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PROOFS IN INTENSIONAL LOGIC 

Ian C. Stirk 

Introduction 

In a previous paper (Stirk, 1985), I presented a reasonably simple 

procedure for testing the validity of formulae in Montague's 

intensional logic. At that time it seemed intuitively clear that the 

method worked, but I doubted that anyone of my modest technical 

ability could possibly prove this. Since then, however, I have come to 

realize that a formal proof is guite easy, based simply on the 

recursive definition of intension and extension provided in Montague 

(1970). 

I present this proof in what follows, and also include a brief section 

on extending the method to deal with the tense operators W and H, 

which appear in Montague (1970), but which I hesitated to discuss in 

my (1985). 

It is appropriate to begin with a statement of Montague's recursive 

definition, for the original version contains an error which is corrected 

by a footnote under Thomason's editorship (Thomason, 1974, p259, 

footnote 10). The correction is incorporated into the definition below, 

as are clauses dealing with the possibility operator◇ and the new 

notion of an instance. Otherwise the concepts and notation are 
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Montague's: 

(1) If a is a constant, then a・置 is F( a)( 〈i,j〉 ). 

(2) If a is a variable or an instance, then a•,;,;ぶis g(a). 

(3) If a E M. and u is a variable of type b, then〔入ua〕置，i,jぶisthat 

function h with domain Db.A,1.., such that whenever x is in that 

domain, h (x) is a置;,;.i, where g'is the I-assignment just like g 

except for the possible difference that g'(u) is x. 

(4) If a E MEい〉 and f3 E ME., th印〔 a(fJ)〕1,9,ばis a•'心(fJ｀ぼ）

(that is, the value of the function a•3.;, i; for the argument /31・;、Jぶ），

(5) If a, f3 E ME., th印〔 a=f3] 1,9•JS is 1 if and only if a1,9,Jぶis
B置，9，J,g

(6) If ¢ c ME,, then〔ゴ¢〕1,i,jぷis1 if and only if炉•Jぶis O ; and 

similarly for /¥, V,→，←. 

(7) If ¢ E ME, and u is a variable of type a, then 〔凶¢〕1,9• J.E is 1 if 

and only if there exists x E D.,A,I,J such thatが'•;., is 1, where 

g'is as in (3) ; and similarly for /¥ u ¢. 

(8) If ¢ c ME., then 〔口¢〕u,i,jぶis 1 if and only if ¢•J.f,rr is 

1 for all i'E  I and j'E J ; and similarly for◇ ¢・〔W¢〕竃，9，J.gis 

1 if and only if ¢•出'is 1 for some j'such that j~j 'and j=/=.j'; 

and げI¢〕`心is1 if and only if ¢•心is 1 for some j'~j and 

j'=/=.j. 

(9) If a E ME., th皿〔^ a〕●，i,jぷisthat function h with domain IxJ such 

that whenever <i,i> E IxJ, h(<i,i>) = a•山J.g.

(10) If a c ME(,u),枷 n〔Va〕冨，i,jぷis a·,9•Jぶ C<i,i>).

The term "instance", connected with "instantiation", is used to 

denote particular values of quantified variables. Thus the variable "x" 

-128-



Proofs in Intensional Logic 

in "/¥x a(x)" may be instantiated with the instance "k" to yield 

"a (k)". The term "constant" might have been appropriate for this 

purpose, but of course it has already been usurped by Montague. 

The test procedure is in fact a way of detecting inconsistency rather 

than validity, and has its origins in one called the "Main Method" by 

Quine in chapter 29 of his (1974). It is best to begin with an actual 

example of the method, and then to use this example to illustrate the 

proof that follows. 

