|

) <

The University of Osaka
Institutional Knowledge Archive

Title The Continuing Importance of Peters and Ritchie

Author(s) |[Stirk, C. Ian

Citation | KPRAMKRILKFZL. 1990, 17, p. 41-59

Version Type|VoR

URL https://hdl. handle.net/11094/99140

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

THE CONTINUING IMPORTANCE
OF PETERS AND RITCHIE

Ian C. Stirk

Introduction

P. S. Peters and R. Ritchie’s paper, “On the Generative Power of
Transformational Grammars”, was much circulated in photocopied form
before it was finally published in 1973, two years after their (1971),
which logically follows it.

The stir which it originally caused has largely died down, but maybe
it is time to rake over those old coals again. The “Peters-Ritchie results”
have never, as far as I know, been exhaustively presented in a purely
linguistic way. That is, they have always appeared in a form suited
mainly to mathematically minded readers, although there is no reason
why the results cannot be put into a shape which is entirely familiar
to linguists.

This is what I have tried to do in what follows. After presenting the
proofs in a revised form, I have attempted to draw some conclusions
from them which may have some pretence to novelty.

The Peters-Ritchie results, it will be remembered, show that transfor-
mational grammars are equivalent in generative power to unrestricted
rewriting grammars, presumably the most powerful generating devices
possible. This is the case even when the transformational grammars
meet certain “constraints on deletion”, devised expressly to prevent the
grammars from being so powerful.

According to these constraints, a transformational rule may only
delete items if (i), those items are identical to others not deleted, or
(ii), they are members of a certain designated set of terminal symbols.
The difficulty of deletion in general is pointed out in my (1988).

Ian C. Stirk

The Proofs

If we are permitted to have context-sensitive (CS) phrase structure
(PS) rules, it is not difficult to show that transformational grammars
(TGs) can generate any unrestricted rewriting (UR) language.

For comsider any UR grammar. It is only different from a length-
increasing grammar in that some of its rules may involve deletion, that
is, their right hand sides may be shorter than their left. Suppose we
add a new symbol “B” to the non-terminal vocabulary of the UR
grammar : that is, if its original non-terminal vocabulary was Vu, the
new one will be Vyu {B}. Now we replace any rule P —>Q, where Q is
shorter than P, in the set of productions F of the UR grammar, by

P—-QB

where n is the difference in length between P and Q. This precisely
makes up for the deletion : the right hand side is now just as long as
the left. The overall result of this process is that the UR grammar
becomes a length-increasing one, with a set of rules ' , say. Unfortu-
nately it may not generate the same terminal strings as before, ‘since
not only might B’s be added, but those which appear here and there in
derivations might block the functioning of some of the rules in the
production set F of the original UR grammar.
For example, suppose that F contained the two rules

(1 X: X: X3 » X1 Xo
(2) X: X4 = X5 X6

and that a line in some derivation according to the grammar had the
form :

B .. XX X Xl

THE CONTINUING IMPORTANCE OF PETERS AND RITCHIE

that is, it contains X, X. Xs X4 as a substring. Now, rule (1) could
apply to this line, giving

4 ... X X2 X4
Rule (2) can apply here, giving as the next line :
B) ... X1t X5 Xe ...

If we were adding B’s to the rules of this grammar, in order to
construct a length-increasing one, then rule (1) would become :

(1/) X X: X5 X1 X: B
Applying it to the line (3) above would yield
... X1 X2 BX, ...

instead of (4). Rule (2), still a part of the length-increasing grammar,
cannot apply to this. Adding the B to one rule can quite alter the
character of the grammar.

This problem could be avoided if there was a mechanism to move
these B’s to the right hand side of any string. In that case, they could
move “out of the way” of the symbols of the original UR grammar,
and permit derivations to continue as usual. A suitable mechanism
would be the following set of rules, added to F’

(6) Bx — xB, for all x ¢ Vyu Vg
There is to be one rule for each member of the whole vocabulary of
the UR grammar, terminal and non-terminal. The rule moves B to its

right. B’s can thus move to the right of anything, and the set of rules
(6) is length-increasing, moreover.

Ian C. Stirk

So if the set F of rules has deletions “filled in” by occurrences
of “B”, to create the set F', and if the set (6) is added, the result would
be a length-increasing grammar, which generates the same sentences as
the UR grammar, except that some of them might have a number of
B’s to their right.

