|

) <

The University of Osaka
Institutional Knowledge Archive

Title Counting Languages

Author(s) |[Stirk, C. Ian

Citation |ABR#AIHKAFFR. 1988, 16, p. 191-209

Version Type|VoR

URL https://hdl. handle.net/11094/99129

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

COUNTING LANGUAGES

Ian C. Stirk

The Chomsky hierarchy of grammars and languages is discussed in every
introductory work on mathematical linguistics. Context-sensitive, context-
free and finite-state languages are relatively easy to deal with, since concrete
examples can be used. It is straightforward enough to show that that the
language a"b® (that is, the language whose sentences consist of a string of a’s
followed by an equal number of b’s) is context-free but not finite-state, while an
bner is context-sensitive but not context-free. The rest of the hierarchy is
generally mentioned rather perfunctorily in texts for linguists, since the normal
treatment is entirely mathematical and abstract. Ihave tried here to present it
in a rather more “linguistic” way, using strings of symbols for all the examples,
instead of the transfinite arithmetic favoured in mathematical texts. Almost
the only mathematics left, I think, is the use of the integers for counting,
whence the title of this essay. I certainly found the issues greatly clarified in
my own mind during the effort of writing. I hope some reader will find the
same clarification in reading!

Most of the notation, as well as the inspiration for the proofs, is taken from
Arto Salomaa’s excellent book “Formal Languages” (Academic Press, 1973).

We had better start with some definitions. A grammar may be defined as
an ordered quadruple (Vy, Vr, Xo, F), where Vy and Vt are the non-terminal
and terminal vocabularies respectively. Xp is a designated member of Vy, the
initial symbol. F is a set of ordered pairs, the rules of the grammar. In each
ordered pair (P, Q)¢F, P and Q are strings of symbols from the set V=VyUVTr,
subject only to the condition that no terminal symbol may appear in P but not in
Q. This ensures that no terminal symbol may be rewritten by a rule.

It is usually convenient to write the pairs (P, Q)¢F in the form P—Q. Non-
terminal symbols are represented by capital letters, usually Xo, X; etc.

—191—

Ian C. Stirk

Small letters represent terminal symbols, e.g. a, b. Here is an example of a
typical grammar, according to the definition:

(X07 {a; b}y XOy {XO_’aXO by XO_”Q})

The symbol “2” is used as a null symbol: thus the second rule in F here just
deletes Xo.

The rules F of a grammar G define a relation between strings which will be
written =>. If R and S are strings over V, then R=>S if and only if R has the
form aPpB, and S the form aQB, where P—Q is a rule of F, and « and g are
(possibly null) strings over V.

A derivation from the grammar G is a series of strings over V, Py, Pa,...Py,
such that P;=Xo, and fori=1ton—1, P;=P;+;. Furthermore, there must be
no rule P—Q of G such that P,=«P8, where again « and g are (possibly null)
strings over V. =* is the ancestral of the relation =, so that instead of

PP, = .. P12 P,

we may just write P; = *P,.
The language generated by the grammar G may now be defined as the
following set of strings:

{P: PeW(V7), Xo = *P}

Here W(V7) is the set of all possible strings over Vr.

It is most important to remember that these are supposed to be precise
definitions. Intuitive notions about what constitutes a language or a grammar
should not be taken as part of them. For instance, it is nowhere stated that all
of the terminal symbols mentioned in Vr should actually appear in some
sentence or sentences of the language generated by a grammar. I shall use
that fact tacitly in what follows. I shall also take advantage of the fact that the
null string, that is, string of zero length, may be a member of W (Vr), according
to the usual ideas of set theory.

—192 —

COUNTING LANGUAGES

The first important question is, can there be languages which have no
grammars, that is, grammars of the kind we are considering? One way to
answer this question would be to show that there are more possible languages
than there are possible grammars. In that case, there could not be enough
grammars to go round, and some of the languages would be left without. But
surely, some would argue, there is an infinite number of possible languages,
and an infinite number of possible grammars, so how could there be more of
one thing than the other? Nevertheless, we shall proceed by trying to count
the number of languages and the number of grammars.

