|

) <

The University of Osaka
Institutional Knowledge Archive

Title Restrictions on Transformational Grammars

Author(s) |[Stirk, C. Ian

Citation | KPRAMARIEXKFZD. 1992, 18, p. 49-70

Version Type|VoR

URL https://hdl. handle.net/11094/99153

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

RESTRICTIONS ON
TRANSFORMATIONAL GRAMMARS

Tan C. Stirk

Introduction

In a previous contribution (Stirk, 1990), I presented a scheme for
a transformational grammar that would generate the same language
as an arbitrary unrestricted rewriting (UR) grammar. I present another
one below, based on a different approach. The new one has the
mathematical virtue of greater simplicity, and is much more conser-
vative in the forms of transformation employed. More importantly,
the only recursive symbol used in the base rules of this scheme is the
initial symbol S itself. In the main part of the paper, I discuss certain
restrictions on transformational grammars, whose properties are
analysed by Peters and Ritchie (1973) and by Peters (1973). The
proofs I present all assume that S shall be the only recursive symbol

in the phrase structure component.

Transformational Grammars for UR Languages

The base rules of these grammars take the following form:

(1) S—#'S where 1< isn+3
(2) S—a;s where 1= j=k
(3) S—O#O#O#O#N

() N—#

lan C. Stirk

(1) and (2) are not individual rules, but schemata. The rules in (1)
generate strings of i #’s followed by S. The maximum value of i is
n+3, where n is the number of rules in a UR grammar generating
the UR language. The a; in (2) represent the k terminal symbols of
the UR language.

The linearly ordered obligatory rules of the transformational
component are now presented, in their order of application, interspersed

with notes explaining their function,

T (1

#-[sX1—0—-#—-0-X.—0-N —Xs1s
SD: 1 2 3 4 5 6 7 8 9
sc:1 2 3 4 5 6 7 8+4 9
T (2)

#H#—-[sX:—0#-0~-X.—0—-N —Xs1s
SD: 1 2 3 4 5 6 17 8
sc: 1 2 3 4 5 6 T+4 8

T(i+2) where 1=isk

a;—[sXi—0#0—-X.—0—N —Xsls
SD:1 2 3 4 5 6 7
SC:1 2 3 4 5 6-+1 1

The third item here is of course a rule schema, covering k rules, one
for each member of the terminal vocabulary of the UR language. The
effect of these k+2 rules, in total, is to build up a random string

of O's and #’s and terminal symbols just after the N in the innermost

RESTRICTIONS ON TRANSFORMATIONAL GRAMMARS

subsentence. The string is random because of the arbitrary input from
the PS component, but may be a line in some derivation of some
sentence in the language we are interested in generating. The following

rule, T(k-+3), will end the formation of the random string.

T(k+3)

HH#-[sXi—0—#—-0—-X:—0 —N—Xs1]s
SD: 1 2 3 4 5 6 7 8
SC: 1 2. 3 4 5 6 T+4 8 9

This transformation will apply if the PS rules provide # # # in the
sentence being cycled over, and by adding a # between O and N, it
blocks any further application of the preceding rules, In the next cycle,

any of the transformations in the following schema may apply:

T(k+3+i) where 1S1=n

HP—[sX —0#0-X,—PI-Xs—-0—#~— N-X,—Ql—Xs1s
SD: 1 2 3 4 5 6 7 8 g 10 11 12
SC: 1 2 3 4 5 6 7 8-+8 9 10 11 12

Conditions: X:=X,4, Xs3=Xs.

There are n rules in this schema, and we have supposed that a grammar
for the language in question has n rules, which can schematically be
represen£ed by the n expressions P;—~Q: to P.—>Q.. Suppose also
that the UR grammar has r+1 non-terminal symbols, so that its
non-terminal vocabulary may be expressed as the set {Yo, Y:, ...,

Y.}, with Yo as the initial symbol. The P! and Q! are strings

Ian C. Stirk

identical to P: and Q; respectively, except that each non-terminal
symbol Y, in Vx is replaced by # O'*' #, that is, by j+1 O’s
between twe boundary symbols. This encoding of non-terminal
symbols is described in more detail in my (1990). If the subsentence
being cycled over begins with a string of i+3 #’s, then the appropriate
transformation in this schema will check for the presence of P! and
Q! in two strings of symbols which must otherwise be identical, one
before and one after the occurrence of O#N. If the two strings are
present in the appropriate environment, O # N becomes O # # N.
Otherwise there is no change, and it will be seen that no other

transformation in the cycle can apply.