CS grammars only differ from length-increasing ones in that all the
symbols on the left hand side of a rule, except one, must appear also
on the right. It is very easy, by introducing new symbols into the non-
terminal vocabulary, to convert a length-increasing grammar into a CS
one. The method is described in many elementary texts, and I have
myself outlined it before (as theorem 7 on page 208 of my 1988), so I
will not repeat it here. Let us denote by F " the CS grammar formed
from the rules ¥’ u (6). The non-terminal vocabulary of this grammar
will be Vyu {B} v U, where U is the set of symbols needed for the
conversion of the rules to CS form.

Of course, F” could be the CS PS rules of a TG for the UR language,
if a transformational rule could be devised to eliminate the unwanted B's.

Unfortunately there might be any number of these extra symbols to
be eliminated, which makes the task impossible for any single transfor-
mational rule. A possible mechanism would be the transformational
cycle, which enables a transformational rule to apply over and over
again in successive subsentences of the output of the PS rules. The PS
rules must provide a sufficient number of these subsentences. The follow-
ing method will do. The non-terminal vocabulary is enlarged by two
more members, S and @, becoming altogether Vyu {B, S, Q} v U. “S”
is to be the familiar initial symbol of a TG. The following set of rules
is added to the CS rules already described :

s — sSQ
S — Xo
BQ — bb
Bb - bB

THE CONTINUING IMPORTANCE OF PETERS AND RITCHIE

The last two of these are just length-increasing rather than CS, so
once again the grammar will need some adjustment to make it a CS
one. The result is to be the PS component of a TG, with initial symbol
S. The first Tule of set (7) ensures that each subsentence generated by
the PS rules, except for the inmost one, consists of a Q. The first two
rules of (2), then, generate labelled bracketings of this sort :

(s [s [s... [X0] Q) 5...Qls QIs

Xo is the initial symbol of the original UR grammar, so after rules
have applied to it, the inmost subsentence will come to contain a sen-

tence of the UR language followed by some number of B's:
[s [s [s... [s* % %BB..Bls Q]sQ]s

The sentence is represented by “ * % *”, The third rule in set (7), or
rather its conversion into CS form, changes both “B” and “Q”, when
they are adjacent, into “b”, where “b” is a new symbol in the terminal
vocabulary : if the UR language has a terminal vocabulary Vr then the
new vocabulary is V:u {b}. The CS equivalent of the fourth rule in
(7) interchanges adjacent B’s and b’s. Continued application of the third
and fourth rules will lead to the labelled bracketing becoming :

[s [s [s... [s*% % % bb..bls bls...bls bls

provided we have the same number of B’s and Q’s at the start of the
process. This, of course, is a matter of chance : the form of the CS
rules gives no guarantee that the numbers will be equal. If they are
not equal, some B’s or some Q’s will be left over, and it will be impos-
sible to replace them with terminal symbols by the application of any
rule. The CS derivation just comes to an end. According to their formal
definition, however, languages are to be strings of terminal symbols
generated by a grammar ; strings with non-terminal symbols remaining,

ian C. Stirk

but to which no rules are applicable, do not form part of the language.
In this particular case, we are left with only those CS derivations which
end up with equal numbers of B’s and Q’s and thus an even number
of b’s.

The following transformational rule obeys the constraints on deletion :

SD:

— D
'

e N o

s w gz

SC:

One of the deletions can be considered a deletion under identity ; the
other a deletion of a member of a designated set of terminal symbols,
in this case the set {b}.

The effect of the transformation is to delete the b’s in pairs. It will
apply in every cycle provided that the subsentence of that cycle ends
with a pair of b’s : otherwise it will not apply. You can easily check
that if there are 2x b’s, there will be (x+1) cycles available. 2x-2 b’s
will be eliminated in the first (x—1) cycles, that is, all but two of
them. On the xth cycle, there will be only one b at the end of the
subsentence, so the transformation does not apply. The last two b’s are
removed on the final, (x+1) th cycle.

That completes the proof for the case of TGs with CS PS rules. In
presenting it, I have followed for the most part the outline given in
Peters and Ritchie (1973). Like those writers, I have adapted the device
of adding “Q”, to fix the required number of subsentences, from Kuroda
(1964).

