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1. Introduction

R.H. Bing had shown that a closed 3-manifold M is homeomorphic to S3 if
and only if every knot in M can be ambient isotoped to lie inside a 3-ball [1].
In [5], J. Hass and A. Thompson generalize this to show that M has a genus
one Heegaard splitting if and only if there exists a genus one handlebody V
embedded in M such that every knot in M can be ambient isotoped to lie inside
V. Moreover, they conjectures that this can be naturally generalized for
genus g(>l). The purpose of this paper is to show that this is actually true.
Namely we prove:

Main Theorem. Let M be a closed ?>-manίfold. There exists a genus
g handlebody V such that every knot in M can be ambient isotoped to lie inside V
if and only if M has genus g Heegaard splitting.

The proof of this goes as follows. First we generalize Myers' construction
of hyperbolic knots in 3-manifolds [14] to show that, for each integer g(>\),
every closed 3-manifold has a knot whose exterior contains no essential closed
surfaces of genus less than or equal to g (Theorem 4.1). Knots with this pro-
perty will be called ^-characteristic knots. Then we show that, for each integer
Λ(>1), there exists a knot K in M such that K cannot be ambient isotoped to a
'simple position' in any gensu h handlebody which gives a Heegaard splitting of
of M. This is carried out by using good pencil argument of K. Johannson
[9] (, and we note that this also can be proved by using inverse operation of
type A isotopy argument of M. Ochiai [15]). By using this very complicated
knot in M, we can show that if M contains a genus g handlebody as in Main
Theorem, then M admits a Heegaard splitting of genus g.

This paper is organized as follows. In Section 2, we slightly generalize
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110 T . KOBAYASHI AND H. NlSHI

results of Johannson in [8], which will be used in Sections 3 and 5. In Section
3, we generalize the concept of prime tangles [13] to height g' tangles, and
show that there are many height £ tangles. In Section 4, we show that, by using
these tangles, there are infinitely many ^-characteristic knots in M. In Sec-
tion 5, we show that there are non-simple position knots by using these g-
characterisisc knots. In Section 6, we prove Main Theorem.

The second author would like to express her thanks to Prof. Mitsuyoshi
Kato for his constant encouragement.

2. Preliminaries

Throughout this paper, we work in the piecewise linear category. All
submanifolds are in general position unless otherwise specified. For a subcom-
plex H of a complex K, N(H, K) denotes a regular neighborhood of H in K.
When K is well understood, we often abbreviate N(H,K) to N(H). Let N
bε a manifold embedded in a manifold M with dimiV==dimM. Then FrMN
denotes the frontier of N in M. For the definitions of standard terms in 3-
dimensional topology, we refer to [6], and [7].

An arc a properly embedded in a 2-manifold S is inessential if there exists
an arc b in dS such that a\}b bounds a disk in S. We say that a is essential
if it is not inessential. A surface is a connected 2-manifold. Let £ be a 2-
sided surface properly embedded in a 3-manifold M. We say that E is essential
if E is incompressible and not parallel to a subsurface of dM. We say that
E is d-compressible if there is a disk Δ in M such that AΓ\E=dAΓ\E=a is
an essential arc in E9 and Δ ΓΊ 3M=3Δ Π dM=β is an arc such that a U β=dA.
We say that E is d-incompressible if it is not d-compressilee.

Let F be a closed surface of genus g. A genus g compression body W is a 3-
manifold obtained from Fx [0, 1] by attaching 2-handles along mutually disjoint
simple closed curves in Fx {1} and attaching some 3-handles so that d-W=
dW—d+W has no 2-sphere components, where Θ+W is a component of dW
which corresponds to Fx {0}. It is known that W is irreducible ([2, Lemma
2.3]). We note that IF is a handlebody if d-W=0.

A complete disk system D for a compression body IF is a disjoint union of
disks (D, dD)a(W, d+ W) such that W cut along D is homeomorphic to

, 1], if9_IFΦ0,

IS 3 , if d-W= 0.

Note that for any handle decomposition of W as above, the union of the
cores of the 2-handles extended vertically to F x [0, 1] contains a complete disk
system for W.

Let M be a compact 3-maniifold such that dM has no 2-sρhere compon-
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ents. A genus g Heegaard splitting of M is a pair (V, W) where V, W are genus
g compression bodies such that V{]W=My Vf)W=d+V=d+W. Then the
purpose of this section is to give a generalization of some results of Johannson
[8] to the above Heegaard splittings.

The next lemma can be proved by using the above complete eisk system,
and the proof is left to the reader (cf. [2, Lemma 2.3]).

Lemma 2.1. Let S be an incompressible and d-incompressible surface pro-
perly embedded in a compression body W. Then S is etiher a closed surface parallel
to a component of d-W, disk D with dDdd+W, or an annulus A, where one
component of dA lies in d+Wand the other in d-W.

The annulus A as in Lemma 2.1 is called vertical.
Let S be an essential surface in a 3-manifold My and (Wly W2) a Heegaard

splitting of M. We say that S is normal with respect to (Wly W2) if:
(1) each component of S f] Wx is an essential disk or a vertical annulus,

and
(2) S Π W2 is an essential surface in W2.
By using the incompressibility of S and Lemma 2.1, wre see that if M is

irreducible then S is ambient isotopic to a normal surface. Suppose that S is
normal. Let S2=Sf)W2y and b an arc properly embedded in S2. We say
that b is a compression arc (for S2), if b is essential in S2y and there exists a disk
Δ in W2 such that ΘA=b U b\ where b'=A Π d+W2 (and, possibly, Int Δ Π S2φ0).
Let My {Wiy W2)y and S be as above. Let 3) be a complete disk system for W2.
We say that S is strictly normal (with respect to 3)), if:

(1) S is normal with respect to (Wu W2), and
(2) for each component D{ of 3), we have (i) each component of S2 Π D{

(if exists) is an essential arc in 6*2 and (ii) if b is an arc of S2 Π Dt such that db is
contained in mutually different components Cl9 C2 of 96*2, and that Cλ or C2 is a
boundary of a disk component E of S Π Wly then for each (open arc) component
dDf—dby say aly a2y we have have a{ Π 9i?Φ0.

