
Title The Continuing Importance of Peters and Ritchie

Author(s) Stirk, C. Ian

Citation 大阪外大英米研究. 1990, 17, p. 41-59

Version Type VoR

URL https://hdl.handle.net/11094/99140

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



THE CONTINUING IMPORTANCE 

OF PETERS AND RITCHIE 

Ian C. Stirk 

Introduction 

P. S. Peters and R. Ritchie's paper, "On the Generative Power of 

Transformational Grammars", was much circulated in photocopied form 

before it was finally published in 1973, two years after their (1971), 

which logically follows it. 

The stir which it originally caused has largely died down, but maybe 

it is time to rake over those old coals again. The "Peters-Ritchie results" 

have never, as far as I know, been exhaustively presented in a purely 

linguistic way. That is, they have always appeared in a form suited 

mainly to mathematically minded readers, although there is no reason 

why the results cannot be put into a shape which is entirely familiar 

to linguists. 

This is what I have tried to do in what follows. After presenting the 

proofs in a revised form, I have attempted to draw some conclusions 

from them which may have some pretence to novelty. 

The Peters-Ritchie results, it will be remembered, show that transfor-

mational grammars are equivalent in generative power to unrestricted 

rewriting grammars, presumably the most powerful generating devices 

possible. This is the case even when the transformational grammars 

meet certain "constraints on deletion", devised expressly to prevent the 

grammars from being so powerful. 

According to these constraints, a transformational rule may only 

delete items if (i), those items are identical to others not deleted, or 

(ii), they are members of a certain designated set of terminal symbols. 

The difficulty of deletion in general is pointed out in my (1988). 

-41-



Ian C. Stirk 

The Proofs 

If we are permitted to have context-sensitive (CS) phrase structure 

(PS) rules, it is not difficult to show that transformational grammars 

(TGs) can generate any unrestricted rewriting (UR) language. 

For consider any UR grammar. It is only different from a length-

increasing grammar in that some of its rules may involve deletion, that 

is, their right hand sides may be shorter than their left. Suppose we 

add a new symbol "B" to the non-terminal vocabulary of the UR 
grammar : that is, if its original non-terminal vocabulary was V N, the 

new one will be V N u {B }. Now we replace any rule P→Q, where Q is 
shorter than P, in the set of productions F of the UR grammar, by 

P→QBn 

where n is the difference in length between P and Q. This precisely 
makes up for the deletion : the right hand side is now just as long as 

the left. The overall result of this process is that the UR grammar 

becomes a length-increasing one, with a set of rules F', say. Unfortu-

nately it may not generate the same terminal strings as before, since 
not only might B's be added, but those which appear here and there in 

derivations might block the functioning of some of the rules in the 

production set F of the original UR grammar. 

For example, suppose that F contained the two rules 

(1) Xi応応→凶 X2

(2) Xz X,→ Xs X6 

and that a line in some derivation according to the grammar had the 

form: 

(3) … X1 応 X3ふ…

-42-



THE CONTINUING IMPORTANCE OF PETERS AND RITCHIE 

that is, it contains X, Xz X3 X, as a substring. Now, rule (1) could 

apply to this line, giving 

(4)... X, X2 X,… 

Rule (2) can apply here, giving as the next line : 

(5) …X1応 x6...

If we were adding B's to the rules of this grammar, in order to 

construct a length-increasing one, then rule (1) would become : 

(1') X1応応→ X1X2 B 

Applying it to the line (3) above would yield 

... X1応 BX,...

instead of (4). Rule (2), still a part of the length-increasing grammar, 

cannot apply to this. Adding the B to one rule can quite alter the 

character of the grammar. 

This problem could be avoided if there was a mechanism to move 

these B's to the right hand side of any string. In that case, they could 

move "out of the way" of the symbols of the original UR grammar, 

and permit derivations to continue as usual. A suitable mechanism 

would be the following set of rules, added to F': 

(6) Bx→ xB, for all x e VNu Vr 

There is to be one rule for each member of the whole vocabulary of 

the UR grammar, terminal and non-terminal. The rule moves B to its 

right. B's can thus i;nove to the right of anything, and the set of rules 

(6) is length-increasing, moreover. 