The first step is to count the number of different strings over the terminal
vocabulary, that is, every permutation of finite numbers of terminal symbols.
These strings can be regarded as possible sentences. Any of them might be a
sentence in some language, and every sentence of every language will be
included among them. If you like to think less abstractly, imagine that the
terminal vocabulary contains every different word of every human language
which has ever been used up to the present moment. An extravagant notion,
but one which would still result in a finite vocabulary. The various
permutations of the symbols of this vocabulary would include every sentence
of every human language, plus ungrammatical ones and a lot of mixed strings
which are sentences of none.

Now for the counting. For the sake of a more manageable example,
suppose that the terminal vocabulary has just three members, a, b, and c. The
first string over this vocabulary that we shall list will be the string of zero
length, that is, 2

This is just a matter of mathematical convenience: we have already seen that
the null string may be part of a language, so it must be put somewhere among
the list of possible strings. At the beginning is the best place, too, for next
should come the three possible strings of #nit length, namely:

—193—

Ian C. Stirk

They have been counted in alphabetical order, and obviously with this
vocabulary there can be no more than these three strings of unit length. Now
we count the strings of length two. There are nine of these, since we have
three choices for the first element and three for the second. They can be listed
in alphabetical order too:

5. aa
6. ab
7. ac
8. ba
9. bb
10. bc
11. ca
12. ¢b
13. cc

The next step is to list the 27 strings of length three, and so on. There are
always just a finite number of strings of any particular length, and they can
always be organized in alphabetical order. Clearly any string of any length will
appear in the list somewhere, and it does not involve very difficult mathematics
to work out a formula which gives the number in the listing corresponding to a
given string, and vice-versa. The same method will work for any finite
vocabulary. Number one in any such list will of course be the null string.

We know now that the number of possible strings is the same as the
number of positive integers 1, 2, 3 etc. It remains to be seen if this is more
useful than just knowing that the number is infinite. Sets like this set of
possible strings, whose members can be counted by the positive integers, or
enumerated, are known as recursively enumerable sets.

Now on to grammars. Do they form a recursively enumerable set, to use
the new technical vocabulary? We can find out by trying to enumerate them.

— 194 —

COUNTING LANGUAGES

Grammars as they were defined before do not look promising entities for easy
listing, but we can try. For one thing, the set of rules could be written out as a
string, provided we adopt some punctuation to show where one rule ends and
another begins. One grammar we have seen before might look like this:

Xo nd ;Xo - a.Xob

Here “;” has been used to provide the punctuation. Notice that the null sign
“2” has just been omitted. It is clear without it that the right-hand side of the
first rule is zero. A slightly more complicated example:

Xo i X1Xz; Xo i X1X0X2; X1 — a, Xz —b

These strings could be ordered alphabetically, like possible sentences,
provided that the signs “;”, “—", and the non-terminal symbols were added to
the alphabet. The non-terminal symbols cause some difficulty here, since
there could be any number of them in the form X;. We do not want an infinite
alphabet. Instead of using this notation, let us try representing X, as X, X; as
X', Xy as X", and so on. The numerical suffix becomes a string of the same
number of signs. itself can be regarded as a separate symbol in the
alphabet. If we stick to the same terminal vocabuloary a, b, c that we used in

discussing possible sentences, then the seven symbol alphabet

“wr n “«r n

.
a,bcX ', >,

will be enough for listing grammars in alphabetical order. Not all the possible
strings over this vocabulary are grammars, of course. ““a” is one of the
strings, for instance, and it is meaningless as a grammar. In fact the first
grammar in the list is the 35th string, “X—". This represents the grammar we
would otherwise write in the form “Xo—2". The language generated by this is
the rather uninteresting one which has a string of zero length as its only
sentence, but nevertheless it is a grammar. The 238th string in the list is

