
Title Counting Languages

Author(s) Stirk, C. Ian

Citation 大阪外大英米研究. 1988, 16, p. 191-209

Version Type VoR

URL https://hdl.handle.net/11094/99129

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



COUNTING LANGUAGES 

Ian C. Stirk 

The Chomsky hierarchy of grammars and languages is discussed in every 
introductory work on mathematical linguistics. Context-sensitive, context­

free and finite-state languages are relatively easy to deal with, since concrete 
examples can be used. It is straightforward enough to show that that the 
language anbn (that is, the language whose sentences consist of a string of a's 
followed by an equal number of b's) is context-free but not finite-state, while an 
bncn is context-sensitive but not context-free. The rest of the hierarchy is 

generally mentioned rather perfunctorily in texts for linguists, since the normal 
treatment is entirely mathematical and abstract. I have tried here to present it 

in a rather more "linguistic" way, using strings of symbols for all the examples, 
instead of the transfinite arithmetic favoured in mathematical texts. Almost 
the only mathematics left, I think, is the use of the integers for counting, 
whence the title of this essay. I certainly found the issues greatly clarified in 
my own mind during the effort of writing. I hope some reader will find the 

same clarification in reading! 
Most of the notation, as well as the inspiration for the proofs, is taken from 

Arto Salomaa's excellent book "Formal Languages" (Academic Press, 1973). 

We had better start with some definitions. A grammar may be defined as 
an ordered quadruple (VN, VT, Xo, F), where VN and VT are the non-terminal 

and terminal vocabularies respectively. Xo is a designated member of V N, the 
initial symbol. F is a set of ordered pairs, the rules of the grammar. In each 
ordered pair (P, Q)EF, P and Qare strings of symbols from the set V = VN UVT, 

subject only to the condition that no terminal symbol may appear in P but not in 
Q. This ensures that no terminal symbol may be rewritten by a rule. 

It is usually convenient to write the pairs (P, Q)EF in the form P->Q. Non­

terminal symbols are represented by capital letters, usually Xo, X1 etc. 

-191-



Ian C. Stirk 

Small letters represent terminal symbols, e.g. a, b. Here is an example of a 

typical grammar, according to the definition: 

(Xo, {a, b}, Xo, {Xo--+aXo b, Xo--+J}) 

The symbol "J" is used as a null symbol: thus the second rule in F here just 

deletes Xo. 
The rules F of a grammar G define a relation between strings which will be 

written c::::>. If Rand Sare strings over V, then Rc::::>S if and only if R has the 

form aP/3, and S the form aQ/3, where P--+Q is a rule of F, and a and f3 are 
(possibly null) strings over V. 

A derivation from the grammar G is a series of strings over V, Pi, Pz, ... Pn, 
such that P1 =Xo, and for i=l to n-1, Pic::::>Pi+I• Furthermore, there must be 

no rule P--+Q of G such that P0 =aP/3, where again a and f3 are (possibly null) 
strings over V. c::::>* is the ancestral of the relation c::::>, so that instead of 

we may just write P1 c::::> *P0 • 

The language generated by the grammar G may now be defined as the 

following set of strings: 

Here W(VT) is the set of all possible strings over VT. 

It is most important to remember that these are supposed to be precise 
definitions. Intuitive notions about what constitutes a language or a grammar 

should not be taken as part of them. For instance, it is nowhere stated that all 
of the terminal symbols mentioned in VT should actually appear in some 

sentence or sentences of the language generated by a grammar. I shall use 

that fact tacitly in what follows. I shall also take advantage of the fact that the 

null string, that is, string of zero length, may be a member of W (VT), according 

to the usual ideas of set theory. 

-192-



COUNTING LANGUAGES 

The first important question is, can there be languages which have no 

grammars, that is, grammars of the kind we are considering? One way to 

answer this question would be to show that there are more possible languages 

than there are possible grammars. In that case, there could not be enough 

grammars to go round, and some of the languages would be left without. But 
surely, some would argue, there is an infinite number of possible languages, 
and an infinite number of possible grammars, so how could there be more of 

one thing than the other? Nevertheless, we shall proceed by trying to count 

the number of languages and the number of grammars. 