Then the next proposition is a generalization of [8, 2.3].

Proposition 2.2. Let M, {Wλ) W2) be as above. Let S be an essential sur-
face in M which is normal with respect to (Wly W2). Then we have either:

(1) S is strictly normal, or
(2) S is ambient isotopic to a surface S' in M such that; (i) S' is normal with

respect to (Wlf W2), and (ii) %{Sf Π Wx\ <#{S Π Wx\.

The proof of this is essentially contained in [8, Sect. 2]. However, for
the convenience of the reader, we give the proof here.

Lemma 2.3. Let M, (Wu W2), and S be as in Proposition 2.2. Let b be a
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compression arc for SΓ\W2, with a disk A in W2 such that dA=b[Jb', where
b'=A Π d+W2 and db=db'. Suppose that there is a disk componnel E of Sr\Wx

such that b' f)E=db' ΓϊdE consists of a point. Then S is ambient ίsotopίc to a
surface Sr in M such that;

(1) £ ' is normal with respect to (Wu W2), and
(2)

Proof. Note that b joins mutually different components of S Π Wu one
of them is E and the other is D> say. Let E+ be one of the components of
FrWr1 N(E, Wι) which meets b'. We note that dE+ meets V in one point. Let
B=N(E+, N(Ey Wλ)) U Λf(Δ, W2). Then B is a 3-ball in M since dE+ Π 9Δ is a
point. Move Wx by an ambient isotopy along B so that the image W{ has the
following form: ϊΓί=cl(IVi-ΛΓ(£+, N(E, W,))) [jN(b, W2).

Let Wί=c\{M—W[). Then clearly {W'u Wί) is a Heegaard splitting of M
which is ambient isotopic to (Wϊ9 W2). Note that S Π W{ is a system of essential
disks and vertical annuli which has the number of components one less than
that of SΓiWly because E is connected with D by the band Sf~}N(b, W2).
Moreover, S Π WΊ is an essential surface since b is essential in S2. It follows
that there exists an ambient isotopy of M which push S into S' so that S' is
normal with respects to (Wu W2) and %{Sf Π Wx} - # { S Π WΊ} - 1 . •

Proof of Proposition 2.2. Let 3)= U Dt be a complete disk system for W2.
Suppose that S is not strictly normal. Since S2 is incompressible and W2 is ir-
reducible, by standard innermost disk argument, we may assume that *S2 Π Dt has
no circle components. If there exists an inessential arc component b of AS^Π^,-

in S2y then without loss of generality, we may assume that there exists a disk Δ
in 5 2 such that Af)£)=by and Af]d+W2 is an arc V such that db=db\ and
b U b'=dA. We note that Fr^2 N(Di U Δ, W2) consists of three disks Eo, Ely E2

such that Eo is parallel to D{. Then it is easy to see that either (<2)—Di)[jE1

or (^D—Di) U E2 is a complete disk system for W2. Moreover this complete disk
system intersects S2 in less number of components. Continuing in this way,
we can finally get the complete disk system for W2 which intersects S2 in all es-
sential arcs.

Therefore, it S is not striclty normal, we may assume that it does not satis-
fy (ii) of the definition. Then, there exists an arc component b of S) Π S2 such
that db is contained in mutually different components Cl9 C2 of dS, and one of
them, say C2, is a boundary of a disk component E of S Π Wu and for one of
open arc components a of dD{ — db, af]dE=0. Note that b is a compression
arc for S2y and b Π E=dbΠ dE is a point. Hence by Lemma 2.3, S can be ambi-
ent isotoped to a 2-manifold S' which is normal with respects to (W2y Wι), and
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3. Height h tangles

An n-string tangle is a pair (5, t), where B is a 3-ball, and t is a union of
mutually disjoint n arcs properly embedded in B. We note that for each tangle
(B, t) there is a (unique) 2-fold branched cover of B with branch set t. We
say that a tangle (JB, £) has height h if the 2-fold branched cover of B over t con-
tains no essential surface S with —X(S)<h. We note that 2-string tangles
with height —1 are called prime tangles in [13]. We say that a tangle (B, t) has
property I if X=cl(B—N(t9 B)) is 3-irreducible, i.e. dX is incompressible in
X. The purpose of this section is to show that a height h tangle actually exi-
sts. Namely we prove:

Proposition 3.1. For each even integer g( > 2), and for each integer m(> — l).
there exists a g-string tangle (B, t) with height m. Moreover if we suppose that
2g—4 >m>0, then we can take (B, t) to haveproprety L

W

Figure 3.1
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For the proof of Proposition 3.1, we recall some definitions and results
from [12]. Let IF be a compression body and Z(c3+IF) a simple closed curve.
Then the height of / for W, denoted by hw(l), is defined as follows [12].

hw(l)=mini—X(S)\S is an essential surface in W such that 3 S | Ί / = 0 } .

Let IF be a handlebody of genus g(>2)y and mly m2y I simple closed curves
on 3IF as in Figure 3.1. Then for a sufficiently large integer q we let / be an
automorphism of 3IF such that f=Tntl°TmI

2y where Tm. denotes a right hand
Dehn twist along the simple closed curve nιf . By sections 2, 3 of [12] we have:

Proposition 3.2. For each m(> — l), there exists a constant N(m) such
that if p>N(m), then hw(ϊ)>m for each simple closed curve I on dW which is dis-
joint from fp (I) and not contractible in 3 IF.

