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0. Introduction

Let F, and E; be the compact, 1-connected representatives of the respec-
tive local classes. As in [22] there is an involutive automorphism @ of E; such
that the subgroup consisting of fixed points of @ is F,. Thus the quotient
E,|F, forms a compact symmetric space, which is denoted by EIV in E. Car-
tan’s notation. For brevity we shall write EIV instead of E4/F,.

The ordinary cohomology and complex K-theory of three spaces F,, Eg and
EIV are well understood (see §1). Moreover, the Chern character homomor-
phism of F, was described explicitly in [20]. The purpose of this paper is to
study those of Eg and EIV. Our results are stated as follows (for notations used
below, see §1):

Theorem 1. The Chern character homomorphism

ch: K*(Eg) = Az(B(p1), B(p2)y B(A%py), B(A%py), B(A%ps), B(pe))
— H*(Eg; Q) = Aq(x3, %g, X1y, %15, %175 %23)

1s given by

ch(B(p)) = Sart- sk s g kg ko v
ch(B(ps) = 24x3—% - % g 7:15;% .

ch(B(A%p,)) = 1800 x3_2_27 i 12583 - ;ngo v

e = ¢ xa"_% x9+%x“+ 128 B 4;;0 Al 4431520 -
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Theorem 2. The Chern character homomorphism

ch: K¥EIV) = Ay(B(pi—pds B(Npi— M)
— H*(EIV; Q) = Aq(xo, %17)

is given by
1
ch(B(p1—ps)) = %o+ 240 X17
h(B(Np—N2p) = 15— 220 .

The paper has the following organization. In §1 we collect some facts
which we need. §2 contains various computations and consequently we ob-
tain certain data. §3 is devoted to prove Theorems 1 and 2.

The author would like to thank Professor H. Minami for his kind advice.

1. Preliminaries

In this section we recollect some results on the cohomology and K-theory
of our spaces F,, Eg and EIV.

Let us begin with the cohomology of compact Lie groups. Throughout
the paper G stands for a compact, 1-connected, simple Lie group of rank I
Then the rational cohomology ring of G is an exterior algebra generated by pri-
mitive elements of degrees 2m;—1, 1=<7{=<I/, where the m; are certain integers
such that 2=m <m,<---<m,; (see [5]). Since G is parallelizable, one can
utilize the Poincaré duality theorem for choosing elements

x€HYNG; Z), k = 2m;—1, 1=<i<1,

which satisfy the following conditions:
(1.1) 1)  w is not divisible in H¥G; Z);

(il) The image of x, under the coefficient group homomorphism H*(G; Z)—
HYG'; Q) induced by the natural inclusion Z— @ belongs to PH¥G; @),
where P denotes the primitive module functor

(i) The cup product

Xomy—1 Xamy—1"""Xom;~1
generates the infinite cyclic group H'(G; Z), where
]
n=2 (2m—1)=dim G.
i=1

We will use the same symbol x, to denote the image of x, under the homomor-
phism H¥G; Z)—H*G; Q).
As in [5],
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If G=F,, then 1 =4 and (m,, my, my, m,) = (2, 6, 8,12); if G = E,,
then 1= 6 and (m,, m,, my, m,, ms, mg) = (2,5, 6,8,9,12) .

(1.2)

In this paper R stands for a commutative ring with a unit 1. If Ag( ) denotes
an exterior algebra over R, then by (1.2)

H *(F4; Q) = Aq(x3, %y, X35 xzs)

(1.3)
H*(EG; Q) = AQ(x3’ Xgy X115 X155 X179 x23) .

Here we quote a result of Araki [1, Proposition 2.5]:
Proposition 3. H*(EIV; Z) has no torsion, and
H*(EIV; Z) = Az(xg, %y7)
where x, EHYEIV ; Z) (k=9, 17) is primitive.
As mentioned in §0, there is a fibration

rhELEm.

Consider the Leray-Serre spectral sequence for the cohomology with coefficients
in R of this fibration. When R=@, it follows from (1.3) and Proposition 3
that the spectral sequence collapses. When R=Z/(p), by [1, Proposition 2.8]
the spectral sequence collapses for every prime p. Therefore, when R=2,
the spectral sequence collapses. 'This implies that

(1.4) 1) The induced homomorphism j*: H*(Eq; Z) — H*(Fy; Z) satisfies
) x, for k=3,11,15,23
J¥x) =
0 for k=09,17;
(i) The induced homomorphism g*: HXEIV ; Z) — H*(Es; Z) satisfies
g*¥(x))=x, for k=09,17.
In view of these circumstances, it seems natural to assert that
(1.5) The induced homomorphism 6*: H*(Es; Z) — H*(Eg; Z) satisfies
k=3,11,15,23
0*(xk) =3 {xb for
—x, for R=9,17.