“X’—", but we shall not count it as a grammar, since “X”, alias “X,”, is the

—195—

Ian C. Stirk

only initial symbol aliowed. The 240th string “X—a” is a slightly more
interesting grammar, and it is the second in the list. As for the previous
examples, “X—; X—aXb"” is somewhere about the 4,100,000th string, while
“X-X' X"; X=X XX"; X' —a; X"—b” is around the 4.6 x 10?2 position, to use
a more compact arithmetical notation! Obviously it would be absurd to list
grammars like this in practice, but what we have achieved is a purely
mechanical method of doing so. A computer could easily be programmed to
check through the list of strings one by one, and decide whether they
represented grammars or not, according to the definition of grammar given
before. Remember it was to be taken liferally! Any grammar discovered
would be added to a list of grammars, which would clearly begin

1. X—
2. X—a

and so on. As every possible string will eventually be examined, no grammar
could possibly be missed. In fact, many grammars will be counted more than
once, because their rules may appear in different orders. Ior instance, “X—a;
X—b” is clearly equivalent to “X—b; X—a”, but they would be listed
separately. Other things listed as grammars would generate nothing at all, for
instance, "X—X"; X"—a". It might be possible to devise more sophisticated
computer programs to eliminate some of this excess, but there is no great point
in bothering. The list of entities we obtain is clearly recursively enumerable,
and all the grammars we would count as “reasonable” are included in it.
There has been enough argument to show that, like possible sentences,
grammars form a recursively enumerable set. Bear in mind that, although we
have continued to use a terminal vocabulary a, b, ¢ in all the examples, similar
arguments will apply to any finite terminal vocabulary.

What about languages? Can they be enumerated? Just writing them
down causes trouble for a start. Possible sentences and grammars have the
virtue of being finite, but languages may be infinite sets of sentences. Finite
languages can be presented as a list of sentences, but not infinite ones. One
uniform way to represent a language might be as a series of O’s and I’s. The

— 196 —

COUNTING LANGUAGES

series begins with a O if the first possible sentence is #ot in the language, with a
1if it is. We follow with a O or 1 according to whether or not the second
possible sentence is in, and so on. For instance, to go back to the example of
possible sentences over the set a, b, ¢, the finite language {b, c, ab} would be
represented as follows:

011010

The dots of course represent the beginning of what should be an infinite series
of 0’s, since this language is finite. This might seem a poor notation, but it will
do nicely for what follows.

Suppose that somehow we could find a way of enumerating languages.
Then, even though we can’t write them out completely, there would in
principle be a way of listing these infinite series of 0’s and I's as follows:

ann a2 a3 a5 ay
a1 az 4dz3 4z azs
431 a3 azz a ass
41 342 43 Q44 Ags

Ll

and so on. [Each a;; represents either a 0 or a 1. Now let us suppose that the
symbol “3;;” represents 0 if a;=1 and 1 if a;;=0. Then the following series is
also a language:

a5 a2 43 ay . . .

Which language in the list is it? The list is supposed to be complete, so it must
be there somewhere. It isn’t No. 1, though, since a;; differs from aj;. It isn’t
No. 2 either, since 4y, and aj; are not the same. It isn’t No. 3, because of as;
and as3, and so on. This language does not appear anywhere in the list! No
matter how we try to enumerate languages, there will be languages “left over”
which can’t be fitted into the enumeration. I say languages, though only one
has been described, because there are others too, such as:

— 197 —

Ian C. Stirk

12 A3 a3z a5 . . . @ij+1

A similar argument shows that this one is not on the list either, and obviously
there is an infinite number of others like it! It has been demonstrated that
languages do nof form a recursively enumerable set, or, to put it more crudely,
that there are more languages than there are positive integers. This means
that there are more languages than grammars, too, since grammars do form a
recursively enumerable set. This fact is important enough to state as a
theorem:

Theorem 1 There are languages which do not have grammars.