Let N be the 3-manifold obtained from IF by attaching a 2-handle along
the simple closed curve fN(m)+1(l). By Proposition 3.2 and the handle addition
lemma (see, for example [3]), we see that N is irreducible. We note that IF
admits an orientation preserving involution φ as in Figure 3.1. Then we have:

Lemma 3.3. The involution φ extends to an involution φ of N. More-
over, the quotient space of N under φ is a 3-ball B, and the singular set t in B con-
sists of a union of g arcs properly embedded in B.

Proof. We note that mly m2, and / are invariant under φ. Hence we may
suppose that fN^+1(l) is invariant under φ. Hence the involution φ naturally
extends to the 2-handle 2)2χ[0, 1], where the quotient space of D2χ[0y 1] is
a 3-ball and the singular set in Z)2x[0, 1] is an arc a properly embedded in
D2X {1/2}. We note that Wjφ is a 3-ball, the singular set consists of g-\-\ arcs
sy and N(fN(m)+\l)y dW)jφ is a 2-disk. Moreover it is easy to see that the
components of da are contained in mutually different components of s. Hence
we see that B is a 3-ball and t consists of g arcs properly embedded in B. H

Let B, t be as above, and we regard (B, t) as a ̂ -string tangle. Then we show
that (By t) is a height m tangle (the first half of Proposition 3.1) by using good
pencil argument of Johannson used in [9].

Lemma 3.4. (B, t) has hίght m.

Proof. Let C=N(ΘWy W) U (a 2-handle). Let £ be a disk properly em-
bedded in C, which is obtained by extending the core of the 2-handle vertically
to N(dW, W) (^dWx [0, 1]). Then C is a genus g compression body, and E
is a complete disk system for C. We regard cl(iV—C) as IF. Then we note
that (C, W) is a Heegaard splitting of N.
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Let C'=d(O—N(E, C)), then C" is homeomorphic to d-Cx [0, 1], where
d-0 corresponds to 9_Cx{0}. Let E+, E~ be the disks in 9_Cx {1} cor-
responding to Fr c N(E> C).

Claim 1. Let D be an essential disk in C which is non-separating in C.
Then D is ambient isotopic to E in C.

Proof. Since C is irreducible, by standard innermost disk argument, we
may suppose that Df]E has no circle components. Suppose that Df)E=0.
Then 3D bounds a disk Dr in 3_Cx {1} such that D is parallel to Df. Since
3D is essential in d+C and non-separating in d+Cy we see that D' contains ex-
actly one of E+, E~. Hence D is parallel to E in C. Suppose that Df)EΦ0.
Let Δ be an outermost disk in Z), i.e. a=A Γϊ E=dA Π E an arc, β=A Π 9D an
arc such that a{Jβ=dA and aΓ\β=da=dβ. Then we see that ΔflC' is a
properly embedded disk in C Without loss of generality, we may suppose
that 9(ΔnC')Γl£~ = 0. Then there is a disk Δ' in 9-Cx {1} such that
9Δ'=9(Δ Π C"). If Δ' does not contain E~> then by moving D by an ambient
isotopy, we can remove a from Df]E. Suppose that Δ' contains E~. Then,
by tracing cl(dD—β) from one endpoint to the other, we see that there exists a
subarc β' in dD-β such that βr ΠE + =0, β ' c Δ ' , and 9/3'c9£. Hence, by
moving D by an ambient isotopy, we can reduce the number of components of
Df)E. Then by the induction on §{D Π E}> we have the conclusion. •

Claim 2. Let D be an essential disk in C which is separating in C Then
D can be ambient isotoped so that D is disjoint from E. Moreover, D splits C
into a solid tours containing E, and a manifold homeomorphic to 9_Cx [0, 1].

Proof. Since C is irreducible, by standard innermost disk arguement, we
may assume that Df]E has no circle components. Suppose that Df]E + 0.
LetΔ be an outrmost disk in D such that Af]E=a and β=Af)dD. Then
Δ Π C" is a properly embedded disk in C". Without loss of generality, we may
assume that 9(Δ Π C") Π £~ = 0. Then there is a disk Δ' in 9_Cx {1} such that
9Δ'=9(Δ Π C"). If Δ r does not contain E~\ then by moving D by an ambient
isotopy, we can remove a from Df\E. Suppose that Δ' contains E~. Then,
by tracing cl (dD—β) from one endpoint to the other, we see that there exists a
subarc β' in dD—β such that β'ΠE+=09 β ' c Δ ' , and dβ'adE'. Hence, by
moving D by an ambient isotopy, we can reduce the number of components of
Df)E. Then by the induction on #{DΠ£}, we have the first conclusion of
Claim 2. Hence we may assume that D Π E=0.

Let T be the closure of the component of C—D which contains E, and
T' the closure of the other componnet. By [2, Corollary B.3], we see that
T, T' are compression bodies. Since T contains a non-separating disk E,
and d-OaT'y we see that T is a handlebody. Then, by Claim 1, wτe see that
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T is a solid torus. This shows that d-T'(=d-O) is homeomorphic to 9+71',
so that T is homeomorphic to 9_Cx [0, 1]. •

By Claim 2, we immediately have:

Claim 3. Let Du D2 be essential disks in C such that D± and D2 are both
separating, and mutually disjoint in O. Then D1 is parallel to D2.

Next, we show:

Claim 4. Let A be a vertical annulus in C. Then -4 can be ambient iso-
toped so that it is disjoint from E.