This will be verified at the end of the next section.

Let T be a maximal torus of G. Consider a complex representation p of
G, i.e., p: G—>U(n), a continuous homomorphism of G into the unitary group,
where 7 is the dimension of p. Since p(T) is a torus subgroup of U(zn), there
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exists a maximal torus 7" of U(n) with p(T)CT’. Let T" be the standard ma-
ximal torus of U(nm), i.e., the group of diagonal matrices in U(n). Since any
two maximal tori are conjugate, we have a commutative diagram

T—> T — T
iy Vi Viy
¢ & Um - Um

of continuous homomorphisms, where 7, 7', 7, are the inclusions and the lower
right horizontal map is an inner automorphism of U(n). For simplicity we
denote by p the composite of the lower horizontal maps and also that of the
upper horizontal maps. Since any inner automorphism of a connected com-
pact Lie group induces a self-map of its classifying space which is homotopic
to the identity, we have a homotopy commutative diagram

BT —B—p> BT"
Bi ) Bp { Bi,
BG — BU(n).
Let t,, ---, ¢, be the standard base for H(BT"; Z). Then the elements
uj = Bp*(t))€HY(BT; Z), 1<j<n,

are called the weights of p.

Let L(T) be the Lie algebra of T and L(T)*=Hom(L(T'), R) the dual of
L(T). Denote by ( , ) an invariant metric on the Lie algebra of G, and on
L(T), L(T)*. With respect to a certain linear order in L(T)* we have simple
roots a, +++, a; and the corresponding fundamental weights w,, ++, w; are given
by the formula

2(wy, ay)/(etj, ;) = 8ij

where §;; is the usual Kronecker symbol. As explained in [6] (or [18]), every
weight can be regarded as an element of H¥BT; Z), and H*(BT'; Z) is the pol-
ynomial algebra Z[w,, **+, 0;]. The Weyl group W(G)=N(T)/T acts on T, and
on BT, H*(BT; Z). The action of W(G) on H¥(BT'; Z) is described as fol-
lows. For 1=<{=<I let R; denote the reflection to the hyperplane {X&L(T)]|
ay(X)=0}. Then Ry, -+, R, generate W(G), and they act on H¥BT; Z)=
Z {w,, ***, o} by

w— 2 (ama) 0 i
Ry(w;) = i (o, o

i=j

It is known that the representation ring R(G) of G and the K-ring K(X) of
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a space X have a A-ring structure (see [11, Chapter 12]). A A-ring is a com-
mutative ring R together with functions A*: R—R for k=0 satisfying the fol-
lowing properties:

(i) A%x)=1 and A (x)==x  forall xER;

(1.6) N ) .
(i) A*x+y) =i+§j_‘;hA‘(x)-A’(y) forall x,yER.

Furthermore, in the case of R(G), if p: G—U(n) is a representation, then
. ar (n
dim A¥p — ( " )

and A*p=0 for k>n.

We now bring a famous result of Hodgkin on the K-theory of G in a form
suitable for our use. According to the representation theory of compact Lie
groups, there are [ irreducible representations p,, ***, p; of G which admit highest
weights w;, *++, o, respectively. Then R(G) is the polynomial algebra Z[p,, -,
pi1). Let U=lim U(n) be the infinite unitary group and #,: U(n)—U the ca-
nonical inclusion. Let p: G—=U(n) be a representation. Then the composite
k,op gives rise to an element of [G, U]l=K (G) which is denoted by B(p).
This correspondence p—@B(p) extends to a map B: R(G)—KG), which is
natural with respect to group homomorphisms, satisfying the following proper-
ties:

(i) B(p+o)=RB(p)+B(c) forall p,s=R(G);
(i) If p, o are representations of G, then

(1.7) B(pa) = m-B(p)+n-B(a)

where m = dim ¢ and # = dim p;

(i) For any k€ZcCR(G), B(k)=0.
With the above notation, a reformulation of [10, Theorem A] is

Proposition 4. Let G be a compact, 1-connected, simple Lie group of rank
l. Then the Z|(2)-graded K-theory K*(G) of G has no torsion and therefore it
has a Hopf algebra structure. If some representations \,, +++, N; form a base for
the module of indecomposable elements in R(G), i,e., R(G)=Z[\,, +**, N;], then

K*(G) = Az(B(M), +++, B(M))
as a Hopf algebra, where each B(N\;) is primitive.