-43-



Ian C. Stirk 

So if the set F of rules has deletions "filled in" by occurrences 

of "B", to create the set F', and if the set (6) is added, the result would 

be a length-increasing grammar, which generates the same sentences as 

the UR grammar, except that some of them might have a number of 

B's to their right. 

CS grammars only differ from length-increasing ones in that all the 

symbols on the left hand side of a rule, except one, must appear also 

on the right. It is very easy, by introducing new symbols into the non-

terminal vocabulary, to convert a length-increasing grammar into a CS 

one. The method is described in many elementary texts, and I have 

myself outlined it before (as theorem 7 on page 208 of my 1988), so I 

will not repeat it here. Let us denote by F'i the CS grammar formed 

from the rules.F'u (6). The non-terminal vocabulary of this grammar 
will be V砂 {B}u U, where U is the set of symbols needed for the 

conversion of the rules to CS form. 

Of course, F" could be the CS PS rules of a TG for the UR language, 

if a transformational rule could be devised to eliminate the unwanted B's. 

Unfortunately there might be any number of these extra symbols to 

be eliminated, which makes the task impossible for any single transfor-

mational rule. A possible mechanism would be the transformational 

cycle, which enables a transformational rule to apply over and over 

again in successive subsentences of the output of the PS rules. The PS 

rules must provide a sufficient number of these subsentences. The follow-

ing method will do. The non-terminal vocabulary is enlarged by two 
more members, S and Q, becoming altogether V Nu {B, S, Q} u U. "S" 
is to be the familiar initial symbol of a TG. The following set of rules 

is added to the CS rules already described : 

(7) S → SQ 

S → Xo 

BQ→ bb 

Bb→ bB 

-44-



THE CONTINUING IMPORTANCE OF PETERS AND RITCHIE 

The last two of these are just length-increasing rather than CS, so 

once again the grammar will need some adjustment to make it a CS 

one. The result is to be the PS component of a TG, with initial symbol 

S. The first rule of set (7) ensures that each subsentence generated by 
the PS rules, except for the inmost one, consists of a Q. The first two 
rules of (2), then, generate labelled bracketings of this sort : 

[s [s [s... [Xo] Q] s... Q]s Q]s 

Xo is the initial symbol of the original UR grammar, so after rules 

have applied to it, the inmost subsentence will come to contain a sen-

tence of the UR language followed by some number of B's : 

[s [s [s… [s * * * BB.. B]s Q]s... Q]s 

The sentence is represented by " * * * ". The third rule in set (7), or 
rather its conversion into CS form, changes both "B" and "Q", when 
they are adjacent, into "b", where "b" is a new symbol in the terminal 

vocabulary : if the UR language has a terminal vocabulary VT then the 

new vocabulary is VT u {b}. The CS equivalent of the fourth rule in 

(7) interchanges adjacent B's and b's. Continued application of the third 

and fourth rules will lead to the labelled bracketing becoming : 

[s [s [s... [s * * * bb.. b]s b]s... b]s b]s 

provided we have the same number of B's and Q's at the start of the 
process. This, of course, is a matter of chance : the form of the CS 

rules gives no guarantee that the numbers will be equal. If they are 

not equal, some B's or some Q's will be left over, and it will be impos-

sible to replace them with terminal symbols by the application of any 

rule. The CS derivation just comes to an end. According to their for~al 

definition, however, languages are to be strings of terminal symbols 

generated by a grammar ; strings with non-terminal symbols remaining, 

-45-



Ian C. Stirk 

but to which no rules are applicable, do not form part of the language. 

In this particular case, we are left with only those CS derivations which 

end up with equal numbers of B's and Q's and thus an even number 

of b's. 

The following transformational rule obeys the constraints on deletion : 

SD: X-b-b 

1 2 3 

SC: 1 </> </> 

One of the deletions can be considered a deletion under identity ; the 

other a deletion of a member of a designated set of terminal symbols, 

in this case the set {b}. 

