
Title
The divisibility in the cut-and-paste group of
G-manifolds and fibring over the circle within a
cobordism class

Author(s) Komiya, Katsuhiro

Citation Osaka Journal of Mathematics. 2005, 42(1), p.
233-241

Version Type VoR

URL https://doi.org/10.18910/9915

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Komiya, K.
Osaka J. Math.
42 (2005), 233–241

THE DIVISIBILITY IN THE CUT-AND-PASTE GROUP
OF G-MANIFOLDS AND FIBRING OVER THE CIRCLE

WITHIN A COBORDISM CLASS

KATSUHIRO KOMIYA

(Received August 27, 2003)

Abstract
We prove a divisibility theorem for elements in the cut-and-paste group, or the
-group of -manifolds, a finite abelian group of odd order. As an application

we obtain necessary and sufficient conditions for that a closed -manifold is equiv-
ariantly cobordant to the total space of -fibration over the circle.

1. Introduction

All manifolds considered in this paper are in the smooth category, and those are
all unoriented, with or without boundary. always denotes a finite abelian group of
odd order unless otherwise stated, and a fixed nonnegative integer.

Let M denote the set of -dimensional closed -manifolds. We define an
equivalence relation onM which is called a cut-and-paste equivalenceor an

-equivalence. The quotient set by this relation is denoted byM , and this be-
comes a semigroup with the addition induced from the disjoint union of manifolds.
The Grothendiek group ofM is called thecut-and-paste groupor the -group
of -dimensional closed -manifolds, and is denoted by .

In this paper we will consider the divisibility for elementsin , i.e., for a
given and an integer 0 the existence of such that = .
We will obtain a necessary and sufficient condition for the dibisibility in terms of the
Euler characteristics of manifolds (Theorem 4.2).

The following is an old result proved by Conner-Floyd [4]:

A closed manifold is cobordant to the total space of a fibration over the circle
1 if and only if the Euler characteristic ( ) of is even.

To obtain an equivariant version of this result we will applyour divisibility the-
orem, and obtain a necessary and sufficient condition for that a closed -manifold
is equivariantly cobordant to the total space of a -fibrationover 1 such that the

-action takes place within the fibres, i.e., the action is trivial on 1 (Theorem 6.3).
We will also have some variants of the condition (Theorem 7.1), and remark that one
of those variants is essentailly the same as the one which is obtained in a different
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way by Hara [6].

2. G-manifolds of type F

Let be a finite abelian group of odd order, and a -manifold. Fora sub-
group of , denotes the fixed point set of by the restricted -action.
denotes the isotropy subgroup at , and the orbit of . There is a-invariant
neighbourhood of in which is -diffeomorphic to for some represen-
tation of (see for example Bredon [2, Corollary VI.2.4] or Kawakubo [9, The-
orem 4.10]). Let denote the nontrivial part of , i.e., = . In this paper
we call ( ) aslice type at in , though ( ) is usually called a slice type
in literature. More generally, let be a subgroup of and a representation of
such that = 0 , then ( ) is called aslice type for . Here can be zero-
dimensional. Since is of odd order, the dimension of is always even.

A family F of slice types for is a set of slice types satisfying the condition
that for any ( ) F and any , the slice type ( ) at in
belongs toF . For a familyF of slice types for , if ( ) F for any
then is called a -manifold of typeF .

We give a partial order on the set of slice types for in such a way that
( ) ( ) if and only if is a subgroup of and = as repre-
sentations of . For a slice type ( ), define

( ) = ( ) ( )

This is a -invariant submanifold of of codimension even.

3. SK -group of G-manifolds

Let and be -dimensional compact -manifolds. If : is a
-diffeomorphism between the boundaries of and , then we obtain a closed
-manifold by pasting and with each other along the boundary by .

If and are of typeF , then so is . If : is a second
-diffeomorphism, we obtain a second closed -manifold . Then is

said to beobtained from by equivariant cutting and pasting(or Schneiden und
Kleben in German), and vice versa.

Let M (F) be the set of -dimensional closed -manifolds of typeF . For ,
M (F), and are said to beequivariantly -equivalent, if there is

M (F) such that the disjoint unions + and + are obtained from each
other by a finite sequence of equivariant cuttings and pastings. The -equivalence
is an equivalence relation onM (F). The quotient set by this relation is denoted by
M (F) . This becomes a semigroup with the addition induced from disjoint union
of -manifolds. The Grothendieck group ofM (F) is called the -group of

-dimensional closed -manifolds of typeF , and is denoted by (F).
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Let F F be families of slice types for . If is a -manifold of typeF ,
then is automatically of typeF . So we obtain an inclusionM (F ) M (F), and
this induces a homomorphism : (F ) (F).