Using the Method 

In his (1970), Montague implies (p265) that the formula 

o (x)く→ 6. (V心〕”isa logical consequence of the meaning 

postulate "V M /¥ x口〔 o(x）＜→M（双）〕”． Wecan use the method to 

demonstrate this by showing that the conjunction of the meaning 

postulate and the negation of the formula is inconsistent. The 

negation of the formula is actually 

Vx◇〔以x）口が（双）．V．ゴ o(x)/¥か（双）〕

but in order to provide an example which illustrates almost every 

detail of the method, I shall reverse the order of the existential 

quantifier and the possibility operator, and use the expression: 

◇Vx〔飢x)＾ゴ 0.(vx).v ．ゴ 0(X)A0• （双）〕．

We start by assuming that the conjunction of the two formulae, or 

premises as we might call them, is true at some point of reference 
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く0,0 >, that is, in world O at moment O : 

くo,o>

1. VM/¥x口〔 6（x）＜→M（双）〕

2.◇パ〔 o(x)/¥ゴ 6.(vx).v．ゴ o(x),_6.(vx）〕

The < 0, 0 > label and the numbers help us to keep track, while the 
writing of one line below another signifies their conjunction in a more 

convenient way than by using """・ Note also the use of Quine's dot 

notation to avoid excessive numbers of brackets. This seems preferable 

to Montague's rather haphazard system of just missing some out here 

and there. 

The next steps involve the dropping of quantifiers and operators by 

processes of instantiation and the visiting of other worlds and times. 

The universal quantifier can be instantiated by whatever instance we 

like, provided only that it is of the same type as the variable bound 

by the quantifier. The process is called "universal instantiation". On 

the other hand, the existential quantifier must be instantiated by a 

new instance, that is, one that has not already been used in the 

course of the derivation. This is "existential instantiation". It is 

generally the best strategy to have as few instances in the derivation 

as possible, and that means instantiating existential quantifiers as 

soon as one can, so that the same instances may be used to replace 

universally quantified variables later. 

In the present example, line (1) begins with an existential quantifier, 

so let us instantiate it with, say, "N", which is to be an instance of 

type <s,<e,t>. This gives: 
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くo,o> 
3. /¥x口〔 o(x)←>N（双）〕 1,N 

The number to the right shows which line this one has been derived 

from, while the "N" reminds us not to instantiate any other 

existentially quantified variable with N. 

There is an existential quantifier in line (2) also, but there is a 
possibility operator in front of it. While formulae preceded by a 

necessity operator are to be true always and everywhere, those 

preceded by a possibility operator may only be true at some point or 

points of reference, not necessarily the < 0, 0 > of this example. So 

we go now to a point < 1, 1 >, say, where 

く1, 1 > 
1. Vx〔訳x）□ 0.(vx).v．ゴ 6（x)Aか（双）〕く0,0>2
Here < 0, 0 > 2 indicates that this line is derived from line (2) at 

point of reference < 0, 0 >. 

Line (1) in world 1 at time 1 begins with an existential quantifier, 

so we can instantiate it: 

く1, 1 > 
2. o(k)/¥-1 o.(vk).v., o(k)/¥ 6 *(yk)〕 1,k

with a reminder that k (an instance of type <s,e>) is no longer new. 

There is still a universally quantified variable of type <s,e> at 

point < 0, 0 >, so we can jump back there and try instantiating it 

with k: 
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くo,o> 
4.口〔 o(k)← N｛濯｝〕 3

Now back in < 1, 1 > we might try doing something about vk. This 
should be something of type e. To give it a name, observe that 

according to Montague's definition, the formula Vx/¥u〔奴＝u〕must

be logically true. we incorporate it into the derivation as follows: 

く1, 1> 

3. /¥xVu〔奴＝u〕 Th

with "Th" to indicate it as a theorem. 

The next couple of instantiations are obvious: 

く1,1 > 
4. Vu〔屯＝u〕 3

5. vk=a 4, a 

where a is an instance of type e. 

