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RESTRICTIONS ON 

TRANSFORMATIONAL GRAMMARS 

Ian C. Stirk 

Introduction 

In a previous contribution (Stirk, 1990), I presented a scheme for 

a transformational grammar that would generate the same language 

as an arbitrary unrestricted rewriting (UR) grammar. I present another 

one below, based on a different approach. The new one has the 

mathematical virtue of greater simplicity, and is much more conser-

vative in the forms of transformation employed. More importantly, 

the only recursive symbol used in the base rules of this scheme is the 

initial symbol S itself. In the main part of the paper, I discuss certain 

restrictions on transformational grammars, whose properties are 

analysed by Peters and Ritchie (1973) and by Peters (1973). The 

proofs I present all assume that S shall be the only recursive symbol 

in the phrase structure component. 

Transformational Grammars for UR Languages 

The base rules of these grammars take the following form: 

(1) s→#S where 1 ;£; i ;£; n + 3 
(2) S→釘S

(3) S→O#O#O#O#N 

(4) N→# 

where 1 ~ j ~ k 
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(1) and (2) are not individual rules, but schemata. The rules in (1) 

generate strings of i #'s followed by S. The maximum value of i is 

n +3, where n is the number of rules in a UR grammar generating 

the UR language. The a; in (2) represent the k terminal symbols of 

the UR language. 

The linearly ordered obligatory rules of the transformational 

component are now presented, in their order of application, interspersed 

with notes explaining their function. 

T (1) 

＃ [ sX 1 -0 #-0 -X2 0-N -X3 ] s 

SD: 1 2 3 4 5 6 7 8 ， 
SC: 1 2 3 4 5 6 7 8+4 ， 
T (2) 

##-[ sX1-0 #-0 -X2-0-N -X3 ] s 

SD: 1 2 3 4 5 6 7 8 

SC: 1 2 3 4 5 6 7+4 8 

T(i+2) where 1；；；；； i ；；；；； k 

a l [ sX1-0 # 0 -X2 

゜
N -X3 ] s 

SD: 1 2 3 4 5 6 7 

SC: 1 2 3 4 5 6 + 1 7 

The third item here is of course a rule schema, covering k rules, one 

for each member of the terminal vocabulary of the UR language. The 

effect of these k + 2 rules, in total, is to build up a random string 
of O's and #'s and terminal symbols just after the N in the innermost 
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subsentence. The string is random because of the arbitrary input from 

the PS component, but may be a line in some derivation of some 

sentence in the language we are interested in generating. The following 

rule, T(k+3), will end the formation of the random string. 

T(k+3) 

＃＃＃ [ sX1―O -# 0 -X2-0 -N-X3 ] s 

SD: 1 2 3 4 5 6 7 8 ， 
SC: 1 2 3 4 5 6 7+4 8 ， 

This transformation will apply if the PS rules provide # # # in the 

sentence being cycled over, and by adding a # between O and N, it 

blocks any further application of the preceding rules. In the next cycle, 

any of the transformations in the following schema may apply: 

T(k+3+i) where 1 ~ i ~ n 

# i+3-[ sXl―o # 0 -X2-P l-X3-0 -# N-X、―QI-X5] s 
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Conditions: X戸 X,, X戸 X5.

There are n rules in this schema, and we have supposed that a grammar 

for the language in question has n rules, which can schematically be 

represented by the n expressions P 1→Qi to Pn→Q,,. Suppose also 

that the UR grammar has r+ 1 non-terminal symbols, so that its 

non-terminal vocabulary may be expressed as the set {Y。,Y1,
Y,}, with Y。asthe initial symbol. The Pl and Q l are strings 

-51-



Ian C. Stirk 

identical to P; and Q; respectively, except that each non屯terminal

symbol YJ in VN is replaced by#  oi+i #, that is, by j+l O's 
between two boundary symbols. This encoding of non-terminal 

symbols is described in more detail in my (1990). If the subsentence 

being cycled over begins with a string of i+3 #'s, then the appropriate 

transformation in this schema will check for the presence of P ! and 

Q! in two strings of symbols which must otherwise be identical, one 

before and one after the occurrence of O#N. If the two strings are 

present in the appropriate environment, 0 # N becomes O # # N. 