The effect of the transformation is to delete the b's in pairs. It will 

apply in every cycle provided that the subsentence of that cycle ends 

with a pair of b's : otherwise it will not apply. You can easily check 

that if there are 2x b's, there will be (x+l) cycles available. 2x-2 b's 

will be eliminated in the first (x -1) cycles, that is, all but two of 

them. On the xth cycle, there will be only one b at the end of the 

subsentence, so the transformation does not apply. The last two b's are 

removed on the final, (x+l) th cycle. 

That completes the proof for the case of TGs with CS PS rules. In 

presenting it, I have followed for the most part the outline given in 

Peters and Ritchie (1973). Like those writers, I have adapted the device 

of adding "Q", to fix the required number of subsentences, from Kuroda 
(1964). 

The proof works by showing how a TG, with a CS base component, 

may be constructed from an arbitrary UR grammar. The TG meets the 

constraints on deletion, showing that these constraints are insufficient 

to prevent TG's from generating the whole class of UR languages. The 

PS rules have to be CS, of course, since apart from CS rules actually 

introduced in the construction, any amount of context sensitivity may 

be brought over from the original UR grammar. 

-46-



THE CONTINUING IMPORTANCE OF PETERS AND RITCHIE 

The construction of the TG in the proof is quite brief and simple — 
elegant, to use the usual mathematical term. The proof presents a 

counterexample, although a quite general one, to the proposition that 

the constraints on deletion are adequate. There is no point in criticising 

the counterexample by saying that its PS rules and its transformation 

are totally artificial, and unlike anything proposed for the grammars 

of natural languages. The constraints on deletion were supposed to pre-

vent any TG from generating a language which is recursively enumerable 

but not recursive. Given any grammar meeting the constraints, therefore, 

it would be certain without further check that it generated a recursive 

language. The counterexample removes this certainty : the constraints 

are not enough, and a grammar which met them would need some further 

test for us to be sure that it generated a recursive language. The only 

reasonable concern about the form of the counterexample grammar might 

be to wonder what would happen if we insisted that all derivations from 

the CS PS rules resulted in terminal strings : in that case, the "trick" 

of using the symbol Q to help generate enough subsentences would not 

work. 

Despite the simplicity of that proof, its applicability is limited since 

most grammars for. fragments of natural languages do not make use 

of CS PS rules. These transformational grammars generally have context-

free (CF) bases. So the next step is to show that even TGs with finite-

state (FS) PS rules can generate the full set of UR languages. Even the 

weakest generative capacity will do for the base : the main reason is 

that transformational rules in themselves are powerful enough to carry 

out the same functions as rules in a UR grammar. The concern about CS 

PS rules expressed at the end of the last paragraph becomes irrelevant 

in the light of this. 

The following grammar, or rather grammar schema, will prove the 

result. Unfortunately it is nothing like as elegant as the preceding 

one, except in one or two of its basic concepts. The finite state phrase 

structure rules are as follows : 

-47-



S → # S 
S → #x1 

凶→むX1

X1 →むS

Ian C. Stirk 

X1 → #OX2 

応→ OX2

X2→ #xl 
応→ ＃S 

S → 0#0#0#0#0 

If the terminal vocabulary of the UR grammar this TG is to imitate 

is VT, then the terminal vocabulary of the FS language of the PS rules 
is V四{#, 0}. "O" is a new terminal symbol, while " #" is the "bound-

ary symbol" introduced by Chomsky. The idea is that boundary symbols 

are removed as transformations apply to base structures. If a terminal 

string generated by a TG still has boundary symbols in it, it does not 

count as a grammatical sentence. This is the filter function of trans-

formations, and we shall need to make use of it. In the PS rules, " f" 

is intended to range over all symbols in VT. Thus“凶→どX,"and the 

others containing "ど’'arerule schemata rather than rules. If there are 

r members of VT, then each rule schema stands for a set of r different 

rules. "S" is used, as a familiar initial symbol of TGs, replacing the 

mathematically more consistent "Xo". 
It will be seen that in part, the PS rules can generate random strings 