The kind of argument that was used in the proof was first devised by Georg
Cantor, in an arithmetical context. It is generally known as “Cantor’s diagonal
proof”. The reason for using the word “diagonal” should be clear enough.
There is another approach to proving this theorem, which at first sight
looks rather different. Suppose that G(i) is the ith grammar in the list of
grammars described before. We define a language L such that the ith
sentence in the list of possible sentences is in the language if and only if it is no#
generated by G(i). Now if all languages have grammars, this one must too.
Suppose it is the kth grammar in the list, G(k). This seems uncontroversial
until we think about the kth in the list of possible sentences. According to the
definition of L, it is in the language if it is nof generated by G(k). On the other
hand, if G(k) generates L, then the kth possible sentence must be generated by
G(k)! The paradox can only be resolved if L cannot be generated by any of the
grammars in the list, meaning that L does not have a grammar at all.
Somehow this proof does not seem quite so satisfactory as the first one.
Grammars may generate infinite sets of strings as languages, and that set
might need to be checked through completely in order to be sure that some
possible sentence is not in the language generated. We seem to need a god’s
eye view of the various languages! Oddly enough, this proof is actually very
similar to the diagonal one we used before. If we use the notation “L(G(i))” to

— 198 —

COUNTING LANGUAGES

stand for “the language generated by grammar i in the list”, we can construct
an enumeration of this sort:

LG(1). an ap a3 ay as
LGR). ax ap a; ay asx
L(G(3)). a3 as as axy ass
L(GM@). ay a; a3 ay ass

Once again, the first possible sentence is in L if and only if it is not in L(G(1)).
Representing L as a series of 0’s and 1’s, as before, we see that the first term in
the series will be a;;. Similarly for the following terms. Once again a diagonal
is constructed. That diagonal cannot be the kth line in the enumeration, for
there would be a “clash” in the kth place, where the diagonal crosses the line:

LGA). @) ar a au ass
L(G2). an (% az ax as

LGK). am ake as 2k s . . - Qg
According to the definition of L, the kth place would need to contain both ay
and Axk-
That “god’s eye view” will be considered again later. Meanwhile,
something has really been tacitly assumed in that second version of the proof
which needs justification. Do grammars really generate recursively

enumerable sets of strings? It seems only reasonable, but it had better be
proved explicitly, and stated as

Theorem 2 Grammars generate recursively enumerable sets of strings.
In a previous example, strings over the alphabet a, b, ¢, X, ", —,; were used
to help provide a list of grammars. Suppose we drop the symbol “—”, and just

consider strings over the remaining six symbols. Now the list of such strings
will contain possible derivations according to the various grammars in the list of

— 199 —

Ian C. Stirk

grammars. For instance, after starting in this way:

® NS AR W

the list will have as its 3lst entry the string “X;”, which represents the first
derivation according to the grammar

Xo—*l
Xo—’aX()b

namely

Xo
A

Somewhat later in the enumeration, namely at around position number
1,400,000 comes a second derivation according to the same grammar, that is,
“X;aXb;ab”, corresponding to

Xo
aXgb
ab

I think it is plain that all possible derivations of all possible grammars will
appear somewhere in this enumeration. Give a particular grammar, it would

be a purely mechanical process to decide whether an item in the list was a

—200—

COUNTING LANGUAGES

proper derivation or not. The definition of “derivation” given before confirms
this. The mechanical process could be used to build up a list of sentences
generated by the grammar, since the sentences are just the final strings of
terminal symbols after the last occurrence of “;” in the correct derivations.
There is just one slight difficulty: certain sentences might occur more than
once in the list. For instance,

X;X'X";aX";ab and
X;X'X";X"b;ab

are both derivations of the sentence “ab” generated by the grammar

Xo - X1X2
Xo = X1XoXz
X1 — a

Xz — b

This problem is easily solved just by adding to the mechanical procedure.
Each time a sentence is extracted from a correct derivation, the list of
sentences already obtained is checked through to see if that sentence has
already occurred. This can always be done, as the list is finite at any stage.
Only if the sentence has not occurred before is it added to the list.

That argument is enough to prove Theorem 2. Notice that in fact it was
not strictly necessary to build up a list of derivations distinct from the list of
grammars we had already developed. According to the way it was
constructed, the possible derivations will occur interspersed among the
grammars.