Otherwise there is no change, and it will be seen that no other 

transformation in the cycle can apply. 

Recall that the random string of symbols built up to the right 

of O # N is a possible line in a derivation, containing the UR 

grammar's non-terminal symbols in encoded form. The string of 

symbols following O # 0 to the left of O # N is a possible previous 

line. The successful application of one of the transformations in the 

schema above ensures that the two strings have the necessary 

charcteristics of successive lines in a derivation: a rule of the UR 

grammar has in essence applied, replacing P ! by Q ! and leaving 

everything else unchanged. Initially, the PS rules provide the string 

# 0 # between O # 0 and ON in the lowest subsentence. Thus the 

first time that a transformation in the schema applies, X2  and X3  

must be null, while P ! must be # 0 #, the encoded form of the initial 

symbol Yo of the UR grammar. The effect is to commence a process 

which imitates correct derivations according to that UR grammar. 
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The next transformations are 

T (k+n+4) 

X1―0-# 0-0 -X2-0 ##N-X3 
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T (k+n+5) 

X1-0 -#-0-#-X2-0 ##N-X3 

SD: 1 2 3 4 5 6 7 8 

SC: 1 2 3 4 ¢ 6 7 8 

and a schema 

T (k+n+5+i) where 1 ~i ~k 

X1―a,-X2 

SD: 1 2 3 

SC: 1 2 3 

0 # 0 -a,-X3-0 ##N-X4 

4 5 6 7 8 

4 ¢ 6 7 8 

The presence of 0# #N in the SD of each of these rules ensures that 

none of them can apply until the cycle after one of the T(k+3+i) 

has applied. The effect of these latest rules is to delete, under 

condition of identity, a symbol occurring between O # 0 and O # # N 

in the lowest subsentence. More than one of them can apply in a 

single cycle, and they will apply in successive cycles, until the entire 

string between O # 0 and O # # N has disappeared. Once that string 

has gone, the following rule will apply, which could not before: 
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T (2k+n+6) 

X1-0# 0 0 #-#-N-X2 
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Now transformations in the following schema can apply: 

T (2k+n+6+i) where 1~ i ~k+ 2 

X1 0 # 0 -X2-0 ###N-どl x3  

SD: 1 2 3 4 5 6 

SC: 1 2 3 5+4 ¢ 6 

(Here f戸＃，も＝ 0' ど1=a J-2) 

In successive cycles, these transformations will move the string of 

symbols from the right side of 0# # #N to the left, to replace the 

previously deleted string. In effect, a line in a derivation which has 

been checked and found correct is deleted and replaced with the 

succeeding line. 

The next step, of course, is to repeat the entire process, by 

generating another possible derivation line, checking if it is indeed 

correct, and then substituting it for its predecessor. The repetition 

can easily be commenced just by deleting the three #'sin the fragment 

0 # # # N, for then the structural descriptions of the first rules in 

the cycle may again be met. 

However, it is possible that the derivation has already come to 

an end: the string now between 0#0 and 0# # #N may consist only 

of terminal symbols, or in other words, may be a sentence of the 
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language. The following transformation allows for this possibility: 

T (3k+n+9) 

Xi-0 # 0 -X2-#-X3-0 -#-#-#-N 
SD : 1 2 3 4 5 6 7 8 9 10 
SC: 1 2 3 4 5 6 ¢ ¢ ¢ 10 

The three #'s are only deleted if there is a boundary symbol to be 

found somewhere between 0#0 and 0# # #N. This will only be the 

case if that part of the string contains the encoded form of a non-

terminal symbol, so that the derivation has not terminated in a 

sentence. If the transformation does not apply, there is a sentence, 

and it will be necessary to remove all the unwanted material from 

the phrase marker: 

T (3k+n+9+i) where 1 ~ i ~ k 

Xl―a,-X2-0 # 0 -X3-a, 
SD: 1 2 3 4 5 6 
SC: 1 ¢ 3 4 5 6 

X4-0###N 
7 8 
7 8 

The transformations in this schema delete unwanted terminal symbols, 

provided only that they are identical to symbols in the sentence being 

generated. More than one of these transformations can apply in a 

single cycle. 

