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PROOFS IN INTENSIONAL LOGIC

Jan C. Stirk

Introduction

In a previous paper (Stirk, 1985), I presented a reasonably simple
procedure for testing the wvalidity of formulae in Montague's
intensional logic. At that time it seemed intuitively clear that the
method worked, but I doubted that anyone of my modest technical
ability could possibly prove this. Since then, however, I have come to
realize that a formal proof is guite easy, based simply on the

recursive definition of intension and extension provided in Montague

(1970).

I present this proof in what follows, and also include a brief section
on extending the method to deal with the tense operators W and H,
which appear in Montague (1970), but which I hesitated to discuss in
my (1985).

It is appropriate to begin with a statement of Montague’s recursive
definition, for the original version contains an error which is corrected
by a footnote under Thomason’s editorship (Thomason, 1974, p259,
footnote 10). The correction is incorporated into the definition below,
as are clauses dealing with the possibility operator < and the new

notion of an instance. Otherwise the concepts and notation are
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Montague's:

—
DD
=

{10

denote particular values of quantified variables. Thus the variable “x

If a is a constant, then a%is is F(a)( 4, ).

If a is a variable or an instance, then a%i* is g(a).

If a& M, and u is a variable of type b, then [ Aual)*¥ is that
function h with domain Dy, such that whenever x is in that
domain, h (x) is @, where g’ is the w-assignment just like g
except for the possible difference that g’(u) is x.

If ae MEww and B & ME,, then [ a( 8))wir ig awhs ( Buis)
(that is, the value of the function a*# for the argument G%ie),
If a, B& ME,, then [ a= )% is 1 if and only if a*¥ is
B

If ¢ & ME, then (T1¢J%s is 1 if and only if ¢ is 0; and
similarly for A, V, —, <,

If ¢ ¢ ME, and u is a variable of type a, then [Vu ¢ J*s is 1 if
and only if there exists x € D,,A,1,J such that ¢%s is 1, where
g’ is as in (3); and similarly for Audg.

If ¢ &€ ME, then ([J¢J#e is 1 if and only if ¢*is s
1 for alli' € I and j €J ; and similarly for O ¢. (W ¢ Juis ig
1 if and only if ¢%¥s is 1 for some j such that j<j and j#j’;
and (H ¢ )% is 1 if and only if ¢%¥eis 1 for some ;<] and
V#F]

If a & ME, then (" aJ%* is that function h with domain IxJ such
that whenever <3,j> & Ixd, h(<{,j>)= a%is.

If ae& MEqo, then [Yalwix is avis (<,j>).

The term “instance”, connected with “instantiation”, 1s used to

“w
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in “Axa(x)” may be instantiated with the instance “k” to yield
“a(k)”. The term “constant” might have been appropriate for this

purpose, but of course it has already been usurped by Montague.

The test procedure is in fact a way of detecting inconsistency rather
than validity, and has its origins in one called the “Main Method” by
Quine in chapter 29 of his (1974). It is best to begin with an actual
example of the method, and then to use this example to illustrate the

proof that follows.

Using the Method

In his (1970), Montague implies (p265) that the formula
“LIJ0é(x)«=>8.("x))” is a logical consequence of the meaning
postulate “VMAx[J[ 6§ (x)<—=M(¥x))”. We can use the method to
demonstrate this by showing that the conjunction of the meaning
postulate and the negation of the formula is inconsistent. The

negation of the formula is actually

VO (x)a™ 6.(Y%).v. 1 6(x)n 6.(¥x))

but in order to provide an example which illustrates almost every
detail of the method, I shall reverse the order of the existential

quantifier and the possibility operator, and use the expression:

OV )T 8.V x).v.18(x)A 6.(Vx) ).

We start by assuming that the conjunction of the two formulae, or

premises as we might call them, is true at some point of reference
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<0,0>, that is , in world 0 at moment 0:

<0,0>
1. VMAx 6 ()<>M(¥x))
2. OV ExIAT16.0"x).v. 18 (x)r 6.(Vx))

The <0, 0> label and the numbers help us to keep track, while the
writing of one line below another signifies their conjunction in a more
convenient way than by using “A”. Note also the use of Quine's dot
notation to avoid excessive numbers of brackets. This seems preferable

to Montague’s rather haphazard system of just missing some out here

and there.