Recall that the random string of symbols built up to the right
of O#N 1is a possible line in a derivation, containing the UR
grammar’s non-terminal symbols in encoded form. The string of
symbols following O# O to the left of O#N is a possible previous
line, The successful application of one of the transformations in the
schema above ensures that the two strings have the necessary
charcteristics of successive lines in a derivation: a rule of the UR
grammar has in essence applied, replacing P! by Q! and leaving
everything else unchanged. Initially, the PS rules provide the string
#O4# between O# O and ON in the lowest subsentence. Thus the
first time that a transformation in the schema applies, X. and X
must be null, while P! must be #O#, the encoded form of the initial
symbol Yo of the UR grammar. The effect is to commence a process

which imitates correct derivations according to that UR grammar.

RESTRICTIONS ON TRANSFORMATIONAL GRAMMARS

The next transformations are

T (k+n+4)

Xi=0—#0-0-X:~0H##EN—-X;
SD: 1 2 3 4 5 6 7
SC: 1 2 3 ¢ 5 6 i
T (k-+n-+5)

Xi=0—#—-0-#—-X.—0##N—-X;
SD: 1 2 3 4 5 6 7 8
SC: 1 2 3 4 ¢ 6 7 8

and a schema

T (k-+n+5+1i) where 1 =i sk
Xi—a,—X.—0#0—a,—X;—0H#HH#N—-X,

SD: 1 2 3 4 5 6 7 8

SC: 1 2 3 4 ¢ 6 7 8

The presence of O# #N in the SD of each of these rules ensures that
none of them can apply until the cycle after one of the T(k+3+1i)
has applied. The effect of these latest rules is to delete, under
condition of identity, a symbol occurring between O# O and O# #N
in the lowest subsentence. More than one of them can apply in a
single cycle, and they will apply in successive cycles, until the entire
string between OH#O and O# #N has disappeared. Once that string

has gone, the following rule will apply, which could not before:

lan C. Stirk

T (2k-+n+6)
Xi—0#00#—#-N-X.

SD: 1 2 3 4 5

SC: 1 2 3+3 4 5

Now transformations in the following schema can apply:

T (2k+n+6+i) where 1< i Sk+ 2
Xi—0#0—X:~0HH#HHN—- £~ X

SD: 1 2 3 4 5 6

SC: 1 2 3 544 ¢ 6

(Here £:=4#, £.,=0, £,=2,.,)

In successive cycles, these transformations will move the string of
symbols from the right side of O# # #N to the left, to replace the
previously deleted string. In effect, a line in a derivation which has
been checked and found correct is deleted and replaced with the
succeeding line.

The next step, of course, is to repeat the entire process, by
generating another possible derivation line, checking if it is indeed
correct, and then substituting it for its predecessor. The repetition
can easily be commenced just by deleting the three #’s in the fragment
O# # #N, for then the structural descriptions of the first rules in
the cycle may again be met.

However, it is possible that the derivation has already come to
an end: the string now between O#0O and O# # #N may consist only

of terminal symbols, or in other words, may be a sentence of the

RESTRICTIONS ON TRANSFORMATIONAL GRAMMARS

language. The following transformation allows for this possibility:

T (Bk+n+9)
Xl“O#O"Xa’“#—Xa—O_#‘“#“#‘N

SD: 1 2 3 4 5 6 7 8 9 10

SC: 1 2 3 4 5 6 ¢ ¢ ¢ 10

The three #'s are only deleted if there is a boundary symbol to be
found somewhere between O#O and O# # #N. This will only be the
case if that part of the string contains the encoded form of a non-
terminal symbol, so that the derivation has not terminated in a
sentence. If the transformation does not apply, there is a sentence,
and it will be necessary to remove all the unwanted material from

the phrase marker:

T (Bk+n-+9+i) where 1 = i = &k

i Xl”‘ai—Xa—O#O"Xa_ai“‘Xq_O###N
SD: 1 2 3 4 5 6 7 8
SC: 1 ¢ 3 4 5 6 7 8

The transformations in this schema delete unwanted terminal symbols,
provided only that they are identical to symbols in the sentence being
generated. More than one of these transformations can apply in a

single cycle.