T (4k+n+10) 

Xl―###-X2 
1 2 3 

1 </J 3 
．．．． 
D

C

 

s
s
 

0#0-X3-0 

4 5 6 

4 5 6 

###-N 

7 8 
7 8 
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As well as terminal symbols, a whole collection of boundary symbols 

will need to be removed. The above transformation performs this 

task, removing them in blocks of three, on a condition of identity 

will the block of three between O and N. All the unwanted boundary 

symbols to the left may be removed in this way, for since the PS 

rules can provide an extra # or # #, the number of them m_ay 

always be a multiple of three. 

On the very last cycle, the SD of this final transformation may 

be met: 

T (4k+n + 11) 

#-0-#-0-X,―0-#-#-#-# 

S D : 1 2 3 4 5 6 7 8 9 10 

SC: ¢ ¢ ¢ ¢ 5 ¢ ¢ ¢ ¢ ¢ 

which deletes everything except the final sentence. The first # in the 

SD comes from the topmost sentence, while the last one is the one 

dominated by N. 

It is clear that nothing can be generated by this grammar free 

of boundary symbols except for sentences of the UR language. The 

only items not deleted under a condition of identity belong to the 

set {O, #}. 

In their original proof that transformational grammars can 

generate any UR language, Peters and Ritchie (1971) employ a PS 

component rather different from the one used above. Every structure 

generated by it contains a string comprising all the terminal symbols 
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of the language. The ones which do not appear in a sentence generated 

by the grammar are all deleted. The designated set of terminal 

symbols which may be deleted thus contains the entire terminal 

vocabulary! This somehow violates the spirit, if not the letter, of 

Chomsky's restrictions on deletion. The PS component I have 

introduced above introduces some random selection of terminal 

symbols into its structures. If any of them are not incorporated 

into the sentence being generated, then no string free of boundary 

symbols is obtained. 

Non-filtering and Local Filtering Languages 

Filtering is used extensively in the grammar above, and it prompts 

one to speculate what kind of languages could be generated if there 

was no filtering whatsoever. The following theorem is rather easy 

to prove, at least informally: 

Theorem 1 For any infinite non-filtering language L, there are 

constants Mand x such that for any sentence of length y;;;:x, there 

is another sentence of length not greater than My. 

Proof: Suppose that in a set of phrase structure rules, which form 

part of a non-filtering transformational grammar, any S on the right 

hand side of a rule is replaced by a new symbol S 1. In that case, 

there could be no recursion, and only a finite number of trees, or 

labelled bracketings, could be derived. Schematically, they might be 

represented as follows: 
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[ $ - - s I -sl  - --]s 

Depending on the original rules, there may be any finite number of 

occurrences of SI in the bracket, but only two are depicted. Consider 

now any sentences generated by the transformational grammar, and 

their final phrase markers, represented as labelled bracketings. Their 

outermost brackets will of course be [ s and ] s. Substitute them for 

the various occurrences of SI in the above schema. The result is a 

labelled bracketing of the kind to which the final cycle of a transfor-

mational derivation is applied. Suppose that one of the sentences we 

have just substituted for SI has length y, and that it is longer than 

any of the other substitutions, if there are any, and longer also than 

any string of terminals dominated by any non-terminal symbol in 

the whole labelled bracketing. There must be a minimum length x 

for y which makes this possible. How much longer than y could the 

sentence resulting after the final cycle be? Transformations in the 

cycle could cause lengthening by making multiple copies of substrings, 

of which the longest is y terminals long. However, since there are 

only a finite number of transformations in the cycle, of which each 

could make only a finite number of copies of anything, the result 

could not be longer than a cert~in multiple, call it M, of y. This 

establishes the result. 