The proof works by showing how a TG, with a CS base component,
may be constructed from an arbitrary UR grammar. The TG meets the
constraints on deletion, showing that these constraints are insufficient
to prevent TG’s from generating the whole class of UR languages. The
PS rules have to be CS, of course, since apart from CS rules actually
introduced in the construction, any amount of context sensitivity may
be brought over from the original UR grammar.

THE CONTINUING IMPORTANCE OF PETERS AND RITCHIE

The construction of the TG in the proof is quite brief and simple —
elegant, to use the usual mathematical ferm. The proof presents a
counterexample, although a quite general one, to the proposition that
the constraints on deletion are adequate. There is no point in criticising
the counterexample by saying that its PS rules and its transformation
are totally artificial, and unlike anything proposed for the grammars
of natural languages. The constraints on deletion were supposed to pre-
vent any TG from generating a language which is recursively enumerable
but not recursive. Given any grammar meeting the constraints, therefore,
it would be certain without further check that it generated a recursive
 language. The counterexample removes this certainty : the constraints
are not enough, and a grammar which met them would need some further
test for us to be sure that it generated a recursive language. The only
reasonable concern about the form of the counterexample grammar might
be to wonder what would happen if we insisted that all derivations from
the CS PS rules resulted in terminal strings : in that case, the “trick”
of using the symbol Q to help generate enough subsentences would not
work.

Despite the simplicity of that proof, its applicability is limited since
most grammars for- fragments of natural languages do not make use
of CS PS rules. These transformational grammars generally have context-
free (CF) bases. So the next step is to show that even TGs with finite-
state (FS) PS rules can generate the full set of UR languages. Even the
weakest generative capacity will do for the base : the main reason is
that transformational rules in themselves are powerful enough to carry
out the same functions as rules in a UR grammar. The concern about CS
PS rules expressed at the end of the last paragraph becomes irrelevant
in the light of this.

The following grammar, or rather grammar schema, will prove the
result. Unfortunately it is nothing like as elegant as the preceding
one, except in one or two of its basic concepts. The finite state phrase

structure rules are as follows :

lan C. Stirk

S — #§ X, = #0X.
S = #X, X: > 0X:
X, = £X, X, = #X,
X, — £S X: > #8S
' S > O0%0#0#%#0#%0

If the terminal vocabulary of the UR grammar this TG is to imitate
is V1 , then the terminal vocabulary of the FS language of the PS rules
is Veu {#, O}. “O” is a new terminal symbol, while “ #” is the “bound-
ary symbol” introduced by Chomsky. The idea is that boundary symbols
are removed as transformations apply to base structures. If a terminal
string generated by a TG still has boundary symbols in it, it does not
count as a grammatical sentence. This is the filter function of trans-
formations, and we shall need to make use of it. In the PS rules, “ £”
is intended to range over all symbols in Vi. Thus “X,— £X,” and the
others containing “ £” are rule schemata rather than rules. If there are
r members of Vr, then each rule schema stands for a set of r different
rules. “S” is used, as a familiar initial symbol of TGs, replacing the
mathematically more consistent “Xo”.

It will be seen that in part, the PS rules can generate random strings
over Vr, interspersed with blocks of the form #O" #, where i_>1. These
blocks represent the non-terminal symbols of the UR grammar, but in
encoded form. If those non-terminal symbols are Y; (j >0), then in
general

£O'*' # encodes Y,

The last PS rule generates “#0 #”, the code for the UR grammar’s
initial symbol “Yo”, flanked on either side by “O # O”. The latter is to
be a special sign to control the operation of transformations. Notice
that the combination “O$#0” can only be generated by this last rule.
The other PS rules cannot generate O’s with fewer than two #’'s between
them.

THE CONTINUING IMPORTANCE OF PETERS AND RITCHIE

Among a great number of others, the PS rules can generate labelled
bracketings of this sort :

[s#[s#.. . [s# L) [s# L(m—1)..[s# L 2)[O40404040]5 ... 15

Here L (i) represents the ith line of a derivation according to the UR
grammar. L (1), of course, would normally be “Yo”, but appears here
in encoded form. All the non-terminal symbols will be represented by
their codes. The derivation runs from right to left, and the last line,
L (m), would consist, of course, entirely of members of Vr.

