
Title Context-Free Languages Revisited Yet Again

Author(s) Stirk, C. Ian

Citation 大阪外大英米研究. 1987, 15, p. 103-132

Version Type VoR

URL https://hdl.handle.net/11094/99103

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

CONTEXT-FREE LANGUAGES
REVISITED YET AGAIN

Ian C. Stirk

Introduction

At the beginning of an interesting paper, Gazdar (1982) points out some

misconceptions about the formal properties of grammars which have been

current in the linguistics community. One of these is that context-free

grammars may never have rules which rewrite non-terminal symbols as

zero. Another is that it makes no significant difference whether the rules of

grammars are used to generate derivations, or used as node admissibility

conditions for trees.

The first of these misconceptions can be cleared up without any very

complex argument. The language a叩(thatis, the language whose

grammatical strings consist of a number of a's followed by the same number of

b's) can be generated by a context-free grammar:

A。→釦 A3

A3 → A。A2
A。→ A1A2

A1 → a

A2 → b

Some of the symbols in this grammar are redundant. A1 and A2, for instance,

can only ever be rewritten as a and b respectively, so they might as well be

replaced by those terminal symbols wherever they occur:

103

A。→ aA3

如→ Aob

A。→ ab

Ian C. Stirk

Now we notice that A3 never dominates more than A0b, so it might as well be

replaced by A。bitself, leaving:

Grammar 1 A。→ aA。b

A。→ ab

Since this grammar will be a useful example later, too, it has been given the

label "grammar 1". Getting to that simple grammar 1 illustrates an important

principle about context-free grammars, namely that the only non-terminal

symbols they need to have are those directly involved in recursion, like A in

this one, provided that we are only interested in their weak generative

capacity. Other symbols can just be replaced by whatever it is they are

rewritten as in the rules. This principle is, I believe, due to Bach in earlier

versions of his (1974). It applies only to context-free grammars, of course,

since in context-sensitive ones certain non-terminal symbols may be needed as

context. The principle may be immediately applied to the problem of

rewriting symbols as zero. If such a non-terminal symbol is rewritten only as

zero, then of course it can be replaced by zero everywhere: deleted, in other

words. If it may also be rewritten as something more substantial, it can be

replaced by that other thing. This will certainly take care of non-terminal

symbols not involved in recursion, but suppose a recursive symbol is rewritten

as zero by some rule? Notice:first that grammar 1 could also be expressed in

this way:

A。→ aA。b

A。→ぇ

The symbolぇisfrequently employed in mathematical linguistics to represent

the null string, and I will use it so. It is apparent that if X is a recursive

104-

CONTEXT-FREE LANGUAGES REVISITED YET AGAIN

symbol, the grammar must contain a rule of the form X→aX私Ifit also
containsX→ぇ，thislatter rule can just be replaced by X→a[,, without making

any difference to generative capacity. This argument takes care of the first

misconception: languages still remain context-free even if their grammars

contain rules rewriting symbols as zero.

The same principle also provides simple informal proofs of such facts as
that the language糾b茫 cannotbe context-free. If it were, then there would
be a grammar for it whose only non-terminal symbols were involved in
recursion. Consider some derivation generated by this grammar. Its
penultimate line must contain just one non-terminal symbol which is rewritten
to form the last line anbnc叫forsome n. Since the non-terminal symbol which

is replaced is involved in recursion, then that penultimate line could also be a
line in other derivations where the symbol is used recursively. All of these
would have to end in grammatical strings, too, of course. Thus in that
penultimate line, the non-terminal symbol could not be among the a's, b's or c'
s because any recursion would upset the numbers of them, which must stay the
same. If it was between the a's and the b's, then the number of a's and b's
could be kept the same, but the c's would be left out. Similarly if it lay
between the b's and the c's. Thus a咄 cncannot be context-free. It is clear

too that if the strings of a language contain some point of symmetry, such as
the one between the a's and the b's in anb叫thenthe derivations of a grammar
all of whose non-terminal symbols were recursive would have to contain
non-terminal symbols at those points of symmetry. Otherwise recursion

would upset the symmetry on one side or the other. Grammar 1 illustrates

this.

One of the misconceptions can thus be cleared up without invoking any
mathematically sophisticated argument. The other one, about node

admissibility conditions, is not so easy to dispose of. Gazdar (1982) refers to
Joshi and Levy (1977) as proof of his contention. This paper contains a long
and complex mathematical argument, and is therefore guaranteed to miss an
important audience of linguists. Of course mathematical proofs may be taken

105-

Ian C. Stirk

for granted by those who do not wish to delve into them, but in that case some

of their important implications may be missed. After a great deal of trial and

error, I came up with a fairly straightforward informal proof, which is

presented in the next section. Also I hope to show that it could be formalized

to provide an alternative proof to Joshi and Levy's: after all, informality must

not mean loss of rigour.

It also seems to me that the method used in this proof has some interesting

linguistic applications. I have tried to say what they are in a purely

speculative conclusion.

Some Theorems

For reasons which will become clear below, it is often convenient to express

context-free grammars in what is known as Chomsky normal form. One
requirement of this is that terminal symbols be introduced only by rules of the

formX→c. Grammar 1 above can easily be made to fulfil this requirement by

introducing two new non-terminal symbols A and A, thus:

Grammar 2 Ao → A山 A2

A。→ A山

A1 → a

A2 → b

The other requirement is that the right-hand side of any rule, if not a single

terminal symbol, should consist of two non-terminal symbols. The rule A。→

A山 A2obviously violates this, but it is simple enough to introduce a further

symbol A3 and break this rule into two, A。→ A心 andA3→ A。A2,which

obviously have the same weak generating capacity as the single original rule.