Peters and Ritchie (1973) realised that the same theorem 1 would 

also apply to languages generated by grammars with a certain restricted 

kind of filtering which they called "local filtering". A good example 

of this may be seen in the way relative clauses are handled in certain 

transformational grammars for English. A phrase like "the man 
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who came to dinner" might have the following schematic underlying 

structure: 

[ NP [ NP the man ] Nr [ s [ NP the man ] NP came to dinner ] s ] NP 

The relative clause transformation would replace the second occurrence 

of "the man" by "who". A condition of identity is involved. If the 

NP in the embedded sentence is not identical to the NP on the left, 

the transformation will not apply, and boundary symbols in the 

sentence of which the entire NP is part will be left in place. Clearly 

nothing further could happen to rectify the situation: if the relative 

clause transformation does not apply to such a structure, then the 

result must be ungrammatical, and the boundary symbols cannot be 

removed. 

This is the key to the concept of local filtering. All boundary 

symbols in any subsentence must be removed by the end of the 

transformational cycle applying to that subsentence. If any boundary 

symbols remain, there is no point in continuing the transformational 

derivation, for they will still remain at the end, and the resultant 

string is bound to be ungrammatical. Ungrammaticality can be detected 

more quickly with a grammar that employs only local filtering. 

Grammars of the kind presented in the last section are obviously 

not local filtering: the whole point of the last rules in the cycle is 

to remove boundary symbols left over from previous cycles. 

Consider again the above proof concerning non-filtering grammars. 

How does it change if the grammar in question is a local filtering 
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one? All the subsentences substituted for the various instances of S 1 

must of course be grammatical, and contain no boundary symbols. 

On the other hand, there might be boundary symbols left over at the 

end of the last cycle. Suppose in the worst case that none of the 

finite number of phrase markers whose longest subsentence has lengthy 

results in a sentence. Now it must be the case that for some longest 

subsentence of length z, less than y, at least one sentence can be 

derived of length greater than y. If this were not so, there would be 

no grammatical strings longer than y, which is impossible if the 

language is infinite. Summing up, in the local filtering case also, 

there must be another grammatical string whose length is at most 

My. 

Theorem 1 can be strengthened to Theorem 2, remembering that non-

filtering grammars are a subset of local filtering ones: 

Theorem 2 For any infinite local filtering language L, there are 

constants M and x such that for any sentence of length y ~ x, there 

is another sentence of length not greater than My. 

Relations of length between grammatical strings have some 

connections with hierarchies of grammars. For instance, consider the 

language generated by this context-sensitive grammar: 

X。→凶b

応→凶 X2

凶→ bX3

x心→ X2 ふ x3
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ふ b → b b 

b兄→ bb 

It is easy to check that this grammar generates a language whose 

sentences consist of strings of 2→m +2 b's, for m ；；；；゚． Eachsentence 
is a little more than twice as long as the next shortest. The language 

is not context-free. For consider a context-free derivation of some 

sentence for some value of m. The penultimate line of that derivation 

must consist of some number zm+m+2-q of b's, together with some 

non-terminal symbol of the CF grammar, X;, say. To obtain the last 

line, X; is rewritten as a string of q b's. 

It is well known that CF languages can be generated by grammars 

all of whose non-terminal symbols are recursive (see, for instance, 

Stirk, 1987, p 104). It must be possible to continue from that 

penultimate line by rewriting X; once recursively, and then terminating 

it by rewriting it as the string of q b's. The recursive rule used in 

rewriting X; may bring in further non-terminal symbols, but there 

must be some minimum number p, say, of b's which these other 

symbols can dominate. Altogether this means that the grammar will 

generate a string of zm+m +2+p b's. Adding an extra p b's in this 

way cannot, except for a particular value of m, produce a grammatical 

string. Yet since there are only a finite number of non-terminal 

symbols in the CF grammar, X; must be present in the penultimate 

line of an infinite number of derivations, producing an infinite number 

of ungrammatical strings. Thus there cannot be a context-free 

grammar for the language. 

