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According to Chase [3, Theorem 2.1], the argument of Morita [8, The-
orem 1] yields that, for a left and right coherent ring, the injective envelope of
the left regular module is flat if and only if this is the case with its opposite
ring. In the present note, we will generalize this fact and provide conditions
which are symmetrical for an arbitrary associative ring with identity.

Throughout R stands for an arbitrary associative ring with identity and all
modules are unitary left or right R-modules. We denote by Mod R (resp.
Mod R°) the category of all left (resp. right) R-modules and by ( )* both the
R-dual functors. For a module X, we denote by E(X) its injective envelope
and by &x: X —X** the usual evaluation map. For an X &Mod R, we denote
by 7(X) its torsion submodule with respect to the Lambek torsion theory on
Mod R. Namely, 7(X) is the submodule of X such that (i) Homg (7(X), E(zR))
=0 and (ii) E(zR) cogenerates X/r(X). For also an M &Mod R°®, we denote
by (M) its torsion submodule with respect to the Lambek torsion theory on
Mod R,

We will prove the following

Theorem A. The following are equivalent.

(@) 7(X)=Ker &y for every finitely presented X € Mod R.

(a)® +(M)=Ker & for every finitely presented M & Mod R°®.

(b)  f**is monic for every monic f: X —Y in Mod R with X finitely generat-
ed and Y finitely presented.

(b)°®  g** is monic for every monic g: M— N in Mod R with M finitely
generated and N finitely presented.

Proposition B. Let R be right coherent. Then the following are equivalent.
(a) E(gR) is flat.

(b) There is an E €Mod R which is faithful, injective and flat.

(c) 7(X)=Ker & for every finitely presented X €Mod R.

Proposition C. Let R be right noetherian. Then the following are equivalent.
(a) E(xR) is flat.
(b) Every finitely generated submodule of E(Ry) is torsionless.
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In Proposition B, it always holds that (a)=>(b)=>(c). Thus Proposition
B together with Theorem A yields a result of Morita [8, Theorem 1] that, if R
is right coherent and E(Rj) is flat, E(xR) is flat. Also, since every finitely
presented submodule of a flat module imbeds in a projective module, Propo-
sition C generalizes the original statement of Morita [8, Theorem 1].

1. Preliminaries. In this section, we recall several basic facts which
we need in later sections.

Lemma 1. Let P,—P,—X—0 be a finite presentation in Mod R and put
M=Cok (P§¥—P¥). Then Ker Ex=~Ext;(M, R) and Cok &x=Ext% (M, R).

Proof. See Auslander [1, Proposition 6.3].

ReMARK. In the above lemma, we have a finite presentation PF— P¥— M
—0 in Mod R° with X =Cok (P§*— P§*), so Ker &,=~Ext% (X, R) and Cok &,
=~Ext%(X, R).

Lemma 2. Let E&€ModR be injective. Then, for a finitely presented
M =Mod R, there is a natural epimorphism

Torf (M, E) — Hom; (Extkx(M, R), E)
which is an isomorphism if R is right coherent.

Proof. See Cartan and Eilenberg [2, Chap. VI, Proposition 5.3]. Note
for the last part that, if R is right coherent, every finitely presented M & Mod R°?
admits a projective resolution whose terms are finitely generated.

REMARK. In case R is right coherent, Torf (M, E)=Hom, (Extk(M, R), E)
for all =0, all injective EEMod R and all finitely presented }M &Mod R°®.

Lemma 3. Let EEModR. Then E is flat if and only if Torf (M, E)=0
for all finitely presented M € Mod R°P.

Proof. The functor Tor{(—, E) commutes with direct limits and every
module is isomorphic to a direct limit of finitely presented modules.

Lemma 4. For an XEMod R, 7(X)=Ker&y if and only if Homg(Ker &y,
E(:R))=0.

Proof. E(zR) cogenerates X** and thus Im &.

The next lemma is due essentially to Masaike [6] (see also Sumioka [10,
Theorem 2]).

Lemma 5. The following are equivalent.
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(a) 7(X)=Ker &y for every finitely generated X €Mod R.
(b) Ewvery finitely generated submodule of E(xR) is torsionless.

Proof. (a)=(b). By Lemma 4.

(b)=(a). Let X &Mod R be finitely generated. We claim Hom, (Ker €y,
E(zR))=0. Let f: Ker éx— E(zR). By the injectivity of E(zR), f factors
through the inclusion j: Keréx—X. Let g: X —>E(xR) satisfy f=goj. Then,
since Im g is torsionless, the injectivity of E(pR) yields also that g factors
through &;. Consequently f factors through 0=&yoj, namely f=0.

Lemma 6. Let'EEModR be injective. Suppose every finitely generated
submodule of E imbeds in a projective module. Then E is flat.