Proof. Since C is irreducible and A is incompressible in C, by standard
innermost disk argument, we may suppose that E[\A has no circle components.
Suppose that A Π EΦ0. Then each component of E Π A is an arc whose end-
points are contained in d+C. Let Δ be an outermost disk in Ay such that
Δ Π E = a an arc and β=AΠdA an arc in dA Πd+C. Then, Δ Π C ' i s a pro-
perly embedded disk in C". Without loss of generality, we may assume that
9(ΔίΊC")n£- = 0. Then theie is a disk Δ' in 9_Cx{l} such that 9Δ '=
9(Δ Π C). If Δ' does not contain E~, then by moving A by an ambient isotopy,
we can remove a from Af]E. Suppose that Δ ' contains E~. Then, by tracing
cl(dAΓid+C—β) from one endpoint to the other, we see that there exists a
subarc βr in (dAf]d+C)-β such that β'Γ\E+=0, /3'cΔ', and 9/3'c9£~.
Hence, by moving A by an ambient isotopy, wre can reduce the number of
components of Af]E. Then by the induction on #{AΓ)E}, we have the
conclusion. •

Let S be an essential surface properly embedded in N and chosen to mini-
mize —X(S). In the rest of this proof, we show that —X(S)>m. By moving
S by an ambient isotopy, we may assume that S is normal with respect to
(C, W) (Sect. 2). Then S Π CΦ0, and each component of S Π C is an essential
disk or a vertical annulus in C. Let p be the number of the disk components
of S Π C, and suppose that p is minimal among all the essential surfaces S such
that -X{S) = -X(S), and S is normal with respect to (C, W). Let S*=S Π W.

Suppose that S Π C has no disk components. Let A be any annulus com-
ponent of S Π C. Then, by Claim 4, we may asume that A is disjoint from E.
Therefore (5*, 9S*)c(W, 8W-dE) = (W, 8W-fN^+\l)). Since fN(^+1(l) has
height tn, we have - % ( 5 ) - - % ( 5 * ) > m .

Now suppose that S Π C has a disk component. By the aigument of the
proof of Proposition 2.2, there exists a complete disk system 2) of PFsuch that
each component of S)V\ 5* is an essential arc in 5*. Let a be an outermost arc
component of 3) Π *S*, i.e. there exists a disk Δ in 3) such that Δ Π S*=dA Π S*



GENUS g HEEGAARD SPLITTING 117

=a an essential arc in *!?*, and Δ Π dW=dA Π dW=β an arc such that a U β=
9Δ.

Assume that dβ is contained in mutually different components of 95*,
and one of which is a boundary of a disk component E* of SΓiC. Then S
is not strictly normal since Intβ f)dE*=0. Hence, by Proposition 2.2, S is
ambient isotopic to a normal surface S' with respect to (C, W)y and S' intersects
W in less number of disk components than that of S, contradicting the mini-
mality of p.

Therefore we have the following four cases.

Case 1. Both endopoints of β are contained in the boundaries of annulus
components of S Π C.

By Claims 1, and 2, we may suppose that βΠ dE=0. Let Aλ=βx [0, l]C
C'(^9_Ox [0, 1]) be a disk in C such that βx {1} corresponds to β, and dβx
[0, l ]=Δi Π (S Π C). Let Λ = Δ U Δχ Let 5 be the 2-manifold obtained by 9-
compressing S along Δ. If S is disconnected, choose one essential component
of S and we denote it by S again. Then S is an essential surface in N and
—X{S)<-X(S)-K-X{S). This contradicts the minimality of —X(S).

Case 2. Both endopints of β are contained in the boundary of one non-
separating disk component D of S Π C.

Let S' be an essential surface obtained by moving S by an ambient isotopy
along Δ. Then S' f)C has an annulus component A\ which is obtained from
D by attaching a band produced [along β. Let dA'={au α2}. By Claim 1,
we may suppose that dDΠ dE=0y hence, that ax ΠE=0 (i= 1, 2). Let -4f =«/
χ[0, l ]c9_Cx[0, 1] be a vertical annulus in C. Let £=(£ '—i4 ' )UΛUi4 2

If S is disconnected, choose one essential component, and denote it by S again.
Then S is an essential surface in N, and — X(S)<— X(S). Moreover S is nor-
mal with respect to (C, W), and the number of the disk components of Sf] C is
less than^>. This contradicts the minimality of p.

Case 3. Both endpoints of β are contained in the boundary of one separat-
ing disk component D of S Π C, and β does not lie in the solid torus To split-
ted by D from C.

Let S' be as in Case 2. Then there exists an annulus A' in S 'ΠC such
as in Case 2. Let dA'—{aly a2}. Then, by Claim 2, we may assume that D
is disjoint from E. Hence a{ Π E=0 (z= 1, 2). Then, by the same argument as
in Case 2, we have a contradiction.

Case 4. Both endpoints of β are contained in the boundary of one sepa-
rating disk component D of S Π C, and /3 lies in the solid torus TO splitted by
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D from C.

Let S', A' be as in Case 2.

Claim 5. A' is incompressible in C.

Proof. Assume that A' is compressible in C. Since S' is incompressible,
the core curve of A' is contractible in 6". Hence there is a planar surface P in
S* such that dP=l0U k U ••• U /„ where r> 1, /0 Π Z>=4>Π 3Z> an arc, A, •••,/,. are
boundary of disk components of S' Π C See Figure 3.2. Since i2) is a com-
plete disk system for W, each component of P—(3)Γ\P) is simply connected.
This shows that there is a component b of ^ Π P(d3)f) S*) which satisfies the
assumption of Lemma 2.3, contradicting the minimality of p. •

Figure 3.2

By Claims 1, and 5, we see that S Π C has no non-separating disk compo-
nent. Let {Dly D2y •••, Dq} be the system of disk components of S Π C which
lies in this order. Then, by Claim 3, these components are mutually parallel
in C. Let A be an annulus in d+C such that A contains 3AU ••• U dDq, and
each dDi is ambient isotopic in A to a core of A, We suppose that §{d<D Π 9D, }
is minimal in the ambient isotopy class of d3) in 8PF(=3+C), and hence,
7=9.2)Π ̂ 4 is a system of essential arcs in A. We lable the points dD{ Π / by /,
then in each component of /, they lie in this order.