The next steps involve the dropping of quantifiers and operators by
processes of instantiation and the visiting of other worlds and times.
The universal quantifier can be instantiated by whatever instance we
like, provided only that it is of the same type as the variable bound
by the quantifier. The process is called “wuniversal instantiation”. On
the other hand, the existential quantifier must be instantiated by a
new instance, that is, one that has not already been used in the
course of the derivation. This is “existential instantiation”. It is
generally the best strategy to have as few instances in the derivation
as possible, and that means instantiating existential quantifiers as
soon as one can, so that the same instances may be used to replace

universally quantified variables later.

In the present example, line (1) begins with an existential quantifier,
so let us instantiate it with, say, “N”, which is to be an instance of
type <s,<le,t>. This gives:
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<0, 0>
3. AxLI0 8 (x)<=N(x)) 1, N
The number to the right shows which line this one has been derived
from, while the “N” reminds us not to instantiate any other

existentially quantified variable with N.

There is an existential quantifier in line (2) also, but there is a
possibility operator in front of it. While formulae preceded by a
necessity operator are to be true always and everywhere, those
preceded by a possibility operator may only be true at some point or
points of reference, not necessarily the <{0,0> of this example. So

we go now to a point <1, 12> say, where

<1, 1>
1o vl 61 6.00) v. 1 6(x)A 6.("x))  <0,0>2
Here <C0,0>> 2 indicates that this line is derived from line (2) at
point of reference <0, 0 >.

Line (1) in world 1 at time 1 begins with an existential quantifier,

so we can instantiate it:

<1, 1>
2. 601 6.0k)v.T16(k)A 6.(¥K)) 1.k

with a reminder that k (an instance of type <ls,e>>) is no longer new.

There is still a universally quantified variable of type <(s,e> at
point <0,0>>, so we can jump back there and try instantiating it
with k:
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<0, 0>
4. 06 (k)<>N{"k}) 3
Now back in <{1,1> we might try doing something about k. This
should be something of type e. To give it a name, observe that
according to Montague’s definition, the formula VxAu (Vx=u) must

be logically true. we incorporate it into the derivation as follows:

<1, 1>
3. AxVulVx=u) Th

with "Th” to indicate it as a theorem.

The next couple of instantiations are obvious:

<1, 1>
4. vulVk=u] 3
5. Vk=a 4, a

where a 1s an instance of type e.

Now we have a name for Yk, we can use it to replace Yk in line

<1,1>2:

<1,1>
6. 6(k)AT18.(a)v.T18(k)A6.(a) 2,5 Lz
The annotations on the right of this line show that it is derived

from lines 2 and 5 by the use of Leibniz’ law of identity.

6 and &. come together in line 6, but as yet we have not made
use of the relation between them. A check on Montague’s definition of

6. (1970, p265) shows that we can incorporate this as a theorem:
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<1,1>
7. Aul §(Puw)y<—6.(u) Th

with the obvious instantiation we get:

<1,1>
8. 6(*a)e>d.(a) 7
This seems to be making matters more complicated than before,
since now “a has entered the picture. How is "a related to k? Line
<0,0> 3 might provide an answer, since the universal quantifier
there could be instantiated by “a as well as by k, as they are both of
the same type. In that case, the relation between the two might be

mediated by N. Let us go back to <{0,0>> and try the instantiation:

<0,0>
5. 0 6(*a)«>N{¥"a}] 3
Lines <<0,0> 4 and <<0,0> 5 are universally quantified, so we
can transport them to point <{1,1>, giving first

<1,1>
9. 0(k)<>N{"k} <0,0>4
We might as well replace k right away:

<1,1>
10. 6 (k)<—>N{a} 9,9, Lz

Next we have

<1,1>
11. 6("a)<>N{¥"a} <0,0>5
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One would suspect that Y"a would be the same as a itself, and in

fact the following theorem is available from Montague's definition:

<1, 1>
12. Aulu=Yru) Th

This immediately gives the following:

<1, 1>
13. a=""a 12
14. 6("a)<—>N{a} 11,13,Lz

A comparison of lines 10 and 14 here shows that we can now

immediately relate “a and k:

<1,1>
15. 6(k)<>6("a) 10, 14
Line <{1,1>>8 enables &. to be brought in also:

<1,1>
16. 6(k)<>5.(a) 8, 15

A comparison of 16 with <1,1>>6 makes some inconsistency look
likely, though it is still not immediate. Line 6 is an alternation, which
complicates matters a little. A good strategy in such cases is to
consider the two alternates separately, in two "branches”. To make an
unambiguous line numbering, it is best to prefix all the lines in one
branch with " 1.” and those in the other with ” 2. ". In this example,

one branch will be
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<1, 1>
1.1 6k 6
1.2 —16.(a) 6
1.3 06.(a) 16, 1.1
1.4 & 1.2,1.3

Lines 1.2 and 1. 3 are obviously inconsistent, and this is
indicated in line 1. 4, by the sign “&”. Somehow I previously had the
impression that this symbol for inconsistency was used by Lewis
Carroll in his “Symbolic Logic”. It was a wrong impression: Carroll
actually used a small circle for this purpose (see, for instance,
Bartley, 1977, p282). Never mind: “s" is less ambiguous, so I will
stick to it. Line 1. 3 is derived from lines 16 and 1. 1 by the

process of deduction.

The other branch is very similar:

<1, 1>
2.1 16Ck) 6
2.2  8.(a) 6
2.3 (k) 16, 2. 2
2.4 & 2.1,2.3

The demonstration of inconsistency is now complete. It will be
convenient to have the whole thing set out as a whole without

interruption:
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Example 1
<0,0>
1o VMU 6 (x)<—>M(¥x))
2. OVx[8(x)am1 8.("x).v. 1 8(x)n 6.(Vx))

3. Ax0ox)<—>N{¥x}) I, N
<1,1>2

4. L0 6k)«=N{"k}] 3
<1,1>8

5. L6 (ra)«<=>N{""a}) 3

<1, 1>

1. Vx[ (a1 8.("x) v.16(x)a 6.(Vx)] <0,0>2

2. 001 6.(K).v.T16(k)A 6.(Vk) 1, k

3. AxVul¥x=u] Th

4. Vu(Vk=u]

5. Yk=a 4, a

6. 6 8.(a).v.18)A6.(a) 2, 5, Lz

7. Aul 6w 6.(w) Th.

8. 6(ra)e>5.(a) 7

9. 6(k)<—>N{"k} <0,0>4

10. 6 (k)<—>N{a} 5, 9, Lz

11. 6 (*a)«>N{""a} <0,0>5

12. Aulu=Vrul Th

13. a=""a 12

4. §(*a)<—>N{a} 11, 13, Lz

15. 6(k)e>5("a) 10, 14

16. 6(k)«=>d.(a) &, 15
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1.1 6@k 6 2.1 116k) 6
1.2 716.(a) 6 2.2 6.(a) 6
1.3 6.(a) 16, 1.1 2.3 6(k)16,2.2
1.4 = 1.2,1.3 2.4 » 2.1,2.3

A convenient way of representing the various points of reference is
shown, as well as branching. Just before lines 4 and 5 of point
<0, 0>, the indications <{1, 1>2 and <1, 1>>8, respectively,
are given, to keep track of the order in which the various lines were

derived.

Justifying the Method
What we want to prove is that the inconsistencies uncovered in each
branch of example 1, and any other example derived in the same way,

show that the premises are together inconsistent.

Before embarking on the proof, it is necessary to make a few
remarks about the way derivations like example 1 are to be
understood. All lines placed vertically are intended to be conjoined:
furthermore, the numerical labels given to particular points of
reference have no significance. Indeed, one might imagine the numbers
x, y in <x,y> to disappear, so that the angular brackets come
together to form a single possibility operator . Example 1 should
be thought of thus: "It is inconsistent to assert the possibility of the
conjunction of lines <0, 0 >1 to <0, 0>5, together with the
possibility of the conjunction of lines <1, 1>1 to <1, 1>>16 and
either the conjunction of lines 1.1 to 1.4, or of lines 2.1 to
2.4,
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It is simplest to approach the proof by a series of lemmas.