over VT, interspersed with blocks of the form # 0'#, where i>l. These 

blocks represent the non-terminal symbols of the UR grammar, but in 

encoded form. If those non-terminal symbols are Y; (j >o), then in 

general 

# 0 J+ 1 # encodes Y, 

The last PS rule generates "# 0 # ", the code for the UR grammar's 

initial symbol "Yo", flanked on either side by "O # O". The latter is to 

be a special sign to control the operation of transformations. Notice 

that the combination "O # O" can only be generated by this last rule. 

The other PS rules cannot generate O's with fewer than two #'s between 

them. 

-48-



THE CONTINUING IMPORTANCE OF PETERS AND RITCHIE 

Among a great number of others, the PS rules can generate labelled 

bracketings of this sort : 

[s # [s#…[s# L(m)[s# L (m-1)…[s# L (2)[sO#O#O#O#O]s]s…]s 

Here L (i) represents the ith line of a derivation according to the UR 

grammar. L (1), of course, would normaJly be "Yo", but appears here 

in encoded form. All the non-terminal symbols will be represented by 

their codes. The derivation runs from right to left, and the last line, 

L (m), would consist, of course, entirely of members of V-r. 

The set of transformations of this TG will be as follows : 
T (1) 

SD: # -X-[sY-0#0-Z]s 

1 2 3 4 5 

SC: 0#0 2 ¢ 4 5 

Condition : 2 = 3 

This transformation cannot apply on the first cycle, since it mentions 

the presence of a subsentence, nor will it apply on subsequent cycles 

unless its identity condition is met. The meeting of that condition depends 

on subsequent rules. Notice that the deletion of T (1) meets the con-

straints, as it only applies under the identity condition. 
Next comes a transformational schema, standing for a set of k trans-

formational rules. We suppose that the original UR grammar has k rules 

in its production set, of the form P 1→Q 1. In the schema below, P 1'and 
Q 1'represent the encoded forms of PI and Q 1, that is, forms in 

which each non-terminal symbol Y; is replaced by #Qi+'#. 

T (i+l) 

(1<虞k)
SD : 0 # 0 -X -P,'-Y -0 # 0 -Z 

1 2 3 4 5 6 

SC: ¢ 2 Q,'-4 5 + 3 6 

-49-



Ian C. Stirk 

In at least one of this set of rules, of course, P;'will be # 0 #, the 
coded form of Yo, the initial symbol. One rule like this will apply in 

the first cycle, deleting the initial O # 0 under identity, quite properly, 
and placing # 0 # after the O # 0 at the right of the string~Z, of 
course, will be null in this first cycle. No other rule of this set can 

apply now, since the initial O # 0 has been deleted, ensuring that the 
structural description is not met. The effect of an application of one 

of these transformations is to imitate the application of. a rule of the 

UR grammar, turning one line in a derivation into the next one. In the 

first cycle, L (1), the first line, Yo or # 0 #, becomes the second line, 
L (2). Now if, just by chance, the output of the PS rules represented 

a proper derivation of the UR grammar, L (2) would, after the first 

cycle, be present in the first subsentence, and also in the next higher 

subsentence. On the next cycle, then, the structural description of T (1) 

would be met. As well as deleting one copy of L (2), T (1) replaces 

the initial # by O # 0, giving an opportunity for one of the set T (i 
+I) to apply. As long as we are dealing with a correct UR derivation, 

this process will continue. Just one member of T (i + 1) will apply on 

each cycle, to replace L (s), say, of the derivation by L (s+l). In the 

next cycle, T (1) will delete the superfluous occurrence of L (s + 1) and 

some member of T (i + 1) will apply to the remaining occurrence. And 

so on. Eventually the last line L (m) will be reached. As it consists 

entirely of terminal symbols of the UR grammar, no member of T (i 

+I) will apply to it, and T (1) will not apply on the next cycle either, 

as the sentence being considered begins with # 0 # 0, and the SD of T 
(1) cannot be met. 

