
Title Restrictions on Transformational Grammars

Author(s) Stirk, C. Ian

Citation 大阪外大英米研究. 1992, 18, p. 49-70

Version Type VoR

URL https://hdl.handle.net/11094/99153

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

RESTRICTIONS ON

TRANSFORMATIONAL GRAMMARS

Ian C. Stirk

Introduction

In a previous contribution (Stirk, 1990), I presented a scheme for

a transformational grammar that would generate the same language

as an arbitrary unrestricted rewriting (UR) grammar. I present another

one below, based on a different approach. The new one has the

mathematical virtue of greater simplicity, and is much more conser-

vative in the forms of transformation employed. More importantly,

the only recursive symbol used in the base rules of this scheme is the

initial symbol S itself. In the main part of the paper, I discuss certain

restrictions on transformational grammars, whose properties are

analysed by Peters and Ritchie (1973) and by Peters (1973). The

proofs I present all assume that S shall be the only recursive symbol

in the phrase structure component.

Transformational Grammars for UR Languages

The base rules of these grammars take the following form:

(1) s→#S where 1 ;£; i ;£; n + 3
(2) S→釘S

(3) S→O#O#O#O#N

(4) N→#

where 1 ~ j ~ k

-49-

Ian C. Stirk

(1) and (2) are not individual rules, but schemata. The rules in (1)

generate strings of i #'s followed by S. The maximum value of i is

n +3, where n is the number of rules in a UR grammar generating

the UR language. The a; in (2) represent the k terminal symbols of

the UR language.

The linearly ordered obligatory rules of the transformational

component are now presented, in their order of application, interspersed

with notes explaining their function.

T (1)

＃ [sX 1 -0 #-0 -X2 0-N -X3] s

SD: 1 2 3 4 5 6 7 8 ，
SC: 1 2 3 4 5 6 7 8+4 ，
T (2)

##-[sX1-0 #-0 -X2-0-N -X3] s

SD: 1 2 3 4 5 6 7 8

SC: 1 2 3 4 5 6 7+4 8

T(i+2) where 1；；；；； i ；；；；； k

a l [sX1-0 # 0 -X2

゜
N -X3] s

SD: 1 2 3 4 5 6 7

SC: 1 2 3 4 5 6 + 1 7

The third item here is of course a rule schema, covering k rules, one

for each member of the terminal vocabulary of the UR language. The

effect of these k + 2 rules, in total, is to build up a random string
of O's and #'s and terminal symbols just after the N in the innermost

-50

RESTRICTIONS ON TRANSFORMATIONAL GRAMMARS

subsentence. The string is random because of the arbitrary input from

the PS component, but may be a line in some derivation of some

sentence in the language we are interested in generating. The following

rule, T(k+3), will end the formation of the random string.

T(k+3)

＃＃＃ [sX1―O -# 0 -X2-0 -N-X3] s

SD: 1 2 3 4 5 6 7 8 ，
SC: 1 2 3 4 5 6 7+4 8 ，

This transformation will apply if the PS rules provide # # # in the

sentence being cycled over, and by adding a # between O and N, it

blocks any further application of the preceding rules. In the next cycle,

any of the transformations in the following schema may apply:

T(k+3+i) where 1 ~ i ~ n

i+3-[sXl―o # 0 -X2-P l-X3-0 -# N-X、―QI-X5] s

1

1

．
．
．
．

D

C

s
s

2

2

2

2

1

1

1

1

1

1

0

0

1

1

9

9

8

＋

8

8

7

7

6

6

5

5

4

4

3

3

Conditions: X戸 X,, X戸 X5.

There are n rules in this schema, and we have supposed that a grammar

for the language in question has n rules, which can schematically be

represented by the n expressions P 1→Qi to Pn→Q,,. Suppose also

that the UR grammar has r+ 1 non-terminal symbols, so that its

non-terminal vocabulary may be expressed as the set {Y。,Y1,
Y,}, with Y。asthe initial symbol. The Pl and Q l are strings

-51-

Ian C. Stirk

identical to P; and Q; respectively, except that each non屯terminal

symbol YJ in VN is replaced by# oi+i #, that is, by j+l O's
between two boundary symbols. This encoding of non-terminal

symbols is described in more detail in my (1990). If the subsentence

being cycled over begins with a string of i+3 #'s, then the appropriate

transformation in this schema will check for the presence of P ! and

Q! in two strings of symbols which must otherwise be identical, one

before and one after the occurrence of O#N. If the two strings are

present in the appropriate environment, 0 # N becomes O # # N.