Now we have a name for vk, we can use it to replace vk in line 

く1,1 >2: 

く1,1 > 
6. 6(k)̂-1 6庫（a).v.,o(k)" o.(a) 2, 5,Lz 

The annotations on the right of this line show that it is derived 

from lines 2 and 5 by the use of Leibniz'law of identity. 

o and o拿 cometogether in line 6, but as yet we have not made 

use of the relation between them. A check on Montague's definition of 

o. (1970, p265) shows that we can incorporate this as a theorem: 
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く1,1 > 
7. 八u〔o(/¥u)←→ふ(u) Th 

with the obvious instantiation we get: 

く1,1> 

8. o(/¥a)←→か(a) 7 

This seems to be making matters more complicated than before, 

since now /¥a has entered the picture. How is /¥a related to k? Line 

く0,0 > 3 might provide an answer, since the universal quantifier 
there could be instantiated by /¥a as well as by k, as they are both of 

the same type. In that case, the relation between the two might be 

mediated by N. Let us go back to < 0, 0 > and try the instantiation: 

くo,o>

5.口〔 6（̂a)←+Nじ^a}〕 3

Lines < 0, 0 > 4 and < 0, 0 > 5 are universally quantified, so we 
can transport them to point < 1, 1 >. giving first 

く1,1 > 
9. o(k)← N{Vk} く0,0>4

We might as well replace k right away: 

く1,1 > 
10. o(k)• ~N{a} 

Next we have 

く1,1 > 
11. 6(̂a)← N{v/¥a} 

5, 9, Lz 

く0,0>5
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One would suspect that v/¥a would be the same as a itself, and in 

fact the following theorem is available from Montague's definition: 

< 1, 1 > 
12. 八u〔u＝りu〕 Th

This immediately gives the following: 

<1, 1> 

13. a~~vAa 12 

14. o(/¥a)←>N {a} 11, 13,Lz 

A comparison of lines 10 and 14 here shows that we can now 

immediately relate /¥a and k: 

<1, 1> 

15. o(k)←＞  6 （̂a) 10, 14 

Line < 1, 1 > 8 enablesかtobe brought in also: 

く1,1 > 
16. i5 (k)←＞  6津（a) 8, 15 

A comparison of 16 with < 1, 1 > 6 makes some inconsistency look 

likely, though it is still not immediate. Line 6 is an alternation, which 

complicates matters a little. A good strategy in such cases is to 

consider the two alternates separately, in two "branches". To make an 

unambiguous line numbering, it is best to prefix all the lines in one 

branch with " 1. " and those in the other with " 2. ". In this example, 

one branch will be 
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く1,1> 

1. 1 o(k) 6 

1. 2 ゴか（a)

1. 3 o.(a) 

1. 4 因

6 

16, 1. 1 

1.2,1.3 

Lines 1. 2 and 1. 3 are obviously inconsistent, and this is 

indicated in line 1. 4, by the sign“囚”.SomehowI previously had the 

impression that this symbol for inconsistency was used by Lewis 

Carroll in his "Symbolic Logic". It was a wrong impression: Carroll 

actually used a small circle for this purpose (see, for instance, 

Bartley, 1977, p282). Never mind:‘ぷ'isless ambiguous, so I will 

stick to it. Line 1. 3 is derived from lines 16 and 1. 1 by the 

process of deduction. 

The other branch is very similar: 

く1, 1 > 
2. 1 ゴ o(k) 6 

2. 2 o.(a) 6 

2. 3 o(k) 16, 2. 2 

2. 4 n 2.1.2.3 

The demonstration of inconsistency is now complete. It will be 

convenient to have the whole thing set out as a whole without 

interruption: 
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Example 1 

くo,o>
1. VMx口〔 o(x)←叫（奴）〕

2.◇Vx〔が（x)^ゴ 0.(vx).v．ゴ o(x)^か（双）〕

3./¥x口〔 o(x)←→N｛双｝〕

く1,1 >2 

4.口〔 o(k)← N｛凍｝〕

く1,1>8

5. 6(^a)•— >N {vAa｝〕

く1, 1 > 
1. Vx〔6(x)A一10・cvx).v.-可o(x)/¥o.(vx)〕

2. o(k)" 7 o.(vk).v．ゴ o(k)"o.(vk) 

3. /¥xVu〔双＝u〕

4. Vu『k=u〕

5. vk=a 

6. o(k）^ゴ 6拿（a).v．ゴ 6(K)A6拿(a)

7. 八u〔6(̂u)←→6庫(u)

8 • O(Aa)←➔ o.(a) 

9. o(k)く→N{vk}

10. o(k)← N{a} 

11. o(Aa)←→N{vAa} 

1, N 

3
 

3
 

12.八u〔u=v/¥u〕

13. a=v/¥a 

14. 6(/¥a)←心{a}

15. o(k)←＞6(/¥a) 

16. o(k)←>  o.(a) 

く0,0>2

1, k 

Th 

3 

4, a 

2, 5, Lz 

Th. 