There are a number of transformations still to come in the cycle, and 

of course it is vital that none of these should apply before T (1) through 

T (k+l) have finished their work of imitating the UR derivation. It is 

only after this derivation is finished that the sentence being cycled over 

will start with # 0 # 0, however, so this string is used as part of the 
SD of the remaining rules. Note that whenever a rule in the set T (2) 

to T (k + 1) applied, the P;'part of the SD was never deleted, but 

-50-



THE CONTINUING IMPORTANCE OF PETERS AND RITCHIE 

adjoined to an occurrence of O # 0 further along in the string. This was 
to ensure that any deletions among the original UR rules would not 

cause the transformations to violate the constraints on deletion. Now, 

however, these Pi'will have built up to the right of the O # 0 in the 
inmost subsentence. All of this unwanted material must be deleted in 

a way that meets the constraints. The first P.'to be moved in this way 

was of course # 0 #, which is now at the right hand end of the inmost 
subsentence. T (k+2) includes it in its SD : 

T (k+2) 

SD : # -0 -# -0 -X -[ s O # 0 -Y -# -# 0 # ] s 
1234  5 6 7 8 9 

SC : ¢ 2 3 4 5 6 7 ¢ 9 

It will be seen that this transformation deletes any occurrence of # just 
before the # 0 # at the end of the inmost sentence. Also, in common 
with all the remaining transformations except the last two, it deletes 

the initial #, to ensure that everything works smoothly at a rate of 
one such transformation per cycle. The following transformation, T (k 

+3), is very similar, except that it deletes a O instead of a # : 

T (k+3) 

SD : # -0 -# -0-X -[s O # 0 -Y -0 -# 0 # ]s 
1 2 3 4 5 

SC: ¢ 2 3 4 5 
9

9

 

8
¢
 

7

7

 

6

6

 

Between them, T (k+2) and T (k+3) remove all the unwanted remains 

of non-terminal symbols of the UR grammar, for they were all encoded 

by means of # and O only. However, it is quite possible for the P八the
left hand sides of the UR rules, to include terminal symbols of the UR 

grammar also. There is a restriction even on UR rules, though, that 

such terminal symbols must also appear on the right hand side of the 

rule -they may not be deleted (see my (1988), page 191). All such terminal 

-51 -



Ian C. Stirk 

symbols must therefore appear in the final string of the derivation, and 

the following set of transformations for deleting the unwanted ones takes 

advantage of that fact. We suppose that there are r terminal symbols, 

釦toa,. There are also r transformations in the set, one for each 

terminal symbol : 

T (k+j+3) 

(l<;j<;r) 
SD: # -0-# -0-X-ai -Y-[sO#O-Y -a1 -#0# ]s 

1234567  8 910 11 

SC : </; 2 3 4 5 6 7 8 9 </; 11 

Each unwanted a1 is deleted under identity with an occurrence in the 

sentence being cycled over, that is, an occurrence in the sentence of the 

UR language. 

The preceding rules, T (k+2) to T (k+r+3), will delete all the super-

fluous remains of the P /, until nothing remains in the lowest subsentence 

but O # 0 and the first moved # () #, which has so far remained un-

touched. The following transformation, whose SD is of course met now 

for the first time, deletes all this material under a condition of identity : 

T (k+r+4) 

SD : # -0 # -0 -X -[ s O # -0 # -0 # ] s 

12  34  5 6 7 

SC : 0 + 1 2 3 4 </> </> </> 

The transformation also adds a O to the beginning of the string, which 

cunningly allows the tidying up to be completed by one final transfor-

mation: 

T (k+r+5) 

SD : # 0 -# 0 -# 0 -X 

1 2 3 4 

SC: ¢ ¢ ¢ 4 

-52-



THE CONTINUING IMPORTANCE OF PETERS AND RITCHIE 

Two occurrences of # 0 are deleted under the condition of identity, the 

remaining one as an instance of the deletion of members of a finite set 

of terminal symbols. In this case, the designated set is just { 0, # }. 