The first step is to count the number of different strings over the terminal 
vocabulary, that is, every permutation of finite numbers of terminal symbols. 

These strings can be regarded as possible sentences. Any of them might be a 

sentence in some language, and every sentence of every language will be 
included among them. If you like to think less abstractly, imagine that the 

terminal vocabulary contains every different word of every human language 

which has ever been used up to the present moment. An extravagant notion, 

but one which would still result in a finite vocabulary. The various 
permutations of the symbols of this vocabulary would include every sentence 

of every human language, plus ungrammatical ones and a lot of mixed strings 

which are sentences of none. 

Now for the counting. For the sake of a more manageable example, 

suppose that the terminal vocabulary has just three members, a, b, and c. The 

first string over this vocabulary that we shall list will be the string of zero 
length, that is, 1: 

1. -< 

This is just a matter of mathematical convenience: we have already seen that 

the null string may be part of a language, so it must be put somewhere among 
the list of possible strings. At the beginning is the best place, too, for next 

should come the three possible strings of unit length, namely: 

2. a 

-193-



Ian C. Stirk 

3. b 

4. C 

They have been counted m alphabetical order, and obviously with this 

vocabulary there can be no more than these three strings of unit length. Now 

we count the strings of length two. There are nine of these, since we have 
three choices for the first element and three for the second. They can be listed 

in alphabetical order too: 

5. aa 

6. ab 

7. ac 
8. ba 

9. bb 

10. be 

11. ca 

12. cb 

13. cc 

The next step is to list the 27 strings of length three, and so on. There are 

always just a finite number of strings of any particular length, and they can 

always be organized in alphabetical order. Clearly any string of any length will 

appear in the list somewhere, and it does not involve very difficult mathematics 
to work out a formula which gives the number in the listing corresponding to a 

given string, and vice-versa. The same method will work for any finite 

vocabulary. Number one in any such list will of course be the null string. 

We know now that the number of possible strings is the same as the 

number of positive integers 1, 2, 3 etc. It remains to be seen if this is more 

useful than just knowing that the number is infinite. Sets like this set of 

possible strings, whose members can be counted by the positive integers, or 

enumerated, are known as recursively enumerable sets. 
Now on to grammars. Do they form a recursively enumerable set, to use 

the new technical vocabulary? We can find out by trying to enumerate them. 

-194-



COUNTING LANGUAGES 

Grammars as they were defined before do not look promising entities for easy 

listing, but we can try. For one thing, the set of rules could be written out as a 

string, provided we adopt some punctuation to show where one rule ends and 

another begins. One grammar we have seen before might look like this: 

Xo --+ ;Xo --+ aXob 

Here";" has been used to provide the punctuation. Notice that the null sign 

",f' has just been omitted. It is clear without it that the right-hand side of the 

:first rule is zero. A slightly more complicated example: 

These strings could be ordered alphabetically, like possible sentences, 

provided that the signs "; ", "--+", and the non-terminal symbols were added to 

the alphabet. The non-terminal symbols cause some difficulty here, since 

there could be any number of them in the form Xi- We do not want an infinite 
alphabet. Instead of using this notation, let us try representing X0 as X, X1 as 
X' , X2 as X", and so on. The numerical suffix becomes a string of the same 

number of '" " signs. '" " itself can be regarded as a separate symbol in the 

alphabet. If we stick to the same terminal vocabuloary a, b, c that we used in 
discussing possible sentences, then the seven symbol alphabet 

a, b, c, X, ', -➔,; 

will be enough for listing grammars in alphabetical order. Not all the possible 

strings over this vocabulary are grammars, of course. "" a" is one of the 
strings, for instance, and it is meaningless as a grammar. In fact the first 

grammar in the list is the 35th string, "X--+". This represents the grammar we 

would otherwise write in the form "X0--+ ,<". The language generated by this is 

the rather uninteresting one which has a string of zero length as its only 

sentence, but nevertheless it is a grammar. The 238th string in the list is 
"X' --+", but we shall not count it as a grammar, since "X", alias "X0", is the 