7 

く0,0>4 

5, 9, Lz 

<0,0>5 

Th 

12 

11, 13, Lz 

10, 14 

8, 15 
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1. 1 o(k) 6 2. 1 ゴo(k)6 

1. 2 ゴふ（a) 6 2. 2 ふ(a)6 

1. 3 o.(a) 16, 1. 1 2. 3 o(k) 16, 2. 2 

1. 4 因 1.2,1.3 2. 4 B 2.1,2.3 

A convenient way of representing the various points of reference is 

shown, as well as branching. Just before lines 4 and 5 of point 

く0,0 >. the indications < 1, 1 > 2 and < 1, 1 > 8, respectively, 
are given, to keep track of the order in which the various lines were 

derived. 

Justifying the Method 

What we want to prove is that the inconsistencies uncovered in each 

branch of example 1, and any other example derived in the same way, 

show that the premises are together inconsistent. 

Before embarking on the proof, it is necessary to make a few 

remarks about the way derivations like example 1 are to be 

understood. All lines placed vertically are intended to be conjoined: 

furthermore, the numerical labels given to particular points of 

reference have no significance. Indeed, one might imagine the numbers 

x, y in <x,y> to disappear, so that the angular brackets come 

together to form a single possibility operator◇.Example 1 should 

be thought of thus: "It is inconsistent to assert the possibility of the 

conjunction of lines < 0, 0 > 1 to < 0, 0 > 5, together with the 
possibility of the conjunction of lines < 1, 1 > 1 to < 1, 1 > 16 and 
either the conjunction of lines 1. 1 to 1. 4, or of lines 2. 1 to 

2. 4 ". 
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It is simplest to approach the proof by a series of lemmas. 

Lemma 1 The formula P"・ qvr：←>: p"q.v.p"r, where p, q and r are 

propositional variables, is true in any interpretation. 

Clause (6) of Montague's definition shows that the tautologies of 

propositional calculus will have the value 1 under any assignment of 

values to the propositional variables. The formula of Lemma 1 is such 

a tautology, as the reader may verify by any of the standard methods 

(see for example Carnap, 1958, ppl0-15, or Quine, 1974, Ch 5). 

Lemma 1 justifies treating each branch in a derivation separately. 

Thus in Example 1, at the point of reference < 1, 1 >, if we take 
"p" to be lines 1-16, "q" to be lines 1. 1-1. 4, and "r" to be lines 

2. 1 -2. 4, we can consider the conjunction 1 -16 and 1. 1 -1. 4 to 

be inconsistent independently of 1 -16 and 2. 1 -2. 4. 

Lemma 2 If p/¥q/¥r is inconsistent, and q→r is logically true, then 

p/¥q alone is inconsistent. 

"Logically true" has the same meaning as "true in any interpreta-

tion". Now in a case where r is true. then p"q must be false to make 

p"q"r inconsistent. In a case where r is false, then since q→r is true, 

q, and therefore p"q, must also be false. Thus under any interpreta-

tion of r, p"q works out false. This is enough to prove the lemma. 

At point < 1, 1 > in Example 1 again, take "p" to be lines 1 
through 15 and line 1. 2, "q" to be lines 16 and 1. 1, and "r" to 
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be line 1. 3. Now p"q"r is inconsistent, while q→r is logically true. 

According to Lemma 2, the inconsistency will remain if line 1. 3 is 

struck out of the derivation. In a similar way, line 2. 3 may be 

struck out, as may lines 15 and 16. In general, Lemma 2 permits us 

to strike out lines in a derivation obtained through deduction, and to 

be sure that the remaining lines will still be inconsistent, if the 

previous ones were. 