These transformations seem to work smoothly enough in the case of 

a particular sort of output from the PS rules : one which contains a 

"correct" derivation of the UR grammar in encoded form, and also a 

sufficient number of subsentences consisting only of #, which enable all 

unwanted material to be deleted, leaving only a sentence of the UR 

language. Any other variety of PS output should fail to result in a 

terminal string not containing • #, and thus not count as part of the 
language. The most difficult part of constructing a grammar like this 

is to be sure that no stray strings get through -strings which are not 

in the UR language, but which somehow succeed in having all #'s 

removed by some overlooked fault among the transformations. 

I don't think any error of this sort has crept into the grammar I've 

presented here, but maybe some astute reader will find one. No doubt 

it would be easy enough to remove the error without a major change 

to the grammar as a whole. 

Another possibility is that the grammar might fail to generate sen-

tences that are actually in the UR language. The only sort I can think 

of here would be null sentences, that is, the case where the sentence of 

zero length is in the language. T (1) above may cause trouble here : in 

the case of a null sentence, the variables X and Y of that transformation 

would both be null, and it is not quite clear if the transformation could 

be said to apply in such a case. Never mind, an extra transformation 

could be inserted to take of this. I'll leave the details to any interested 

reader. 

As well as these matters, some might complain of the cavalier use of 

the boundary symbol " # " throughout the grammar. It appears and 
disappears as the rules apply, instead of remaining quietly at each end 
of a subsentence until being deleted, as is the case in t ransformation~l 
grammars of natural languages. If anyone is really worried about this, 

I would suggest using a new terminal symbol, "l", say, to do the work 

-53-



Ian C. Stirk 

of the #'s in the grammar. Boundary symbols could be just in their 

"natural" position at the ends of subsentences, and be deleted only when 

no l's remained. Again, I'll leave the details to you, with the warning 

that fiddling with these transformations can be as addictive as a daily 

crossword puzzle, and maybe just as irrelevant to the progress of human-

kind. 

No doubt it is the niggling detail that has to be inserted into proofs 

like the one above that makes them so unappealing to all but a few. 

Maybe this one could be of use to linguistics students learning how to 

write transformations correctly, at least if anyone needs to learn how 

to do that nowadays. 

The grammar above is rather different from the one used by Peters 

and Ritchie (1971), although the principles of its operation are the same. 

Peters and Ritchie developed a transformational grammar which imitates 

the working of a Turing machine, rather than a UR grammar. This 

makes it less accessible to linguists, which is unfortunate, as they should 

constitute the main audience for these results. Mathematically, the whole 

business is a very messy and inelegant means of obtaining a not very 

exciting result -the importance is entirely linguistic. 

Another difference between Peters and Ritchie's grammar and the one 

here involves lexical insertion. I have assumed that, in common with 

most transformational grammars, lexical insertion should take place in 

the base. No lexical insertion is carried out by the transformations of 

the grammar above. This makes the filter function of the transformations 

extremely important. Only a small proportion of the output of the PS 

rules will result in sentences, for the FS rules, of necessity, throw 

symbols together almost at random, when compared to an orderly 

derivation of the UR grammar. 

If I had stuck more closely to Peters and Ritchie's method of construc-

tion, then the transformational rules would have imitated successive steps 

in a derivation according to the UR grammar, instead of checking wheth-

er the output of the PS rules constituted a proper derivation. This would 

have been more economical from the point of view of output string 

-54-



THE CONTINUING IMPORTANCE OF PETERS AND RITCHIE 

rejection, but causes a problem with lexical insertion. The only way to 

avoid most lexical insertion being done by the transformations seems to 

be to have the PS rules generate the complete terminal vocabulary as a 

list. Then, instead of inserting items from nowhere, the transformations 

copy them from the list. At the end of the derivation, superfluous 

terminal symbols in the list, that is, any that are not present in the 

terminal string generated, are deleted. That is quite proper, though it 

is odd, perhaps, that the set of designated terminal items which may be 

deleted consists of the entire terminal vocabulary ! Peters and Ritchie 

choose that method, and it has the consequence that the TG's only 

rejected strings, that is, those that come through the grammar still 

containing boundary symbols, correspond to derivations of the UR 

grammar which end up containing non-terminal symbols which cannot be 

rewritten by any rule. 