From now on, T will denote a maximal torus of E;. Following [7], we have
simple roots @;, 1<7{=<6, and the Dynkin diagram of Ej is
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a, O3 Oy Qs O
0—0—0—0—0

o
a,

where (a;, a;)=2 and for 7 = j,

-1 if (4,7)=(,3),(2,4),(3,4),(4)5),(5,6)

0 otherwise.

(ai, @j) = {

Consider the inclusion j: F,—E,. Choose a maximal torus 7’ of F, in such a
way that j(T")CT. Similarly we have simple roots af, 1<7=<4, and the Dynkin
diagram of F, is

0—0<&=0—0
al o} af af

where (af, al)=2 if i=1, 2; (a}, a})=1if i=3, 4; and for i ==,
—1 if (4,5)=(1,2), (2,3)

(ahap)=1—12 if (4j)=(,4)
0 otherwise.
Let w,, **+, w5 and of, -, o} be the fundamental weights corresponding to
ay, -+, ag and af, -+, af respectively. Then we have

= % (4ot 4-30,+ S+ 60,14 ors+-20)

wy = o +20,4-205+30+ 2054
0y = % (5604100, -+ 1201, + Bt +-4etg)

(1.8)
(1)4 = 2a1+3d2+4a3+6a4+4a5+2a6
05 = % (40t,+ 60,4 8aty+120t,+ 1005+ 5et)
wg = —;— (20{1—|—3d2+4a3+6a4+5a5+4a6)
and
o] = 2ai+3as+4as+2a;
(1.9) w; = 3ai{6aj+-8ai+4a;
) 0} = 2ai+4as+ 605+ 3a)
oi = ai+2a543as+2a] .

Obviously there is a homomorphism 7'—T which makes the diagram
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T —-T
)

F, L E,

commute. We also denote it by j. Let us consider the behavior of the induced
homomorphism Bj*: H¥BT; Z)—~H*BT'; Z). Since H¥*(BT; Z) = Z[w,, ***,
o] and w; is expressed as a linear combination of the a;, it suffices to deter-
mine Bj*(a;), 1=<¢=<6. But as in [14, p. 130] they are given by

Bj*(an) = ai, Bj*(ap) = e, Bj*(as) = i,

Bj*(a,) = ai, Bj*(as) = a3, Bj*(a) = i .

From this, (1.8) and (1.9), it follows that

(1.10) Bj*(w,) = i, Bj*(w;) = i, Bj*(w;) = o},
Bj*(wy) = w2, Bj*(ws) = w3, Bj*(ws) = wi .
Consider the automorphism 6: E;—E;. There is an automorphism 7'—T
which makes the diagram
T —->T
il i)

6
E; — E

commute. We also denote it by 8. Let us describe the behavior of the in-
duced automorphism B6*: H¥BT; Z)—H*BT; Z). To do so it suffices to
determine BO*(a;), 1=<¢=<6. But as in [14, p. 130] they are given by

BO*(a,) = s, BO*(aty) = iy, BO*(at) = 25,

B0*(a4) = Oy Be*(aS) = oy, Ba*(aﬁ) =a.
From this and (1.8), it follows that
(1.12) BO*(w)) = ws, BO*(w;) = wy, BO*(w5) = o5,
’ Be*(&)4) = @y, Be*(ws) = @3, Be*(wﬁ) = .

Let p,, +*+, ps be the irreducible representations of Eg; whose highest weights
are w,, -+, wg respectively. Then by [9],

(112) R(Eﬁ) = Z[Pn Pz» AZPD A3P19 AZPG’ P6]
where dim p, = dim p; = 27, dim p, = 78 (in fact, p, is the
adjoint representation of Eg) and the relation A’py = A’p
holds.

On the other hand, let pf, -+, pi be the irreducible representations of F, whose
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highest weights are i, **+, 0} respectively. Then

(1.13) R(F,) = Z[pi, Npi, Npi, pi]
where dim p} = 26 and dim p] = 52 (in fact, p} is the adjoint
representation of F,).