In fact, a rule with n symbols on its right-hand side, such as X→ Y1Y2….Yn,
could be replaced by (n-1) rules as follows:

X → Y必

106-

CONTEXT-FREE LANGUAGES REVISITED YET AGAIN

z] → Y必

Zn-1→ Yn-1Yn

where Z1…Zn-1 are new non-terminal symbols. This means that any
context-free grammar can be put into Chomsky normal form. The simple
example of grammars 1 and 2 will finally become

Grammar 3 A。→ A心

A3 → A。A2
A。→釦A2

釦→ a

A2 → b

This is familiar from the introduction! A typical labelled bracketing derived
from this grammar would look like this:

String 1 [A。[A1a lA1 [A:, [A。[A,a lA1 [A2 b lA2 lA。[A2b lA2 lA3 lA。

The labelled bracketing, of course, gives the same information as a tree
structure, but seeing it in linear form might lead one to wonder whether a finite
state grammar could generate similar strings: a grammar containing rules like
X →[2 Y, for instance. The problem is, of course, that a finite state grammar
cannot incorporate an indefinitely large "memory" for previous parts of a
string as it is generated, whereas every left-hand bracket in something like
string 1 above must be correctly paired with a right-hand one, no matter how
many other symbols intervene. Notice that correctly paired strings of
brackets, such as the familiar (), [], { }, may be generated by this particularly
simple context-free grammar:

Grammar 4 X→ XX, X→ (X), X→ [X], X→ {X}, X→ぇ

107-

Ian C. Stirk

All such bracketings as (([]){()}) are possible terminal strings, which is fine so

long as the "contents" of brackets are ignored, as well as any relations between

the different kinds. Grammars like the above are known as Dyck grammars,

and in general have the form:

Grammar 5 X→ XX, X→ cXc', X→ぇ

where X→ cXc'is a rule schema: one such rule is needed for each pair of

terminal symbols c, c'.

These considerations lead one to wonder what could be done with the

intersection of a Dyck language and a finite state language. Languages are

regarded as sets of sentences, so the term inj:ersection can be used in its usual

set-theoretical sense: in this case; to indicate the set of sentences common to

both languages. The Dyck grammar would ensure that all the sentences in

the set were correctly bracketed, while the finite state grammar would take

care of linear dependencies. In the example we have been using, the fact that

each]A3 is followed by a]A。wouldbe an example of one such dependency.
Unfortunately, the finite state grammars required for this turn out to be

intolerably complex, if not impossible to write.

But is it really necessary to generate a complete labelled bracketing?

Maybe a partial bracketing would be enough, provided it contained enough

information for reconstructing the complete one. In fact provided we know

that a bracketing was generated by a grammar in Chomsky normal form, a

knowledge of the left-hand brackets alone is sufficient, as may be illustrated by

first deleting all right-hand ones from String 1, and then showing that there is

only one way they could be reinserted:

String 2 [A。[A,a [A3 [A。[A,a [Az b [A2 b

Right-hand brackets must obviously be placed after each terminal symbol, so

we immediately obtain:

String 3 [A。[Ala]A1 [A3 [A。[Ala]A1 [A2 b恥［A2b]A2

-108

CONTEXT-FREE LANGUAGES REVISITED YET AGAIN

The [A, a]A, and the [A2 b]A2 immediately after the [A。bracketform two

constituents, the only number allowed by the Chomsky normal form. This

means that a]A。mustbe placed immediately after the [A2 b]鯰

String 4 [A。[A1a lA1 [A3 [A。[A1a恥［A2b]A2]A。[A2b lA2

In a similar way, two constituents are now discernible after the [A, bracket, so

]A3 must be placed:

String 5 [A。[A1a]A, [A3 [A。[A,a]A, [A2 b]A2]A。[A,b]A2]A3

This leaves only the final]A。togo in, and string 1 is restored:

String 1 [A。[A1a 1A1 [A3 [A。[A1a]A1 [A, b]A2]A。[A2b]A2]A3]A。

Obviously a quite automatic process. Going back now just to the lefthand

brackets of string 2,

String 2 [Ao [A, a [A3 [A。[A,a [A2 b [A2 b

we see that these themselves form pairs. Because of the rule of the

context-free grammar A3→ A。A2,a [A。bracketmust be succeeded later by a
[A2, and so on. If the symbols x2 and x2'are chosen instead of [A。and[A2, with

similar substitutions for the other brackets paired by the rules of grammar 3,

the above string might appear as:

String 6 x1 a x1'x叙3a x3'b x2'b

Now here the various x; and x;'are paired in a manner suitable for the terminal

string of a Dyck grammar, but the symbols a and b come singly. This can

easily be remedied by a trick: each "a" is simply replaced by "aa'" and each

"b" by "bb'". Naturally a'and b'are to be new terminal symbols. String 6

109

Ian C. Stirk

now becomes

String 7
,,,

x1 aa'x1'x必3aa'xぷbb'x2'bb'

which is of course a terminal string of the following Dyck grammar

Grammar 6 X→ぇ， X→ XX, X→ aXa',

X →x2Xx2', X→X3Xx3'

X → bXb', X → x1Xx1',

The problem now is to find a finite-state grammar which will interact suitably

with grammar 6, so that the intersection of their languages will be the language

generated by the original context-free grammar 3. It is helpful here to

express string 7 in tree form:

人
Xl,

＼人

x2''x2'

ハ＼」］

Tree 1 話

This tree structure enables us to see in ratl1er an insightful way the relation

between strings like string 7 and the context-free grammar 3. It will be seen

that here the Xi and xi', which derived originally from left-hand brackets, have
been used to label certain branches of the tree, in fact those branches which

come from a "fork" in the tree. The order of elements in string 7 follows a

path through the tree, indicated by the arrowed curve. The initial "x1aa'"

takes us from the root of the tree down the left most branch to the leaf "aa'".