Otherwise there is no change, and it will be seen that no other

transformation in the cycle can apply.

Recall that the random string of symbols built up to the right

of O # N is a possible line in a derivation, containing the UR

grammar's non-terminal symbols in encoded form. The string of

symbols following O # 0 to the left of O # N is a possible previous

line. The successful application of one of the transformations in the

schema above ensures that the two strings have the necessary

charcteristics of successive lines in a derivation: a rule of the UR

grammar has in essence applied, replacing P ! by Q ! and leaving

everything else unchanged. Initially, the PS rules provide the string

0 # between O # 0 and ON in the lowest subsentence. Thus the

first time that a transformation in the schema applies, X2 and X3

must be null, while P ! must be # 0 #, the encoded form of the initial

symbol Yo of the UR grammar. The effect is to commence a process

which imitates correct derivations according to that UR grammar.

-52-

RESTRICTIONS ON TRANSFORMATIONAL GRAMMARS

The next transformations are

T (k+n+4)

X1―0-# 0-0 -X2-0 ##N-X3

5

5

4

¢

3

3

2

2

1

1

．
．
．
．

D

C

s
s

6

6

7

7

T (k+n+5)

X1-0 -#-0-#-X2-0 ##N-X3

SD: 1 2 3 4 5 6 7 8

SC: 1 2 3 4 ¢ 6 7 8

and a schema

T (k+n+5+i) where 1 ~i ~k

X1―a,-X2

SD: 1 2 3

SC: 1 2 3

0 # 0 -a,-X3-0 ##N-X4

4 5 6 7 8

4 ¢ 6 7 8

The presence of 0# #N in the SD of each of these rules ensures that

none of them can apply until the cycle after one of the T(k+3+i)

has applied. The effect of these latest rules is to delete, under

condition of identity, a symbol occurring between O # 0 and O # # N

in the lowest subsentence. More than one of them can apply in a

single cycle, and they will apply in successive cycles, until the entire

string between O # 0 and O # # N has disappeared. Once that string

has gone, the following rule will apply, which could not before:

53-

Ian C. Stirk

T (2k+n+6)

X1-0# 0 0 #-#-N-X2

1

1

．．．．

D

C

s
s

2

3 4 5

2 3+3 4 5

Now transformations in the following schema can apply:

T (2k+n+6+i) where 1~ i ~k+ 2

X1 0 # 0 -X2-0 ###N-どl x3

SD: 1 2 3 4 5 6

SC: 1 2 3 5+4 ¢ 6

(Here f戸＃，も＝ 0' ど1=a J-2)

In successive cycles, these transformations will move the string of

symbols from the right side of 0# # #N to the left, to replace the

previously deleted string. In effect, a line in a derivation which has

been checked and found correct is deleted and replaced with the

succeeding line.

The next step, of course, is to repeat the entire process, by

generating another possible derivation line, checking if it is indeed

correct, and then substituting it for its predecessor. The repetition

can easily be commenced just by deleting the three #'sin the fragment

0 # # # N, for then the structural descriptions of the first rules in

the cycle may again be met.

However, it is possible that the derivation has already come to

an end: the string now between 0#0 and 0# # #N may consist only

of terminal symbols, or in other words, may be a sentence of the

-54-

RESTRICTIONS ON TRANSFORMATIONAL GRAMMARS

language. The following transformation allows for this possibility:

T (3k+n+9)

Xi-0 # 0 -X2-#-X3-0 -#-#-#-N
SD : 1 2 3 4 5 6 7 8 9 10
SC: 1 2 3 4 5 6 ¢ ¢ ¢ 10

The three #'s are only deleted if there is a boundary symbol to be

found somewhere between 0#0 and 0# # #N. This will only be the

case if that part of the string contains the encoded form of a non-

terminal symbol, so that the derivation has not terminated in a

sentence. If the transformation does not apply, there is a sentence,

and it will be necessary to remove all the unwanted material from

the phrase marker:

T (3k+n+9+i) where 1 ~ i ~ k

Xl―a,-X2-0 # 0 -X3-a,
SD: 1 2 3 4 5 6
SC: 1 ¢ 3 4 5 6

X4-0###N
7 8
7 8

The transformations in this schema delete unwanted terminal symbols,

provided only that they are identical to symbols in the sentence being

generated. More than one of these transformations can apply in a

single cycle.