Combining Proposition 4 with (1.12) (resp. (1.13)), we have a description of
K*(Eg) (resp. K*(F,)), which is exhabited in Theorem 1.

Consider now the A-ring homomorphism j*: R(Eg)—R(F,). Its behavior
is given by

(©) 7*(pr) = 3*(ps) = pi+-1;
(1.14) (i) j*(p2) = pi+pi;
(i) j*(A%p) = j*(A%ps) = A’pitpl;
(iv) JH(A%p) = Apit-A’pi.
This follows from [15, (6.7) and (6.8)] and (1.6). Consider next the A-ring auto-
morphism 6*: R(E)—R(E). Its behavior is given by
(1) O*(A*p) = Afps (R =1,2,3);
(L15) ) 6*(p) = p;
(i) 0*(A*ps) = Afp, (k= 1,2).
This follows from [15, (6.6)] and #°=1.

In order to describe the K-theory of EIV, we need one more notation.
Generally, let G be as before and H a closed subgroup of G. When two repre-
sentations p, p’: G—U(n) agree on H, we have a map f: G/H— U(n) defined by
f(eH)=p(g):p'(g)~! for gH=G/H. Then the composite x,of gives rise to an

element of [G/H, Ul=K(G/H) which is denoted by B(p—p’). Let g: G—
G/H be the natural projection. It follows from [10, p. 8] that

(1.16) 7*B(p—p")) = B(P)—B(p) -

By (1.12) and (1.14), two elements B(p,— ps), B(A’p;—A?ps) of K~Y(EIV) can be
considered. Then Minami [15, Proposition 2.8] showed

Proposition 5. K*(EIV) has no torsion, and
K*EIV) = Az(B(pr—ps), B(A’pr—A’p5)) .

2. Computations

The target of this section is to compute a part of ch(B(p,)), where p;:
E¢—U(27) is the irreducible representation whose highest weight is .
We first review the argument of [20, pp. 464466]. Let p be an (indecom-
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posable) element of R(G). According to [10, Theorem 2.1], B(p) is primitive
in the Hopf algebra K*(G). Since ch: K¥*(G)—H*(G; Q) is 2 homomorphism
of Hopf algebras, so is ¢h(B(p)). Therefore, by the aid of (1.1) (ii), it can be
written as a linear combination of the xp,,,:

2.1) HB(p)) = 3} alp, ) ¥ams in PH¥G; Q)

for some a(p,7)EQ. By virtue of (1.1) (i), this equality determines a(p, 7) up
to sign.

Let us recall some facts about the rational cohomology of a classifying
space BG for G (see [4]). H*(BG; Q) is a polynomial algebra generated by
elements of degrees 2m;, 1<i{<I. The induced homomorphism B:*: H*
(BG; @ —H*(BT; @) maps H*(BG; Q) isomorphically onto H*(BT; Q)*©®,
the subalgebra of invariants under the action of W(G). Hence

H*(BG; Q) = Q[Yzmy ***, Vem ]

H*(BT; Q)W(G) = Q[fml’ "'»fz»-;]
where generators y,,, and f,,, are chosen to be integral and not divisible by
other integral generators. Therefore we may set

(2.2) Bi*(yom) = c(m;) fom, . QH™(BT; Q)

for some ¢(m;) € Z, where @ denotes the indecomposable module functor.

Let o: H¥BG; Q) —H"(G; Q) be the cohomology suspension (see [21,
Chapter VIII]). Since it induces a map QH*(BG; @) — PH*(G; Q), we may
set

(2.3) 7(Yom;) = b(m;) ypm—y in PH™7(G; Q)

for some b(m;) € Z.
Consider the composition

¥ a ch
RG) S R(1) S K*BT) S H¥BT; @

where & is the A-ring homomorphism of [3, §4]. Let p: G—=>U(n) be a re-
presentation with weights g, -, u, EHBT; Z). 'Then we have

chati*(p) = 3T exp(u) = 31 ( 3 wilk!) = 3 (3 ui)/k!.

Since the set {u,, -**, u,} is invariant under the action of W(G), chori*(p) belongs
to H*(BT; @)"©. So we may write

(24) chati*(g) = 33f(ps i) fom, i1 QH*(BT; Q)"
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for some f(p, 1) EQ.
Now the conclusion of [20, Method I] is

Proposition 6. For 1<i<],
a(p, i) = b(m;) f(p, £)/c(m;)
up to sign.