Claim 6. There exists a subsystem P of 3) Π 5* such that there exists a
component 70 of 7 which satisfies the following.

(1) Every arc of P has one of its endpoints in 70.
(2) Every arc of 3) Π 5* which has one of its endpoints in 70 belongs to P.
(3) Every arc t of P joins 70 with one of components of 7 which are neigh-

bouring of 70 in 83), i.e. if ί2, s2 are subarcs of 83) such that (Int^ ) Π7=0,
and one of its endpoints lies in 370 and the other in the boundary of a compon-
ent 7, of 7, say, then one of the endpoints of t lies in 7X U $i U s2 U h (Figure 3.3).

Proof. Let 7X bε a component of 7. Suppose that Iλ does not satisfy the
conclusions of Claim 6. Then there is an arc tx of 3) Π S* such that one of its
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Figure 3.3

endpoints lies in Ix and does not join two neighbouring components of /. Let
E1 be the closure of a component of £D—tly and I2 a component of / contained
in 3£Ί If I2 does not satisfy the conclusions of Claim 6, then there is an arc t2

of Eγ Π 5* such that one of its endpoints lies in I2 and does not join two neigh-
bouring of /. Let E2 be the closure of the components of 3)—t2 such that
E2dEι, By continueing in this way, it is easy to see that we finally obtain a
component of / satisfying the conclusion of Claim 6. •

Claim 7. For each component of P in Claim 6, both of its endpoints are
contained in /, and have the same label.

Proof. Assume that there exists an arc a such that it has one of its end-
points in Io and the other not in /. Then a satisfies the assumption of Lemma
2.3, contradciting the minimality of p. Let aly a2 be the closures of the com-
ponents of d<D—dP which contains sl9 s2 respectively. Since Dιy"-,Dq are
mutually parallel separating disks in C, we see that the points dat are con-
tained in either dDλ or dDq. This immediately shows that, for each com-
ponent a of Py the endpoints of a have the same label (Figure 3.4). I

1 2. <?-! q

Figure 3.4

Claim 8. 9Pc/0U/i, say (Figure 3.5).
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h

Figure 3.5

Proof. Let a( be the component of P such that one of its endpoints con-
tained in Io is labelled by ί. Assume that one endpoint of ax is contained in Ily

and that there exists a{ such that one endpoint of α, is contained in I2. Then
by Claim 7, daq is contained in dDq, and one endpoint of aq is contained in 72.
Let Δ be a disk in 3) which is splitted by aq and does not contain ax U ••• U α^-i
We may suppose that Δ Π d+C is not contained in the solid torus splitted by
Dq from W. Assume that there exists a component a of .2)0 5* in Δ — a r

Then da is contained in annulus components of S Π C Hence it reduces to
Case 1, and we have a contradiction. Therefore Δ Π *S*—ccr Let βq=A Π 9.2).
Since /3? cannot lie in the solid torus TOy it reduces to Case 3, a contradic-
tion. •

Let P={au •••, α?} be as above. Let Δi be the disk in S) splitted by ax

and does not contain a2\J ••• U ccq, and Ai(2<i<q) the closure of the component
of <D—cCi such that Δ ZDΔj. By moving *S by an ambient isotopy along Δ t suc-
cessively, we obtain a surface S" which intersects C in annuli, and in particular,
there exist q annuli which are mutually parallel in C Let / be one of the
components of ΘA. Then / is a simple closed curve in dW, and by Claim 2,
we may assume that /is disjoint from fN(<m)+ι(l) (=8E). Let S be an essential
component of S"ΓΊ W. Then (S, dS)(Z(W, dW—Ί). By Proposition 3.2, we
see that — X(S)> — X(S)>m. This completes the proof. •

Now we give the proof of the latter half of Proposition 3.1. Let W be
a genus g compression body with d-W a genus g—\ closed surface, m{> mi, Γ
simple closed curves on d+W as in Figure 3.1. Then by applying the above
argument to W and f=Tm^T% together with Sect. 6 of [12] we have:

Proposition 3.2\ For each m(> — l), there exists a constant N\m) such
that if p>N\m)ί then hW'(ΐ)>m for each simple closed curve I on d+W which
is disjoint from fp(Γ) and not contractible in d+W.

Let φf be the involution on W as in Figure 3.6. Let N' be a 3-manifold
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obtained from W by attaching a 2-handle along/*' ( Then we have:

W
Figure 3.6

Lemma 3.3'. The involution φ' extends to the involution Φ' of N'.
Moreover, the quotient space of N' under φ', denoted by B', is homeomorphic to
(2-sphere)x[0, 1], and the singular set tf in B' consists of a union of 2g arcs such
that the endpoίnts of each component oft' are contained in pairwίse different com-
ponents ofdB'.

Moreover, by applying the argument of the proof of Lemma 3.4 to N', we

have:

Lemma 3.4'. Let S be an essential surf ace in N'. Then we have —X(S)>m.

The proofs of these are essentially the same as above, and we omit them.

Proof of the latter half of Proposition 3.1. Let (B, t) be a tangle which is
obtained from (5, t) by capping off (B\ tr) so that dt is joined with dt' in a
component of dB'. Then the 2-fold branched cover N of S branched over t
is regarded as a union of N and N'. Let F=N Π N\ then F is a closed orient-
able surface of genus g— 1.

Claim. iVis irreducible and F is incompressible in N.

Proof. Since hw(fN^+1(l))>m7 d+W-fN(m)+\l) is incompressible in W,
We note that W is irreducible. Then by the handle addition lemma, we see
that N is irreducible and dN is incompressible in N. Similarly, N' is irreducible
and dN' is incompressible in N'. Hence iVis irreducible and F is incompres-
sible in N. •

First we show that (B, t) has height m. Let S be an essential surface in N,
chosen to minimize — X(S). Suppose that S ΠF= 0. If S is boundary-parallel
in N or N', then — X(S)—2g—4->m. If S is not boundary-parallel (hence,
essential) in N, then by Lemma 3.4, —X(S)>m. If S is not boundary-parallel
(hence, essential) in N', then by Lemma 3.4', we see that —X(S)>m.