After this we retrace our steps to the fork of the tree, and set off down the next

branch, labelled "xi'x2 x足・・’'inthe string. By the time we come to the end of
the string, every part of the tree has been visited. This makes it clear how the

110

CONTEXT-FREE LANGUAGES REVISITED YET AGAIN

two dimensional tree structure is effectively "linearised" in string 7.
With this in mind, we can devise a suitable finite-state grammar. It is
convenient to use the same labels for non-terminal symbols as are used in the
context-free grammar, for a glance at tree 1 shows that for each context-free

rule of the form "A。→A心’'thereshould be a finite-state one "A。→Xふ”,in
order to start us off correctly down the leftmost branch of any tree. In fact for
the left-hand branch of any fork, there must be a rule "Ar→ Xふ”to
correspond to the context-free "Ar→ Aふ”.Aglance at grammar 3 again
shows that the finite-state grammar should have these rules in it, in that case:

A。→x山， A3→X迅o, A。→X3A1

In order to get the leaves of the trees right, these rules will also obviously be
necessary:

A1→ aa', A2→bb'

It's not so easy to see what needs to be done next. In tree 1, we see that in
tracing the path through, it is necessary to jump from each leaf to the fork
above, before continuing down a right-hand branch. This applies until the
rightmost leaf, when the path is complete. This consideration suggests that
these rules will find a place in the grammar:

A1→aa'x1'A3, A1→aa'x2'A2, A1→aa'xぷA2,
A2→bb'x1'A3, A2→bb'x2'A2, A2→bb'xs'A2

The finite-state grammar is now complete, and we can set it out as:

Grammar 7 A。→ xふ

A3 → x2A。

A。→ X3A1

ふ→ aa'x1'A3

ふ→ aa'x2'A2

-111-

Ian C. Stirk

釦→ aa'x3'A2

A2 → bb'x1'A3

A2 → bb'xz'A2

A2 → bb'X3'A2

A1 → aa

A2 → bb'

Experiment should convince the reader that strings that can be generated both

by this grammar and grammar 6 all contain, among other things, a number of

occurrences of "a" followed by the same number of occurrences of "b". The

"other things", of course, are the x; and x;', as well as a'and b'. If these could

just be struck out, we would end up with just the same strings as the

context-free grammar 3 generates. The striking out may be accomplished by

a mechanism known, for group-theoretical reasons, as a "homomorphism".

This may be regarded as a function from strings into other strings. Calling the

function "h", it is to have the property that, when "a" and“(3" are strings,

h(afJ) = h(a) h(fJ)

The particular function we require is defined by:

h(c)=c, where "c" is either "a" or "b"

h(c）＝ふ otherwise

Obviously, h(x1aa'x1'x岱3aa'x3'bb'x2bb')=aabb, and this homomorphism

will work in general to reduce strings generated by grammars 6 and 7 to

terminal strings of grammar 3.

It should be clear by now that the method we have been developing can be

generalized to apply to any context-free grammar in Chomsky normal form.

The recipe for determining the finite-state grammar is:

(1) Include a rule X;→ X況forevery rule X;→ Y晶 ofthe context-free

grammar, where x; is a new terminal symbol.

(2) Include rules of the form X→cc'x;'Z; for every rule of the context-free

grammar of the form X→ c, and for every rule of the form X;→ Y必

- ll2

CONTEXT-FREE LANGUAGES REVISITED YET AGAIN

(3) Include a rule X→cc'for each rule of the form X→c in the context-free

grammar.

The homomorphism can also be easily extended:

h(c)=c, where "c" is a terminal symbol of the context-free

grammar;
h(c）＝ぇ， otherwise.

These final results may be compared with what Salomaa (1973, p69) labels

Theorem 7.4, and the proof which follows it. For convenience, I repeat

Salomaa's statement of the theorem, but call it Theorem 1.

Theorem 1:

Every context-free language equals a homomorphic image of the

intersection of a regular language and a Dyck language.

"Regular language" is synonymous with "finite-state language".

Theorem 1 has some importance in mathematical linguistics, and has been

used by Salomaa (1971) to give a mathematically far more elegant proof of the

Peters-Ritchie result on the generative power of transformational grammars

than that in Peters and Ritchie (1973).

The method of constructing appropriate finite-state languages given above

depends of course on the context-free grammar being given in Chomsky

normal form. It is possible to dispense with this condition, if only something a

little more complex than a Dyck language is used as the set to be intersected.

Grammar 2 will serve quite well as p.n illustration of this. A typical tree

structure derived from this grammar would be:

A。

Tree 2

X12-------下;------.x2'.