If M (F), and if ( ) F is maximal with = dim , then ( )

is a -manifold with one orbit type and the orbit space( ) is a manifold of
dimension . Assigning ( ) to , we have a correspondenceM (F)
M , whereM is the set of ( )-dimensional closed manifolds. An equivariant
cutting and pasting operation on restricts to one on( ). So the correspondence
M (F) M induces a homomorphism : (F) , where is
the -group of ( )-dimensional (nonequivariant) closed manifolds (cf. Karras–
Kreck–Neumann-Ossa [8]).

Theorem 3.1. Let F be a family of slice types for with a maximal element
( ), and letF = F ( ) and = dim . Then

0 (F ) (F) 0

is a split short exact sequence.

For a proof of this theorem, see the proof of Komiya [11, Theorem 6.5], and also
see Kosniowski [12, Corollary 2.6.3].

4. Divisibility theorem

Let F be a family of slice types ( ) for with dim , and give a partial
order onF as in Section 2. Note thatF is finite. Let the elements ofF be indexed
by an indexing set (F), i.e.,F = ( ) (F) . The partial order onF induces
a partial order on (F). We denote this order by the same symbol . Let(F )( )
be the Möbius function on the partially ordered set (F), which is inductively defined
as follows (cf. Aigner [1]): For any (F) with ,

(F )( ) = 1

(F )( ) =
˙

(F )( ) =
˙

(F )( ) if

where the dot means the sum is taken over the letters under . Aswe remarked
in Komiya [11, Lemma 7.2] we obtain the following proposition in a similar way
to Komiya [10].

Proposition 4.1. For any M (F) and (F) we have

˙

(F )( ) ( ( )) 0 mod ( )
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where ( ) is the cardinality of .

An element (F) is written in the form = [ ] [ ] for some ,
M (F), where [ ], [ ] denote the -equivalence class of , , respectively.

Define ( ) = ( ) ( ) and ( ) = ( ( )) ( ( )) for ( ) F .
This is well-defined since cutting and pasting operation keeps the Euler characteristic
invariant. Note that if is odd then ( ) = 0 and ( ) = 0 for any (F).

If F is the family of all slice types ( ) for with dim , then any
-dimensional -manifold is of typeF , and we denoteM (F) and (F) by M

and , respectively. In this case we also denote by the indexing set (F) of the
elements ofF .

We obtain the following divisibility theorem.

Theorem 4.2. An element is divisible by an integer 0, i.e., there
is such that = , if and only if

˙

( ) ( ) 0 mod ( )

for any .

The “only if” part of this theorem is easily shown from Proposition 4.1. The “if”
part will be shown in the next section. Before we proceed to the next section, we note
that if is odd then = 0 (see Kosniowski [12, Chapter 5]) and hence the theo-
rem is trivially valid.

5. Proof of the divisibility theorem

In this section we prove the “if” part of Theorem 4.2 in the even dimensional
case.

Let F be the family of all slice types ( ) for with dim 2 . Let the
elements ofF be indexed by integers in such a way that

F = ( ) = 0 1

and , where is the ordinary order for integers. Then (0 0) is the
minimal element ofF with respect to the order such that0 = 1 the trivial group,
and 0 = 0 . We have a filtration ofF ,

F0 F1 F = F

where

F = ( ) (F ) (F ) = 0 1
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Then ( ) is a maximal element ofF . Consider the following assertion:

( ). An element 2 (F ) is divisible by an integer 0, if for any
(F )

˙

(F )( ) ( ) 0 mod ( )

where (F )( ) is the M̈obius function on the partially ordered set(F ).

( ) is the “if” part of Theorem 4.2. For any (0 ) we prove ( ) by
induction.

To prove (0), note that 2 (F0) is the -group of 2 -dimensional closed
free -manifolds, and is isomorphic to 2 by the isomorphism which assigns to
a free -manifold its orbit space . Note also that Euler characteristic detects
the elements of 2 . See for these facts Karras–Kreck–Neumann–Ossa [8] and Kos-
niowski [12]. Assume ( ) 0 mod ( ) for 2 (F0). If = 0 and we take

M2 with ( ) = ( ) ( ), then we see = [ ] in 2 (F0). We can
also take such an M0, if = 0 and ( ) 0. If ( ) 0, then consider .
This proves (0).

To proceed the induction step, consider the following commutative diagram.

0 2 (F 1) 2 (F ) 2 0

0 2 (F 1) 2 (F ) 2 0

where = dim , and is the homomorphism given by the multiplication by . The
horizontal sequences are exact from Theorem 3.1.

Assume ( 1) as an induction hypothesis, and assume that 2 (F ) sat-
isfies the congruence in ( ). From the congruence we see

( ) = ( ) ( ) 0 mod

and hence ( ) is divisible by , i.e., is in the image of . By diagram chasing and
the exactness of the sequences, we have 2 (F ) and 2 (F 1) such
that ( ) = in 2 (F ). Since ( ) = ( ) ( ), we see that satisfies
the congruence in ( 1). Thus the induction hypothesis assures that is in the
image of . This implies that there is 2 (F 1) such that = ( ( ) + ). This
proves ( ), and completes the proof of Theorem 4.2.