-195-



Ian C. Stirk 

only initial symbol allowed. The 240th string "X-+a" is a slightly more 

interesting grammar, and it is the second in the list. As for the previous 
examples, "X-+; X-+aXb" is somewhere about the 4,100,000th string, while 
"X->-X' X"; X-+X' XX"; X' -+a; X" -+b" is around the 4.6 x 1022 position, to use 

a more compact arithmetical notation! Obviously it would be absurd to list 
grammars like this in practice, but what we have achieved is a purely 
mechanical method of doing so. A computer could easily be programmed to 

check through the list of strings one by one, and decide whether they 
represented grammars or not, according to the definition of grammar given 
before. Remember it was to be taken literally! Any grammar discovered 
would be added to a list of grammars, which would clearly begin 

1. X-+ 

2. X-+ a 

and so on. As every possible string will eventually be examined, no grammar 
could possibly be missed. In fact, many grammars will be counted more than 

once, because their rules may appear in different orders. For instance, "X-+a; 
X-+b" is clearly equivalent to "X-+b; X-+a", but they would be listed 
separately. Other things listed as grammars would generate nothing at all, for 
instance, "X->-X' ; X" -►a". It might be possible to devise more sophisticated 

computer programs to eliminate some of this excess, but there is no great point 
in bothering. The list of entities we obtain is clearly recursively enumerable, 

and all the grammars we would count as "reasonable" are included in it. 
There has been enough argument to show that, like possible sentences, 
grammars form a recursively enumerable set. Bear in mind that, although we 
have continued to use a terminal vocabulary a, b, c in all the examples, similar 
arguments will apply to any finite terminal vocabulary. 

What about languages? Can they be enumerated? Just writing them 
down causes trouble for a start. Possible sentences and grammars have the 
virtue of being finite, but languages may be infinite sets of sentences. Finite 
languages can be presented as a list of sentences, but not infinite ones. One 
uniform way to represent a language might be as a series of O's and l's. The 

-196-



COUNTING LANGUAGES 

series begins with a O if the first possible sentence is not in the language, with a 

1 if it is. We follow with a O or 1 according to whether or not the second 

possible sentence is in, and so on. For instance, to go back to the example of 

possible sentences over the set a, b, c, the finite language {b, c, ab} would be 

represented as follows: 

011010 ... 

The dots of course represent the beginning of what should be an infinite series 
of O's, since this language is finite. This might seem a poor notation, but it will 

do nicely for what follows. 

Suppose that somehow we could find a way of enumerating languages. 
Then, even though we can't write them out completely, there would m 

principle be a way of listing these infinite series of O's and l's as follows: 

1. an a12 a13 a1s a14 

2. a21 a22 a23 a24 a25 

3. a31 a32 a33 a34 a35 

4. ~1 a42 a43 ~4 a4s 

and so on. Each aii represents either a O or a 1. Now let us suppose that the 

symbol "a/ represents O if aii=l and 1 if aii=O. Then the following series is 

also a language: 

Which language in the list is it? The list is supposed to be complete, so it must 

be there somewhere. It isn't No. 1, though, since an differs from an. It isn't 

No. 2 either, since a22 and a22 are not the same. It isn't No. 3, because of a33 

and a33, and so on. This language does not appear anywhere in the list! No 

matter how we try to enumerate languages, there will be languages "left over" 

which can't be fitted into the enumeration. I say languages, though only one 

has been described, because there are others too, such as: 

-197-



Ian C. Stirk 

A similar argument shows that this one is not on the list either, and obviously 
there is an infinite number of others like it! It has been demonstrated that 
languages do not form a recursively enumerable set, or, to put it more crudely, 

that there are more languages than there are positive integers. This means 
that there are more languages than grammars, too, since grammars do form a 
recursively enumerable set. This fact is important enough to state as a 

theorem: 

Theorem 1 There are languages which do not have grammars. 

The kind of argument that was used in the proof was first devised by Georg 

Cantor, in an arithmetical context. It is generally known as "Cantor's diagonal 
proof". The reason for using the word "diagonal" should be clear enough. 

There is another approach to proving this theorem, which at first sight 
looks rather different. Suppose that G(i) is the ith grammar in the list of 
grammars described before. We define a language L such that the ith 
sentence in the list of possible sentences is in the language if and only if it is not 
generated by G(i). Now if all languages have grammars, this one must too. 