Lemma 1 The formula pa. qvri<=: paq.v.par, where p, q and r are

propositional variables, is true in any interpretation.

Clause (6) of Montague’s definition shows that the tautologies of
propositional calculus will have the value 1 under any assignment of
values to the propositional variables. The formula of Lemmal is such
a tautology, as the reader may verify by any of the standard methods
(see for example Carnap, 1958, ppl0-15, or Quine, 1974, Ch5) .

Lemma 1 justifies treating each branch in a derivation separately.
Thus in Example 1, at the point of reference <1, 1>, if we take
“p” to be lines 1-16, “q” to be lines 1. 1-1.4, and “r” to be lines
2.1-2.4, we can consider the conjunction 1 —16 and 1. 1-1.4 to

be inconsistent independently of 1 —16 and 2.1-2. 4 .

Lemmma 2 If paqar is inconsistent, and q—>r is logically true, then

paq alone is inconsistent.

“Logically true” has the same meaning as “true in any interpreta-
tion”. Now in a case where r is true. then p.q must be false to make
paqar inconsistent. In a case where r is false, then since g—>r is true,
q, and therefore p.q, must also be false. Thus under any interpreta-

tion of r, pag works out false. This is enough to prove the lemma.

At point <1, 1> in Example 1 again, take “p” to be lines 1
through 15 and line 1. 2, “q” to be lines 16 and 1.1, and “r” to
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be line 1. 3. Now pagar is inconsistent, while g—r is logically true.
According to Lemma 2, the inconsistency will remain if line 1. 3 is
struck out of the derivation. In a similar way, line 2. 3 may be
struck out, as may lines 15 and 16. In general, Lemma 2 permits us
to strike out lines in a derivation obtained through deduction, and to
be sure that the remaining lines will still be inconsistent, if the

previous ones were.

Lines 1.4 and 2.4 in Example 1 merely serve to show where
the inconsistency is located, and do not contribute to it themselves, so
they too may be struck out. The branched part of the derivation now
contains just lines 1.1 and 1. 2 in the left hand part, and lines
2.1 and 2. 2 on the right. Remembering that vertical positioning
of lines indicates conjunction, and branching disjunction, we see that

the four lines are a notational variant of

d(k)aT16.(a).v.T18(k)a 6.(a)

which is the same as <1, 1 >6. Merely repeating a line is a peculiar
instance of deduction, so the repeated line can be struck out as a
special case of Lemma 2. We now find that in <1, 1>, lines 1-14
are inconsistent.

By the end of this proof it will become clear that in any derivation
involving branching, the branches can finally be struck out by

changing the notation and using Lemma 2.

Lemma 3 If a and B are of type a, while ¢ is of type <la,t>>, then
a=fBr¢p(a).—¢(f8) is logically true.
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It is sufficient to show that any interpretation which makes the
antecedent of the conditional true makes the consequent true also. So
consider an interpretation where a= 8 and ¢{a) are true. Then,
according to clause (5) of Montague’s definition, the extension of a is
the same as that of B. Thus, according to clause 4), [ ¢ (a) )% must
be the same as [ #( B))%#%, namely 1 in this case. This proves the

lemma.

The formula of the lemma is essentially Leibniz’ law of identity. If
one line has been derived from another by the use of Leibniz’ law, the
lemma provides the logically true connection between the lines which
enables the derived line to be struck out according to Lemma 2. In
<1, 1> of Example 1, lines 6, 10 and 14 may be struck out for

this reason, leaving a conjunction of lines which is still inconsistent.

Lemma 4 If a is a variable and £ an instance of type a, while
¢ is of type <a,t>>, and if paA al @(a)l.p(B) is inconsistent,
then paA al ¢(a)) is inconsistent.