That in itself would not be so important, but it is possible to envisage 

UR grammars every derivation of which ends up with a terminal string. 

That is, no derivation would ever get "stuck" by ending in a line con-

taining at least one non-terminal symbol to which no rule could apply, 

because of its context. UR grammars of this kind cannot generate all 

possible UR languages, but only a somewhat restricted, though still large, 

subset. This subset is discussed in Peters and Ritchie (1973a). I have 

chosen to ignore it here, since the subset is still unreasonably large, as 

I hope to show in the next section. 

Conclusion 

Even if transformational grammars are not allowed to employ a filter 

function, they may still generate a large subset of UR、languages,it 

appears. 

I will not explore the nature of this subset further, for its linguistic 

importance is small. In fact, it is in many ways surprising that linguists 

have continued to pay attention to any of the Peters-Ritchie results. 
Almost all have ignored, it appears, the consequence of Peters (1973). 

-55-



Ian C. Stirk 

Any derivation of the sort of transformational grammar presented 

in the last section will obviously contain a number of subsentences whose 

contents totally vanish on the way to the terminal string and its struc-

tural description. With the usual tree pruning conventions, all trace of 

those subsentences will disappear. Suppose TG's were restricted to those 

in which every subsentence must contain at least one "survivor" which 

has a reflex in the terminal strings generated. Subsentences may not 

totally vanish in the course of a derivation. Not so surprisingly, Peters 

(1973) was able to show that only recursive languages,may be generated 

by such grammars, since, given any sentence, the maximum number of 

subsentences that could have been involved in its derivation can be deter-

mined. Thus, only a certain finite number of rule applications could 

have resulted in the derivation of that sentence, and they may all 

be checked to see whether or not the sentence is grammatical. 

Grammars proposed for human languages have always been of this 

type, or at least with only harmless exceptions, as Peters (1973) points 

out. There seems to be no good reason to introduce subsentences, clauses, 

into the deep structure of sentences, only to have them totally eliminated 

before the surface structure is reached. Nevertheless, linguists seem 

totally to have ignored this straw offered by Peters to prevent them 

drowning in the boundless sea of UR languages. 

The usual reaction of linguists to the Peters-Ritchie results is in fact 

contained in the title of Sampson's (1973) paper : "The Irrelevance of 

Transformational Omnipotence". The basic idea of this paper, and many 

since, is that weak generative capacity is quite unimportant : only the 

strong generative capacity of grammars is worth investigating, and the 

Peters-Ritchie results affect this not at all. Maybe the most recent of 

such opinions is expressed by Weinberg (1988), in an overview of present 

day mathematical linguistics. If weak generative capacity is irrelevant 

to any linguistic concern, then of course a restriction to non-filtering 

languages, as in Peters and Ritchie (1973a), or to recursive languages, 

as in Peters (1973), is not worth even a glance. 

Yet it seems to me that linguists have generally ignored the connec-

-56-



THE CONTINUING IMPORTANCE OF PETERS AND RITCHIE 

tions between weak and strong generative capacity, perhaps influenced 

by the "unnatural" appearance of the devices used in discussing mathe-

matical linguistics. It was observed before that such "unnaturalness" 

is irrelevant to the force of an argument through counterexample. 

Suppose that it is decided, quite a priori, that natural languages are, 

say, context-free. Such a cl.aim has a great effect on the kinds of rules 

that may be included in a grammar for. a natural language, in other 

words, a great effect on the strong generative capacity of such grammars. 