Proof. Let P,—>P,—>M—0 be a finite presentation in Mod R° and put
X=Cok (P¥—>P¥). There is a natural map

8x: X*Qr E — Hom, (X, E)

such that 8x(f®e)(x)=f(x)e for fEX* e€E and x&X. Since by Auslander
[1, Proposition 7.1] Tor® (M, E)==Cok 8y, it suffices to show that 8y is sur-
jective. Letf: X—FE. Since Imf is finitely generated and imbeds in a pro-
jective module, the injectivity of E yields that f factors through a free module
of finite rank, which implies f €Im 8.

ReMARK. In the above lemma, if R is left noetherian, the converse holds.

2. Main results. In this section, we prove Theorem A and Propositions
B and C stated in the introduction.

Proof of Theorem A. By symmetry, it suffices to prove the implications
(a)°P=(b)=>(a).

(a)°>=(b). Let f: X—Y be monic in Mod R with X finitely generated
and Y finitely presented. Note first that Z= Cokf is finitely presented. Thus
by Lemma 1 Ext(Z, R)=Ker&, for some finitely presented M & Mod R*.
Hence by Lemma 4 Homg (Extk(Z, R), E(Rg))=0. Since Cokf* imbeds in
Extk (Z, R), we get Ker f*¥*=(Cok f*)*=0.

(b)=>(a). Let Y € Mod R be finitely presented. We claim Homg, (Ker &y,
E(zR))=0. It suffices to show that X*=0 for every finitely generated sub-
module X of Keréy,. Let X be a finitely generated submodule of Keré&, and
let f: X —Y denote the inclusion. Note that f*o&¥=(&yof)*=0. Thus, since
&¥ is epic, we get f*=0. Now, since f** is monic, we get X **=0 and thus
X*=0.

Proof of Proposition B. (a)=(b). Obvious.
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(b)=>(c). Let P,—P,—X —0 be afinite presentation in Mod R and put M=
Cok(P¥—P¥). Since by Lemma 1 Ker&y=Ext»(M, R) with M finitely
presented, by Lemma 2 we have Hom, (Ker&y, E)==0. Since the functor
Homy, (Ker &x, —) commutes with direct products, and since E(zR) imbeds in a
direct product of copies of E, we conclude Homg (Ker &y, E(rR))=0. Hence
by Lemma 4 7(X)=Ker &.

(c)=>(a). Let P,—>P,—>M—0 be a finite presentation in Mod R° and put
X=Cok (P§¥—P¥). Then X is finitely presented and by Lemma 1 Keré&y==
Extk (M, R). Thus by Lemmas 2 and 4 Torf(M, E(xR))=Hom, (Extk (M, R),
E(zR))=0. Hence by Lemma 3 E(,R) is flat.

Proof of Proposition C. (a)=>(b). By Theorem A, Proposition B and
Lemma 4, every finitely presented submodule of E(Rg) is torsionless. On the
other hand, every finitely generated right module is finitely presented.

(b)=(a). By Theorem A, Proposition B and Lemma 5.

RemARK. Let us consider the following conditions:

(a) Every finitely generated submodule of E(zR) imbeds in a projective
module.

(b) E(zR) is flat.

(c) Every finitely generated submodule of E(zR) is torsionless.

(d) 7(X)=XKer &y for every finitely presented X &€Mod R.

Then we have shown that (a)=>(b)=>(d) and that (a)=>(c)=(d).

We have shown that, if R is right coherent, (d)=>(b) so (c)=>(b). On the
other hand, we know from Sumioka [10] that, if R satisfies the descending chain
condition on annihilator left ideals, (c)=(a) so (c)=>(b). It seems that there
is no direct implication between these two results. Note however that they
have the same effect on right noetherian rings R.

We have shown that the condition (d) is symmetrical. There is another sym-
metrical condition given by Masaike [7, Theorem 2]. Namely, the condition
(c) together with the descending chain condition on annihilator left ideals is sym-
metrical. Although these two results have the same effect on left and right
noetherian rings R, we do not know whether there is any direct implication be-
tween them.

3. Remarks. Throughout this section R is assumed to be left and right
coherent. We have seen that E(zR) is flat if and only if E(Rg)is. Unfortuna-
tely, this cannot be extended to higher weak dimensions. Namely, weak dim E(,R)
=1 does not necessarily imply weak dim E(Rz)<<oo.

We denote by mod R (resp. mod R°?) the category of all coherent left (resp.
right) R-modules. Note that an R-module is coherent if and only if it is finitely
presented, and that every finitely generated submodule of a coherent R-module
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is coherent (see e.g. Popescu [9]).

Proposition D. The following are equivalent.

(a) weak dim E(rR)<1.

(b) &x: X—=>X** is an essential monomorphism for every torsionless X €
mod R.

(c) f**is monic for every monic f: X —Y in mod R with Y torsionless.

(d) Extk(—, R)* vanishes on mod R.

Proof. (a)=>(b). Let XE€modR. By Lemmas 1 and 2 we have
Homyg (Cok &, E(zR))=0. Thus Cok &y does not contain a non-zero torsionless
submodule. On the other hand, every non-zero submodule of X** is torsion-
less. Hence Im &y is large in X **.