In what follows we shall compute a part of chai*(p,) explicitly. Al-
though {w,, +**, w} is a base for H*(BT'; Z), we use the base of [19, p. 266] as

a matter of convenience:

ts = ws—wg

l, = w,—ws

(2.5) t; = w,+w3—w,
t, = 0+ w,—w,
t, = —w, o,
X = w,

Then we have

H*(BT; Z) = Z[t,, -+, ts, x]/(c;—3%)

(2.6)
where ¢, = t,+++1g.

The action of W(E) on this base is given by the upper table of [19, p. 267].
Using it, we can determine the W(E;)-orbit of w, as follows. First we apply R;
to o;=x—1, and get x—¢;(1=7=<6). Applying R, to x—ts, we get —x+t,+1;.
Applying R; to it, we get —x-+1,+1;(1=i<j<6). Applying R, to —x+1,+1,
we get —f;. Finally we apply R; to it and get —#;(1=<7=<6). Let

Q= {x—t;, —x+t;+1t;, —;| 1=i<j <6} .

Then it is easy to see that Q is invariant under the action of the R;. Since Q
consists of 27 elements and dim p,=27, Q is just the set of weights of p, (cf.
[16, p. 176]). 'Therefore, if we put
F,= %m"EH”’(BT; Z)
we

for k=0, we have

@2.7) chai*(p) = S Fyk!.

Let us compute F,. For i=1 let ¢;=ay(t,, **, ;) be the i-th elementary sym-
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metric polynomial in ¢, -+, &, where ¢;=0 if 1>>6. For n=0 let s,=#+4 -+ 12,
where s,=6. Then the Newton formulas express s, in terms of the ¢;:

(2.8) 5y = g(—l)“l Sei G (—1)" e,

(cf. [19, (5.8)] in which there is a misprint). In particular, s,=¢,=3% by (2.6).
For k=0 let F} be the polynomial of degree 2% in #,, -++, #; such that

3 exp (tit-t;) = 3 Fifk!

where we assign 2 for the degree of #;. Since

Stexp(t) = Tsik!,

we have
Sexp(titty) = © (S ep(0)) — 5 exp (2t}
= L (Zewmh (Gl — 5 Z 2 sk
— %g 53 sweafmlnl— 5245k
Hence
2.9) Fi= ';"MZ,:. (i)s,,,s,,—zh—lsk.
Similarly,

chai*(p,) = 2 exp(x ARS E exp (—x+t;+1;)+ E exp(—ti)
= exP(x) 2 eXP(—t:)-FeXP( x) Z‘- CXP(t +t;)+ 2 exp(—*t)
(S (S (" sufml 5 (1) ) (3 P
4+ 5‘_, (—1)* s4/R!
=3 3 (D" s,,,x/m'n'—i—z E ( D" Fpx"[m! n!

k=0 m+n=k

+ 3 (— 1) syl
=]
Therefore

Fy= 3 (5 ) ()" sut (=) Fi) wtom (= Dt

m=0

Combining this, (2.8) and (2.9), one can compute F;, and our final results are
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Fy=127,F, =0, F; = —22.3 (c;—44%), F; = 0, F, = 22:3(c;—44%)},
Fy = —2%.3.5 (cs—cy x+¢3 82 —cy x*+-25°) and so on.

RemARk. Watching [19, pp. 271-275], we find that the set S of [19, p.
272] is equal to {20|w<Q} and that for =0 the element

In == Ey”

yes

(2.10)

is expressed as a polynomial in the ¢; and x modulo (I,,|m<n). In the above
paragraph we have mimicked the computation of I,(=2" F,) developed there.

It follows from (2.6), (2.10) and [19, Lemma 5.2] that the elements

c;— 4P HYBT; Z),
Cs—Cy X+C3 82— ¥+ 26° € HY(BT'; Z)

are indivisible and give the first two generators of the polynomial ring H*
(BT; Q)" E. Thus we may take

fi= —(c—4+),

Jro= —(cs—¢y x+c3 8% —cy $*+2 &)
(for details see [20, Remark in p. 466]). Simultaneously we deduce from this,
(2.7) and (2.10) that
(2.11) flow ) = 22321 = 6,

flpy, 2) = 22.3-5/51 =1]2.