Suppose that Sf]FΦ0 and S ΓϊF has the minimal number of the com-
ponents among all the essential surfaces in N ambient isotopic to S. Then,
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by the irreducibility of N, we see that each component of S Π N is incompres-
sible in N. Moreover, by using the minimality of #{$ f]F} again, we see that
each component of S Π N is an essential surface in N. Hence we have
—X(S Π N)>m, by Lemma 3.4. On the other hand, since F is incompressible
in N\ SΓiN' has no disk components. Therefore X(SΓϊN')<0, and, hence,
-X(S)=-(X(S ΠN)+X(S f]N'))>-X(S ΠN)>m.

Next, we show that (B, t) has Property I. Let X=d(B—N(ϊ, B)) be the
tangle space and X=% ΠB, Xf=XΠ B'. Let P=X Π X'. Then P is a planar
surface properly embedded in J?. By Propositions 3.2 and 3.2', it is easy to see
that P is incompressible in X and X'. Suppose that there exists a compressing
disk D for d%, and #{DΠP} is minimal among all the compressing disks for

lίDf] P - 0 , then flcΓ and dDaθX'-P. Hence by moving D by a rel
P ambient isotopy of X\ we may suppose that dDddX' Π SB. Since 9X' Π dB
is incompressible in X\ we see that 9Z> bounds a disk in 9X' Π dB, a contradic-
tion.

Suppose that D Π P Φ 0. Since P is incompressible in X, and X is irreduci-
ble, by standard innermost disk argument, we may suppose that Df]P has no
circle components. Moreover, by the minimality of #{Z)ΓϊP}, we see that
Df]P has no inessential components in P. Let a be an outermost arc compo-
nent of D Π P in Z), i.e. there exists a disk Δ in D such that Δ Π P = α , Δ Π dD=β
an arc such that 9Δ=^U/3 and da=dβ. Then Δ is properly embedded in
either X or X'. The first case contradicts the in compressibility of P in X.
Then we consider the second case. Suppose that the endpoints of a are con-
tained in different boundary components of P, say du d2. Let ίί, tί be the
components off' such that JV(f{, Bf) f)P=di(i=l, 2). Let A=FrX'N(N(t'u B')
U Δ U N(tί, B'), X'). Recall that N'-+B' is the 2-fold branched cover with φ'
generating the group of covering translation. Let A be the lift of A in N'.
Then A consists of two annuli. If A is compressible in N', then by equivariant
loop theorem ([10]), there exists a compressing disk D such that Φ(D) ΓlD=0
or φ(D)=D. The first case contradicts the incompressibility of A. Since φ
exchanges the components of A> the second case does not occur. Therefore A
is incompressible in N'. Since A is not boundary parallel, A is essential in N'
with X(A)=0. This contradicts Lemma 3.4.' Suppose that da lies in one
component of 3P, say a0. Let t'o be the component of t' such that N(t&9 B') Π
P=aQ. Let A be the component of FrX'N(N(t'Oy Bf) UΔ) such that each
component of P—(AΓ[P) contains even components of 9P. Then we have a
contradiction as above, completing the proof. •

4. Characteristic knots

Let M be a closed 3-manifold throughout this section.
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Two knots Ko and Kx in M are equivalenet if there exists an ambient iso-
topy ht ( 0 < * < l ) of M such that ho=id, and h1(K0)=K1. We say that Ko and
Kx are inequivalent if they are not equivalent. Let g be an inetger such that
g>l. A knot K in M is a g-char act eristic knot if the exterior of K has no
2-sided closed incompressible surfaces of genus less than or equal to g except
for boundary-parallel tori.

In this section, we prove the following theorem. The proof of this is a
generalization of a construction of simple knots in [14] (see also [5]).

Theorem 4.1. For each integer g{>\)} every closed orientable 3-manifold

M contains infinitely many, mutually inequivalent g-characteristic knots.

REMARK. We note that if rankϋ/^M; Q)>2, then, for each knot K in

My there exists a non-separating closed incompressible surface in E(K).

Proof. First we recall a special handle decomposition of M from [14]. A
handle decomposition {h)} of M is special if;

(1) The intersection of any handle with any other handle is either empty
or connected.

(2) Each 0-handle meets exactly four 1-handles and six 2-hanles.

(3) Each 1-handle meets exactly two 0-handles and three 2-handles.
(4) Each pair of 2-handles either

(a) meets no common 0-handle or 1-handle, or
(b) meets exactly one common 0-handle and no common 1-handle, or
(c) meets exactly one common 1-handle and two common 0-handles.

(5) The complement of any 0-handles in H is connected, where H is the
union of the 0-handles and the 1-handles.

(6) The union of any 0-handle with H' is a handlebody, where Hr is the
union of the 2-handles and the 3-handles.

Note that every closed orientable 3-manifold has a special handle decom-

position [14, Lemma 5.1].
Now we fix a special handle decomposition {h\} of M. For each 1-handle

h), we identify h) with D X [0, 1], where D is a disk and D x [0, 1] meets 0-handles
in DX {0, 1}. Let g be an integer such that g> 1. Let a} be a system of 2^+2
arcs properly embedded in h) such that each arc is identified with {one point}
X [0, 1] (CD2X[O, 1]). Let τ~(Biy t{) be a copy of (4^+4)-string tangle with
height 4^—4 and Property / (Progosition 3.1). Identify each 0-handle h\ with
Bi in a way that dtg is joined with the boundary of the arcs O/.α), 0Cj.(2), 0Cj.(3),
CCJ.U), where λJ .Q), •• ,λy.(4) are the four 1-handles which meet the 0-handle A?,
and (U iti) U (U jOCj) becomes a knot K where the unions are taken over all the
0-handles and 1-handles of the handle decomposition.
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Let V=( U ,-A?) U (U jh)) and V'=M-Int V. Then we note that (F, V) is
a Heegaard splitting of M.