が／翠＼ゃ
aa’ 欠 bb'

’ X3 X3
／ ＼

A1 A2
I I
aa'bb'

113

Ian C. Stirk

Various branches are already labelled with Xi and x/ in anticipation. The tree

divides into three at the root, and it will be seen that the leftmost branch is

labelled x12, to suggest that it has two "companions", x1'and x2'. Rules for

the finite-state grammar are not hard to devise, following a similar recipe to

the one given above:

Grammar 8 A。→ X12釦

A。→ X3A1

A1 → aa'x3'A2

釦→ aa'x1'A。

釦→ aa'x2'A2

A2 → bb'X3'A2

A2 → bb'x1'A。

A2 → bb'x2'A2

A1 → aa ’

A2 → bb'

Clearly one derivation from these rules would be the string:

String 8 x12aa'x1'X3aa'x3'bb'x2'bb'

If the rule X→ x12Xx1'Xxz'were added to a Dyck grammar, to give:

Grammar 9 X→ぇ， X→XX, X→aXa', X→bXb', X→X3Xxふ X

→X12Xx1'Xx2'

then strings like string 8 could be generated by it. It is not hard to see that the

intersection of the languages generated by grammars 8 and 9 is just the
context-free language we want. The method we have used can clearly be

generalized. For any context-free rule of the form Xk→ Wふ zk,then a
finite-state rule Xk→Xij飢wouldbe needed, together with rules of the form X

→ cc'x{ Yk and X→ cc'x/ Zk for every context-free rule of the form X→

c. Furthermore, the Dyck grammar needs supplementing with a rule X→Xij

-114-

CONTEXT-FREE LANGUAGES REVISITED YET AGAIN

臨 'Xx/. In future, such印ammarswill be called "extended Dyck grammars". The

process of generalization need not stop here: no matter how many symbols

there are on the right-hand side of some context-free rule, we may

accommodate them with extra terminal symbols of the form Xij.... k and its

companions" xi, x/ etc.
Occasionally rules of the form X→Y, with only one non-terminal symbol
on the right-hand side may be found in context-free grammars, for the purpose

of establishing grammatical classes. To deal with this in our system, we

would need an Xi with no "companion" at all, just so that a branch labelled "xt
would appear in the reconstructed tree-structure. This is possible too, if we

just include rules like X→ Xi in the extended Dyck grammar. And in that

case, we could drop such terminals as "aa'" in favour of a rule X→ a, and so

on. For instance, grammar 8 above could be altered by removing each
occurrence of "a'" and "b'", while grammar 9 would become:

Grammar 10 X→XX, X→a, X→b, X→X3XXぷ， X→X12Xx1'Xx2'

Notice that the rule X→ぇ becomesuperfluous: there will no longer be

"superfluous" X's that need removal.

How far could Dyck grammars be extended, by adding different sorts of

rules? It is not di:fficult to prove a theorem which goes some way towards

answering this question:

Theorem 2:

The intersection of a context-free language and a finite-state language is

context-free.

This theorem is essentially the one to be found in Salomaa (1973, p59) as

Theorem 6.7. I will give an informal presentation of Salomaa's proof.

Consider some string belonging to the intersection of the two languages, of

this form:

a1a2...... an

115

Ian C. Stirk

where the ai are terminal symbols (not necessarily distinct). Since this typical

string is generated by a finite-state grammar as well as a context-free one, we

could think of one of those familiar state diagrams:

・・・・・-0
The underlying idea of the proof is actually to construct a context-free

grammar that will generate only the intersection of the two languages. To be

sure that every terminal string could be generated by the finite-state grammar

too, state diagrams are actually built into the form of the rules of the

constructed grammar. Non-terminal symbols will be thought of as ordered

triples of the form (v, Si, Sj) where vis a member of the vocabulary, terminal or

non-terminal, of the original finite-state grammar. The constructed grammar

will have one set of rules of this sort:

(A) For each symbol c in the terminal vocabulary, and rules;→csi in the

finite-state grammar, there will be a rule (c, s;, Sj)→ c.

This means that the final twigs and leaves of a tree derived from the

constructed grammar will look like this, for the typical terminal string:

Tree 3
(a1, So, S1) (a2, S1, S2) (a3, S2, S3)
I I I

(an, Sn-1, Sn)
I

a1 a2 a3 an

It will be seen how the line of triples "imitates" the state diagram: the first

bracket shows a transition from the initial state to s1, the second a transition

from s1 to s2 and so on. Now in the original context-free grammar, we can

suppose that terminal symbols come from rules of the form X→ c. These

rules will be taken over into the constructed grammar by arranging:

(B) There will be a rule of the form (X, Si, si)→(c, Si, Sj) for each rule X→

c of the original context-free grammar and every pair of non-terminal

symbols si, si of the finite-state grammar.

116

CONTEXT-FREE LANGUAGES REVISITED YET AGAIN

This may seem rather extravagant: after all, if there are, say, k states in the

finite-state grammar, then for each rule X→ c there will be k2 rules of the

above type. Furthermore, not every (c, s;, Sj) on the right-hand side can be

rewritten. According to (A) above, (c, s;, Sj) can only be rewritten if the

finite-state grammar has a rule s;→CSj- But it follows from the usual formal
definition (see for example, Salomaa, 1973 p9) that only strings of terminal

symbols which can be generated by a grammar are to count as part of the

language. We can use this as a useful filter device: those derivations which

end up with any "wrong" triples (c, s;, sj) can just count as "discarded". With

that problem out of the way, it only remains to arrange that the leaves of each

tree are dominated by triples containing a correct sequence of states from s0 to

Sn-

This is not so hard to do if we specify that the grammar of the original

context-free language be given in Chomsky normal form. The constructed

grammar then includes rules like this:

(C) There will be a rule of the from (X, s;, sk)→(Y, s;, sj)(Z, si, sk) for each

rule of the original grammar X→YZ and each triple of non-terminal

symbols of the finite-state grammar s;, Sj, sk.

Again an extravagant number of rules. But it will be noticed that these rules

ensure that at each bifurcation of the tree, the second state number in each

bracket will be the same as the first state number in the bracket to the right.

Thus there will be a proper sequence of states in triples as we look from left to

right in any tree.

It still remains to ensure that the leftmost state will be s0 and the rightmost

one Sn. This of course is decided right at the root of the tree, before any

bifurcation takes place at all. All we need to do, then, is to specify that the

initial symbol of the constructed grammar be (X。,so,Sn) where X。isthe initial

symbol of the original context-free grammar.

