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THE JOYS OF NATURAL DEDUCTION

Ian C. Stirk

Introduction

In previous papers (Stirk 1985, 1994), I have pointed out the value
and soundness of a certain reductio ad absurdum method of proving
the logical truth of formulae in the version of intensional logic
described in Montague (1970). The method was based on the “Main
Method” of Quine (1974).

The method is usually employed in showing that a certain
proposition q, say, follows from another, say p, by proving that the
conjunction of p and not-q is inconsistent. Both p and q must be

provided at the start.

There are many occasions, however, when we know a proposition
p and would like to experiment with it and find out what follows
from it. Reductio ad absurdum is of no help in this. The best we can
do is to guess at some proposition q and test whether or not it
follows from p. If the method does not turn up an inconsistency, we
also have to decide whether q really does not follow from p, or

whether we have just missed some subtle instantiation.
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There is a method called Natural Deduction which should enable
us to start out from some proposition p and see where it might lead
us. Quine attributes the origins of natural deduction to two logicians,
Gerhard Gentzen and Stanislaw Jaskowski, working independently and

publishing in 1934 (Quine, 1974, p107).

For a long time I thought that natural deduction would be far too
cumbersome a method to employ in the stratospheric realm of
intensional logic. It can be tedious enough in the humble propositional
calculus. Examples of this can be found in McCawley, 1981, p24 et seq.
Even when rescued from McCawley’s abominable notation, the various
rules of exploitation and introduction are not very intuitive, to say
the least. Hughes and Cresswell (1968) offer a short appendix on
extending this same method to modal propositional calculus (pp
331-4). Exploitation and introduction of the modal operators are just
added to the previous difficulties, so I imagined that the presence of

quantification would make the whole system quite unmanageable.

This view has turned out to be quite wrong. Quine's version of
natural deduction, which he used extensively in earlier editions of his
(1974), avoids the awkwardness of introducing and exploiting truth
functional connectives, and deals only with the removal and addition
of quantifiers. It turns out to be quite a simple matter to extend this

version to modal calculi and thence to intensional logic.

I will set out the various steps in what follows, beginning with a

description of Quinean natural deduction.
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Quine’s Natural Deduction

In his (1974) p201, Quine describes natural deduction as a “split
and partly inverted” Main Method. This can best be illustrated by
using an example of Quine’s, also from his (1974) p201. We are
required to show that (x)(3y)(Gx D .Fy.Hxy) follows from
(3y)(x)(Fy.Gx D Hxy). The Main Method would have it as follows:

1. (3y)&)(Fy.Gx D Hxy)

2. (3x)(y)(Gx.-Fy v -Hxy)

3. (x)(Fa.Gx D Hxa) 1,a
4, (y)(Gb.-Fy v -Hby) 2,b
5. Fa.Gb D Hba 3
6. Gb.-Fa v -Hba 4
7. Hba 5,6
8. -Fa 6,7
9. Fa 5
10. = 8,9

Ignoring the leftmost column of numbers for a moment, the Natural

Deduction derivation would look like this:

1 1. (3y)(x)(Fy.Gx D Hxy)

3 2. (x)(Fa.Gx D Hzxa) l,a
5 3. Fa.Gb D Hba 2
9 4. Fa 3
6 5. Gb D .Fa.Hba 34
-4 6. (2y)XGb D .Fy.Hby) 5
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2 7. (30)(Dy)Gx D .Fy.Hxy) 6,b

The leftmost column refers to lines in the Main Method demon-
stration, with negation signs preceding the numbers of lines which
appear negated in the Natural Deduction. The numbers make the
“inversion” clear. Line 8 of the Main Method derivation does not
appear, because of course its negation would merely be a repetition of
“Fa”, which is line 4 of the Natural Deduction. Line 7 disappears also,
but this is a consequence of the way of dealing with propositional
calculus matters. In both the Main Method and this version of
Natural Deduction, tautologies are assumed and exploited. For the
Main Method, the tautology “p.p D gq. D@ q” was employed to move
from lines 5 and 6 to line 7, and “p.-pv-q. D -q” was used derive line
8 from lines 6 and 7. For the Natural Deduction, one slightly more
complicated tautology, “p.g D r. D .q D pr”, suffices to derive line

5 from lines 3 and 4.