T (4k+n+10)

Xl―###-X2
1 2 3

1 </J 3
．．．．
D

C

s
s

0#0-X3-0

4 5 6

4 5 6

###-N

7 8
7 8

-55-

Ian C. Stirk

As well as terminal symbols, a whole collection of boundary symbols

will need to be removed. The above transformation performs this

task, removing them in blocks of three, on a condition of identity

will the block of three between O and N. All the unwanted boundary

symbols to the left may be removed in this way, for since the PS

rules can provide an extra # or # #, the number of them m_ay

always be a multiple of three.

On the very last cycle, the SD of this final transformation may

be met:

T (4k+n + 11)

#-0-#-0-X,―0-#-#-#-#

S D : 1 2 3 4 5 6 7 8 9 10

SC: ¢ ¢ ¢ ¢ 5 ¢ ¢ ¢ ¢ ¢

which deletes everything except the final sentence. The first # in the

SD comes from the topmost sentence, while the last one is the one

dominated by N.

It is clear that nothing can be generated by this grammar free

of boundary symbols except for sentences of the UR language. The

only items not deleted under a condition of identity belong to the

set {O, #}.

In their original proof that transformational grammars can

generate any UR language, Peters and Ritchie (1971) employ a PS

component rather different from the one used above. Every structure

generated by it contains a string comprising all the terminal symbols

56-

RESTRICTIONS ON TRANSFORMATIONAL GRAMMARS

of the language. The ones which do not appear in a sentence generated

by the grammar are all deleted. The designated set of terminal

symbols which may be deleted thus contains the entire terminal

vocabulary! This somehow violates the spirit, if not the letter, of

Chomsky's restrictions on deletion. The PS component I have

introduced above introduces some random selection of terminal

symbols into its structures. If any of them are not incorporated

into the sentence being generated, then no string free of boundary

symbols is obtained.

Non-filtering and Local Filtering Languages

Filtering is used extensively in the grammar above, and it prompts

one to speculate what kind of languages could be generated if there

was no filtering whatsoever. The following theorem is rather easy

to prove, at least informally:

Theorem 1 For any infinite non-filtering language L, there are

constants Mand x such that for any sentence of length y;;;:x, there

is another sentence of length not greater than My.

Proof: Suppose that in a set of phrase structure rules, which form

part of a non-filtering transformational grammar, any S on the right

hand side of a rule is replaced by a new symbol S 1. In that case,

there could be no recursion, and only a finite number of trees, or

labelled bracketings, could be derived. Schematically, they might be

represented as follows:

-57

Ian C. Stirk

[$ - - s I -sl - --]s

Depending on the original rules, there may be any finite number of

occurrences of SI in the bracket, but only two are depicted. Consider

now any sentences generated by the transformational grammar, and

their final phrase markers, represented as labelled bracketings. Their

outermost brackets will of course be [s and] s. Substitute them for

the various occurrences of SI in the above schema. The result is a

labelled bracketing of the kind to which the final cycle of a transfor-

mational derivation is applied. Suppose that one of the sentences we

have just substituted for SI has length y, and that it is longer than

any of the other substitutions, if there are any, and longer also than

any string of terminals dominated by any non-terminal symbol in

the whole labelled bracketing. There must be a minimum length x

for y which makes this possible. How much longer than y could the

sentence resulting after the final cycle be? Transformations in the

cycle could cause lengthening by making multiple copies of substrings,

of which the longest is y terminals long. However, since there are

only a finite number of transformations in the cycle, of which each

could make only a finite number of copies of anything, the result

could not be longer than a cert~in multiple, call it M, of y. This

establishes the result.