By (1.2) we note that (2.3) and (2.2) give
a(y4) = b(2) %3, 7(y10) = b(5) %y, -
Bi*(y,) = ¢(2) fo» Bi*(y10) = ¢(5) froy +**
where b(2), b(5), -+, ¢(2), ¢(5), - EZ.
Proposition 7. We have, up to sign,

() 6Q2)=1 and b(5)=1;
(i) c(2=1 and c(5)=1.

Proof. Our argument will be based on the fact that H*(Ey; Z) has p-
torsion if and only if p=2, 3.

We first show (i). Consider the Leray-Serre spectral sequence {E,/(Z)} for
the integral cohomology of a universal E¢-bundle E,—~EE,—BE,. To inves-
tigate it, we use the Leray-Serre spectral sequence {E,(Z/(p))} for the mod p
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cohomology of the same bundle, where p runs over all primes. As seen in [12]
and [13], for degrees <9

( Z((2) {1, %3, &5, %5, RyFs, 25, &} if p=
H*(Es; Z|(p)) = { Z/(3) {1, %, %;, %, %5} if p=3

and for degrees <10

Z/(Z) '{1) 5’4’ 5’61 5’7’ 5)2, y4y6’ 5’10} if P =2
H¥(BEq; Z|(p)) = { Z|(3) {1, 30 Fis s Fo» Froh if p=3

where for each prescribed & %, &H*(Es; Z|(p)) transgresses to F,,, & H**!
(BEs; Z/(p)) in E,(Z](p)), and if B,: H*( ; Z|(p))—H**'( ; Z|(p))is the mod
p Bockstein operator, then

Ba(%s) = % and Bd¥s) = ¥, for p=2;

(2.12) B _ 4 4
Bi(%) =%, and By(Js) =5, for p=3.

Therefore, for k=3,9 the mod p reduction homomorphism H*( ;Z)—>H*
(5 Z|(p)) sends x; (resp. Y;4,) to ¥ (resp. Fusy) for every prime p. Thus we
see that for k=3, 9 x, transgresses to y;4; in E;y,(Z). Since the cohomology
suspension and cohomology transgression are inverse, it follows that o (y4;)=x,
for k=3,9. This proves (i).

We next show (ii). Consider the Leray-Serre spectral sequence {E,} for
the integral cohomology of the fibration

Bi
E/T — BT —> BE,.

Then E3'=H'(BEg; H'(Es/T; Z)). For all t=0 H'(E¢/T; Z) is a free abelian
group whose rank is known (see [19]), while it follows from (2.12) that for
0<s=10

s t0,1,2,3, 4,56, 7, 8 9, 10

H*(BEg; Z) ‘ Z,0,0,0,Z0,0, Z/(2), Z, Z|(3), Z.

Therefore, it is easy to check that if k=4, 10 E3*~* has no torsion for all s and
hence so does E%*~°. By the interpretation of Bi*: H¥BE,; Z)—~H"BT; Z)
as an edge homomorphism in {E,}, this implies (ii).

Now apply Proposition 6 with p=p,. Then by (2.11) and Proposition 7
we have
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Lemma 8. a(p,, 1)=6 and a(p,, 2)=1/2.
We conclude this section by verifying (1.5).

Proof of (1.5).
Consider the commutative diagram

Bo*
HXBT; Z) — HYBT; Z)

Bi* } , 1 Bi*
HYBEs; Z) —> HY(BEs; Z)
ol * Vo

H*YEg; Z) —> H*YE; Z).

It follows from (1.11) and (2.5) that
BO*(t;) = x—t;-;  (1=i=6) and BO*(x) = «x.

From this we deduce that

{BO¥(w) l0€Q} = {—0|oc0} .
Therefore

BO*(Fy) = B0*(M§Qm") =w§2B0*(w)"
=3 (~af = (—1F Fo* = (~ 1} F.

Suppose for a moment that k (=m;)=2, 5, 6, 8, 9, 12. Then we observe from
[19, Lemma 5.2] and [20, Remark in p. 466] that F, gives rise to f,. Hence

fu for k=2,6,8,12

BO*(fu) = { —fa for k=35,9.

Because of (2.2), (2.3) and the commutativity of the above diagram, this im-
plies (1.5).