Context may be mentioned in such rules, deletion may even be carried out 

by such rules, but in a peculiarly restricted way. These matters have been 

stressed recently by proponents of generalised phrase structure grammar, 

and I have summarised some of the formal points in my (1987). A 

decision about weak generative capacity can profoundly influence the form 

of rules, and force hard decisions upon grammar writers. Concentration 

on strong generative capacity only gives too much freedom : types of rule 

can be decided on quite arbitrary grounds. There are infinitely many ways 

of generating a set of sentences if any type of rule can be introduced. 

I feel there is a certain, if not very strong, analogy between linguistic 

argument in the present day and certain events in the history of astron-

omy. Until after the time of Copernicus, astronomers were concerned 

mainly with the prediction of the places of the planets in the heavens. 

They devised the system of epicycles, a complex yet internally consistent 

and somehow compelling method of determining planetary positions to a 

certain degree of accuracy. Copernicus constructed an alternative system, 

in which the sun, rather than the earth, occupied the centre of the 

mechanism. On the other hand, Copernicus'system too remained in the 

epicyclic framework. Let us compare these systems with those linguistic 

ones in which strong generative capacity is paramount. There are many 

reasons why certain grammars should be chosen above others, although 

they all generate a similar range of sentences, and may be adapted to 

generate others. Similarly different epicyclic systems have certain 

advantages and disadvantages, though they all predict planetary positions 

and get them more or less right. 

-57-



Ian C. Stirk 

The end of that particular astronomical tale came when Kepler began 

to ask questions not just about a planet's position in the sky, but also 

about how far away it might be. This led to an astonishingly simple 

mathematical relation between planetary distances and positions, and 

ultimately to the theory of gravitation and much more. The relation 

between Kepler's ideas and those of Copernicus is made elegantly clear 

in Hoyle (1973). 

The end of the linguistic tale is not yet in sight. Yet a simple math-

ematical relation between human languages and formal systems is already 

detectable : it is remarkable that virtually nothing has appeared in 

any natural language which is certainly not context-free. It seems to me 

that linguistics should concentrate on that strange fact, and thoroughly 

investigate grammars obeying that powerful constraint of context-

freeness. Simple mathematical properties of linguistic objects are much 

more likely to link up with profound theories in other areas like psychol-

ogy, than are musings about the superiority of one system of epicycles 

to another. 

-58-



THE CONTINUING IMPORTANCE OF PETERS AND RITCHIE 

Bibliography 

M. Gross, M. Halle and M-P. Schutzenberger, (eds) "The Formal Analysis 

of Natural Languages" (Mouton, 1973) 

K. Hintikka, J. M。ravcsikand P. Suppes (eds) "Approaches to Natural 
Languages" (Reidel, 1973) 

F. Hoyle (1973) "Nicolaus Copernicus: an Essay・on his Life and Work" 

(Heinemann) 

S-Y. Kuroda (1964) "Classes of Languages and Linear Bounded Automata" 

(Information and Control 7, pp 207 -223) 

F.J. Newmeyer (ed) "Linguistics : The Cambridge Survey" (Vol.1) 

(Cambridge University Press, 1988) 

P.S. Peters (1973) "On Restricting Deletion Transformations" 

(in Gross, Halle and Schutzenberger, eds) 

P.S. Peters and R. Ritchie (1971) "On Restricting the Base Component 

of Transformational Grammars" 

(Information and Control 18, pp 483 -501) 

P.S. Peters and R. Ritchie (1973) "On the Generative Power of 

Transformational Grammars" (Information Sciences 6, pp 49-83) 

P.S. Peters and R. Ritchie (1973a) "Nonfiltering Grammars" 

(In Hinkikka, Moravcsik and Suppes, eds) 

G. Sampson (1973) "The Irrelevance of Transformational Omnipotence" 

(Journal of Linguistics 9, pp 299-302) 

Ian C. Stirk (1987) "Context-Free Languages Revisited Yet Again"（大

阪外大英米研究 15,pp 103 -132) 

Ian C. Stirk (1988) "Counting Languages" 

（大阪外大英米研究 16,pp 191 -209) 

Amy S. Weinberg (1988) "Mathematical Properties of Grammars" 

(in Newmeyer, ed, pp 416-429) 

-59-