The set of transformations of this TG will be as follows :
T (1
SD - #-X-[sY-040-2]s
1 2 3 4 5
SC: O#02 ¢ 4 5
Condition: 2=23

This transformation cannot apply on the first cycle, since it mentions
the presence of a subsentence, nor will it apply on subsequent cycles
unless its identity condition is met. The meeting of that condition depends
on subsequent rules. Notice that the deletion of T (1) meets the con-
straints, as it only applies under the identity condition.

Next comes a transformational schema, standing for a set of k trans-
formational rules. We suppose that the original UR grammar has k rules
in its production set, of the form P; = Q:. In the schema below, P:” and
Q:’ represent the encoded forms of P: and Q:, that is, forms in
which each non-terminal symbol Y; is replaced by #O™'#.

T (i+1)

SD: O#0-X-P:/-Y-0#0-%
1<ilk
A<l 1 23 4 5 6

SC: ¢ 2 Q4 5+3 6

Jan C. Stirk

In at least one of this set of rules, of course, P:’ will be $O %, the
coded form of Yo, the initial symbol. One rule like this will apply in
the first cycle, deleting the initial O #O under identity, quite properly,
and placing $0 % after the O #0O at the right of the string - Z, of
course, will be pull in this first cycle. No other rule of this set can
apply now, since the initial O #O has been deleted, ensuring that the
structural description is not met. The effect of an application of one
of these transformations is to imitate the application of .a rule of the
UR grammar, turning one line in a derivation into the next one. In the
first cycle, L (1), the first line, Yo or #O#, becomes the second line,
L (2). Now if, just by chance, the output of the PS rules represented
a proper derivation of the UR grammar, L (2) would, after the first
cycle, be present in the first subsentence, and also in the next higher
subsentence. On the next cycle, then, the structural description of T (1)
would be met. As well as deleting one copy of L (2), T (1) replaces
the initial # by O #0, giving an opportunity for one of the set T (i
+1) to apply. As long as we are dealing with a correct UR derivation,
this process will continue. Just one member of T (i+1) will apply on
each cycle, to replace L. (s), say, of the derivation by L (s+1). In the
next cycle, T (1) will delete the superfluous occurrence of L (s+1) and
some member of T (i-+1) will apply to the remaining occurrence. And
so on. Eventually the last line L (m) will be reached. As it consists
entirely of terminal symbols of the UR grammar, no member of T (i
+1) will apply to it, and T (1) will not apply on the next cycle either,
as the sentence being considered begins with #O #0, and the SD of T
(1) cannot be met.

There are a number of transformations still to come in the cycle, and
of course it is vital that none of these should apply before T (1) through
T (k+1) have finished their work of imitating the UR derivation. It is
only after this derivation is finished that the sentence being cycled over
will start with #0O#0, however, so this string is used as part of the
SD of the remaining rules. Note that whenever a rule in the set T (2)
to T (k+1) applied, the P;’ part of the SD was never deleted, but

THE CONTINUING IMPORTANCE OF PETERS AND RITCHIE

adjoined to an occurrence of O #O further along in the string. This was
to ensure that any deletions among the original UR rules would not
cause the transformations to violate the constraints on deletion. Now,
however, these P.” will have built up to the right of the O #$0 in the
inmost subsentence. All of this unwanted material must be deleted in
a way that meets the constraints. The first P:’ to be moved in this way
was of course #O#, which is now at the right hand end of the inmost
subsentence. T (k+2) includes it in its SD :

T (k+2)
SD: % -0-4#-0-X-[s040-Y- ¢ - $0#1s
1 2 38 4 5 6 7 8 9
SC:¢ 2 3 4 5 6 (A 9

It will be seen that this transformation deletes any occurrence of # just
before the $#O# at the end of the inmost sentence. Also, in common
with all the remaining transformations except the last two, it deletes
the initial #, to ensure that everything works smoothly at a rate of
one such transformation per cycle. The following transformation, T (k
+38), is very similar, except that it deletes a O instead of a # :

T (k+3)

SD: £1s

©w 0w O

-O- -0-
2 8
2 ¢

&Hiit‘-

SC:

Between them, T (k+2) and T (k+3) remove all the unwanted remains
of non-terminal symbols of the UR grammar, for they were all encoded
by means of # and O only. However, it is quite possible for the P;’, the
left hand sides of the UR rules, to include terminal symbols of the UR
grammar also. There is a restriction even on UR rules, though, that
such terminal symbols must also appear on the right hand side of the
rule - they may not be deleted (see my (1988), page 191). All such terminal

lan C. Stirk

symbols must therefore appear in the final string of the derivation, and
the following set of transformations for deleting the unwanted ones takes
advantage of that fact. We suppose that there are r terminal symbols,
a; to a. There are also r transformations in the set, one for each

terminal symbol :

T (k+j-+3)
. SD:#-O—#-O-X—a;-Y—[sO#O-Y-a;-#O#]s
A< 1234567 8 9 10 11
SC: ¢ 2 3 4 5 6 1 8 9 ¢ 11

Each unwanted a; is deleted under identity with an occurrence in the
sentence being cycled over, that is, an occurrence in the sentence of the
UR language.