Now imagine a typical tree structure derived from this constructed

grammar. Because of the way the initial symbol has been chosen, and the

nature of (B) and (C) above, it will be seen that if each triple was deleted except

117

Ian C. Stirk

for its:first member, a typical tree of the original context-free grammar would

remain. This means that the constructed grammar can only generate strings

which could have been generated by the original one. Each tree will end in the

way pictured in tree 3 above. Because of (A), there can only be a complete

terminal string if the sequence of states and symbols illustrated in tree 3

corresponds to a state diagram of the:finite-state grammar. Thus any

terminal string belongs to the intersection of the two languages, as required,

while the constructed grammar is certainly context-free.

Readers who are dissatis:fied with introducing a:filter device into the

constructed grammar, in view of the strictures against them in, say, Gazdar

(1982) should note that they are really harmless in the case of context-free

grammars. In any particular case, rules containing non-terminal symbols

which do not get rewritten may be eliminated from the grammar. The method

is similar to the way in which superfluous non-terminal symbols were removed

in the introduction, and I will leave the details to those dissatis:fied readers.

That completes the proof of theorem 2. The following theorem is rather

easier to prove:

Theorem 3:

The language consisting of the images according to a deletion

homomorphism of the sentences of a context-free language is also

context-free.

By "deletion homomorphism" I mean something like the one considered

before, where certain symbols in a string are deleted while others are left

unchanged.

Consider some context-free grammar G and an arbitrary deletion

homomorphism. A new grammar is formed just like G except that every rule of

the form X→c, where c is a terminal symbol deleted by the homomorphism, is

replaced by a rule X→え． Deletionrules are quite proper in a context-free

grammar, as we noted before, so the new grammar is certainly context-free.

But it generates precisely the homomorphic image of the original language, as

-ll8-

CONTEXT-FREE LANGUAGES REVISITED YET AGAIN

required.

Actually theorem 3 holds for arbitrary homomorphisms, not just for
deletion ones, but the proof becomes more complicated, and the generalisation

is unnecessary for our purposes. Details may be found in chapter 1, section 3

of Salomaa (1973).
Theorems 2 and 3 are readily combined to give theorem 4:

Theorem 4:

The language consisting of the images according to a deletion

homomorphism of the strings in the intersection of a context-free language and

a finite-state language is also context-free.

What this means, returning to previous discussion, is that as long as the

extended Dyck grammar remains context-free, the homomorphism of the
intersection of its language with the finite-state language will also remain

context-free.

At first sight, this may not seem a very exciting result. Dyck languages
exhibit a very special form of context-freeness, and to express context-free

languages in general in terms of them, as theorem 2 does, is something

unexpected and interesting. This point of interest just seems to have been

discarded.

If we know that some string belongs to a Dyck language, and scan it from

left to right, we can be sure, on coming across some Xi, that an x/ will turn up

later to match it. In a way, we can look at this as some kind of promise and

fulfilment: the Xi promises the later occurrence of x;'.

This is rather reminiscent of the nature of context-sensitive rules. An

example will help:

T → UV/-W

T → YZ

Imagine tracing out a path round a tree, of the kind illustrated in tree 1

-ll9

Ian C. Stirk

above. If the context-sensitive rules are being observed, then if you come

across a node T followed closely by nodes U and V, you can be certain that at

some later stage a W will follow. In that case, why not try to express this kind

of context-sensitivity with some form of extended Dyck grammar? If we use

the symbol "y" to mean something like, "a context-sensitive rule is being

applied; context to come", while "y'"signifies "here is the context", might not

a Dyck-like grammar help to produce just the right sentences? Let's try to

work out some details.

Firstly, the finite-state grammar. In the ordinary way of things, this

would need to contain a rule of the form T→x;U, to correspond to T→UV.

Let us alter this slightly to T→yx;U. Elsewhere in the context-sensitive

grammar, of course, there must be a rule which expands W. In the finite-state

grammar too there would have to be a rule of the form W→….,but in its place

we are going to introduce two rules:

W •…•,t he rule as before, and also
W →y'….where the right-hand side is preceded by y'.

No matter what the details of the extended Dyck grammar are, it will certainly

require that every string containing a "y" must include a "y'" companion. In

the finite-state grammar that we are developing, a "y" must appear if T is

developed as UV, and in that case the option for W containing "y'" must be

chosen if the string is to be grammatical. If T is expanded as YZ, however,

there is no "y", and it is immaterial whether or not Wis selected later. This is

just the situation required by the context-sensitive rules. Rules are

unordered, of course, so T may freely be expanded as YZ; on the other hand, if

it is expanded as UV, there must be a "W" later in the tree. Notice, in

passing, that this method of dealing with context-sensitivity easily solves the

problem of the formal nature of "elsewhere" in rules such as:

T → UV/-W

T → YZ, elsewhere

l20-

CONTEXT-FREE LANGUAGES REVISITED YET AGAIN

The use of "elsewhere" seems to be an underhand way of bringing in rule

ordering. If in the finite-state grammar W is only expanded as "y'…•’',
however, the elsewhere condition is simply satisfied, since an occurrence of
“'”“" y'" without "y" would be ungrammatical.

