. The method of achieving
certain kinds of context—sensitivity with the y, y' symbols developed above
provides an alternative way of dealing with similar problems, and it should be
interesting to work out the details. In the language intersection method, the
order of elements is handled by the finite-state grammar, while the extended
Dyck grammar can link elements in widely separate parts of a string. It may
be that certain features of natural languages could be explained more easily by
such a division of labour, rather than by investigating the overall context—free
grammar.

There may also be interesting links between these methods and those of

—126—

CONTEXT-FREE LANGUAGES REVISITED YET AGAIN

dependency grammars. The x;, x;' and y, y' symbols might be regarded as a
means of displaying the ends of dependency arrows of the kind used by, for
example, Hudson (1984). The relations between phrase-structure grammars
and certain kinds of dependency grammars are explored in Gaifman (1965).
The present method may allow certain generalizations of those findings to be
easily made. Hudson points out certain deficiencies of constituent structure
as compared with dependency structure (1984 p94 et seq.). Since the
language intersection method explored here has affinities with both kinds of
structure, it would be interesting to use it in such investigations. As a
preliminary example, consider the following unremarkable tree structure:

X1 X1
NP VP L.
! X2 N
John \l/' V!P
will b
Y
g0

This could be associated with the following terminal string of an extended
Dyck grammar:

xJohn x;" %, will X5 x3 go

If the string is regarded as a representation of dependencies, then the x;and %,
could be taken as features of the lexical items which follow them, indicating the
relationships between these items. This has been illustrated by the spacing.
The string for the question form, “Will John go?” preserves these
relationships:

¥ x2 will x;John x5" x3 go
It is not possible to reconstruct a tree from this, even if an x;” was allowed to

label the left-hand branch from some node. I am not suggesting this as the
basis of any serious analysis. What it does imply is that there is no essential

—127—

Ian C. Stirk

difference between the x;, ;' and the y, y' symbols that we have been using.
In certain configurations, it may be possible to interpret certain of the symbols
as encoding constituent structure, while others show context-sensitive
relations. On the other hand, we might give up the idea of constituent
structure altogether and just think about the dependency relations between
lexical items. In that case, apparent constituent structures would just be
artefacts of the essential context—freeness of natural language. It is always
possible to establish constituent structure, because of this context—freeness, but
the structure need not have any real significance.

Are natural languages context—free? This question has been answered in
the negative by Higginbotham (1984). I will take his argument as an example,
since it applies to English, although I believe there are more cogent arguments
for other languages. As far as I am aware, however, the formal structure of all
these arguments is similar. Higginbotham gives the following tree as an
illustration (1984, p.227):

N{/ \VP
S [>
the woman such that _—"" \is here
NP VP
A S AN
the man such that / \left
NP VP

\
the man such that /s\gave him to this
NP VP
Q

|
she gave this to him

The sentences have the following form:

;he woman such that (the man such that)" she (gave {g}fl} to {?ﬁ?sl})ﬂ left is
ere

— 128 —

CONTEXT-FREE LANGUAGES REVISITED YET AGAIN

The curly brackets indicate a choice, but the choice here is not quite free, if
only grammatical sentences are to be arrived at. The tree diagram illustrates
the situation clearly. Each subordinate clause introduced by “the man such
that” must contain an occurrence of “him” referring to “the man”. This is the
case in the diagram. The lowest VP in this tree could be replaced by “gave
him to him”, and the next lowest by “gave this to this”. The resulting
sentence would still be grammatical, for each clause would still contain the
required “him”. On the other hand, we could not replace the lowest VP by
“gave this to this”, since that would leave the lowest S without a “him”. This
would still of course be the case even if the next lowest VP was replaced by
“gave him to him”, to preserve the correct number of occurrences of “him”.

Let us express these conditions in symbolic terms, to save space at least.
If we wanted to write an extended Dyck grammar for Higginbotham'’s

“,

sentences, we would p'/robably think of attaching “y” to each occurrence of “the

G, 1 on

man” and “y’ " to each occurrence of “him”, to express the dependency. In
outline, sentences would have this sort of structure:

String 9 XyXyXyxyx' vy X'y y x'x

The x, x" pairs may be regarded as representing S—-NP and S-VP branches of
the tree structure. All other items have been suppressed, but it is not hard to
see that this does not affect the overall argument. In any grammatical string,
the numbers of occurrences of x, x', v and y° must all be the same.
Furthermore, there is a condition on the occurrences of y', corresponding of
course to the condition on occurrences of “him” in the English version. One
simple way to state this condition is to say that, reckoning from left to right
along the string, the number of occurrences of X' must never exceed the
number of occurrences of y' by more than 1. The following string would be
ungrammatical:

String 10 Xyxyxyxyx X vy x'y y' x’
because there are two occurrences of x° before any one of y'. The condition

—129 —

Ian C. Stirk

can also be expressed by noting that every occurrence of X'y'y will be
“halanced” later in the string by some occurrence of X' not followed by y".
This means that each string will have one or more points of symmetry, that is
points between equal numbers of balanced items. String 9, for instance, has
two points of symmetry, represented by asterisks below:

String 9 XyXyXyxy * X vy X' y'y kx'x

The first lies between 4 occurrences of x and y, and 4 occurrences of X’ and vy’ ;
the second between 2 occurrences of X' v v’ and 2 of “solitary” occurrences of

‘

%' . The next string has only one point of symmetry:
String 11 xyxyxyxy*x' yx yx'y'x'y

The following has three:

String 12 xyxyxyxy *x vy *x x'y'y *x

The set of strings meeting these conditions is provably not context—free,
meaning that English is not a context—free language either, if Higginbotham’s
sentences are accepted as English. A formal proof is quite difficult, but a
simpler notional one is available using the idea of points of symmetry that we
have developed.

It was pointed out in the introduction that conditions of symmetry in a
context-free grammar can only be met by derivations which grow from the
centre of symmetry. Together with the fact that a context-free language
must be able to be generated by a grammar whose non-terminal symbols are all
involved in recursion, it was easy to show that the language a"b"c® could not be
context—free, essentially because grammatical strings have two points of
symmetry. But even though sentences of Higginbotham's language may have
two or more points of symmetry, it is still possible to increase their length
indefinitely from the leftmost such point, by adding any number of occurrences
of xy to the left, and the same number of occurrences of X' y* to the right. The

— 130 —

CONTEXT-FREE LANGUAGES REVISITED YET AGAIN

proof cannot be quite so simple in this case.

We need to use also the fact that any non-terminal symbol in the last line of
a continuing derivation may be selected for rewriting to obtain the next line.
Any non-terminal symbol could thus be “saved” until the last for rewriting.
There must be a non-terminal symbol at each of the points of symmetry in
some line in the derivation of sentences in Higginbotham's language. It must
be possible to replace the leftmost of these by terminal symbols before those
further to the right. Any on those remaining must of course be able to
dominate an infinite number of different terminal strings, but the resulting
sentences would inevitably be ungrammatical. A glance at string 12 confirms
this: any additions at the second or third points of symmetry would disturb the
already fixed numbers of X" and y’.

Thus it may be that natural languages are not context—free. It would be
interesting to investigate just what sort of extended Dyck languages would be
needed to generate them in that case. We have been regarding the finite-state
part of the intersection as contributing the order of elements, while the
extended Dyck language checks their dependency relationships. From this
viewpoint, it is odd that a language like a"boc® should be inherently more
“difficult” than just a"be. In checking strings from left to right, then after
ensuring that there as many occurrences of b as a, surely the initial segment of
a string could be “forgotten” while it is checked that there are as many
occurrences of ¢ as b. There are in fact families of languages intermediate
between context-free and context-sensitive: that is, they include all
context—free languages but not all context-sensitive ones. Some are
described in chapter 5 of Salomaa (1973), and may have some linguistic
interest. But that speculation takes us outside the range of context-free
languages, and is an appropriate point at which to conclude.

Bibliography

E. Bach (1974) “Syntactic Theory” (Holt, Rinehart, Winston)
H. Gaifman (1965) “Dependency Systems and Phrase-Structure Systems” (Information
and Control, 8, 304—-337)

— 131 —

Ian C. Stirk

G. Gazdar (1982) “Phrase Structure Grammar” in P. Jacobson and G.K. Pullum (eds.)
“The Nature of Syntactic Representation” (Reidel)

G. Gazdar, E. Klein, G. Pullum and I Sag (1985) “Generalized Phrase Structure
Grammar” (Blackwell)

J. Higginbotham (1984) “English is not a Context-Free Language” (Linguistic Inquiry,
15, 225-234)

R. Hudson (1984) “World Grammar” (Blackwell)

A. K. Joshi and L. S. Levy (1977) “Constraints on Structural Descriptions: Local
Transformations” (Siam Journal of Computing, 6, 272-284)

J. D. McCawley (1968) “Concerning the base component of a transformational grammar”
(Foundations of Language, 4, 243-269)

P. S. Pefers and R. W. Ritchie (1973) “On the Generative Power of Transformational
Grammars” (Information Sciences 6, 49-83)

Arto Salomaa (1971) “The Generative Capacity of Transformational Grammars of
Ginsburg and Partee” (Information and Control, 18, 227-232)

Arto Salomaa (1973) “Formal Languages” (Academic Press)

—132—