The preceding rules, T (k+2) to T (k+r-+3), will delete all the super-
fluous remains of the Py, until nothing remains in the lowest subsentence
but O 0 and the first moved #O#, which has so far remained un-
touched. The following transformation, whose SD is of course met now
for the first time, deletes all this material under a condition of identity :

T (k+r+4)
SD : $-04-0-X-[sO#8-0#-0%1s
1 2 3 4 5 6 7T
SC: 0+1 2 3 4 ¢ o ¢

The transformation also adds a O to the beginning of the string, which
cunningly allows the tidying up to be completed by one final transfor-

mation :
T (k+r+5)
SD: #0-%0-#0-X
1 2 3 4
SC: ¢ o ¢ 4

THE CONTINUING IMPORTANCE OF PETERS AND RITCHIE

Two occurrences of #O are deleted under the condition of identity, the
remaining one as an instance of the deletion of members of a finite set
of terminal symbols. In this case, the designated set is just {O, #}.

These transformations seem to work smoothly enough in the case of
a particular sort of output from the PS rules : one which contains a
“correct” derivation of the UR grammar in encoded form, and also a
sufficient number of subsentences consisting only of #, which enable all
unwanted material to be deleted, leaving only a sentence of the UR
language. Any other variety of PS output should fail to result in a
terminal string not containing *#, and thus not count as part of the
language. The most difficult part of constructing a grammar like this
is to be sure that no stray strings get through - strings which are not
in the UR language, but which somehow succeed in having all #’s
removed by some overlooked fault among the transformations.

I don't think any error of this sort has crept into the grammar I've
presented here, but maybe some astute reader will find one. No doubt
it would be easy enough to remove the error without a major change
to the grammar as a whole.

Another possibility is that the grammar might fail to generate sen-
tences that are actually in the UR language. The only sort I can think
of here would be null sentences, that is, the case where the sentence of
zero length is in the language. T (1) above may cause trouble here : in
the case of a null sentence, the variables X and Y of that transformation
would both be null, and it is not quite clear if the transformation could
be said to apply in such a case. Never mind, an extra transformation
could be inserted to take of this. I'll leave the details to any interested
reader.

As well as these matters, some might complain of the cavalier use of
the boundary symbol “ #” throughout the grammar. It appears and
disappears as the rules apply, instead of remaining quietly at each end
of a subsentence until being deleted, as is the case in transformational
grammars of natural languages. If anyone is really worried about thi‘s,
I would suggest using a new terminal symbol, “1”, say, to do the work

fan C. Stirk

of the #°’s in the grammar. Boundary symbols could be just in their
“natural” position at the ends of subsentences, and be deleted only when
no 1's remained. Again, I'll leave the details to you, with the warning
that fiddling with these transformations can be as addictive as a daily
crossword puzzle, and maybe just as irrelevant to the progress of human-
kind.

No doubt it is the niggling detail that has to be inserted into proofs
like the one above that makes them so unappealing to all but a few.
Maybe this one could be of use to linguistics students learning how to
write transformations correctly, at least if anyone needs to learn how
to do that nowadays.

The grammar above is rather different from the one used by Peters
and Ritchie (1971), although the principles of its operation are the same.
Peters and Ritchie developed a transformational grammar which imitates
the working of a Turing machine, rather than a UR grammar. This
makes it less accessible to linguists, which is unfortunate, as they should
constitute the main audience for these results. Mathematically, the whole
business is a very messy and inelegant means of obtaining a not very
exciting result - the importance is entirely linguistic.

Another difference between Peters and Ritchie’s grammar and the one
here involves lexical insertion. I have assumed that, in common with
most transformational grammars, lexical insertion should take place in
the base. No lexical insertion is carried out by the transformations of
the grammar above. This makes the filter function of the transformations
extremely important. Only a small proportion of the output of the PS
rules will result in sentences, for the FS rules, of necessity, throw
symbols together almost at random, when compared to an orderly
derivation of the UR grammar.