(b)=(c). Letf: X—Y be monic in mod R with Y torsionless. Since f**o&y
=E&yo f is monic, so is f**,

(c)=(d). Let 0>Y—-P—->X—0 be exact in mod R with P projective.
Then Extk (X, R)*=Ker (Y#*— P*¥)=0,

(d)=(a). Let --+—>P,—>P,—>M—0 be a projective resolution in mod R.
We claim Torf (M, E(zxR))=Homg (Extk (M, R), E(xR))=0. It suffices to
show that X*=0 for every finitely generated submodule X of Ext% (M, R). Put
N=Cok(P,~P,) and Y=Cok(P¥—P¥). By Lemma 1 Ext% (M, R)=Ext} (N, R)
~Ker&y. Also, since N is torsionless, Ext% (Y, R)=Ker&y=0. Let X be a
finitely generated submodule of Ext% (M, R) and let f: X —Y be an imbedding
which factors through Ker €y,. Then, as in the proof of (b)=>(a) in Theorem A,
we get f¥*=0. Hence, applying ( )* to an exact sequence 0—X —Y—Cok f—0,
we get X*=~=Exty (Cokf, R). Therefore X**~=Extk (Cok f, R)*=0, which im-
plies X*=0.

ExampLE. Let R be a subalgebra of (K)s the 6 6 matrix algebra over a
field K, with the basis elements

ep=eéntepten, €=eytes, €= tg,
a=estes, B=eptes, Y=extes,
aB = egte;s, oY =egtex, La=ez,
BaB =ez; and Bay = ez,
where ¢;; are matrix units. Then it is not difficult to check that proj dim E(;R)
=1 and that proj dim E(Rz)=oo.

Remark. The above example together with Proposition D shows that the
vanishing of Extz(—, R)* on mod R is not symmetrical. On the other hand,
we know from [4] that the vanishing of Extk(—, R)* on mod R is symmetrical.

Proposition E. The following are equivalent.
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(a) ()**: mod R—mod R s left exact.

(a)°® ( )**: mod R°®—mod R? 7s left exact.

(b) ()**: mod R—>mod R is mono-preserving and Extg (Exty (—, R), R)
vanishes on mod R.

(b)* ( )**: mod R®—>mod R is mono-preserving and Exty (Extk (—, R), R)
vanishes on mod R°P.

(c) Both E(zR) and E(E(xR)/R) are flat.

(c)°® Both E(Ry) and E(E(R)/R) are flat.

Proof. We know from Theorem A and Proposition B that ( )**: mod R
—mod R is mono-preserving if and only if so is ( )**: mod R°*—mod R°?, and
that ( )**: mod R—mod R is mono-preserving if and only if E(rR) is flat.

(a)=(a)®. By [5, Proposition 3.4].

(a)*=>(b). Let X €modR. Since by Lemma 2 Hom, (Extz(X, R), E(R))
=Torf (E(Rg), X)=0, Extk (X, R)*=0 so by [5, Lemma 3.3] Extk (Extk (X, R),
R)=0.

(b)*=>(c). Let M &modR®. We claim Torf (M, E(E(zR)/R))==Hom,
(Extk (M, R), E(E(xR)/R))=0. It suffices to show that Homg(X, E(xR)/R)=0
for every finitely generated submodule X of Extk (M, R). Let X be a finitely
generated submodule of Ext% (M, R). Since by Lemma 2 Hom, (Ext: (M, R),
E(zR))=Torf (M, E(zR))=0, Homg (X, E(zR))=0. Thus Hom, (X, E(zR)/R)
=~Ext (X, R). Also X*=0 so by Lemma 1 X=Ext} (NN, R) for some N €mod
Ree. Hence Exti (X, R)=Extk (Extk (N, R), R)=0. Therefore Hom, (X,
E(xR)/R)=0.

(c)=(a). By [5, Proposition 3.5].

The next proposition is due essentially to Sumioka [10, Theorem 3].

Proposition F. Let R be left and right noetherian. Suppose the maximal
right quotient ring Q of R is a left quotient ring of R. Then weak dim E(,R)<1
implies E(xR) is flat.

Proof. Note first that by Masaike [6, Proposition 2] every finitely generated
submodule of Qg is torsionless. Suppose weak dim E(rR)<1. Let M &mod
Rr. We claim 7(M)=Keré&y,. By Lemma 1 Ker &,,~Ext;(X, R) for some
XemodR. Thus by Proposition D (Ker &,)*=Ext(X, R)*=0. Hence by
Sumioka [10, Proposition 3] Hom, (Ker &, E(Rz))=0, so by Lemma 4 (M)
=Ker&y. The assertion now follows from Lemma 5 and Proposition C.
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Added in psoof. Recently, the author was informed by S. Takashima that, in Proposi-
tion B, ‘“‘coherent” can be replaced by ‘“r-coherent’’, and that, in Proposision C,
““noetherian” can be replaced by “‘r-noetherian”. Accordingly, the questions in Remark
of Section 2 have been settled.
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