Lines 1. 4 and 2. 4 in Example 1 merely serve to show where 

the inconsistency is located, and do not contribute to it themselves, so 

they too may be struck out. The branched part of the derivation now 

contains just lines 1. 1 and 1. 2 in the left hand part, and lines 

2. 1 and 2. 2 on the right. Remembering that vertical positioning 

of lines indicates conjunction, and branching disjunction, we see that 

the four lines are a notational variant of 

6(K）^ゴ o.(a).v．ゴ o(k)Ao.(a) 

which is the same as < 1, 1 > 6. Merely repeating a line is a peculiar 
instance of deduction, so the repeated line can be struck out as a 

special case of Lemma 2. We now find that in < 1, 1 >, lines 1 -14 
are inconsistent. 

By the end of this proof it will become clear that in any derivation 

involving branching, the branches can finally be struck out by 

changing the notation and using Lemma 2. 

Lemma 3 If a and /3 are of type a, while </J is of type <a,t>, then 

a=/3̂</J (a).→ ¢（/3)is logically true. 
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It is sufficient to show that any interpretation which makes the 

antecedent of the conditional true makes the consequent true also. So 

consider an interpretation where a= (3 and ¢ (a) are true. Then, 

according to clause (5) of Montague's definition, the extension of a is 

the same as that of (3. Thus, according to clause (4)，〔 ¢(a)〕1,凶 must

be the same邸〔¢(g)〕n;..,namely 1 in this case. This proves the 

lemma. 

The formula of the lemma is essentially Leibniz'law of identity. If 
one line has been derived from another by the use of Leibniz'law, the 

lemma provides the logically true connection between the lines which 

enables the derived line to be struck out according to Lemma 2. In 

く1,1 > of Example 1, lines 6, 10 and 14 may be struck out for 
this reason, leaving a conjunction of lines which is still inconsistent. 

Lemma 4 If a is a variable and/3an instance of type a, while 

¢ is of type <a, t>, and if PA/¥ a〔が a)〕A¢ (/3)is inconsistent, 

then p^八 a〔¢(a)〕isinconsistent. 

According to the hypothesis, p^八 a〔¢(a)ぶ¢(/3) is false under 

any interpretation. Consider any interpretation which makes ¢ (/3) 

come out true. In that case, ¢ (/3) does not contribute to the falsity 

of the whole, so the remaining part p/¥八 a〔¢(a)〕mustbe false. 

Now consider any interpretation where ¢ (/3) comes out false. 

According to clause (8) of Montague's definition, /¥ a〔が a)〕willbe 

false, since ¢(a) is false at least in the case where g(a)=g(/3). 

This means that p^八 a〔¢(a)〕willalso be false, and once again the 

truth value of ¢ (/3) does not contribute to the falsity of the whole. 
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This is sufficient to prove the lemma. 

Lemma 4 may be employed to justify the striking out of any lines 

obtained from others by means of universal instantiation. In 

く1,1 > of Example 1, then, lines 4, 8, and 13 can disappear. 
However just for now, let us strike out only 8 and 13-line 4 will 

need to be around until after the next lemma has been used. 

Lemma 5 If a is a variable and fJ an instance of type a, while 

¢ is of type <a,t>, and if PAV a〔が a)〕/¥¢ (fJ) is inconsistent, 

then PAV a〔瓜a)〕isinconsistent. 

Except for a change of quantifier, the formulae are just the same as 

those of Lemma 4. In cases where ¢ (f3) is true, the argument is 

just the same too: the inconsistency must lie in the pl¥ V a〔¢(a刃
part. But when ¢ (f3) is false, the picture is not so simple, for 

V a ¢ (a) may yet be true. If V a ¢ (a) is true, however, there must 

be another interpretation of /3 which makes ¢ (f3) come out true 

also. Since we were careful to be sure that /3 is not free in any other 

line of the derivation, everything other than the truth value of ¢(/3) 

remains the same. But since "inconsistent" means "false in every 

interpretation", it is false in this one too. The inconsistency must be 

somewhere in p, in this case. 