Suppose it is the kth grammar in the list, G(k). This seems uncontroversial 
until we think about the kth in the list of possible sentences. According to the 

definition of L, it is in the language if it is not generated by G(k). On the other 
hand, if G(k) generates L, then the kth possible sentence must be generated by 
G(k)! The paradox can only be resolved if L cannot be generated by any of the 

grammars in the list, meaning that L does not have a grammar at all. 
Somehow this proof does not seem quite so satisfactory as the first one. 

Grammars may generate infinite sets of strings as languages, and that set 

· might need to be checked through completely in order to be sure that some 
possible sentence is not in.the language generated. We seem to need a god's 
eye view of the various languages! Oddly enough, this proof is actually very 

similar to the diagonal one we used before. If we use the notation "L(G(i))" to 

-198-



COUNTING LANGUAGES 

stand for "the language generated by grammar i in the list", we can construct 

an enumeration of this sort: 

L(G(l)). au a12 a13 a14 a1s 
L(G(2)). a21 a22 a23 a24 a2s 

L(G(3)). a31 a32 a33 a34 a3s 
L(G(4)). a41 ~2 a43 ~4 ~5 

Once again, the first possible sentence is in L if and only if it is not in L(G(l)). 

Representing Las a series of O's and l's, as before, we see that the first term in 
the series will be au. Similarly for the following terms. Once again a diagonal 
is constructed. That diagonal cannot be the kth line in the enumeration, for 

there would be a "clash" in the kth place, where the diagonal crosses the line: 

L(G(l)). 
L(G(2)). 

L(G(k)). 

~ a12 a13 a14 a1s 
a21 ~ a23 a24 a2s 

According to the definition of L, the kth place would need to contain both akk 

and akk· 
That "god's eye view" will be considered again later. Meanwhile, 

something has really been tacitly assumed in that second version of the proof 
which needs justification. Do grammars really generate recursively 

enumerable sets of strings? It seems only reasonable, but it had better be 
proved explicitly, and stated as 

Theorem 2 Grammars generate recursively enumerable sets of strings. 

In a previous example, strings over the alphabet a, b, c, X,', ->,; were used 

to help provide a list of grammars. Suppose we drop the symbol "-> ", and just 

consider strings over the remaining six symbols. Now the list of such strings 
will contain possible derivations according to the various grammars in the list of 

-199-



Ian C. Stirk 

grammars. For instance, after starting in this way: 

1. a 

2. b 

3. C 

4. X 
5. ' 

6. 

7. aa 

8. ab 

the list will have as its 31st entry the string "X; ", which represents the first 
derivation according to the grammar 

namely 

Xo ---+ ,l 

Xo ---+ aXob 

Xo 
,l 

Somewhat later in the enumeration, namely at around position number 

1,400,000 comes a second derivation according to the same grammar, that is, 

"X;aXb;ab", corresponding to 

Xo 

aXob 

ab 

I think it is plain that all possible derivations of all possible grammars will 

appear somewhere in this enumeration. Give a particular grammar, it would 

be a purely mechanical process to decide whether an item in the list was a 

-200-



COUNTING LANGUAGES 

proper derivation or not. The definition of "derivation" given before confirms 

this. The mechanical process could be used to build up a list of sentences 

generated by the grammar, since the sentences are just the final strings of 

terminal symbols after the last occurrence of ";" in the correct derivations. 

There is just one slight difficulty: certain sentences might occur more than 
once in the list. For instance, 

X;X' Xn ;aX" ;ab and 

X;X' X" ;X' b;ab 

are both derivations of the sentence "ab" generated by the grammar 

Xo ---+ X1X2 
Xo -> X1XoX2 
X1 -> a 
X2-> b 

This problem is easily solved just by adding to the mechanical procedure. 

Each time a sentence is extracted from a correct derivation, the list of 
sentences already obtained is checked through to see if that sentence has 

already occurred. This can always be done, as the list is finite at any stage. 
Only if the sentence has not occurred before is it added to the list. 