According to the hypothesis, paA al @(a))ad(B8) is false under
any interpretation. Consider any interpretation which makes ¢ ( 8)
come out true. In that case, ¢#( ) does not contribute to the falsity
of the whole, so the remaining part paA al ¢ (a)) must be false.
Now consider any interpretation where ¢ ( 8) comes out false.
According to clause (8) of Montague's definition, A al ¢(a)) will be
false, since ¢( @) is false at least in the case where g( a)=g( 8).
This means that paA al ¢(a)) will also be false, and once again the
truth value of ¢(8) does not contribute to the falsity of the whole.
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This is sufficient to prove the lemma.

Lemma 4 may be employed to justify the striking out of any lines
obtained from others by means of universal instantiation. In
<1, 1> of Example 1, then, lines 4, 8, and 13 can disappear.
However just for now, let us strike out only 8 and 13— line 4 will

need to be around until after the next lemma has been used.

Lemma 5 If a is a variable and B an instance of type a, while
¢ is of type <a,t>, and if paV al ¢(a)lr¢(B) is inconsistent,
then paV al ¢(a)) is inconsistent.

Except for a change of quantifier, the formulae are just the same as
those of Lemma 4. In cases where ¢(8) is true, the argument is
just the same too: the inconsistency must lie in the p.V al ¢(a))
part. But when ¢(B) is false, the picture is not so simple, for
V a ¢(a) may yet be true. If V a ¢(a) is true, however, there must
be another interpretation of B which makes ¢ (8) come out true
also. Since we were careful to be sure that 8 is not free in any other
line of the derivation, everything other than the truth value of ¢(g8)
remains the same. But since “inconsistent” means “false in every
interpretation”, it is false in this one too. The inconsistency must be

somewhere in p, in this case.

It is interesting to compare this semantic proof of Lemma 5 with
the syntactic one in Quine, 1974, Ch 29. Lemma 5 justifies our use
of existential instantiation. In <1, 1> of the example, lines 2 and

5 can be struck out as a result of the lemma. Line 4 can also go,
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as permitted by Lemma 4, for it is no longer required as a source of

line 5.

Lemma 6 If paq is inconsistent, and q is a theorem, then p itself is

inconsistent.

The proof could hardly be more obvious: theorems are clearly
logically true, and thus true under every interpertation. They cannot

contribute to the inconsistency of any conjunction.

Some theorems may of course be proved by the very method being
described and justified here. I used to think that all theorems were
best proved by this method, but after further experience, I have
changed my mind. Quine is right, I think, to warn against monolithic
methods of proof. For instance, the theorem of line <1, 1>>3 in the
example, AxVu (Yx=u), is often useful, and easy to prove directly
from Montague's definition. For the value given to x under any
interpretation will be some function from points of reference to
entities. According to clause (), Yx will be the value of that function
at a certain point of reference, that is, an entity. The value given to
u will be some entity, which under some interpretation could be the
same entity as that denoted by “x. This is sufficient to prove the

theorem.
The theorem of <1, 1>7 is even more straightforward, since it

follows directly from Montague’s definition of . on page 265 of his
(1970) .

— 142 —



Proofs in Intensional Logic

The last theorem used in Example 1 is the one in line <1, 1>>12,
Aulu=""u], also a very useful one. Again in any interpretation, u
will denote some entity, so that, according to Montague’'s definition
clause (9), “u will be a constant function from points of reference to
that entity. At any point, therefore, Y"u will denote that entity, just
like u. This proves the theorem. Such a straightforward proof may be

compared with the very clumsy one I provided in my (1985).

With Lemma 6 at our disposal, we are entitled to strike out lines
3,7 and 12 from <1, 1> in Example 1.

Lemma T If & [pallg)aOlgar) is inconsistent, then <lpallqlalr

is also inconsistent.

In interpretations where {pallq) or & r come out false, then
clearly both formulae come out false. The only problematical ones
would be any interpretations in which OUpal_Jq) and < r are true, but
in which &lqar) is false. We show that there can be no such
interpretation. For since OUpallq) is true, then [] q is true at some
point of reference, meaning that q is true at all points of reference.
Thus <(gar) cannot be false unless r is everywhere false, meaning

that O r is false.