It is interesting to compare this semantic proof of Lemma 5 with 

the syntactic one in Quine, 1974, Ch 29. Lemma 5 justifies our use 

of existential instantiation. In < 1, 1 > of the example, lines 2 and 
5 can be struck out as a result of the lemma. Line 4 can also go, 
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as permitted by Lemma 4, for it is no longer required as a source of 

line 5. 

Lemma 6 If p/¥q is inconsistent, and q is a theorem, then p itself is 

inconsistent. 

The proof could hardly be more obvious: theorems are clearly 

logically true, and thus true under every interpertation. They cannot 

contribute to the inconsistency of any conjunction. 

Some theorems may of course be proved by the very method being 

described and justified here. I used to think that all theorems were 

best proved by this method, but after further experience, I have 

changed my mind. Quine is right, I think, to warn against monolithic 

methods of proof. For instance, the theorem of line < 1, 1 > 3 in the 
example, /¥xVu〔奴＝u〕,isoften useful, and easy to prove directly 

from Montague's definition. For the value given to x under any 

interpretation will be some function from points of reference to 

entities. According to clause UO), vx will be the value of that function 

at a certain point of reference, that is, an entity. The value given to 

u will be some entity, which under some interpretation could be the 

same entity as that denoted by v x. This is sufficient to prove the 

theorem. 

The theorem of < 1, 1 > 7 is even more straightforward, since it 
follows directly from Montague's definition of o. on page 265 of his 
(1970). 
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The last theorem used in Example 1 is the one in line < 1, 1 >12, 
仰〔u=v/¥u〕,alsoa very useful one. Again in any interpretation, u 

will denote some entity, so that, according to Montague's definition 

clause (9), /¥u will be a constant function from points of reference to 

that entity. At any point, therefore, v/¥u will denote that entity, just 

like u. This proves the theorem. Such a straightforward proof may be 

compared with the very clumsy one I provided in my (1985). 

With Lemma 6 at our disposal, we are entitled to strike out lines 

3, 7 and 12 from < 1, 1 > in Example 1. 

Lemma 7 If◇如□qぶ◇〔q̂r〕isinconsistent, then◇如□qぶ◇r
is also inconsistent. 

In interpretations whe屁◇〔p^ □叫 or◇ rcome out false, then 
clearly both formulae come out false. The only problematical ones 

would be any interpretations in whi呻◇〔p^ □心and◇ rare true, but 
in which◇〔①r〕isfalse. We show that there can be no such 

interpretation. For since訊p^ □q〕istrue, then□q is true at some 
point of reference, meaning that q is true at all points of reference. 

Thus◇〔q/¥r〕cannotbe false unless r is everywhere false, meaning 

that◇ r is false. 

Notice that since Montague's definition implies that the modal 

system is S 5 (see Hughes and Cresswell, 1968, pl15 et seq.), we do 

not need to mention any accessibility relation between points of 

reference: they are all mutually accessible. 
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Lemma 7 allows us to strike out lines 9 and 11 from < 1, 1 > in 
the example. 

Nothing now remains of < 1, 1 > except its first line. Recalling 
how derivations are to be read, < 1, 1 > is now reduced to this: 

◇Vx〔訳x）/¥ゴか(Vx).v．ゴ 6（x)/¥o.(Vx）〕

which is a mere repetition of < 0, 0 > 2, and may be struck out. 

We have now found that lines 1 to 5 of < 0, 0 > are together 
inconsistent. Lines 4 and 5 were obtained by universal instantiation, 

so they may be struck out, as may line 3, which arose as a case of 

existential instantiation. 

Only lines 1 and 2, the original premises, are left, and we have 

proved that they are together inconsistent, as required. 