That argument is enough to prove Theorem 2. Notice that in fact it was 

not strictly necessary to build up a list of derivations distinct from the list of 
grammars we had already developed. According to the way it was 
constructed, the possible derivations will occur interspersed among the 

grammars. 
Languages are sets of sentences, so we could restate Theorem 2 by saying 

that grammars generate only recursively enumerable languages. Now we 

might speculate about the converse of Theorem 2, that is, do all recursively 

enumerable languages have grammars? In fact there is no definite 
mathematical answer to this, not so surprising when you consider the 
vagueness of the notion of recursively enumerable that we have been using. A 

-201-



Ian C. Stirk 

set is recursively enumerable if it can be listed by any "mechanical procedure", 

whatever that may be. Mathematicians formalize the notion of mechanical 

procedure by considering it to be anything that a Turing machine could be 

programmed to perform. A Turing machine is an idealised computer, and if 

you imagine it as a personal computer which you can program in some 

language like Basic, you are not far wrong. Anything you can program the 
computer to do is a mechanical procedure. It is not difficult to show that 

grammars as we have defined them are equivalent to Turing machines. In 

other words, any computer program you could devise for generating sentences 

could be written in the form of a grammar. Obviously if "recursively 

enumerable" means "enumerable by a Turing machine", and if grammars are 

equivalent to Turing machines, then any recursively enumerable language can 
be generated by a grammar: the answer to the original question is "yes". 

But a problem still remains: is the Turing machine notion equivalent to our 

intuitive notion of "mechanical procedure"? This is a philosophical question 

rather than a mathematical one. The claim that the two notions are equivalent 

is known as Church's thesis. Most mathematicians accept it, because all kinds 

of mathematical formalizations of mechanical procedures have turned out to be 

equivalent to Turing machines. 
When we think of human beings and their languages, the philosophical 

problem is worse, because of course then we are led to wonder whether or not 
human mental powers are equivalent to Turing machines. This leads to 

debate of the mind-body problem, and even to ethical questions. In what 

follows we assume that Church's thesis is true, and that human languages are 

recursively enumerable. 
In that case, Theorem 1 also shows that there are languages which are not 

recursively enumerable. Representing sets as circles, the results so far may be 

summed up in this way: 

possible languages 

r.e. languages= UR languages 

-202-



COUNTING LANGUAGES 

"UR" stands for "unrestricted rewriting". Grammars as described so far 

are unrestricted rewriting, or UR grammars, since there is no particular 

restriction on the set F of rules, beyond that about terminal symbols. The 

languages that can be generated by UR grammars are UR languages. 

Now that the set of recursively enumerable languages is properly 
established, it is time to consider its subsets. One thing we might expect a 
grammar to do for us is to determine whether or not some possible sentence P 
is grammatical or not. This is one of a class of problems known as "decision 

problems". When we want to decide whether or not some sentence is 

grammatical, all we can do in general is enumerate the sentences generated by 

the grammar, and hope that the given sentence will appear in the list. No 
matter how far we go, we can never be certain that the sentence will not turn 
up further down the list. It is impossible ever to brand some sentences as 
definitely ungrammatical, unless we have an infinite amount of time to spend, 
or the "god's eye view" mentioned before in the alternative proof of Theorem 

1. The decision problem is the reason why that version of the proof seems 
somehow unsatisfactory. 

Obviously there is no such decision problem when we are considering a 

finite language. An arbitrary sentence is grammatical if it is a member of the 
finite set, otherwise ungrammatical. And a finite set needs only a finite 

amount of checking. Languages with no decision problem are called recursive 
languages. Having defined them, we need to know now whether there are any 
infinite recursive languages, and indeed whether there are any recursively 
enumerable languages which are not recursive. We can't be sure yet. One 

important theorem is surprisingly easy to prove: 

Theorem 3 A language L is recursive if and only if both L and - L are 

recursively enumerable. 

- L means, reasonably enough, the set of all possible sentences which are 

not members of L. First of all, consider the case where L is recursive. Then 

we could check through the list of all possible sentences, and decide for each 
one whether or not it is in L. If it is in L, we could add it to a list of "sentences 

-203-



Ian C. Stirk 

of L", if not, we could and to a list of "sentences of - L". In this way, both L 

and - L can be enumerated. To complete the proof, we need to show that if L 
and - L are recursively enumerable, then L is recursive. Consider any 
possible sentence P. The lists of Land - L cover between them all possible 

sentences, of course, so after some finite time P will appear on one of them. If 
it is in the L list, P is grammatical, if in the - L list, it is ungrammatical. The 
decision can always be made, showing that L is recursive, by definition. 
Q.E.D. 