Notice that since Montague's definition implies that the modal
system is S5 (see Hughes and Cresswell, 1968, pll5 et seq.), we do
not need to mention any accessibility relation between points of

reference: they are all mutually accessible.
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Lemma 7 allows us to strike out lines 9 and 11 from <1, 1> in

the example.

Nothing now remains of <1, 1> except its first line. Recalling

how derivations are to be read, <1, 1> is now reduced to this:

OV 6(x)aT18.(Vx).v.T16(x)a 6.(Vx)]

which is a mere repetition of < 0, 0 >2, and may be struck out .

We have now found that lines 1 to 5 of <0, 0> are together
inconsistent. Lines 4 and 5 were obtained by universal instantiation,
so they may be struck out, as may line 3, which arose as a case of

existential instantiation.

Only lines 1 and 2, the original premises, are left, and we have
proved that they are together inconsistent, as required.

The efficacy of the method is now proved, since clearly the same
process may be applied to any other example, provided that the
derivation was made only in the ways sanctioned by Lemmas 1 to

7. Only the premises will remain as inconsistent.

It is important to have obtained such a formal proof, for it leaves
open the possibility of discovering other ways of developing
derivations. Provided these ways can be justified by proving suitable
extra lemmas about them, they may be incorporated into the method,

to generalise it.
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Example 1 was developed in rather an unnecessarily complicated
way, just in order that it would be an example of everything. The
derivation could have been simpler, for instance by forgetting about a
and sticking to “k: the same inconsistency would have been reached.
There can only be an aesthetic justification for short and neat
derivations, though. Their value is like the value of Theseus’ ball of
thread: they save you from becoming lost as you explore among the
possible worlds. No matter how far you wander, if an inconsistency

arises, you can be certain that it is due to the original premises.
Yet just for the sake of a neat example, let me present one.

A Second Example
Among the examples at the end of his (1970) , Montague (p266)
states that the de dicto reading of "John seeks a unicorn” is the

following, in intensional logic translation:
seek’ (%}, PV ulunicorn’.(U)AP{Au 13))]

However, the syntactic rules and the rules of translation come to a

stop with this version:
seel’ (%], }ng[unicorn’(x)AP{x}])
Now Leibniz’ law would make these forms equivalent if only we

could show that
IAJ\/u[unicorn’ .(u)AP{Au}]=I/5\/x[unicorn’(x)AP{x}]

— 145 —



Ian C. Stirk

The items being equated here are the intensions of sets, so the

formula is equivalent to
[PV ulunicorn’» (u)P{*u}}=PV x{unicorn’(x)P{x})

Since sets are identical if and only if they have the same members,

the previous formula is itself equivalent to
APV ulunicorn’.(u)aP{*u} J<=>V x{unicorn’ (x)AP{x})

If we can show that this is logically true, the trick is done. This
means showing that the negation of the last formula is inconsistent,

so that this will be the single premise:

OV P Vulunicorn’ . (W) AP{ u} IA Ax[ 1 {unicorn’ (x)P{x}])
v.Aulanicorn’ . (u)AP{*u} JIA Vx{unicorn’ (x)AP{x} 1]

The derivation will look like this:

Example 2

<0, 0>

1. VP[Vulunicorn . (W) P{*u}JaAx(1(unicorn’ (x) P{x}])
v.Au("(unicorn’ . (W) AP{*u} }JaV x(unicorn’ (x)AP{x}]]

2. Vulunicorn’. (W) Q{"u} JaAx( 1 unicorn’(x)Q{x}]]
v.Au{ " unicorn’ (WA Q{*u} 1AV x{unicorn’ (x)AQ{x}1) 1, Q

3. Aulunicorn’("u)<=unicorn’.{u)} Th

1. 1 vulunicorn’.{(u) Q{"u}) 2

1. 2 vx("{unicorn’(x).Q{x}]] 2
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1. 3 unicorn’.(a).Q{"a} i.1,a