Peters and Ritchie (1973) realised that the same theorem 1 would

also apply to languages generated by grammars with a certain restricted

kind of filtering which they called "local filtering". A good example

of this may be seen in the way relative clauses are handled in certain

transformational grammars for English. A phrase like "the man

-58-

RESTRICTIONS ON TRANSFORMATIONAL GRAMMARS

who came to dinner" might have the following schematic underlying

structure:

[NP [NP the man] Nr [s [NP the man] NP came to dinner] s] NP

The relative clause transformation would replace the second occurrence

of "the man" by "who". A condition of identity is involved. If the

NP in the embedded sentence is not identical to the NP on the left,

the transformation will not apply, and boundary symbols in the

sentence of which the entire NP is part will be left in place. Clearly

nothing further could happen to rectify the situation: if the relative

clause transformation does not apply to such a structure, then the

result must be ungrammatical, and the boundary symbols cannot be

removed.

This is the key to the concept of local filtering. All boundary

symbols in any subsentence must be removed by the end of the

transformational cycle applying to that subsentence. If any boundary

symbols remain, there is no point in continuing the transformational

derivation, for they will still remain at the end, and the resultant

string is bound to be ungrammatical. Ungrammaticality can be detected

more quickly with a grammar that employs only local filtering.

Grammars of the kind presented in the last section are obviously

not local filtering: the whole point of the last rules in the cycle is

to remove boundary symbols left over from previous cycles.

Consider again the above proof concerning non-filtering grammars.

How does it change if the grammar in question is a local filtering

-59-

Ian C. Stirk

one? All the subsentences substituted for the various instances of S 1

must of course be grammatical, and contain no boundary symbols.

On the other hand, there might be boundary symbols left over at the

end of the last cycle. Suppose in the worst case that none of the

finite number of phrase markers whose longest subsentence has lengthy

results in a sentence. Now it must be the case that for some longest

subsentence of length z, less than y, at least one sentence can be

derived of length greater than y. If this were not so, there would be

no grammatical strings longer than y, which is impossible if the

language is infinite. Summing up, in the local filtering case also,

there must be another grammatical string whose length is at most

My.

Theorem 1 can be strengthened to Theorem 2, remembering that non-

filtering grammars are a subset of local filtering ones:

Theorem 2 For any infinite local filtering language L, there are

constants M and x such that for any sentence of length y ~ x, there

is another sentence of length not greater than My.

Relations of length between grammatical strings have some

connections with hierarchies of grammars. For instance, consider the

language generated by this context-sensitive grammar:

X。→凶b

応→凶 X2

凶→ bX3

x心→ X2 ふ x3

-60

RESTRICTIONS ON TRANSFORMATIONAL GRAMMARS

ふ b → b b

b兄→ bb

It is easy to check that this grammar generates a language whose

sentences consist of strings of 2→m +2 b's, for m ；；；；゚． Eachsentence
is a little more than twice as long as the next shortest. The language

is not context-free. For consider a context-free derivation of some

sentence for some value of m. The penultimate line of that derivation

must consist of some number zm+m+2-q of b's, together with some

non-terminal symbol of the CF grammar, X;, say. To obtain the last

line, X; is rewritten as a string of q b's.

It is well known that CF languages can be generated by grammars

all of whose non-terminal symbols are recursive (see, for instance,

Stirk, 1987, p 104). It must be possible to continue from that

penultimate line by rewriting X; once recursively, and then terminating

it by rewriting it as the string of q b's. The recursive rule used in

rewriting X; may bring in further non-terminal symbols, but there

must be some minimum number p, say, of b's which these other

symbols can dominate. Altogether this means that the grammar will

generate a string of zm+m +2+p b's. Adding an extra p b's in this

way cannot, except for a particular value of m, produce a grammatical

string. Yet since there are only a finite number of non-terminal

symbols in the CF grammar, X; must be present in the penultimate

line of an infinite number of derivations, producing an infinite number

of ungrammatical strings. Thus there cannot be a context-free

grammar for the language.

There is, of course, a local filtering grammar for that language.