Theorem 3 can be used right away to prove this: 

Theorem 4 There is a recursively enumerable language which is not 
recursive. 

If we could find some recursively enumerable language L whose 

complement - L was not recursively enumerable, the theorem would follow 
immediately. 

Now in the alternative proof of Theorem 1, we described a language which 
certainly does not have a grammar, even if we do have a god's eye view of its 
construction. According to Church's thesis, that means it is not recursively 
enumerable. Let us use it as - L. The ith possible sentence is a member of 

.- L, then, if and only if it is not generated by the ith grammar, in those lists of 
possible sentences and possible grammars. (Of course the astute reader will 

have noticed that possible sentences and possible grammars could be combined 

in one list, if desired!) The ith possible sentence would be in the 
complementary language L, in that case, only if it was generated by the ith 

grammar. There does not seem to be anything paradoxical about such a 
language, but we must make sure that it is recursively enumerable. First of 
all, suppose we pick any pair of integers (i, j)-for example, (3, 16) or (415, 

1066). We could mechanically check whether or not the jth possible derivation 
in the list of such things was a proper derivation according to the ith grammar 
in the list. If it was, we could go on to check if the sentence it culminated in 

was the ith sentence in the list of possible sentences. If it was the ith sentence, 

-204-



COUNTING LANGUAGES 

it could be added to an enumeration of sentences of L. The whole task is 

mechanical provided that the number pairs (i, j) can themselves be enumerated, 

so that any of them would eventually be considered. Well, number pairs can 

obviously be placed in a grid as follows: 

and enumerated by following the diagonals as shown by the arrows, counting 1, 
2, 3 etc. • Counting is such a way will obviously eventually bring you to any 

number pair whatever. This makes the whole business mechanical, meaning 

that Lis a recursively enumerable language. The theorem follows. Notice, in 

passing, that counting is not such an easy and obvious business as it might at 

first appear. Suppose we started counting the number pairs by following the 

first row of the table, like this: 

(1, 1) ------ (1, 2) ---- (1, 3) -- (1, 4) -- . 
(2, 1) (2, 2) (2, 3) (2, 4) 

(3, 1) (3, 2) (3, 3) (3, 4) 

(4, 1) (4, 2) (4, 3) (4, 4) 

In that case, we would never be back, in finite time, to begin on the second 
row! The exact way of counting is often of crucial importance. 

The next step is to enquire what kinds of grammar might generate 

recursive languages. A feature of UR grammars is that they may include 

deletion rules, rules whose right hand side is shorter than the left, for instance: 

-205-



Ian C. Stirk 

When such rules are applied in the course of a derivation, then naturally the 

following line will be shorter than the line to which the rule applied. The 
length of a possible sentence is no guide to the complexity of a possible 
derivation: even a short sentence may have an enormously long line in its 
derivation, which is later reduced by deletion. This consideration might lead 
us to guess that grammars without deletion rules might only generate recursive 
languages. Given any possible sentence P, we might find that only a finite 
number of possible derivations could end in sentences as short as P. If P is 
generated by one of these, it is grammatical, otherwise ungrammatical. Let us 
try to find a rigorous proof of this conjecture. 

Firstly we define a length-increasing grammar as one whose set of rules F 

contains only ordered pairs (P, Q) such that len(Q) (that is, the length of Q) is 
greater than or equal to len(P). Now the theorem may be stated: 

Theorem 5 Length increasing grammars generate only recursive languages. 