Assertion 1. The above knot K in M is a g-characterίstic knot.

Proof. Let Vι = ά{V-N{K)), V2= V, X\ = Vι ΠAJ, and X) = V1Πh).
Then X) n(U-XΊ) consists of four disk-with-(2g-f-2)-holes properly embedded
in Vl9 say PiU Piv Pi3, PiA.

Claim 1. Each Ph is incompressible in Vu and Vx is irreducible.

Proof. Suppose that XlnX)=Pkj. Since the height of τ, is greater than
— 1, we see that Pkj is incompressible in X\. Since (X)y Pkj) is homeomorphic
to (PkjX [0, 1], PkjX {0})> we see that Pkj is incompressible in X). From these
facts, it is easy to see that each Pkj is incompressible in Vv Then the irreduci-
bility of each X°ky X}> and the incompressibility of each P{j imply that Vx is ir-
redicible. •

Let Qi=dX°i
embedded in E(K).

Then Q, is an (8^+8)-ρunctured sphere properly

Claim 2. Each Q{ is incompressible in E(K), and E(K) is irreducible.

Proof. Let W=cl(V-[j jX)) and W'=V'\J(\J jX)) (Figure 4.1). Then
we note that W, W are handlebodies.

W

Figure"4.1

Suppose that there exists a compresing disk D for Q{ in E(K). Since (JB,-, t{)
has height 4^—4, we see that Int D is not contained in h]. Let Dr be a disk in
dh°i such that 8D'=dD. We note that V U h\ is a handlebody by the definition
of a special handle decomposition (6). Then it is easy to see that W U h\ is a
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handlebody. Hecne W'{Jh°i is irreducible, and the 2-sphere DUD' bounds a
3-ball B in W'Uffi. Since V—h] is connected by the definition of a special
handle decomposition (5), we see that W—h°i is connected. Since dD=dD'ClQh

and W—h°i is not contained in B, this implies that dD bounds a disk in Q, .
Hence Q, is incompressible. Since E(K)=W'\J( U , X°), W'Γ\X°i = Qi, by the
irreducibility of W, X°i, and the incompressibility of Qh we see that E(K) is
irreducible. I

Let S be a closed incompressible surface in the exterior E(K) of K in M
which is not a boundary parallel torus in E(K). Then S must intersect Vx

since F 2 is a handlebody. We suppose that §{S {\dVλ} is minimal among all
surfaces which is ambient isotopic to S in E{K).

Claim 3. SΐWΊ is incompressible in Vu and there exists X] such that

Proof. By the irreducibility of E(K) (Claim 2), and the minimality of
#{SΠ3Fi}, we see that SΠVΊ is incompressible in Vx. Assume that X°Π
(S Π F"i) = 0 for each ί, i.e. S Π F ^ U -Y}. Suppose that X) Π(Sn F x )φ 0. Let
Sj~X) Π (*S Π Fi). Then, by [4, Sect.8 Lemma], we see that each component
of ΛŜ  is an annulus which is parallel to an annulus in X) Π 9F2, contradicting the
miniimality of # {S Π 9 Vλ}. •

Now we suppose that #{(S Π Fi) Π (U f Q, )} is minimal among the ambient
isotopy class of S Π Vλ in Vv Let X] be the tangle space in a 0-handle A? such
that XJΠOSΓIFOΦO, and 5,=X? Π(5 Π F^. Let £ : iV-^B, be the 2-fold
branched cover of B{ over t{ with φ generating the group of the covering trans-
lation. Let Si=p~1(Si). If Si is compressible in 2V, there exists a compressing
disk D for S t in iV such that either φ(D)f]D=0 or φ(D)=D [10]. However
the first case contradicts the incompressibility of *St . Hence φ(D)=D and />(<D)
is a disk in JB, meeting t{ in one point. Then compress S{ by p(D) (hence, the
surface intersects K in two points). By repeating this step finitely many times
for all i such that Z?n(Sf l Vλ) Φ0, we finally get a 2-manifold Sf in M such
that each component of S/

i=p~1(S/

i) is incompressible in N, where S'i=Bi Π
(Sr Π Vι). Then we have the following two cases.

Case 1. There exists / such that S'i has a non-boundary-parallel com-
ponent.

Then Si has an essential component F in N. Since (Biy ί, ) has height
4?—4, —X(i?')>4§f—4. Suppose that^)(F) does not intersect with the singular
set. Then either p(F) is homeomorphic to F, or p: F->p(F) is a regular cover-
ing, and, hence, we have either X(F)=X(p(F))9 or X{p{F))=X{F)j2. By the
minimality of §{{S Π VΊ) Π (U ,-©,•)}, incompressibility of Q, , and Claim 2, we
see that each component of dp(F) is essential in S. Hence we have — X(*S)>
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—X(F)>2g—2y and the genus of S is greater than£. Suppose that F intersects
the singular set in q(>l) points. Then we have X(p(F)—K)=(X(F)—q)l2<
(X(F))l2<2—2g. By the same reason as above, we see that each component of
dp(F) is essential in S. Hence we see that — X(S)=— X(S'—K)>— X(p(F)—
K)>2g—2. Hence the genus of S is greater than g.

Case 2. For every z, each component of Si is boundary-parallel in N.