There is, of course, a local filtering grammar for that language. 
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In fact, a non-filtering grammar can easily be constructed. The phrase 

structure component consists of the rules 

S → bS, S → bN, N → b 

The transformational cycle contains the following three rules, applied 

in this order: 

X1 [ NX2 b J N x3 

SD: 1 2 3 4 

SC: 1 2 3+3 4 

b [ sX 1 N X 2 ] s 

SD: 1 2 3 4 

SC: 1 + 3 2 ¢ 4 

b N s 
SD: 1 2 3 

SC: 3 2 3 

The context-sensitive grammar given above achieved its multi-

plication because of the rule X 3応→ふふ X3. That process can 

be repeated, as in the following grammar: 

X。→ XI応 b

応→凶 X2

X1 → b X3 

x3応→ X2応 x3
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x3応→ X4応 x3

b応→ b b 

b X4 → b b 

X3  b→ b b 

Using the notation "a exp(b)" for "ab", this grammar produces 

strings of b's of length 2exp (2m)+2m+m+2. The first term, 2exp 

(2m), is the square of 2exp (2m→),meaning that there can be no 

constant multiple relating the lengths of sentences. The following 

theorem follows from this and Theorem 2: 

Theorem 3 There are context-sensitive languages which cannot be 

generated by local filtering grammars. 

This might raise one's hopes about the possible linguistic 

significance of local filtering grammars, until one observes that 

Theorem 4 Any UR language can be expressed as the intersection of 

a finite state language and a local filtering language. 

In fact, the local filtering language here can be a non-filtering one. 

For consider some filtering grammar G for any UR language. If we 

replace every occurrence of the boundary symbol in the rules of G by 

a new terminal symbol, c, say, we obtain a non-filtering grammar 

for a language whose sentences consist of those of the UR language 

together with others containing c. Now consider a finite state language 

whose sentences consist of random strings over the vocabulary of the 

UR language but not c. The intersection of this and the non-filtering 
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language will clearly exclude just those including c: the intersection 

will be the UR language itself. 

It is also easy to prove this: 

Theorem 5 The intersection of two recursive languages is its.elf 

recursive. 

It is well known that a language L is recursive if and only if 

both L and -L are recursively enumerable, where -L is the set of 

possible strings over the terminal vocabulary of L which are not in 

L. (See, for instance, Stirk, 1988, p203.) Suppose that L, and L2 

are recursive languages, and consider Ls=L, nL2. We can enumerate 

Ls by enumerating L, and L2 and picking out the sentences common 

to both lists. We can enumerate -Ls just by combining the lists of 

-L, and -L2. Thus Ls is recursive. 

We can now go on to prove 

Theorem 6 Local filtering grammars can generate non-recursive 

languages. 

For according to Theorem 4, any UR language, in particular 

some non-recursive one, can be expressed as the intersection of a 

FS language, which is certainly recursive, and a non-filtering one. So, 

from Theorem 5, the non-filtering language cannot be recursive. 

Thus local filtering grammars generate a class of languages which 
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cuts across the Chomsky hierarchy: some CS languages are excluded, 

yet some non-recursive languages are included. There is no clear 

linguistic significance. 

The Survivor Property 

An examination of the filtering grammars presented in the first 

section of this paper shows that most of the subsentences in any 

transformational derivation disappear utterly by the time we reach 

the final phrase marker. Peters (1973) investigates how grammars 

might be restricted if such total obliteration of subsentences is 

restricted. The most obvious restriction would be to require that 

every subsentence must have at least one survivor: that is, it must 

contain at least one terminal symbol which is still present in the 

final string. In that case, a sentence x terminals long could only 

have been generated by a derivation involving at most x subsentences. 

There could only be a finite number of such derivations, meaning 

that it can be decided whether any string of terminals is generated 

by a particular grammar or not. The grammars could only generate 

recursive languages, in other words. 