The proof proceeds by showing that only a finite number of possible 

derivations needs to be checked in order to determine whether or not some 
sentence P is grammatical. The list of possible derivations needs to be 
described more exactly this time. For any particular length-increasing 
grammar we consider, there will of course be only a finite number of different 
non-terminal symbols. If there are r+ 1 of them, they can be ordered 
alphabetically X0 to Xr, without needing to invoke an extra symbol like '" ". 
As usual, the possible derivations are ordered in alphabetically arranged blocks 
of increasing length. Using the symbols A1 to Ak to represent the k symbols in 
the necessary alphabet of both non-terminal and terminal symbols, consider 
derivations of this form: 

n 

This kind of derivation begins with k lines each consisting of a single symbol, 

-206-



COUNTING LANGUAGES 

followed by k2 lines consisting of all possible pairs of symbols. Then come all 

possible triples, and so on until we finish with all possible n-tuples, where n is 

the length of the possible sentence P being tested. Since all the possibilities 

are included, then any length-increasing possible derivation longer than these 

would either end in a string of symbols longer than n, which could not possibly 
be P, or there would have to be a repetition of some x-tuple somewhere. Now 
derivations in which a line is repeated-which contain a "loop", in other 

words-are obviously equivalent to a shorter derivation without the loop. To 
take a concrete example, the derivation 

is equivalent to 

Thus we do not need to consider possible derivations longer than a certain 

length in the search for a derivation of P. There can only be a finite number of 
possible derivations up to a certain length, so they can all be checked. It is 
possible to determine whether or not P is a sentence of the language, which 
must then be recursive by definition. 

Now we need to know whether all recursive languages can be generated by 
length-increasing grammars. The next theorem provides the answer: 

Theorem 6 There are recursive languages which do not have length 

increasing grammars. 

This proof is rather simple, since we can use enumerations developed 
already. To start with, we can check the list of possible grammars with some 
terminal vocabulary VT, and enumerate just the length-increasing ones, 
because of course it is a mechanical task to check that the rules obey the length 

restriction. We also have a list of possible sentences, and can define a 
language in a rather familiar way: the ith sentence in the list belongs to L just in 

-207-



Ian C. Stirk 

case it is not generated by the ith length-increasing grammar. L is recursive, 

because by Theorem 5 we can check whether or not some possible sentence is 
generated by some length-increasing grammar. But, in the usual way, if the 

kth grammar in the list, G(k), generates this language, it generates the kth 

possible sentence only if it does not generate the kth possible sentence. 
Q.E.D. 

Linguists are more often concerned with context-sensitive (CS) grammars 
than merely length-increasing ones. In CS grammars, all rules P->Q must be 
such that P=aX;r while Q=af3r, where a and rare (possibly null) strings over 

V, while f3 is a string over V of length at least one. Such rules are clearly 
length-increasing, but only one non-terminal symbol X; is "changed" by each 

rule. The reason for this restriction concerns the mechanical construction of 
tree structures from derivations. A derivation containing the lines, say, aX1{3 

c::::> aX2X3{3 will clearly give rise to a subtree of the form: 

Successive lines of a merely length-increasing derivation, though, might look 
like this: 

on the application of rule X1X2 -> X3~. In such a case, it would be uncertain, 
without further information, just how the branches of a tree should connect 
X1 and X2 with X3 and~- However, it is easy enough to prove this theorem 

Theorem 7 To every length increasing grammar there corresponds a CS 

grammar which generates the same language. 

The proof shows how the equivalent CS grammar may be constructed. 
Any rules of the length-increasing grammar which already obey the CS 

restriction can be retained. For any rule of the form X1X2 ... Xm-> Y1Y2 ... Y0 , 

-208-



COUNTING LANGUAGES 

where 2< =m < =n, m new non-terminal symbols Z1, ... Zm are added to VN. 
The rule itself is replaced by the following series of rules: 

X1Xz ... Xm --+ Z1Xz ... Xm 

Z1X2,,.Xm --+ Z1Z2 ... Xm 

Z1Zz ... Zm-1Xm --+ Z1Zz ... Zm-1ZmYm+1 ... Yn 
Z1Zz ... ZmYm+1 ... Yn --+ Y1Zz ... ZmYm+1 ... Yn 

Clearly each of these rules obeys the CS condition, and the whole series has the 
same effect as the single rule it replaces. Proceeding in this way, all the non­

CS rules in the length-increasing grammar can be replaced, and the result will 
be a CS grammar generating the same language. Q.E.D. 

The last few theorems enable us to extend the set inclusion diagram given 

before: 

possible languages 

r.e. languages= UR languages 

recursive languages 

CS languages 

Now that we have left the abstractions for the more concrete world of 
context-sensitive languages, it is time to end. 

-209-