Languages are sets of sentences, so we could restate Theorem 2 by saying
that grammars generate only recursively enumerable languages. Now we
might speculate about the converse of Theorem 2, that is, do all recursively
enumerable languages have grammars? In fact there is no definite
mathematical answer to this, not so surprising when you consider the
vagueness of the notion of recursively enumerable that we have been using. A

—201 —

Ian C. Stirk

set is recursively enumerable if it can be listed by any “mechanical procedure”,
whatever that may be. Mathematicians formalize the notion of mechanical
procedure by considering it to be anything that a Twuring machine could be
programmed to perform. A Turing machine is an idealised computer, and if
you imagine it as a personal computer which you can program in some
language like Basic, you are not far wrong. Anything you can program the
computer to do is a mechanical procedure. It is not difficult to show that
grammars as we have defined them are equivalent to Turing machines. In
other words, any computer program you could devise for generating sentences
could be written in the form of a grammar. Obviously if “recursively
enumerable” means “enumerable by a Turing machine”, and if grammars are
equivalent to Turing machines, then any recursively enumerable language can
be generated by a grammar: the answer to the original question is “yes”.

But a problem still remains: is the Turing machine notion equivalent to our
intuitive notion of “mechanical procedure”? This is a philosophical question
rather than a mathematical one. The claim that the two notions are equivalent
is known as Church’s thesis. Most mathematicians accept it, because all kinds
of mathematical formalizations of mechanical procedures have turned out to be
equivalent to Turing machines.

When we think of human beings and their languages, the philosophical
problem is worse, because of course then we are led to wonder whether or not
human mental powers are equivalent to Turing machines. This leads to
debate of the mind-body problem, and even to ethical questions. In what
follows we assume that Church’s thesis is true, and that human languages are
recursively enumerable.

In that case, Theorem 1 also shows that there are languages which are not
recursively enumerable. Representing sets as circles, the results so far may be
summed up in this way:

possible languages

r.e. languages=UR languages

— 202 —

COUNTING LANGUAGES

“UR” stands for “unrestricted rewriting”. Grammars as described so far
are unrestricted rewriting, or UR grammars, since there is no particular
restriction on the set F of rules, beyond that about terminal symbols. The
languages that can be generated by UR grammars are UR languages.

Now that the set of recursively enumerable languages is properly
established, it is time to consider its subsets. One thing we might expect a
grammar to do for us is to determine whether or not some possible sentence P
is grammatical or not. This is one of a class of problems known as “decision
problems”. When we want to decide whether or not some sentence is
grammatical, all we can do in general is enumerate the sentences generated by
the grammar, and hope that the given sentence will appear in the list. No
matter how far we go, we can never be certain that the sentence will not turn
up further down the list. It is impossible ever to brand some sentences as
definitely ungrammatical, unless we have an infinite amount of time to spend,
or the “god’s eye view” mentioned before in the alternative proof of Theorem
1. The decision problem is the reason why that version of the proof seems
somehow unsatisfactory.

Obviously there is no such decision problem when we are considering a
finite language. An arbitrary sentence is grammatical if it is a member of the
finite set, otherwise ungrammatical. And a finite set needs only a finite
amount of checking. Languages with no decision problem are called recursive
languages. Having defined them, we need to know now whether there are any
infinite recursive languages, and indeed whether there are any recursively
enumerable languages which are nof recursive. We can’t be sure yet. One
important theorem is surprisingly easy to prove:

Theorem 3 A language L is recursive if and only if both L and —L are
recursively enumerable.

—L means, reasonably enough, the set of all possible sentences which are
not members of L. First of all, consider the case where L is recursive. Then
we could check through the list of all possible sentences, and decide for each
one whether or notitisin L. Ifitisin L, we could add it to a list of “sentences

— 203 —

Ian C. Stirk

of L”, if not, we could and to a list of “sentences of —L”. In this way, both L
and —L can be enumerated. To complete the proof, we need to show that if L
and —L are recursively enumerable, then L is recursive. Consider any
possible sentence P. The lists of L and —L cover between them all possible
sentences, of course, so after some finite time P will appear on one of them. If
it is in the L list, P is grammatical, if in the —L list, it is ungrammatical. The
decision can always be made, showing that L is recursive, by definition.
Q.E.D.

Theorem 3 can be used right away to prove this:

Theorem 4 There is a recursively enumerable language which is not
recursive.