Now back to the main problem. I spoke above of situations where there
must be a "W" "later in the tree". What does this phrase actually mean? The

possible positions of "y" and "y'" in a string are governed by the extended

Dyck grammar, and we must turn now to that. Suppose that in addition to the

usual rules of a Dyck grammar (given in grammar 5 above), we have these:

X → Xふ

X1→y

X2 →y'

Both "y" and "y'" are now introduced, but without further rules which might

moveX1 and況apart,they could only occur next to each other. Of course we

can introduce what rules we like, as long as they remain context-free and each

X1 has an X2 paired with it. The following seem to be the most liberal we

could allow, under the conditions:

y, y rules 1 X1 → XXぷ

X2 → XXぷ

X1 → zX1z'

X2 → zX辺

The third and fourth of these rules are in fact rule schemata. The symbols z,

z'are to range over all the pairs Xi, x;'required in the particular case.

Remember that the c, c'used in grammar 5 were to range over all terminal

symbols, not just the Xi, x/ pairs.

Now we can investigate just what things might intervene between "y" and

"y'" in the tree structure. The simple answer seems to be, anything! The

following schematic tree will illustrate this:

121

Ian C. Stirk

Tree 4

＞二

I
T
¥
¥

y

u

ハ
／

|

|
八 w

ハ
Imagine tracing a path round this tree structure, a path which will of course be

represented by a terminal string of the extended Dyck language including y

and y'. Before we reach T, and y itself, there will be some Xi for the branch or

branches on which T lies. The rules of the form Xi→ zXiz'will allow for

these Xi- Later we come to the vague triangles beyond U and V. Whatever is

in them, though, can only be "complete" st面ctureswith Xi and associated x/.

These are taken care of by the possibilities for "X" in the rule X戸 xxぷ
After the triangle below V, we must pass up into upper reaches of the tree to

the right of T. Here there must be some x/ to correspond with the Xi that

came before T. But the rules X1→zXd have already taken care of these.

There are still possibilities for more complete "X" structures before we reach

W: these are shown by the central triangles. Finally, as we come down

branches towards W itself, there will be some Xi not to be "redeemed" by xi'

until beyond the W triangle. These may be dealt with by the rules X2→zX2

z'.

As if that wasn't enough, there is another possibility not well illustrated by

tree 4:

Tree 5
八口
w

□W may actually occur somewhere in the tree structure below U or V. In this

case the original context-sensitive rule T→UV/-W is being interpreted as a

l22-

CONTEXT-FREE LANGUAGES REVISITED YET AGAIN

"domination predicate", and should be written T→ UV/a (-W) according to
the notation used by Gazdar (1982). Joshi and Levy (1977) use a similar

notation. The meaning of this particular domination predicate is that T may

be rewritten as UV as long as there would then be a path in the branches of the

tree leading from T to W. Looking at tree 5 we see that there must be such a
path, passing through either U or Von the way. Section 3 of Gazdar (1982)

contains a more full description of such predicates.

There certainly seems no great problem in establishing context-sensitive

rules in this framework. The particularly interesting thing, of course, is that

since we are still dealing with the intersections of context-free and finite-state

languages, the resulting languages are still context-free, in spite of the

context-sensitivity!

There still may be a problem in constraining the rules sufficiently. After

all, the intention may be that a rule like T→UV /-W is only supposed to take

effect when Wis in an adjacent branch of the tree to the right of T, like this:

Tree 6

I
X
I
I
T

口ニu
ハ

ヽヽヽ‘ ＼

¥
w八
]

9

Xi

If T and W are adjacent, then the linking branch is the one labelled x/,

somewhere above T and W. As we go round the tree, moving round from T

towards the Xi branch, we should not come across any other x/ branch whose

companion xi occurs before T. Moreover, as we go on from Xi'to W, we
should come across Xj type branches only, with no x/ intervening. All these
conditions can be met if the liberal y, y'rules 1 above are replaced by these:

Y, y'rules 2 X → Xぷ凶X2

X1 → XXぷ

X2 → z X2Xz'

123

Ian C. Stirk

It seems that the rules can be suitably constrained in general. As a further

example, consider the domination predicate T→UV/o(-W), illustrated in tree

5. Here it is essential that W be dominated by T. Tracing the usual path

round the tree, then as we go up the right hand side of the quadrilateral, past V,
and then past T, we must eventually come to a fork and a branch labelled with

some xi'. W will certainly be dominated by T if it comes between the

companion Xi and x/ on this path. Thus we need rules of this kind:

y, y'rules 3 X → X凶X叙i

X1 → XXぷ

X2 → XXぷ

X1 → z X1 z

X2 → z X2 z

Clearly all kinds of possibilities can be allowed for by suitably juggling with the

rules of the extended Dyck grammar. It would need some improved notation,

at least, to go into them further, and I will not do so here. Some general points

should be noted, though.

For one thing, I have tacitly been assuming context-free grammars in

Chomsky normal form, since each extension of the Dyck grammar has been

added to the rules of grammar 5. There is no necessity for this however:

there is no reason why the y, y'rules should not mix with those of the form X

→ X12Xx1'Xx2'. Only the complexity of the final extended Dyck grammar

would increase, unless a really elegant notation could be found, at least.

In the examples above, only context of the form "-W" was mentioned.

This is easily amended. For context left and right, for instance, then rather

than just "y" and "y'" we could do with, say, "y1", "yz", and "yぶ',with

appropriate rules to introduce them. There is no need to stop at y3: with

extra y; we could introduce far more complex kinds of context if required, as in

these examples:

T → UV/A-Band o(C_D)

T → UV/A-B or o(C_D)

124-

CONTEXT-FREE LANGUAGES REVISITED YET AGAIN

It has already been mentioned that "elsewhere" rules can be accommodated.

Of course another way to express, say,

T→ UV/_W

T →YZ elsewhere

is to write

T→ UV/_W

T → YZ/not (_W)

With "and", "or" and "not" available, then any Boolean combination of

contexts can be dealt with.