It is this use of tautologies that enables Quine’s method of
Natural Deduction to be so much easier to handle. Inferences are made
with tautologies just as they are in the Main Method, and quantifiers
are removed under the same conditions as they are in the Main
Method. The only remaining problem is that quantifiers must also be

inserted.

There are two examples of this in the derivation above. Line 6 of
the Natural Deduction comes from line 5 by adding an existential

quantifier. Quine calls this process “Existential Generalization”, or
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“BEG”. It poses no difficulties, for a glance at the parallel Main
Method derivation shows that it fulfils the same role as the universal

instantiation which got line 6 from line 4.

The other case is not quite so easy. Corresponding to the
existential instantiation that takes us from line 2 to line 4 in the
Main Method example, we find what Quine calls “Universal Generali-
zation”, or “UG”", in going from line 6 to line 7 of the Natural
Deduction. The correspondence suggests that a new letter must be
involved in UG, as it must be in existential instantiation. The letter
is shown, or “flagged”, as Quine has it, to the right of the line, so
that its newness will be apparent. The rule then is that no letter may

be flagged twice in a derivation.

Unfortunately that rule does not go far enough. Here is an
innocuous Natural Deduction to prove the familiar logical truth

“(By)(OFxy D ()(2y)Fxy”:

1. (3y)()Fxy

2. (x)Fxa La
3. Fba 2
4. (3y)Fby 3
5. (x)(Dy)Fxy 4,b

The trouble is that the next deduction looks equally innocuous:

1. x)(3®y)Fxy
2. (3y)Fay 1

—101 —



Ian C. Stirk

3. Fab 2,b
4. (x)Fxb 3,a
5. (3y)(x)Fxy 4

Yet we know that “(x)(Dy)Fxy D (2y)X(x)Fxy” is not logically true.
The error that has crept in can easily be seen if we try to reconstruct

the Main Method derivation corresponding to that last deduction:

1. x)(3y)Fxy
5. (y)(3x)-Fxy

2. (2y)Fay 1
3. Fab 2,b
-4. (2x)-Fxb 5
-3. -Fab -4,a

The line numbering system is self explanatory.

A blunder is immediately apparent in this application of the Main
Method. The instantiation in line -3 uses a letter which is not new,
although it had not been previously flagged, as it appeared in a
universal instantiation. It is sometimes necessary, as in this case, to
instantiate an existential quantifier after a universal one. using a new

letter.

It is much easier in the Main Method to see which letters have
already been used. The order in which Natural Deduction proceeds
makes this more difficult. Quine makes sure that letters are not

misused by following a rule that flagged letters must not only be
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different from each other, but also a flagged letter must be alphabeti-

cally later than any other free letter in the line where it is flagged.
(See Quine, 1974, p204).

In the example above, to obey this rule would prevent the passage

from line 3 to line 4.

In his version of the Main Method, Quine (1974) does not employ
any branching scheme to deal with alternation. I used it extensively in
my (1985), however, so perhaps we should investigate how it relates
to Natural Deduction. The following Main Method demonstration

makes a good, if rather contrived, example:

1. (Fx v Gx)
2. (x)(-Fx v Hx)
3. (x)(-Gx v Hx)
4. (3x)-Hx
5. -Ha 4,a
6. Fa v Ga
1.1. Fa 6 21, Ga 6
1.2. -Fa v Ha 2 2.2. -Ga v Ha 3
1.3. Ha 1.1,1.2 2.3 Ha 2.1,2.2
14 = 1.35 24 = 2.3,5

An equivalent Natural Deduction would be as follows:
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1. )(Fx v CGx)
2. (x)(-Fx v Hx)
3. (x)(-Gx v Hx)
4. Fa vGa\ 1
1.1. Fa 4 21. QGa 4
1.2. -Fa v Ha 2 2.2. -Ga v Ha 3
1.3. H< 2.3 Ha 2.1,2.2
5. Ha 1.3,2.3
6. (x)Hx 5a

Corresponding lines should be clear without special numbering.