T (4k+n+10)

Xx_###_Xz—‘O#O_Xa“O“###_N
SD: 1 2 3 4 5 6 7 8
SC: 1 @ 3 4 5 6 7 8

Jan C. Stirk

As well as terminal symbols, a whole collection of boundary symbols
will need to be removed. The above transformation performs this
task, removing them in blocks of three, on a condition of identity
will the block of three between O and N, All the unwanted boundary
symbols to the left may be removed in this way, for since the PS
rules can provide an extra # or # #f, the number of them may

always be a multiple of three.

On the very last cycle, the SD of this final transformation may

be met:

T (4dk+n+11)

#—0—-#-0-X\1—0—#—-#—-#—-#
Sb: 1 2 3 4 5 6 7 8 9 10
SC: ¢ ¢ ¢ ¢ 5 ¢ ¢ ¢ ¢ ¢

which deletes everything except the final sentence. The first # in the
SD comes from the topmost sentence, while the last one is the one
dominated by N.

It is clear that nothing can be generated by this grammar free
of boundary symbols except for sentences of the UR language. The
only items not deleted under a condition of identity belong to the
set {O, #}.

In their original proof that transformational grammars can
generate any UR language, Peters and Ritchie (1971) employ a PS
component rather different from the one used above. Every structure

generated by it contains a string comprising all the terminal symbols

RESTRICTIONS ON TRANSFORMATIONAL GRAMMARS

of the language. The ones which do not appear in a sentence generated
by the grammar are all deleted. The designated set of terminal
symbols which may be deleted thus contains the entire terminal
vocabulary! This somehow violates the spirit, if not the letter, of
Chomsky’s restrictions on deletion. The PS component 1 have
introduced above introduces some random selection of terminal
symbols into its structures. If any of them are not incorporated
into the sentence being generated, then no string free of boundary

symbols is obtained.

Non-filtering and Local Filtering Languages
Filtering is used extensively in the grammar above, and it prompts
one to speculate what kind of languages could be generated if there
was no filtering whatsoever. The following theorem is rather easy

to prove, at least informally:

Theorem 1 For any infinite non-filtering language L, there are
constants M and x such that for any sentence of length y=x, there

is another sentence of length not greater than My.

Proof: Suppose that in a set of phrase structure rules, which form
part of a non-filtering transformational grammar, any S on the right
hand side of a rule is replaced by a new symbol S'. In that case,
there could be no recursion, and only a finite number of trees, or
labelled bracketings, could be derived. Schematically, they might be

represented as follows:

Ian C. Stirk

[—=S'=s'——=1,

Depending on the original rules, there may be any finite number of
occurrences of S' in the bracket, but only two are depicted. Consider
now any sentences generated by the transformational grammar, and
their final phrase markers, represented as labelled bracketings. Their
outermost brackets will of course be [and 1s. Substitute them for
the various occurrences of S' in the above schema. The result is a
labelled bracketing of the kind to which the final cycle of a transfor-
mational derivation is applied. Suppose that one of the sentences we
have just substituted for S' has length vy, and that it is longer than
any of the other substitutions, if there are any, and longer also than
any string of terminals dominated by any non-terminal symbol in
the whole labelled bracketing. There must be a minimum length x
for y which makes this possible. How much longer than y could the
sentence resulting after the final cycle be? Transformations in the
cycle could cause lengthening by making multiple copies of substrings,
of which the longest is y terminals long. However, since there are
only a finite number of transformations in the cycle, of which each
could make only a finite number of copies of anything, the result
could not be longer than a certe}in multiple, call it M, of y. This

establishes the result.

Peters and Ritchie (1973) realised that the same theorem 1 would
also apply to languages generated by grammars with a certain restricted
kind of filtering which they called “local filtering”. A good example
of this may be seen in the way relative clauses are handled in certain

transformational grammars for English. A phrase like “the man

RESTRICTIONS ON TRANSFORMATIONAL GRAMMARS

who came to dinner” might have the following schematic underlying

structure:
[xe [we the man Jup [s[xe the man]wr came to dinner Js] xe

The relative clause transformation would replace the second occurrence
of “the man” by “who”. A condition of identity is involved. If the
NP in the embedded sentence is not identical to the NP on the left,
the transformation will not apply, and boundary symbols in the
sentence of which the entire NP is part will be left in place. Clearly
nothing further could happen to rectify the situation: if the relative
clause transformation does not apply to such a structure, then the
result must be ungrammatical, and the boundary symbols cannot be

removed.