3. Proof of the main results

In this section we complete the proof of Theorems 1 and 2.
By (1.2), (2.1) and (1.7), if p is a representation of Eg, then

ch(B(p)) = a(p, 1) %5+a(p, 2) xo+-a(p, 3) xy,
+a(p, 4) xy5+a(p, 5) %;+a(p, 6) %y,

and if p’ is a representation of F,, then

ch(B(p") = a(p’s 1) ,+a(p’, 2) xu+a(p’, 3) msta(p’, 4) x5 .

(3.1)
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By Propositions 3 and 5, we may write

ch(B(pr—ps)) = a+%g+-b-x,,

(3.2) . 2w
ch(B (A’py— A?pg)) = c-xg+d- 2y

for some a, b, c, d=Q.

ab

Proposition 9. det( d) = 41.
¢

Proof. As is well known [11], if gy (resp. uy) is a generator of K(S%)
(resp. H® (S%; Z)), then ch(gy)=+-uy in H® (S%; Q). According to [8], EIV
has a cell decomposition S?Ue” Ue*. Consider the cofibration

S°Ue” — EIV L S% .,

By Propositions 5 and 3 it is easy to see that f*(g,)=/8(p,— ps) * B(AZp;—AZpg) in
R(EIV)=2Z and f*(uy)=x, x,; in H® (EIV; Z)=Z. 'Then it follows from the

naturality of ¢k that
ch(B(p1—ps)* B(A’py— N’pg)) = L9 2y,

in A%(EIV; Q). Since ch is a ring homomorphism, the result follows from
this equality, (3.2) and Propositions 3 and 5.

This proposition can be viewed as a variant of [2, Proposition 1] (cf. [17,
p. 156] and [20, p. 463]).

Proof of Theorem 2.
Since ¢/ is a multiplicative natural transformation, we have

g*ch(B (pr—ps)) = ch(g*(B(p1—ps)))
= ch(B(p)—B(ps)) Dy (1.16)
= ch(B(p1))—ch(B(ps))

and similarly
q*ch(B(A’py—A’ps)) = ch(B(A%p1))—ch (B (A%pg)) -

Therefore, it follows from (3.1), (3.2) and (1.4) (ii) that for i=1, 3, 4, 6 a(p,, 7)=
a(pg, ¢) and a(A%p;, 1)=a(A?ps, 7), and that

(3.3) a = a(py, 2)—a(pe, 2) , b = a(p:, 5)—a(pe; 5) »
¢ = a(N%py, 2)—a(A%ps, 2), d = a(A%py, 5)—a(A%pg, 5) .

Applying [20, Lemma 1] to p;(j=1, 6), we have
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(N, 2) = p(27,2,5)-alp, 2).
a(AzPi» 5)= ¢(27’ 2, 9)'“(/’)3 5)
where (27=dim p;, 5=m,, 9=m; and) @(n, k, m) is the integer defined for three
positive integers », k, m by
I3 . n .
o,k m) = 33 (— 1)~ ( ) in-1,
i=1 k—i
A direct calculation gives @(27, 2, 5)=11 and (27, 2,9)=—229. It follows
from these and (3.3) that
(3.4) c=11a and d= —229.
Substituting these relations in the equality
—1 = ad—bc
of Proposition 9, we have
—1 = a(—229b)—b(11a) = —240ab
and hence
(3.5) ab = 1/240 .

Let us apply j* to (3.1) with p=p;(j=1,6). Then the left hand side
becomes

j*ch(B(p;)) = ch(B(j*(py)) = ch(B(pi+1)) by (1.14) (i)
= ch(B(pi)+B(1)) by (1.7) (1)
— ch(B(ph)) by (1.7) (ii)
and the right hand side becomes
J*(a(pj» 1) %5+a(pj, 2) %o+a(p;, 3) 2y

+a(pj» 4) mis+a(p;, 5) %1,+a(p;, 6) %xz5)
= a(pj, 1) #5+a(p;, 3) xu+a(pj» 4) xi5+a(p;, 6) x5

by (1.4) (i). Here we quote from [20, p. 486] that
(3.6) ch(B(p4)) = 6x3+(1/20) 2y, +(1/168) x,5+(1/443520) x5 .
Hence

a(pj, 1) = 6, a(p;, 3) = 1/20, a(p;, 4) = 1/168 and

3.7
3.7) a(p;j, 6) = 1/443520 where j=1,6.
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On the other hand, let us apply 6* to (3.1) with p=p,. Then the left hand
side becomes