If T had stuck more closely to Peters and Ritchie’s method of construc-
tion, then the transformational rules would have imitated successive steps
in a derivation according to the UR grammar, instead of checking wheth-
er the output of the PS rules constituted a proper derivation. This would
have been more economical from the point of view of output string

THE CONTINUING IMPORTANCE OF PETERS AND RITCHIE

rejection, but causes a problem with lexical insertion. The only way to
avoid most lexical insertion being done by the transformations seems to
be to have the PS rules generate the complete terminal vocabulary as a
list. Then, instead of inserting items from nowhere, the transformations
copy them from the list. At the end of the derivation, superfluous
terminal symbols in the list, that is, any that are not present in the
terminal string generated, are deleted. That is quite proper, though it
is odd, perhaps, that the set of designated terminal items which may be
deleted consists of the entire terminal vocabulary ! Peters and Ritchie
choose that method, and it has the consequence that the TG's only
rejécted strings, that is, those that come through the grammar still
containing boundary symbols, correspond to derivations of the UR
grammar which end up containing non-terminal symbols which cannot be
rewritten by any rule.

That in itself would not be so important, but it is possible to envisage
UR grammars every derivation of which ends up with a terminal string.
That is, no derivation would ever get “stuck” by ending in a line con-
taining at least one non-terminal symbol to which no rule could apply,
because of its context. UR grammars of this kind cannot generate all
possible UR languages, but only a somewhat restricted, though still large,
subset. This subset is discussed in Peters and Ritchie (19732). I have
chosen to ignore it here, since the subset is still unreasonably large, as

I hope to show in the next section.
Conclusion

Even if transformational grammars are not allowed to employ a filter
function, they may still generate a large subset of UR languages, it
appears.

I will not explore the nature of this subset further, for its linguistic
importance is small. In fact, it is in many ways surprising that linguists
have continued to pay attention to any of the Peters-Ritchie results.
Almost all have ignored, it appears, the consequence of Peters (1973).

Ian C. Stirk

Any derivation of the sort of transformational grammar presented
in the last section will obviously contain a number of subsentences whose
contents totally vanish on the way to the terminal string and its struc-
tural description. With the usual tree pruning conventions, all trace of
those subsentences will disappear. Suppose TG’s were restricted to those
in which every subsentence must contain at least one “survivor” which
has a reflex in the terminal strings generated. Subsentences may not
totally vanish in the course of a derivation. Not so surprisingly, Peters
(1973) was able to show that only recursive languages may be generated
by such grammars, since, given any sentence, the maximum number of
subsentences that could have been involved in its derivation can be deter-
mined. Thus, only a certain finite number of rule applications could
have resulted in the derivation of that sentence, and they may all
be checked to see whether or not the sentence is grammatical.

Grammars proposed for human languages have always been of this
type, or at least with only harmless exceptions, as Peters (1978) points
out. There seems to be no good reason to introduce subsentences, clauses,
into the deep structure of sentences, only to have them totally eliminated
before the surface structure is reached. Nevertheless, linguists seem
totally to have ignored this straw offered by Peters to prevent them
drowning in the boundless sea of UR languages.

The usual reaction of linguists to the Peters-Ritchie results is in fact
contained in the title of Sampson’s (1973) paper : “The Irrelevance of
Transformational Omnipotence”. The basic idea of this paper, and many
since, is that weak generative capacity is quite unimportant : only the
strong generative capacity of grammars is worth investigating, and the
Peters-Ritchie results affect this not at all. Maybe the most recent of
such opinions is expressed by Weinberg (1988), in an overview of present
day mathematical linguistics. If weak generative capacity is irrelevant
to any linguistic concern, then of course a restriction to non-filtering
languages, as in Peters and Ritchie (1973a), or to recursive languages,
as in Peters (1973), is not worth even a glance.

Yet it seems to me that linguists have generally ignored the connec-

THE CONTINUING IMPORTANCE OF PETERS AND RITCHIE

tions between weak and strong generative capacity, perhaps influenced
by the “unnatural” appearance of the devices used in discussing mathe-
matical linguistics. It was observed before that such “unnaturalness”
is irrelevant to the force of an argument through counterexample.