Peters also considers a less restrictive, more subtle survivor 

property. According to this, and here I quote Peters (1973): ".. if <D 

is the input domain of any cycle... and W is the output from that 

cycle, then W contains more terminal nodes than any subpart of① 

on which the transformational cycle operated earlier in the 

derivation. " 

An example will make this more clear. Consider the following 
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labelled bracketing, where each subsentence is numbered: 

[s1.. [s2.. ]s2.. [s3.. [s._. Js4Jss]s1 

The lowest sentence is S4, and the transformational cycle may delete 

it completely, as it contains no sentential subpart. S3, however, must 

leave at least one survivor -one more than its subpart S4's zero 

survivors. S2 may leave no survivors, but S1 must leave at least 2: 

one more than its subpart S3. 

With this kind of survivor property, the number of terminal 

symbols in a string determines not the total number of subsentences 

in a possible derivation, but rather the derivation's S-depth. On tracing 

branches from the root S in a tree to terminals, the S-depth would 

be the maximum number of S nodes passed through. The simple 

example above has an S-depth of 2. 

So a string of x terminals must be transformationally derivable 

from a structure with S-depth x. To make sure that the language is 

recursive, however, we must fix a finite upper bound to the total 

number of subsentences in that structure. Peters estimates this 

generously. 

Firstly we estimate just how much a transformational cycle can 

shorten a string of terminals. Suppose that n is the maximum number 

of terms mentioned in any structural description of the transforma-

tional cycle, while c is the length of the longest terminal string 

mentioned. If the output of a very destructive transformation is z 
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terminals long, the transformation might have operated on a string 

of n terms each z+c terminals long. It proceeded to delete n -1 of 

these under a condition of identity, and disposed of a further c 

terminals as members of a specified set. The input string might thus 

have been n(c+z) terminals long. The shortening factor of such a 

transformation is n(c+z)/z, or rather less than n(c+l). If there 

are k transformations in the cycle, each of them might effect the 

same shortening, providing a generous estimate of the shortening 

factor of one cycle of (n(c+ 1)) k. 

Now two or more cycles occurring at the same S-depth cannot 

multiply their shortening effects, because each one operates only on 

part of a string at that depth. The combined shortening effect could 

not be more than that of one cycle operating on the entire string at 

that depth. So, if the S-depth is x, the overall shortening effect 

would be at most (n(c+l))•x, and the maximum length of the string 

generated by the phrase structure component would be at most 

x(n(c+l))八

We now estimate the maximum number of S nodes possible in a 

phrase marker for a string of z terminals, independently of a particular 

set of PS rules. It is a problem in recreational arithmetic to show 

that this number of nodes is 2 z -1. If we call the expression 

(n(c+ 1)) k, which is a constant for a particular grammar, K, then 

the maximum number of subsentences underlying a derivation of a 

string x terminals long amounts to 2 xK" -1, which is certainly 

finite. 

This proves that grammars with the survivor property can only 
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generate recursive languages. This does not seem to be of great 

linguistic significance, especially in light of the possibility that human 

languages are context-free. I b~lieve it is still an open question whether 

grammars with the survivor property can generate languages that 

are not context-sensitive. 

The very generous estimate of the maximum number of subsentences 

in a derivation is an exponential function of the sentence length. In 

spite of the crudeness of the estimate, Peters provides some evidence 

that such exponential functions do occur in the structures of natural 

languages. 

Consider Peters'example: 

Their sitting down promises to steady the canoe. 

Here both the subject and object of "promises" are arguably derived 

from separate subsentences. Altogether there are 2+1=3 subsentences. 

Now consider 

Their sitting down's promising to steady the canoe threatens to 

spoil the joke. 

Here again the subject and object of "threatens" are (arguably) 

subsentences, while the subject itself contains two. Now we have 

2. 2+1=5 subsentences. 
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The method of constructing these sentences can be continued: 

Their sitting down's promising to steady the canoe's threatening 

to spoil the joke purports to follow the script. 

The number of subsentences rises exponentially! There is certainly 

food for thought in this rather neglected article of Peters. 
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