61-

Ian C. Stirk

In fact, a non-filtering grammar can easily be constructed. The phrase

structure component consists of the rules

S → bS, S → bN, N → b

The transformational cycle contains the following three rules, applied

in this order:

X1 [NX2 b J N x3

SD: 1 2 3 4

SC: 1 2 3+3 4

b [sX 1 N X 2] s

SD: 1 2 3 4

SC: 1 + 3 2 ¢ 4

b N s
SD: 1 2 3

SC: 3 2 3

The context-sensitive grammar given above achieved its multi-

plication because of the rule X 3応→ふふ X3. That process can

be repeated, as in the following grammar:

X。→ XI応 b

応→凶 X2

X1 → b X3

x3応→ X2応 x3

-62-

RESTRICTIONS ON TRANSFORMATIONAL GRAMMARS

x3応→ X4応 x3

b応→ b b

b X4 → b b

X3 b→ b b

Using the notation "a exp(b)" for "ab", this grammar produces

strings of b's of length 2exp (2m)+2m+m+2. The first term, 2exp

(2m), is the square of 2exp (2m→),meaning that there can be no

constant multiple relating the lengths of sentences. The following

theorem follows from this and Theorem 2:

Theorem 3 There are context-sensitive languages which cannot be

generated by local filtering grammars.

This might raise one's hopes about the possible linguistic

significance of local filtering grammars, until one observes that

Theorem 4 Any UR language can be expressed as the intersection of

a finite state language and a local filtering language.

In fact, the local filtering language here can be a non-filtering one.

For consider some filtering grammar G for any UR language. If we

replace every occurrence of the boundary symbol in the rules of G by

a new terminal symbol, c, say, we obtain a non-filtering grammar

for a language whose sentences consist of those of the UR language

together with others containing c. Now consider a finite state language

whose sentences consist of random strings over the vocabulary of the

UR language but not c. The intersection of this and the non-filtering

-63

Ian C. Stirk

language will clearly exclude just those including c: the intersection

will be the UR language itself.

It is also easy to prove this:

Theorem 5 The intersection of two recursive languages is its.elf

recursive.

It is well known that a language L is recursive if and only if

both L and -L are recursively enumerable, where -L is the set of

possible strings over the terminal vocabulary of L which are not in

L. (See, for instance, Stirk, 1988, p203.) Suppose that L, and L2

are recursive languages, and consider Ls=L, nL2. We can enumerate

Ls by enumerating L, and L2 and picking out the sentences common

to both lists. We can enumerate -Ls just by combining the lists of

-L, and -L2. Thus Ls is recursive.

We can now go on to prove

Theorem 6 Local filtering grammars can generate non-recursive

languages.

For according to Theorem 4, any UR language, in particular

some non-recursive one, can be expressed as the intersection of a

FS language, which is certainly recursive, and a non-filtering one. So,

from Theorem 5, the non-filtering language cannot be recursive.

Thus local filtering grammars generate a class of languages which

-64-

RESTRICTIONS ON TRANSFORMATIONAL GRAMMARS

cuts across the Chomsky hierarchy: some CS languages are excluded,

yet some non-recursive languages are included. There is no clear

linguistic significance.

The Survivor Property

An examination of the filtering grammars presented in the first

section of this paper shows that most of the subsentences in any

transformational derivation disappear utterly by the time we reach

the final phrase marker. Peters (1973) investigates how grammars

might be restricted if such total obliteration of subsentences is

restricted. The most obvious restriction would be to require that

every subsentence must have at least one survivor: that is, it must

contain at least one terminal symbol which is still present in the

final string. In that case, a sentence x terminals long could only

have been generated by a derivation involving at most x subsentences.

There could only be a finite number of such derivations, meaning

that it can be decided whether any string of terminals is generated

by a particular grammar or not. The grammars could only generate

recursive languages, in other words.

Peters also considers a less restrictive, more subtle survivor

property. According to this, and here I quote Peters (1973): ".. if <D

is the input domain of any cycle... and W is the output from that

cycle, then W contains more terminal nodes than any subpart of①

on which the transformational cycle operated earlier in the

derivation. "

An example will make this more clear. Consider the following

65

Ian C. Stirk

labelled bracketing, where each subsentence is numbered:

[s1.. [s2..]s2.. [s3.. [s._. Js4Jss]s1

The lowest sentence is S4, and the transformational cycle may delete

it completely, as it contains no sentential subpart. S3, however, must

leave at least one survivor -one more than its subpart S4's zero

survivors. S2 may leave no survivors, but S1 must leave at least 2:

one more than its subpart S3.

With this kind of survivor property, the number of terminal

symbols in a string determines not the total number of subsentences

in a possible derivation, but rather the derivation's S-depth. On tracing

branches from the root S in a tree to terminals, the S-depth would

be the maximum number of S nodes passed through. The simple

example above has an S-depth of 2.