It is plain that in general, diverging branches will need to be
reunited to a main “trunk” in Natural Deduction. The complications
can be avoided by employing a method of Aypothesis, illustrated

below:

1. xFx v Gx)

2. (O(CFx v Hx)

3. ()(-Gx v Hx)

4. Fa v Ga 1
*5. Fa '
*6. -Fa v Ha 2
*7. Ha 5,6
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8. Fa D Ha *7
*9. Ga
*10. -Ga v Ha 3
*11. Ha 9,10
12. Ga D Ha *11
13. Fa v Ga. D Ha 8,12
14. Ha 4,13
15, (x)Hx 14,a

In line 5, “Fa” is assumed to be true, and we go on to explore the
consequences in lines 6 and 7. These lines are preceded by an asterisk
to show that they are part of the hypothesis. In line 8, we “jump out”
of the hypothesis by using a conditional. This is justified, because line
8 would be true regardless of the truth value of “Fa”. Similar
hypothesis making gets us to line 12, after which we obtain line 13 by

using a familiar tautology.

More details of the hypothesis procedure are to be found in Quine
(1974). 1t is clear that branching can be avoided in Natural Deduction

by this convenient method of forming hypotheses.

That completes a description of Natural Deduction as it applies in
first order predicate calculus. A proof of its soundness can be found
in the earlier editions of Quine's (1974).

Modal Predicate Calculus

The next step is to find a way to bring in the modal operators,

—105—



Ian C. Stirk

while avoiding the complications of the method described by Hughes
and Cresswell (1968, appendix one).

The modal operators fit easily into the Main Method, as I showed
in my (1985) and (1994). With Natural Deduction there is bound to be
the extra complication of introducing operators, as well as eliminating
them. For instance, suppose we wish to show that in S4 the formula

“Lp D LLp” is logically true. We inevitably begin:

1. Lp

So, “Lp” is true in some world, but where to go next? Perhaps this is

a likely procedure for eliminating the operator:

The sign “V” is used to represent “any world”, that is, any world
accessible from the starting world. Remembering that in S4 the

accessibility relation is transitive, we can continue the diagram thus:

1 Lp
v
v p 1
b
V3 p 1
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Since the worlds we have added are any worlds, we can add necessity

operators as follows:

1. Lp
5 Llp 4
¥
A\ p
Lp 3
¥
Vo3 p 1

reaching the conclusion “LLp” in line 5. Notice that I am adopting a
different numbering system, and a system of not numbering worlds,
which are different from those in my (1985) and (1994). The present

system 1s much less cumbersome.

As a further example, let us try showing that “Mp O LMp” is

logically true in S5. The complete proof works out as follows:

1. Mp
4. LMp 3

292 1 , V3. Mp 2

The sign “2" is used for “some world”. The step from line 2 to line
3 is justified because in S5 any world will be accessible to the one
where line 2 1s true. We can go from line 3 to line 4 since “Mp” is

true in any world in the derivation.

Armed with these devices, we can go on to a more substantial
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example, that of showing that in T the following is logically true:

L(p D L{g D r)) D Mg D (Lp D Mr)

That is a formula of Hughes and Cresswell (1968, p83). The proof

runs like this:

1. Lp D L{qg D r))
12. M(g @ (Lp D Mr)) 11
!

v o2 p D L{g Or) 1
* 3. q
* x4, Lp
* k5. p 4
*%6. L(q D r) 2,5
* %7 g Dr 6
* ®%8, 1 3,7
* %9, Mr 8
*10. Lp D Mr *9
11. qg > (ILp D Mr) * 10

This application of Natural Deduction shows clearly the contrived
nature of this example. The conclusion is too weak: “L” could
perfectly well have been prefixed. This does not become apparent with
the Main Method treatment of the formula, as readers may verify for

themselves.