The efficacy of the method is now proved, since clearly the same 

process may be applied to any other example, provided that the 

derivation was made only in the ways sanctioned by Lemmas 1 to 

7. Only the premises will remain as inconsistent. 

It is important to have obtained such a formal proof, for it leaves 

open the possibility of discovering other ways of developing 

derivations. Provided these ways can be justified by proving suitable 

extra lemmas about them, they may be incorporated into the method, 

to generalise it. 
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Example 1 was developed in rather an unnecessarily complicated 

way, just in order that it would be an example of everything. The 

derivation could have been simpler, for instance by forgetting about a 

and sticking to vk: the same inconsistency would have been reached. 

There can only be an aesthetic justification for short and neat 

derivations, though. Their value is like the value of Theseus'ball of 

thread: they save you from becoming lost as you explore among the 

possible worlds. No matter how far you wander, if an inconsistency 

arises, you can be certain that it is due to the original premises. 

Yet just for the sake of a neat example, let me present one. 

A Second Example 

Among the examples at the end of his (1970), Montague (p266) 

states that the de dicta reading of "John seeks a unicorn" is the 

following, in intensional logic translation: 

＾ 
seek'(/¥j, PVu〔unicorn’ ●(U)/¥P{/¥u}〕）

However, the syntactic rules and the rules of translation come to a 

stop with this version: 

＾ 
seek'(11j, PVx〔皿icorn'(x)11P{x｝〕）

Now Leibniz'law would make these forms equivalent if only we 

could show that 

PVu〔unic。rn'.(u)/¥P{/¥u｝〕＝PVx〔unic〇rn'(x)/¥P{xり
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The items being equated here are the intensions of sets, so the 

formula is equivalent to 

ロゆv直unicorn'・（u)^P{^u}〕＝PV廷unicorn'(x)"P{x｝〕

Since sets are identical if and only if they have the same members, 

the previous formula is itself equivalent to 

ロ^P〔V直unicorn'.(u)"P{"u｝〕←→V迂unicorn'(x)"P{x｝〕

If we can show that this is logically true, the trick is done. This 

means showing that the negation of the last formula is inconsistent, 

so that this will be the single premise: 

◇VP日V直unicorn'拿（u)^P{^u}〕AAx〔ゴ〔unicorn'(x),.P{x｝〕〕

.v./¥u〔ゴ〔unicorn'・（u)^P{^u}〕〕AVx〔unicorn'(x),.P{x}〕〕

The derivation will look like this: 

Example 2 

くo,o> 
1. V阿V直unicorn'.(u)/¥P{/¥u}〕/¥/¥x〔ゴ〔unicorn'(x)/¥P{x｝〕〕

.v./¥u〔ゴ〔unicorn'・（u)/¥P{/¥u}〕〕/¥v廷unicorn'(x)/¥P{x｝〕〕

2. V直unicorn'事（u)/¥Q{/¥u}〕A/¥x〔ゴ〔unicom'(x)/¥Q{x｝〕〕

.v./¥u〔ゴ〔unicorn'.(u)/¥Q{/¥u｝〕ぶv廷unicorn'(x)/¥Q{x}〕〕1,Q 

3. 八u〔unicorn'(/¥u)そ→unicorn'.(u)〕 Th

1. 1 V直unicorn'拿（u)/¥Q{Au}〕 2

1. 2 Vx〔ゴ〔unicorn'(x)"Q{x}〕〕 2
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1. 3 unicorn'.(a)/¥Q{/¥a} 1. 1,a 