In view of all this, then what kind of contexts cannot be allowed? There

must be something, since context-sensitive grammars are provably more

powerful than context-free ones. The answer is already hidden in diagrams

like tree 4. Thinking again of the string which describes a path taken round

the tree, we know that it will be grammatical as long as y and y'occur in it in

accordance with the rules of the extended Dyck grammar. What may be

hidden in the triangles below U and V and W does not make any difference.

This means that the context-sensitive rules are being used as node admissibility

conditions, to use the terminology of McCawley (1968), and not as conditions

applicable just in a particular line of a "derivation" in Chomsky's sense.

These remarkable results are the ones summarized by Joshi and Levy

(1977) as their theorem 3.1 (p276). Our quite informal proof of it above is quite

different from theirs, which is based on the theory of finite automata. I hope it

is clear that the informal proof could be formalized, with no more than purely

technical difficulties. If that is so, we may be entitled to reproduce Joshi and

Levy's theorem here, with the label "theorem 5".

Theorem 5:

Let G be a finite set of local transformations and r(G), the set of trees

125

Ian C. Stirk

analyzable by G. Then the string language L (-r(G)) is context-free.

A "set of local transformations" is a context-sensitive grammar in which

Boolean combinations of proper analyses and domination predicates are

allowed. "Analyzable by G" means that the rules of Gare interpreted as node

admissibility conditions.

Pure Speculation

It seems to me that this method of language intersection affords not only an

alternative proof of Joshi and Levy's theorem, but also may have some promise

in the investigation of natural language. I want to mention certain

possibilities now as a conclusion to this article, even though they remain as yet

purely speculative.

Although the possibility of context-sensitive rules which do not affect the

context-freeness of a language is pointed out with great clarity in his (1982),

Gazdar makes virtually no use of them in the remainder of that paper. They

take no place either in the methods employed in Gazdar, Klein, Pullum and Sag

(1985). Instead, a great deal of space is devoted to ways in which features may

be "passed down" from node to node in the branches of tree structures, thus

effectively linking various parts of a terminal string. The method of achieving

certain kinds of context-sensitivity with the y, y'symbols developed above

provides an alternative way of dealing with similar problems, and it should be

interesting to work out the details. In the language intersection method, the

order of elements is handled by the:finite-state grammar, while the extended

Dyck grammar can link elements in widely separate parts of a string. It may

be that certain features of natural languages could be explained more easily by

such a division of labour, rather than by investigating the overall context-free

grammar.

There may also be interesting links between these methods and those of

-126-

CONTEXT-FREE LANGUAGES REVISITED YET AGAIN

dependency grammars. The Xi, x/ and y, y'symbols might be regarded as a

means of displaying the ends of dependency arrows of the kind used by, for

example, Hudson (1984). The relations between phrase-structure grammars

and certain kinds of dependency grammars are explored in Gaifman (1965).

The present method may allow certain generalizations of those findings to be

easily made. Hudson points out certain deficiencies of constituent structure
as compared with dependency structure (1984 p94 et seq.). Since the

language intersection method explored here has affinities with both kinds of

structure, it would be interesting to use it in such investigations. As a

preliminary example, consider the following unremarkable tree structure:

:/S x1,
NP ¥]VP疋'
J、hn V VP

wlll

:yh□゚rua1二：raSSOClatedwIththe followIng terml::al strmgof an extended
x1John x1'x2 will xz'x3 go

If the string is regarded as a representation of dependencies, then the Xi and xら

could be taken as features of the lexical items which follow them, indicating the

relationships between these items. This has been illustrated by the spacing.

The string for the question form, "Will John go?" preserves these

relationships:

xi' x2 will x1John x2'x3 go

It is not possible to reconstruct a tree from this, even if an x/ was allowed to

label the left-hand branch from some node. I am not suggesting this as the

basis of any serious analysis. What it does imply is that there is no essential

127

Ian C. Stirk

difference between the Xi, x/ and they, y'symbols that we have been using.

In certain configurations, it may be possible to interpret certain of the symbols

as encoding constituent structure, while others show context-sensitive

relations. On the other hand, we might give up the idea of constituent

structure altogether and just think about the dependency relations between

lexical items. In that case, apparent constituent structures would just be
artefacts of the essential context-freeness of natural language. It is always

possible to establish constituent structure, because of this context-freeness, but
the structure need not have any real significance.

Are natural languages context-free? This question has been answered in

the negative by Higginbotham (1984). I will take his argument as an example,

since it applies to English, although I believe there are more cogent arguments

for other languages. As far as I am aware, however, the formal structure of all

these arguments is similar. Higginbotham gives the following tree as an

illustration (1984, p.227):

NP
／

一lat
NP

------―¥
the man such th~~ ------

ーニ竺 』 ニ
the man such th~~ -----、-----------¥~Ve him to this

NP VP

sie / -----gave this to him

The sentences have the following form:

the woman such that (the man such that)n she (gave｛心＼:}to｛言｝）nleft is
here

128

CONTEXT-FREE LANGUAGES REVISITED YET AGAIN

The curly brackets indicate a choice, but the choice here is not quite free, if
only grammatical sentences are to be arrived at. The tree diagram illustrates
the situation clearly. Each subordinate clause introduced by "the man such
that" must contain an occmTence of "him" referring to "the man". This is the

case in the diagram. The lowest VP in this tree could be replaced by "gave
him to him", and the next lowest by "gave this to this". The resulting
sentence would still be grammatical, for each clause would still contain the
required "him". On the other hand, we could not replace the lowest VP by
"gave this to this", since that would leave the lowest S without a "him". This
would still of course be the case even if the next lowest VP was replaced by
"gave him to him", to preserve the correct number of occurrences of "him".
Let us express these conditions in symbolic terms, to save space at least.
If we wanted to write an extended Dyck grammar for Higginbotham's
sentences, we would probably think of attaching "y" to each occurrence of "the
man" and "y'" to each occurrence of "him", to express the dependency. In
outline, sentences would have this sort of structure:

String 9 '''''''' xyxyxyxyx y y X y y XX

The x, x'pairs may be regarded as representing S-NP and S-VP branches of
the tree structure. All other items have been suppressed, but it is not hard to
see that this does not affect the overall argument. In any grammatical string,
the numbers of occurrences of x, x', y and y'must all be the same.
Furthermore, there is a condition on the occurrences of y', corresponding of
course to the condition on occurrences of "him" in the English version. One
simple way to state this condition is to say that, reckoning from left to right
along the string, the number of occurrences of x'must never exceed the
number of occurrences of y'by more than 1. The following string would be
ungrammatical:

String 10 xyxyxyxyx'x'y'y'x'y'y'x'

because there are two occurrences of x'before any one of y'. The condition

-129

Ian C. Stirk

can also be expressed by noting that every occurrence of x'y'y'will be

"balanced" later in the string by some occurrence of x'not followed by y'.

This means that each string will have one or more points of symmetry, that is

points between equal numbers of balanced items. String 9, for instance, has

two points of symmetry, represented by asterisks below:

String 9 ''''''.'' xyxyxyxy * X y y X y y * X X

The first lies between 4 occurrences of x and y, and 4 occurrences of x'and y';

the second between 2 occurrences of x'y'y'and 2 of "solitary" occurrences of

x'. The next string has only one point of symmetry:

String 11 xyxyxyxy * x'y'x'y'x'y'x'y'

The following has three:

String 12 xyxyxyxy * x'y'y'* x'x'y'y'* x'

The set of strings meeting these conditions is provably not context-free,

meaning that English is not a context-free language either, if Higginbotham's

sentences are accepted as English. A formal proof is quite difficult, but a

simpler notional one is available using the idea of points of symmetry that we

have developed.

It was pointed out in the introduction that conditions of symmetry in a

context-free grammar can only be met by derivations which grow from the

centre of symmetry. Together with the fact that a context-free language

must be able to be generated by a grammar whose non-terminal symbols are all

involved in recursion, it was easy to show that the language糾b茫 couldnot be

context-free, essentially because grammatical strings have two points of

symmetry. But even though sentences of Higginbotham's language may have

two or more points of symmetry, it is still possible to increase their length

indefinitely from the leftmost such point, by adding any number of occurrences

of xy to the left, and the same number of occurrences of x'y'to the right. The

130

CONTEXT-FREE LANGUAGES REVISITED YET AGAIN

proof cannot be quite so simple in this case.

We need to use also the fact that any non-terminal symbol in the last line of
a continuing derivation may be selected for rewriting to obtain the next line.
Any non-terminal symbol could thus be "saved" until the last for rewriting.
There must be a non-terminal symbol at each of the points of symmetry in
some line in the derivation of sentences in Higginbotham's language. It must
be possible to replace the leftmost of these by terminal symbols before those
further to the right. Any on those remaining must of course be able to
dominate an infinite number of different terminal strings, but the resulting
sentences would inevitably be ungrammatical. A glance at string 12 confirms
this: any additions at the second or third points of symmetry would disturb the
already fixed numbers of x'and y'.

Thus it may be that natural languages are not context-free. It would be
interesting to investigate just what sort of extended Dyck languages would be
needed to generate them in that case. We have been regarding the finite-state
part of the intersection as contributing the order of elements, while the
extended Dyck language checks their dependency relationships. From this
viewpoint, it is odd that a language like a叱茫 shouldbe inherently more
"difficult" than just a如． Inchecking strings from left to right, then after
ensuring that there as many occurrences of b as a, surely the initial segment of
a string could be "forgotten" while it is checked that there are as many
occurrences of c as b. There are in fact families of languages intermediate
between context-free and context-sensitive: that is, they include all
context-free languages but not all context-sensitive ones. Some are
described in chapter 5 of Salomaa (1973), and may have some linguistic
interest. But that speculation takes us outside the range of context-free
languages, and is an appropriate point at which to conclude.

Bibliography

E. Bach (1974) "Syntactic Theory" (Holt, Rinehart, Winston)
H Gaがman(1965) "Dependency Systems and Phrase-Structure Systems" ・(Information
and Control, 8, 304-337)

131

Ian C. Stirk

G. Gazdar (1982) "Phrase Structure Grammar" in P. Jacobson and G.K. Pullum (eds.)

"The Nature of Syntactic Representation" (Reidel)

G. Gazdar, E. Klein, G. Pullum and L Sag (1985) "Generalized Phrase Structure

Grammar" (Blackwell)

J Higginbotham (1984) "English is not a Context-Free Language" (Linguistic Inquiry,

15, 225-234)

R. Hudson (1984) "World Grammar" (Blackwell)

A. K. Joshi and L. S. Levy (1977) "Constraints on Structural Descriptions: Local

Transformations" (Siam Journal of Computing, 6, 272-284)

]. D. McCawley (1968) "Concerning the base component of a transformational grammar"

(Foundations of Language, 4, 243-269)

P. S. Peters and R. W. Ritchie (1973) "On the Generative Power of Transformational

Grammars" (Information Sciences 6, 49-83)

Arto Salomaa (1971) "The Generative Capacity of Transformational Grammars of

Ginsburg and Partee" (Information and Control, 18, 227-232)

Arto Salomaa (1973) "Formal Languages" (Academic Press)

132-