1. 4 unicorn’{*a)<>unicorn’.(a) 3

1. 5 unicorn’("a).Q{%a} 1.3,1.4
1. 6 “unicorn'(*a).Q{*a}] 1.2

1. 7 @ 1.5,1.6
2. 1 Aul"lunicorn’.(W)AQ{*u})) 2

2. 2 Vx(unicorn'(x).Q{x}] 2

2. 3 unicorn’(k).Q{k} 2.2,k

2. 4  Axunicorn’(x)—=>Vu{x="u)) Th

2. 5 [lunicorn’(k)->Vulk="ul] 2.4

2. 6 unicorn’(k)—>Vulk="u) 2.5

2. 7 Vulk="u) 2.3.,2.6
2. 8 k="a 2.7,a

2. 9 unicorn’(®a)rQ{Aa} 2.3,2.8, Lz
2. 10 unicorn’(“a)<>unicorn’.(a) 3

2. 11 unicorn’.(a).Q{"%a} 2.9,2.10
2. 12 Tunicorn’.{a) Q{"a} 2.1

2. 13 m 2.11,2.12

I hope this derivation is self explanatory, despite the topological
awkwardness caused by the length of the lines in each branch. Notice
that the theorem of line 2. 4 is Montague's meaning postulate (2)
(1970, p263). I have used this, together with the definition of &. in
line 3, instead of Montague’'s formula on 1970, p265. 1 pointed out
before that this formula is in fact false for common nouns (Stirk,
1985, p101).
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There are two new, though minor, features in this example which
should be mentioned. The first is that the same instance “a” has been
employed in both branches in cases of existential instantiation. This
does not matter, as the branches are derived independently: purists

“w

have only to replace “a” by “b” in one of the branches.

The other new feature is slightly more significant. In line 2, 6, a
necessity operator is removed. This is essentially a special case of
Lemma 7, but I have not been able to work out a formulation or a

proof which covers this case too. Perhaps then we need:

Lemma 8 If $lpallang) is inconsistent, then O (pallql is

inconsistent.
I leave the obvious proof to the reader.

Visiting the Past and the Future

The ability to prove the validity of our method of detecting
inconisistency gives us the courage to add other features to the
system'. As long as we can prove additional lemmas to cover the new
cases, we can be confident of obtaining proper results. Montague’s

operators W and H should be the next items to incorporate.

The results of one or two preliminary experiments, however, reveal
some oddities in Montague’s definition as it stands. The obvious first
step is to use the numbering system we have for points of reference to
keep track of positions in time. Thus if we start from point
<0, 0> W would be instantiated with <0, 1>, and H with

— 148 —



Proofs in Intensional Logic

<0, — 1> There could be intermediate points, <0, 0. 5>,
<0,—0.5> and so on, if necessary. A few experiments should

suggest just what lemmas are needed.

Let us try first to prove some really obvious formulae. It is clear
from Montague's definition that W ¢ — < ¢ should be valid. And

indeed we find this:

<0, 0>
1. W¢
2. Oe

<0, 1>
1. ¢ <0, 0>1
2. T ¢ <0,0>2
3. = 1, 2

That looks fine. Lemmas must clearly involve the numbers we are
allowed to use for points of reference. Testing slightly more
complicated formulae, though, shows that items like W[ 1¢—[ ]¢ are
valid, which is a little odd. Surely future necessity does not imply

present necessity? Yet:

<0, 0>
1. wle¢
2. OT¢
<0, 1>
1. e <0, 0>1
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<1, 0>

1. ¢ <0, 0>2
2. o <0, 1>1
3. = 1, 2

There seems no way out of that, short of giving up S5.

Another oddity is this. One might expect that W¢ — OH ¢ would

be valid, for surely the future will one day become the past? But this

happens:

<0, 0>

1. W¢o

2. [OHe

<0, 1>

1. ¢ <0, 0>1

2., TH¢ <0, 0>2

No inconsistency looms, for ¢ could well be false at <0, 0 >. The
problem here is the number of points of reference - the derivation
seems to suggest that <0, 1> is the end of world0 : it has no
future! There must be some mechanism to add further future points
of reference. In that case, we could add a point <0, 2>, where
H¢ would be true, and cause an inconsistency at <0, 1>.

I hope to investigate these points further in a future paper.
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