This is the key to the concept of local filtering. All boundary
symbols in any subsentence must be removed by the end of the
transformational cycle applying to that subsentence. If any boundary
symbols remain, there is no point in continuing the transformational
derivation, for they will still remain at the end, and the resultant
string is bound to be ungrammatical. Ungrammaticality can be detected
more quickly with a grammar that employs only local filtering.
Grammars of the kind presented in the last section are obviously
not local filtering: the whole point of the last rules in the cycle is

to remove boundary symbols left over from previous cycles.

Consider again the above proof concerning non-filtering grammars.

How does it change if the grammar in question is a local filtering

Jan C. Stirk

one? All the subsentences substituted for the various instances of S'
must of course be grammatical, and contain no boundary symbols.
On the other hand, there might be boundary symbols left over at the
end of the last cycle. Suppose in the worst case that none of the
finite number of phrase markers whose longest subsentence has lengthy
results in a sentence, Now it must be the case that for some longest
subsentence of length z, less than y, at least one sentence can be
derived of length greater than y. If this were not so, there would be
no grammatical strings longer than y, which is impossible if the
language 1s infinite. Summing up, in the local filtering case also,
there must be another grammatical string whose length is at most
My.

Theorem 1 can be strengthened to Theorem 2, remembering that non-

filtering grammars are a subset of local filtering ones:

Theorem 2 For any infinite local filtering language L, there are
constants M and x such that for any sentence of length y = x, there

1s another sentence of length not greater than My.

Relations of length between grammatical strings have some
connections with hierarchies of grammars. For instance, consider the

language generated by this context-sensitive grammar:

Xo — Xib
Xy — X X2
Xy — bX;

X3X: — X; X3 X;

RESTRICTIONS ON TRANSFORMATIONAL GRAMMARS

Xsb > bb

bX: —bb
It is easy to check that this grammar generates a language whose
sentences consist of strings of 2°+m+2 b’s, for m =0O. Each sentence
is a little more than twice as long as the next shortest. The language
is not context-free. For consider a context-free derivation of some
sentence for some value of m. The penultimate line of that derivation
must consist of some number 2"+m+2-q of b’s, together with some
non-terminal symbol of the CF grammar, X, say. To obtain the last

line, X, is rewritten as a string of q b’s.

It is well known that CF languages can be generated by grammars
all of whose non-terminal symbols are recursive (see, for instance,
Stirk, 1987, p104). It must be possible to continue from that
penultimate line by rewriting X, once recursively, and then terminating
it by rewriting it as the string of q b’s. The recursive rule used in
rewriting X, may bring in further non-terminal symbols, but there
must be some minimum number p, say, of b’s which these other
symbols can dominate. Altogether this means that the grammar will
generate a string of 2"+m-+2+p b’s. Adding an extra p b's in this
way cannot, except for a particular value of m, produce a grammatical
string. Yet since there are only a finite number of non-terminal
symbols in the CF grammar, X; must be present in the penultimate
line of an infinite number of derivations, producing an infinite number
of ungrammatical strings., Thus there cannot be a context-free

grammar for the language.

There is, of course, a local filtering grammar for that language.

lan C. Stirk
In fact, a non-filtering grammar can easily be constructed. The phrase
structure component consists of the rules

S—> bS5, S — bN, N - b

The transformational cycle contains the following three rules, applied

in this order:

Xi—=[xXe—=blsn —Xs
SD: 1 2 3 4
SC: 1 2 3+3 4

b —[sX: =N —X:]Js
SD: 1 2 3 4

SC: 1+3 2 @ 4
b — N — S

SD: 1 2 3

SC: 3 2 3

The context-sensitive grammar given above achieved its multi-
plication because of the rule Xs X: = X: Xs X;. That process can

be repeated, as in the following grammar:

Xe - X1 X4 b
X, = X1 Xo
X: = b Xs

Xs Xo — X2 X3 X

RESTRICTIONS ON TRANSFORMATIONAL GRAMMARS

Xs Xo = X4 X4 X3
b X:—=>b b
b Xi— b b
Xs b =>Db b

“_ o

Using the notation “a exp(b)” for “a®”, this grammar produces
strings of b’s of length Zexp (2")+2"+m-+2. The first term, 2exp
(27), is the square of 2exp (2™ '), meaning that there can be no
constant multiple relating the lengths of sentences. The following

theorem follows from this and Theorem 2:

Theorem 3 There are context-sensitive languages which cannot be

generated by local filtering grammars.

This might raise -one’'s hopes about the possible linguistic

significance of local filtering grammars, until one observes that

Theorem 4 Any UR language can be expressed as the intersection of

a finite state language and a local filtering language.

In fact, the local filtering language here can be a non-filtering one.
For consider some filtering grammar G for any UR language. If we
replace every occurrence of the boundary symbol in the rules of G by
a new terminal symbol, ¢, say, we obtain a non-filtering grammar
for a language whose sentences consist of those of the UR language
together with others containing c. Now consider a finite state language
whose sentences consist of random strings over the vocabulary of the

UR language but not c. The intersection of this and the non-filtering

lan C. Stirk

language will clearly exclude just those including c: the intersection
will be the UR language itself.

It is also easy to prove this:

Theorem 5 The intersection of two recursive languages is itself

recursive,

It is well known that a language L is recursive if and only if
both L. and —L are recursively enumerable, where —L is the set of
possible strings over the terminal vocabulary of L which are not in
L. (See, for instance, Stirk, 1988, p203.) Suppose that L; and L.
are recursive languages, and consider Lis=1,ML.. We can enumerate
Ls by enumerating L, and L. and picking out the sentences common
to both lists. We can enumerate —Ls just by combining the lists of

—L: and —L.. Thus Ls is recursive.
We can now go on to prove

Theorem 6 Local filtering grammars can generate non-recursive

languages.

For according to Theorem 4, any UR language, in particular
some non-recursive one, can be expressed as the intersection of a
FS language, which is certainly recursive, and a non-filtering one. So,

from Theorem 5, the non-filtering language cannot be recursive.

Thus local filtering grammars generate a class of languages which

RESTRICTIONS ON TRANSFORMATIONAL GRAMMARS

cuts across the Chomsky hierarchy: some CS languages are excluded,
yet some non-recursive languages are included. There is no clear

linguistic significance.
The Survivor Property

An examination of the filtering grammars presented in the first
section of this paper shows that most of the subsentences in any
transformational derivation diséppear utterly by the time we reach
the final phrase marker. Peters (1973) investigates how grammars
might be restricted if such total obliteration of subsentences is
restricted. The most obvious restriction would be to require that
every subsentence must have at least one survivor: that is, it must
contain at least one terminal symbol which is still present in the
final string. In that case, a sentence x terminals long could only
have been generated by a derivation involving at most x subsentences,
There could only be a finite number of such derivations, meaning
that it can be decided whether any string of terminals is generated
by a particular grammar or not. The grammars could only generate

recursive languages, in other words.

Peters also considers a less restrictive, more subtle survivor
property. According to this, and here I quote Peters (1973): “..if ®
is the input domain of any cycle ... and ¥ is the output from that
cycle, then W contains more terminal nodes than any subpart of ©
on which the transformational cycle operated earlier in the
derivation. ”

An example will make this more clear. Consider the following

lan C. Stirk

labelled bracketing, where each subsentence is numbered:

[Sl.. [SZ..]SZ.-[SH..[S&..:}Sd]SS]SI

The lowest sentence is S4, and the transformational cycle may delete
it completely, as it contains no sentential subpart. S3, however, must
leave at least one survivor-one more than its subpart S4’s zero
survivors. S2 may leave no survivors, but S1 must leave at least 2:

one more than its subpart S3.

With this kind of survivor property, the number of terminal
symbols in a string determines not the total number of subsentences
in a possible derivation, but rather the derivation’s S-depth. On tracing
branches from the root S in a tree to terminals, the S-depth would
be the maximum number of S nodes passed through. The simple

example above has an S-depth of 2.