So a string of x terminals must be transformationally derivable

from a structure with S-depth x. To make sure that the language is

recursive, however, we must fix a finite upper bound to the total

number of subsentences in that structure. Peters estimates this

generously.

Firstly we estimate just how much a transformational cycle can

shorten a string of terminals. Suppose that n is the maximum number

of terms mentioned in any structural description of the transforma-

tional cycle, while c is the length of the longest terminal string

mentioned. If the output of a very destructive transformation is z

66-

RESTRICTIONS ON TRANSFORMATIONAL GRAMMARS

terminals long, the transformation might have operated on a string

of n terms each z+c terminals long. It proceeded to delete n -1 of

these under a condition of identity, and disposed of a further c

terminals as members of a specified set. The input string might thus

have been n(c+z) terminals long. The shortening factor of such a

transformation is n(c+z)/z, or rather less than n(c+l). If there

are k transformations in the cycle, each of them might effect the

same shortening, providing a generous estimate of the shortening

factor of one cycle of (n(c+ 1)) k.

Now two or more cycles occurring at the same S-depth cannot

multiply their shortening effects, because each one operates only on

part of a string at that depth. The combined shortening effect could

not be more than that of one cycle operating on the entire string at

that depth. So, if the S-depth is x, the overall shortening effect

would be at most (n(c+l))•x, and the maximum length of the string

generated by the phrase structure component would be at most

x(n(c+l))八

We now estimate the maximum number of S nodes possible in a

phrase marker for a string of z terminals, independently of a particular

set of PS rules. It is a problem in recreational arithmetic to show

that this number of nodes is 2 z -1. If we call the expression

(n(c+ 1)) k, which is a constant for a particular grammar, K, then

the maximum number of subsentences underlying a derivation of a

string x terminals long amounts to 2 xK" -1, which is certainly

finite.

This proves that grammars with the survivor property can only

-67-

Ian C. Stirk

generate recursive languages. This does not seem to be of great

linguistic significance, especially in light of the possibility that human

languages are context-free. I b~lieve it is still an open question whether

grammars with the survivor property can generate languages that

are not context-sensitive.

The very generous estimate of the maximum number of subsentences

in a derivation is an exponential function of the sentence length. In

spite of the crudeness of the estimate, Peters provides some evidence

that such exponential functions do occur in the structures of natural

languages.

Consider Peters'example:

Their sitting down promises to steady the canoe.

Here both the subject and object of "promises" are arguably derived

from separate subsentences. Altogether there are 2+1=3 subsentences.

Now consider

Their sitting down's promising to steady the canoe threatens to

spoil the joke.

Here again the subject and object of "threatens" are (arguably)

subsentences, while the subject itself contains two. Now we have

2. 2+1=5 subsentences.

-68-

RESTRICTIONS ON TRANSFORMATIONAL GRAMMARS

The method of constructing these sentences can be continued:

Their sitting down's promising to steady the canoe's threatening

to spoil the joke purports to follow the script.

The number of subsentences rises exponentially! There is certainly

food for thought in this rather neglected article of Peters.

Bibliography

M. Gross, M. Halle and M-P. Schutzenberger (eds) "The Formal

Analysis of Natural Languages" (Mouton, 1973)

K. J. J. Hintikka, J. M. E. Moravcsik and P. Suppes (eds)

"Approaches to Natural Language" (Reidel, 1973)

P. S. Peters (19 7 3) "On Restricting Deletion Transformations"

(in Gross, Halle and Schutzenberger, eds)

P. S. Peters and R. W. Ritchie (1971) "On Restricting the Base

Component of Transformational Grammars" (Information and

Control 18, pp 483-501)

P. S. Peters and R. W. Ritchie (1973) "Nonfiltering and Local-

Filtering Transformational Grammars" (in Hintikka, Moravcsik

and Suppes, eds)

Ian C. Stirk (1987) "Context-Free Languages Revisited Yet Again"

（大阪外大英米研究 15, pp 103-132)

Ian C. Stirk (1988) "Counting Languages"

（大阪外大英米研究 16, pp 191-209)

Ian C. Stirk (1990) "The Continuing Importance of Peters and

69-

Ian C. Stirk

Ritchie" （大阪外大英米研究 17, pp 41-59)

70