6. Fibring over the circle

If there is an ( + 1)-dimensional compact -manifold such that is the
disjoint union + of , M , then and are said to beequivariantly
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cobordant with a -cobordism . This is an equivalence relation onM , and gives
rise to the -dimensional (unoriented) cobordism groupN . We denote by [ ]N the
cobordism class of . It is clear that 2[ ]N = 0 in N .

Lemma 6.1 (cf. Karras–Kreck–Neumann–Ossa [8, Lemma 1.9]).For ,
M , if is obtained from by equivariant cutting and pasting, then + is equiv-
ariantly cobordant to the total space of a -fibration over1 such that the -action
takes place within the fibres.

Proof. Let = and = , where : are
-diffeomorphisms between the boundaries of -dimensional compact -manifolds ,
. Let be the union of [0 1] and [0 1] with the following identifica-

tions: for , identify ( ) [0 1 3] with ( ( ) ) [0 1 3] and
( ) [2 3 1] with ( ( ) ) [2 3 1]. After smoothing, we obtain an
( + 1)-dimensional compact -manifold such that = + + , where is
the total space of a required fibration.

Lemma 6.2. Given M , if [ ] = 2 in for some , then
is equivariantly cobordant to the total space of a -fibrationover 1 such that the

-action takes place within the fibres.

Proof. Let = [ 1] [ 2] for 1, 2 M . Then [ + 2 2] = [2 1] in ,
and this implies that for some M , + 2 2 + is obtained from 2 1 + by a
finite sequence of equivariant cuttings and pastings. From Lemma 6.1 we see that
is -cobordant to the total space of a required fibration.

Theorem 6.3. M is equivariantly cobordant to the total space of a
-fibration over 1 such that the -action takes place within the fibres, if and only

if ( ( )) is even for any slice type( ).

Proof. If is equivariantly cobordant to the total space of a -fibration as
above, then for any slice type ( ), ( ) is also cobordant to the total space of a
fibration over 1. Conner-Floyd [4] implies ( ( )) is even.

Assume, conversely, that ( )) is even for any , where ( )
is the family of all slice types ( ) with dim . Then we see from Proposi-
tion 4.1,

˙

( ) ( ( )) 0 mod 2 ( )

for any , since ( ) is odd. Theorem 4.2 implies that [ ] = 2 in for
some , and Lemma 6.2 implies that is equivariantly cobordantto the total
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space of a -fibration over 1 such that the -action takes place within the fibres.

7. Some variants

In this section we obtain some variants of the condition obtained in Theorem 6.3.
Let F = ( ) be the family of all slice types ( ) with dim .

An Euler function ( ) on is defined as follows: for with ,

( ) =
˙

( ) ( )

Theorem 7.1. For M , the following (i)–(v) are equivalent to each other:
(i) is equivariantly cobordant to the total space of a -fibrationover 1 such that
the -action takes place within the fibres,
(ii) ( ( )) is even for any slice type( ),
(iii) [ ] is divisible by2 in ,
(iv) for any ,

˙

( ) ( ( )) 0 mod 2 ( )

(v) for any ,

˙

( ) ( ( )) 0 mod 2 ( )

Proof. (i) (ii) and (iii) (iv) are already shown as Theorem 6.3 and Theo-
rem 4.2, respectively. (ii) (iv) is also already noted in theproof of Theorem 6.3.
(iv) (ii) and (v) (ii) are inductively and easily shown, since ( ) = 1 and

( ) = 1.
Finally (iv) (v) is shown as follows: If we put for any ,

˙

( ) ( ( )) = 2 ( )

for some integer , then we have

˙

( ) ( ( ))

=
˙ ˙

( ) ( ) ( ( ))
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=
˙ ˙

( ) ( ( )) ( )

=
˙

2 ( ) ( )

= 2 ( )
˙

0 mod 2 ( )

CONCLUDING REMARKS. (1) The Euler characteristic of an odd dimensional closed
manifold is zero, and ( ) is even codimensional. Thus, if M is odd dimen-
sional, then the statements (ii)–(v) in Theorem 7.1 are trivially valid and hence (i) al-
ways holds.
(2) (v) is essentially the same as the condition obtained in Hara [6, Theorem 3.10].
(3) If is of even order, the situation is somewhat different.When = Z2 , the
cyclic group of order 2 , there is obtained in Hara [5] a condition for M to be
equivariantly cobordant to a -manifold which is equivariantly fibred over 1.
(4) There are also corresponding results in the oriented case, for which the signa-
ture of manifold is needed instead of the Euler characteristic. See Burdick [3] and
Neumann [13] for the nonequivariant oriented case, and Hermann-Kreck [7] for the
Z2-equivariant oriented case.
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