So a string of x terminals must be transformationally derivable
from a structure with S-depth x. To make sure that the language is
recursive, however, we must fix a finite upper bound to the total
number of subsentences in that structure. Peters estimates this

generously.

Firstly we estimate just how much a transformational cycle can
shorten a string of terminals. Suppose that n is the maximum number
of terms mentioned in any structural description of the transforma-
tional cycle, while ¢ is the length of the longest terminal string

mentioned. If the output of a very destructive transformation is z

RESTRICTIONS ON TRANSFORMATIONAL GRAMMARS

terminals long, the transformation might have operated on a string
of n terms each z+c¢ terminals long. It proceeded to delete n—1 of
these under a condition of identity, and disposed of a further ¢
terminals as members of a specified set. The input string might thus
have been n(c+z) terminals long. The shortening factor of such a
transformation is n(c+2)./z, or rather less than n{c+1). If there
are k transformations in the cycle, each of them might effect the
same shortening, providing a generous estimate of the shortening

factor of one cycle of (n(c+1))*.

Now two or more cycles occurring at the same S-depth cannot
multiply their shortening effects, because each one operates only on
part of a string at that depth. The combined shortening effect could
not be more than that of one cycle operating on the entire string at
that depth. So, if the S-depth is x, the overall shortening effect
would be at most (n(c+1))**, and the maximum length of the string

generated by the phrase structure component would be at most
x(n(e+1))k=,

We now estimate the maximum number of S nodes possible in a

phrase marker for a string of z terminals, independently of a particular
set of PS rules. It is a problem in recreational arithmetic to show
that this number of nodes is 2z—1. If we call the expression
(n{c+1))%, which is a constant for a particular grammar, K, then
the maximum number of subsentences underlying a derivation of a
string x terminals long amounts to 2xK* —1, which is certainly
finite.

This proves that grammars with the survivor property can only

fan C. Stirk

generate recursive languages. This does not seem to be of great
linguistic significance, especially in light of the possibility that human
languages are context-free. I believe it is still an open question whether
grammars with the survivor property can generate languages that

are not context-sensitive,

The very generous estimate of the maximum number of subsentences
in a derivation is an exponential function of the sentence length. In
spite of the crudeness of the estimate, Peters provides some evidence
that such exponential functions do occur in the structures of natural

languages.
Consider Peters’ example:

Their sitting down promises to steady the canoe.
Here both the subject and object of “promises” are arguably derived
from separate subsentences. Altogether there are 2-+1=3 subsentences.
Now consider

Their sitting down’s promising to steady the canoe threatens to

spoil the joke.

Here again the subject and object of “threatens” are (arguably)
subsentences, while the subject itself contains two. Now we have

2.2+1=5 subsentences,

RESTRICTIONS ON TRANSFORMATIONAL GRAMMARS

The method of constructing these sentences can be continued:

Their sitting down’s promising to steady the canoe’s threatening

to spoil the joke purports to follow the script.

The number of subsentences rises exponentially! There is certainly

food for thought in this rather neglected article of Peters,
Bibliography

M. Gross, M. Halle and M-P. Schutzenberger (eds) “The Formal
Analysis of Natural Languages” (Mouton, 1973)

K. J. J. Hintikka, J. M. E. Moravesik and P. Suppes (eds)
“Approaches to Natural Language” (Reidel, 1973)

P. S. Peters (1973) “On Restricting Deletion Transformations”
(in Gross, Halle and Schutzenberger, eds)

P. S. Peters and R. W. Ritchie (1971) “On Restricting the Base
Component of Transformational Grammars” (Information and
Control 18, pp 483-501)

P. S. Peters and R. W. Ritchie (1973) “Nonfiltering and Local-
Filtering Transformational Grammars” (in Hintikka, Moravcsik
and Suppes, eds)

lIan C. Stirk (1987) “Context-Free Languages Revisited Yet Again”
CRBRAVARIERTIGE 15, pp 103-132)

Ian C. Stirk (1983) “Counting Languages”

(CRBRAAKISKIFZE 16, pp 191-209)
lan C. Stirk (1990) “The Continuing Importance of Peters and

fan C. Stirk

Ritchie” (KERAVAIENKBIZE 17, pp 41-59)