0*ch(B(p1)) = ch(B(0*(pr))) = ch(B(ps)) by (1.15) (i)
= a(ps, 1) %3+a(ps, 2) %9+-a(pe 3) xyy
+a(ps; 4) x15+a(ps> 5) %17+ (g, 6) %5

by (3.1) with p=pg, and the right hand side becomes

6*(a(py, 1) %5+a(py, 2) xo+a(py, 3) x4y
+a(py, 4) %51+a(py, 5) %1,1+-a(py, 6) %25)

= a(py, 1) x5—a(py, 2) %5+-a(py, 3) xy
+a(py, 4) x15—a(py, 5) ¥1,4-a(py, 6) x5

by (1.5). Hence

(3.8) a(pe 2) = —a(py, 2) and a(ps 5) = —a(py, 5).-
Combining these and (3.3), we have

3.9) a=2-a(p;,2) and b=2-a(p,5).

Since a(p;, 2)=1/2 by Lemma 8, it follows that a=1. Substituting this in
(3.5) gives b=1/240. Therefore, by (3.4), ¢c=11 and d=-—229/240. Thus
Theorem 2 is proved.

Proof of Theorem 1.

By (1.12), Proposition 4 and (3.1), it suffices to compute the numbers a(p,, 7),
a(py, 1), a(A2py, 1), a(A3py, 1), a(Apg, 7) and a(pg, 2) for i=1,2, -+, 6.

Every a(p,, 7) has been found in Lemma 8 and (3.7) except i=5. But,
since b=1/240, it follows from (3.9) that a(e;, 5)=1/480. Thus we know all
of the a(p,, 7).

For i=1, 3,4, 6 a(p;, ¢) has been found in (3.7). For i=2,5 a(p, 1) is
determined by a(p,, 7) through (3.8). 'Thus we know all of the a(pg, 7).

Applying [20, Lemma 1] to p;(j=1, 6), we have

a(Abpy, i) = @(27, by m)-a(py, )

for all k=1 and 1=<¢=<6. It follows from the definition of @(n,k,m) that
¢(27) 2, 2):259 (¢(27’ 2, 5):11’) ¢’(27, 2, 6): -=5, ¢(27’ 2, 8): —101, (¢(277 2, 9)
=—229,) (27, 2, 12)=—2021, (27, 3, 2)=300, (27, 3, 5)=0, (27, 3, 6)=
—270, @(27, 3, 8)= —918, (27, 3,9)=0 and (27, 3, 12) =122202. 'Thus
a(A%py, ©), a(A%ps, ©) and a(A%p,, 7) can be computed from a(p,, 7) and a(p, 7).

It remains to compute a(p,, 7). Let us apply j* to (3.1) with p=p,. Then
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the left hand side becomes
J*ch(B(p2)) = ch(B(1*(p2)))
— ch(B(pitpl) by (L14) (i)
— ch(B(i)+B(Y) by (17) ()
= ch(B(pi))+ch(B(p1))

and the right hand side becomes
a(py 1) x3-a(pp 3) u-+a(py 4) 315+a(py, 6)
by (1.4) (i). Here we quote from [20, p. 386] that
ch(B(p1)) = 18 x3—(7/20) xy,+(17/168) x,5—(1/7040) x,, .
Adding this to (3.6) gives
ch(B(ph))+ch(B(pl)) = 24 x,—(3/10) x,,+(3/28) x,5—(31/221760) x5 .

Hence a(p,, 1)=24, a(p,, 3)=—3/10, a(p,, 4)=3/28 and a(p,, 6)=—31/221760.
On the other hand, let us apply 6* to (3.1) with p=p,. Then the left hand
side becomes

6*ch(B (py)) = ch(B(6*(p2))) = ch(B(p;)) by (1.15) (ii)
= a(py, 1) X3+a(py, 2) x9+a(py, 3) ¥
+a(pg, 4) x15+a(py, 5) x15+a(py, 6) %

by (3.1) with p=p,, and the right hand side becomes

a(pg, 1) x3—a(py, 2) x9+a(py 3) 2y
+a(pa, 4) x15—a(pz, 5) x17+a(pa 6) %

by (1.5). Hence a(p,, 2)=0 and a(p,, 5)=0. Thus we know all of the a(p,, ),
and Theorem 1 is proved.
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