If we could find some recursively enumerable language L whose
complement —L was not recursively enumerable, the theorem would follow
immediately.

Now in the alternative proof of Theorem 1, we described a language which
certainly does not have a grammar, even if we do have a god’s eye view of its
construction. According to Church’s thesis, that means it is not recursively
enumerable. Let us use it as —L. The ith possible sentence is a member of
—L, then, if and only if it is not generated by the ith grammar, in those lists of
possible sentences and possible grammars. (Of course the astute reader will
have noticed that possible sentences and possible grammars could be combined
in one list, if desired!) The ith possible sentence would be in the
complementary language L, in that case, only if it was generated by the ith
grammar. There does not seem to be anything paradoxical about such a
language, but we must make sure that it is recursively enumerable. First of
all, suppose we pick any pair of integers (i, j)—for example, (3, 16) or (415,
1066). We could mechanically check whether or not the jth possible derivation
in the list of such things was a proper derivation according to the ith grammar
in the list. If it was, we could go on to check if the sentence it culminated in
was the ith sentence in the list of possible sentences. If it was the ith sentence,

— 204 —

COUNTING LANGUAGES

it could be added to an enumeration of sentences of L. The whole task is
mechanical provided that the number pairs (i, j) can themselves be enumerated,
so that any of them would eventually be considered. Well, number pairs can
obviously be placed in a grid as follows:

11 1, 2)——(1, 3) 1, 4.
(2,+1)/(2, 2)/(2, 3)//(2, 4)/
3, 1)/(3, 2)/(3, 3)/(3, 4)
(4,+1)/(4, 2)/(4, 3)/(4, 4)

and enumerated by following the diagonals as shown by the arrows, counting 1,
2, 3 etc. - Counting is such a way will obviously eventually bring you to any
number pair whatever. This makes the whole business mechanical, meaning
that L is a recursively enumerable language. The theorem follows. Notice, in
passing, that counting is not such an easy and obvious business as it might at
first appear. Suppose we started counting the number pairs by following the
first row of the table, like this:

1L,1)—>—(1,2)—(1,3) - (1,4)>.
2,1 2,2 @2, 3) @2, 4
G 1 (3,2 @, 3) 3, 4)
4,1 4, 2) 4, 3) 4, 4

In that case, we would never be back, in finite time, to begin on the second
row! The exact way of counting is often of crucial importance.

The next step is to enquire what kinds of grammar might generate
recursive languages. A feature of UR grammars is that they may include
deletion rules, rules whose right hand side is shorter than the left, for instance:

Xg — 2
X1X2X3 nd X4

— 205 —

Ian C. Stirk

When such rules are applied in the course of a derivation, then naturally the
following line will be shorter than the line to which the rule applied. The
length of a possible sentence is no guide to the complexity of a possible
derivation: even a short sentence may have an enormously long line in its
derivation, which is later reduced by deletion. This consideration might lead
us to guess that grammars without deletion rules might only generate recursive
languages. Given any possible sentence P, we might find that only a finite
number of possible derivations could end in sentences as short as P. If P is
generated by one of these, it is grammatical, otherwise ungrammatical. Let us
try to find a rigorous proof of this conjecture.

Firstly we define a length-increasing grammar as one whose set of rules F
contains only ordered pairs (P, Q) such that len(Q) (that is, the length of Q) is
greater than or equal to len(P). Now the theorem may be stated:

Theorem 5 Length increasing grammars generate only recursive languages.

The proof proceeds by showing that only a finite number of possible
derivations needs to be checked in order to determine whether or not some
sentence P is grammatical. The list of possible derivations needs to be
described more exactly this time. For any particular length-increasing
grammar we consider, there will of course be only a finite number of different
non-terminal symbols. If there are r+1 of them, they can be ordered
alphabetically X, to X;, without needing to invoke an extra symbol like “”
As usual, the possible derivations are ordered in alphabetically arranged blocks
of increasing length. Using the symbols A; to Ay to represent the k symbols in
the necessary alphabet of both non-terminal and terminal symbols, consider
derivations of this form:

Al;Az; ;Ak;AlAl;AlAz; ;AkAk;AlAlAl; AkAk Ak

This kind of derivation begins with k lines each consisting of a single symbol,

— 206 —

COUNTING LANGUAGES

followed by k2 lines consisting of all possible pairs of symbols. Then come all
possible triples, and so on until we finish with all possible n-tuples, where n is
the length of the possible sentence P being tested. Since all the possibilities
are included, then any length-increasing possible derivation longer than these
would either end in a string of symbols longer than n, which could not possibly
be P, or there would have to be a repetition of some x-tuple somewhere. Now
derivations in which a line is repeated—which contain a “loop”, in other
words—are obviously equivalent to a shorter derivation without the loop. To
take a concrete example, the derivation

X, X1 X2, X1 X3, X5 X3, X4 X2, X1 X0, X 1bjab
is equivalent to
XO;X1X2;X1b;ab

Thus we do not need to consider possible derivations longer than a certain
length in the search for a derivation of P. There can only be a finite number of
possible derivations up to a certain length, so they can all be checked. It is
possible to determine whether or not P is a sentence of the language, which
must then be recursive by definition.

Now we need to know whether all recursive languages can be generated by
length-increasing grammars. The next theorem provides the answer:

Theorem 6 There are recursive languages which do not have length
increasing grammars.

This proof is rather simple, since we can use enumerations developed
already. To start with, we can check the list of possible grammars with some
terminal vocabulary Vr, and enumerate just the length-increasing ones,
because of course it is a mechanical task to check that the rules obey the length
restriction. We also have a list of possible sentences, and can define a
language in a rather familiar way: the ith sentence in the list belongs to L just in

— 207 —

Ian C. Stirk

case it is not generated by the ith length-increasing grammar. L is recursive,
because by Theorem 5 we can check whether or not some possible sentence is
generated by some length-increasing grammar. But, in the usual way, if the
kth grammar in the list, G(k), generates this language, it generates the kth
possible sentence only if it does not generate the kth possible sentence.
Q.E.D.

Linguists are more often concerned with context-sensitive (CS) grammars
than merely length-increasing ones. In CS grammars, all rules P—Q must be
such that P=aX;r while Q=afy, where a and 7 are (possibly null) strings over
V, while 8 is a string over V of length at least one. Such rules are clearly
length-increasing, but only one non-terminal symbol X; is “changed” by each
rule. The reason for this restriction concerns the mechanical construction of
tree structures from derivations. A derivation containing the lines, say, aX;8
=> aX2X38 will clearly give rise to a subtree of the form:

1
X2 X3

Successive lines of a merely length-increasing derivation, though, might look
like this:

aX1Xof = aX3Xyp
on the application of rule X;X; — X3X,. In such a case, it would be uncertain,
without further information, just how the branches of a tree should connect

X; and X, with X3 and X4. However, it is easy enough to prove this theorem

Theorem 7 To every length increasing grammar there corresponds a CS
grammar which generates the same language.

The proof shows how the equivalent CS grammar may be constructed.
Any rules of the length-increasing grammar which already obey the CS
restriction can be retained. For any rule of the form X;Xs.. X, — Y1Y,...Y,,

— 208 —

COUNTING LANGUAGES

where 2<=m< =n, m new non-terminal symbols Z,, ...Z, are added to Vy.
The rule itself is replaced by the following series of rules:

X1X2...Xm g 21X2...Xm
Z1X2...Xm d lez...Xm

lez...zm_lxm i lez...zm_lszm+1...Yn
Z]Zg...ZmYm+1...Yn i Y122...ZmYm+1...Yn

Yl---Ym—lszm+l---Yn - Y]...Ym_lYm...Yn

Clearly each of these rules obeys the CS condition, and the whole series has the
same effect as the single rule it replaces. Proceeding in this way, all the non-
CS rules in the length-increasing grammar can be replaced, and the result will
be a CS grammar generating the same language. Q.E.D.

The last few theorems enable us to extend the set inclusion diagram given
before:

possible languages
r.e. languages=UR languages
recursive languages

CS languages

Now that we have left the abstractions for the more concrete world of
context-sensitive languages, it is time to end.

— 209 —