This example shows also that “L” may be eliminated without
going to another world (line 7), and that “M” may similarly be

inserted (line 9).
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Modal Predicate Calculi

By now we should be ready to tackle problems in modal predicate
calculi, but first it is a good idea to try something from a higher
order predicate calculus. Let us try deriving the second order calculus

definition of identity from the axioms of identity:

1. x)(x=x)
2. (P &)y x=y.Fx. D Fy)

Substituting a suitable predicate for “IF” gives us

3. M x=y.(12)(z=a)x. D (Az)(z=a)y) 2

4. a=b.a=a. D .b=a 3

5. a=a 1

6. a=b. D .b=a 45
7. a=b.Ga. D Gb 2

8. b=a.Gb. D Ga 2
*9. a=b

#10. Ga D Gb 7,9
*11. Gb D Ga 6,8,9
*12. Ga = Gb 10,11
13, (F)(Fa = Fb) 12,G
14. a=b. D (F)(Fa = Fb) *13
*15. (F)(Fa = Fb)

%16, (Ax)a=x)a = (Ax)(a=x)b 15
*#17. a=a. = .a=b 16
*18. a=b 517
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(F)(Fa = Fb) D .a=b * 18
a=b. = (F)(Fa = Fb) 14,19
(y)Xa=y. = (F)}{(Fa = Fy)) 20,b
W=y, = (F)(Fx = Fy)) 21,a

The paradox of this definition of identity, that things that are

identical turn out to be necessarily identical, makes a good example

for a first excursion into a higher order calculus with modality:

L Wx=y. = (F)(Fx = Fy)]
2. a=b. = (F)(Fa = Fb) 1
*3. a=b
*4. (F)(Fa = Fb) 2,3
*5. (Ax)l(a=x)a = (Ax)L{a=x)b 4
*6. L{a=a) = L(a=Db) 5
14. L(a=a) 13
*15. L(a=b) 6,14
16. a=b. D L(a=b) * 15
17.  (Pla=y. O Lla=y)] 16,b
18. (WMx=y. D L&x=y)] 17,a
|

v T He = He (tautology)
8. (F)(Fc = Fo) T.F
9. (O(F)Fx = Fx) 8,c
10. (F)(Fa = Fa) 9
1. OWMx=y. = @)(Fx = Fy)] Defn.
12. a=a. = (F)(Fa = Fa) 11
13. a=a 10,12

If higher order modal predicate calculi are going to work, we can

turn straight

to
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Intensional Logic

Perhaps the least perspicuous feature of intensional logic is that
the formula “[J [ 6 (x)<=> 6.("x)]” is implied by
“VMAx[ [ 6(x)+«=>M{¥x}]". The Main Method shows this to be so,
but does not clearly point out the reason.

Natural Deduction will proceed like this:

1. VMA] [ 6(x)<=>M{¥x}]

We also need the relation between “J” and “§.":

2. vull [ §.(0)<>5("u)]

From there we can continue:

3. Ax[] [ 6 (x)==>N{"x}] I,N

4. O [ 6(k)<>N{"k}] 3

5. O LeCr)<—=("k)] 2

8. O [ 6.("k)«>N{"k}] 3
17, 006> 6.0"k)] 16

18.  AxJ[6(x)<>d.("x)] 17,k

And the other world:

6. 6 (k)<>N{"k} 4
7. 8.(Vk)<> 5("k) 5
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9. 6 ("k)<>N{Vk} 8

x10. §(k)

#11. 6.(Vk) 6,9,7,10
2. 6(k)>6.0Vk) * 11
%13, §.(Yk)

*14  6(k) 7,9,6,13
15, 6.0"k)—= (k) * 14
16. (k)<= 8.("k) 12,15

The way in which the previously rather mysterious predicate “N”
is eliminated becomes much more clear when we look at lines 6,7 and

9.

The converse implication also goes through quite simply with the
Main Method, as I showed in my (1985). But observe how elegantly it

can be done with Natural Deduction:

1. Ax] [ 6(x)¢=6.("x)]
2. Ax] [ 6(x)<—="6.{vx}] 1
3. VMAx] [ 6(x)<>M{"x}] 2

Three lines only! Another advantage of Natural Deduction is that
not every modality or quantifier needs to be instantiated in every

derivation.
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Conclusion

I think I have managed to show some of the benefits of Natural
Deduction methods in intensional logic. A proof of soundness has not
been given. Quine, naturally enough, gives a syntactic proof of the
soundness of the method in earlier editions of his (1974), but a
semantic one is necessary if the proof is to be extended to higher
order calculi with modality. I hope to present such a proof in a later

paper.

Meanwhile, of course, if users have any doubt of the correctness
of some Natural Deduction, it is only necessary to check it using the

Main Method!
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