1. 4 unicorn'{ /¥a)←→unicorn'拿(a) 3 

1. 5 unicorn'(/¥a) /¥Q{ /¥a} 1.3,1.4 

1. 6 ゴ〔unicorn'(Aa)"Q{"a｝〕 1. 2 

1. 7 囚 1. 5, 1疇 6

2. 1 Au〔ゴ〔unicorn'.(u)/¥Q{/¥u｝〕〕 2 

2. 2 v廷unicorn'(x)/¥Q{x｝〕 2 

2. 3 unicorn'(k)/¥Q{k} 2. 2, k 

2. 4 Ax口〔unicorn'(x)→V直x=/¥u〕〕 Th 

2. 5 ロ〔unicorn'(k)→直〔k＝ û〕〕 2. 4 

2. 6 unicorn'(k)→直〔k=Au〕 2. 5 

2. 7 v直k=Au〕 2. 3., 2. 6 

2. 8 k=/¥a 2. 7, a 

2. 9 unicorn'(Aa)AQ{ /¥ a} 2. 3, 2. 8, Lz 

2. 10 unicorn'("a)←→unicorn'・(a) 3 

2. 11 unicorn'.(a);..Q{Aa} 2. 9, 2.10 

2. 12 ゴunicorn'.(a)/¥Q{/¥a} 2. 1 

2. 13 因 2. 11, 2. 12 

I hope this derivation is self explanatory, despite the topological 

awkwardness caused by the length of the lines in each branch. Notice 

that the theorem of line 2. 4 is Montague's meaning postulate (2) 

(1970, p263). I have used this, together with the definition of o窯in
line 3, instead of Montague's formula on 1970, p265. I pointed out 

before that this formula is in fact false for common nouns (Stirk, 

1985, plOl). 
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There are two new, though minor, features in this example which 

should be mentioned. The first is that the same instance "a" has been 

employed in both branches in cases of existential instantiation. This 

does not matter, as the branches are derived independently: purists 

have only to replace "a" by "b" in one of the branches. 

The other new feature is slightly more significant. In line 2. 6, a 

necessity operator is removed. This is essentially a special case of 

Lemma 7, but I have not been able to work out a formulation or a 

proof which covers this case too. Perhaps then we need: 

Lemma 8 If◇屈□q^q〕誌inconsistent, then ◇如□q〕応
inconsistent. 

I leave the obvious proof to the reader. 

Visiting the Past and the Future 

The ability to prove the validity of our method of detecting 

inconisistency gives us the courage to add other features to the 

system・. As long as we can prove additional lemmas to cover the new 

cases, we can be confident of obtaining proper results. Montague's 

operators W and H should be the next items to incorporate. 

The results of one or two preliminary experiments, however, reveal 

some oddities in Montague's definition as it stands. The obvious first 

step is to use the numbering system we have for points of reference to 

keep track of positions in time. Thus if we start from point 

く0,0 >, W would be instantiated with < 0, 1 >, and H with 
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く0,-1 >. There could be intermediate points, < 0, 0. 5 >. 
く0,-0. 5 > and so on, if necessary. A few experiments should 
suggest just what lemmas are needed. 

Let us try first to prove some really obvious formulae. It is clear 

from Montague's definition that W ¢→ ◇¢ should be valid. And 

indeed we find this: 

くo,o> 
1. W¢ 

2.ロゴ¢

く0, 1> 

1. ¢ 

2. 7¢ 

3. Ill 

く0,0>1 

く0,0>2 

1, 2 

That looks fine. Lemmas must clearly involve the numbers we are 

allowed to use for points of reference. Testing slightly more 

complicated formulae, though, shows that items like W□¢→□¢ are 
valid, which is a little odd. Surely future necessity does not imply 

present necessity? Yet: 

くo,o> 
1. w□¢ 
2. ◇ゴ¢

く0, 1> 

1.ロ<JJ <o, 0>1 
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く1, 0> 

1.ゴ¢

2. <p 

3. 0 

く0, 0>2 

く0, 1 > 1 
1, 2 

Ian C. Stirk 

There seems no way out of that, short of giving up S 5. 

Another oddity is this. One might expect that W ¢→ ◇H ¢ would 

be valid, for surely the future will one day become the past? But this 

happens: 

くo, o> 

1. W¢ 

2. 口ゴH¢

く0, 1> 

1. ¢ く0, 0>1 

2. ゴH¢ く0, 0>2 

No inconsistency looms, for rp could well be false at < 0, 0 >. The 
problem here is the number of points of reference -the derivation 

seems to suggest that < 0, 1 > is the end of world O : it has no 
future! There must be some mechanism to add further future points 

of reference. In that case, we could add a point < 0, 2 >, where 
I-I rp would be true, and cause an inconsistency at < 0, 1 >. 
I hope to investigate these points further in a future paper. 
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