Suppose that it is decided, quite a priori, that natural languages are,
say, context-free. Such a elaim has a great effect on the kinds of rules
that may be included in a grammar for, a natural language, in other
words, a great effect on the strong generative capacity of such grammars.
Context may be mentioned in such rules, deletion may even be carried out
by such rules, but in a peculiarly restricted way. These matters have been
stressed recently by prbponents of generalised phrase structure grammar,
and I have summarised some of the formal points in my (1987). A
decision about weak generative capacity can profoundly influence the form
of rules, and force hard decisions upon grammar writers. Concentration
on strong generative capacity only gives too much freedom : types of rule
can be decided on quite arbitrary grounds. There are infinitely many ways
of generating a set of sentences if any type of rule can be introduced.

I feel there is a certain, if not very strong, analogy between linguistic
argument in the present day and certain events in the history of astron-
omy. Until after the time of Copernicus, astronomers were concerned
mainly with the prediction of the places of the planets in the heavens.
They devised the system of epicycles, a complex yet internally consistent
and somehow compelling method of determining planetary positions to a
certain degree of accuracy. Copernicus constructed an alternative system,
in which the sun, rather than the earth, occupied the centre of the
mechanism. On the other hand, Copernicus’ system too remained in the
epicyclic framework. Let us compare these systems with those linguistic
ones in which strong generative capacity is paramount. There are many
reasons why certain grammars should be chosen above others, although
they all generate a similar range of sentences, and may be adapted to
generate others. Similarly different epicyclic systems have certain
advantages and disadvantages, though they all predict planetary positions
and get them more or less right.

JTan C. Stirk

The end of that particular astronomical tale came when Kepler began
to ask questions not just about a planet’s position in the sky, but also
about how far away it might be. This led to an astonishingly simple
mathematical relation between planetary distances and positions, and
ultimately to the theory of gravitation and much more. The relation
between Kepler's ideas and those of Copernicus is made elegantly clear
in Hoyle (1973).

The end of the linguistic tale is not yet in sight. Yet a simple math-
ematical relation between human languages and formal systems is already
detectable : it is remarkable that virtually nothing has appeared in
any natural language which is certainly not context-free. It seems to me
that linguistics should concentrate on that strange fact, and thoroughly
investigate grammars obeying that powerful constraint of context-
freeness. Simple mathematical properties of linguistic objects are much
more likely to link up with profound theories in other areas like psychol-
ogy, than are musings about the superiority of one system of epicycles
to another.

THE CONTINUING IMPORTANCE OF PETERS AND RITCHIE
Bibliography

M. Gross, M. Halle and M-P. Schutzenberger, (eds) “The Formal Analysis
of Natural Languages” (Mouton, 1973)

K. Hintikka, J. Moravesik and P. Suppes (eds) “Approaches to Natural
Languages” (Reidel, 1973)

F. Hoyle (1973) “Nicolaus Copernicus : an Essay on his Life and Work”
(Heinemann)

S-Y. Kuroda (1964) “Classes of Languages and Linear Bounded Automata”
(Information and Control 7, pp 207 -223)

F.J. Newmeyer (ed) “Linguistics : The Cambridge Survey” (Vol.1)
(Cambridge University Press, 1988)

P.S. Peters (1973) “On Restricting Deletion Transformations”
(in Gross, Halle and Schutzenberger, eds)

P.S. Peters and R. Ritchie (1971) “On Restricting the Base Component
of Transformational Grammars”
(Information and Control 18, pp 483-501)

P.S. Peters and R. Ritchie (1973) “On the Generative Power of
Transformational Grammars” (Information Sciences 6, pp 49-83)

P.S. Peters and R. Ritchie (1973a) “Nonfiltering Grammars”
(In Hinkikka, Moravesik and Suppes, eds)

G. Sampson (1973) “The Irrelevance of Transformational Omnipotence”
(Journal of Linguistics 9, pp 299 - 302)

Ian C. Stirk (1987) “Context-Free Languages Revisited Yet Again” (K
BRAVA ZKBIGE 15, pp 103 - 132)

Ian C. Stirk (1988) “Counting Languages”
(KBRAVAR SEKAHSE 16, pp 191 -209)

Amy S. Weinberg (1988) “Mathematical Properties of Grammars”
(in Newmeyer, ed, pp 416-429)