Move Si by an equivariant ambient isotopy along those parallelisms so that
Si is pushed off £, . By Claim 3, we see that *S" meets K. Let A—dh)—
( U idhϊ). Assume that S' Π(ΌΊAj)=Q. Then S ' c l n t ( U jh)). Then, by [4,
Sect. 8 Lemma], we see that each component of *S" is a 2-sρhere intersecting
exactly one component of aA in two points. This implies that S is a boundary-
parallel torus, contradicting our assumption. Therefore S' Π (U jAj) Φ 0. Since
S is incompressible in E(K), and E(K) is irreducible (Claim 2), the minimality
of §{S Π dVΊ} implies that S' Π (U jAj) has no inessential components in U JAJ.
Hence, by [4, Sect. 8 Lemma], we see that each component of S' f)h) is a hori-
zontal disk in h)o*Dχ [0, 1]. It follows that S' meets all the components of αr; .
Since <Xj consists of 2^+2 arcs, this shows that for each component F' of #?', we
have X(F'-K)<2-(2g+2)=-2g. Hence X(S)=X{S'-K)<-2g. Then
we conclude that the genus of *S is greater than g. •

Let n be the number of 0-handles of {/*$•}. Let JF, ( Z = 1 , •••, n) be a closed
surface of genus 4^+4 in E(K) obtained by pushing dX] slightly into Int E{K).

Assertion 2. Fu " ,Fn are incompressible in E(K) and F{ is not parallel
to Fjfor eachiφj.

Proof. Assume that there is a compressing disk D for F{ in E(K). Since
the tangle τf has Property I, D lies in cl(E(K)—Xi). Let Jl be the union of
4^+4 annuli in cl(E(K)—Xi) such that one boundary component of each an-
nulus is contained in F{ and the other boundary component is a union of core
curves of the annuli in dE(K) corresponding to FτB. N(tiy Bf) (Figure 4.2).

If D Π cJ!=0, by moving D by an ambient isotopy of E(K), we may assume
that dD lies in Qi = dBiΓ\Xi. This contradicts the incompressibility of Q{ in
E(K) (Claim 2 in the proof of Theorem 4.1). Hence we have Z>fΊ<-^Φ0.
Then we suppose that # {D Π <-Λ} is minimal among all compressing disks for F{.
Since cl(E(K)—Xi) is irreducible, we see that D Π Jl has no circle components,
by standard innermost disk argument. Let a be an outermost arc component
of D Π Jl in JL, i.e. there exists a disk Δ in JL such that Δ Π D=a, A Π dJL=β
an arc such that 8A=aUβ and da=dβ. Then by compressing D along Δ
toward F{ we have two disks Ό\ Ώ" such that dDfdFiy ΘD^cF,-. Since D is a
compressing disk for Fi} we see that one of D\ D" is a compressing disk for Fh

contradicting the minimality of #{Z) Γl Jl} Hence F{ is incompressible in E(K).
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N(K)

Next suppose that F{ and Fj are parallel in E(K) for some /Φj. Then
n=2, and contradicting the fact that {hty is special (cf. [5, Fact 1 of Proposition
3]). •

For the proof of Theorem 4.1, we need the following theorm which is
due to Haken.

Theorem 4.2. ([4], [6]). Let M be a compact, orient able 3-manifold. There
is an integer n(M) such that if {Fly "*}Fk} is any collection of mutually disjoint
incompressible closed surfaces in My then either k<n(M), or for some i^j, F( is
parallel to Fj in M.

Completion of the Proof of Theorem 4.1. First we note that for every non-
negative integer h, there exists a special handle decomposition of M with more
than h 0-handles [5, Fact 2 of Proposition 3].

Let K0=K be a ^-characteristic knot in M obtained by the above con-
struction (Assertion 1). Let M0=M~Int N(K0). Then we find a special
handle decomposition of M with h 0-handles, where h>n(Mo). Let J^i be a
^-characteristic knot constructed as above by using this handle decomposition.
Then Mλ=M— Int N(Kλ) contains h incompressible, mutually non-parallel
closed surfaces (Assertion 2). Then, by Theorem 4.2, we see that Mx is not
homeomorphic to Mo. Hence Ko and Kx are inequivalent. Continuing in
this way, we obtain infinitely many inequivalent ^-characteristic knots in M. I

5. Existence of a non-simple position knot

Let H be a handlebody, and k a knot in H. We say that k is in a simple
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position in H if there exists a disk D properly embedded in H such that
D Πk=0, and D splits a solid torus V from i/ such that kdV and & is a core
curve of V (Figure 5.1). We note that k is in a simple position in H if and
only if cl(H—N(k)) is a compression body.

Ή
Figure 5.1

Then the prupose of this section is to prove:

Thoerem 5.1. Suppose that a closed, orίentable 3-manifold M admits a

Heegaard splitting of genus h. Then for each integer g>l, there exists a g-

characteristίc knot K in M such that, for any genus h Heegaard splitting (V, W) of

M, K is not ambient isotopic in M to a simple position knot in V.

Proof. Let {h)\ be a special handle decomposition of M with n 0-handles,
where n>S(3h—3)+l. By applying the argument of Sect. 4 to this handle
decomposition, we get a ^-characteristic knot K whose complement contains a
system of mutually disjoint, non-parallel incompressible closed surfaces of
genus 4§f+4, denoted by 9?={FU •••, Fn} (Sect. 4 Assertion 2).

We show that this knot K satisfies the conclusion of Theorem 5.1.
Assume that there is a genus h Heegaard splitting (V, W) of M such that K

is in a simple position in V. Let Vι^=c\{V—N{K)) and V2=W. Then Vx is a
genus h compression body v/ith d-Vλ is a torus. We note that (Vu V2) is a
Heegaard splitting of E{K). Then, by the irreducibility of E(K), £F can be
ambient isotoped to be normal with respect to (Vly V2) (see Sect. 2). We sup-
pose that #{3*0 Vι} is minimal in the ambient isotopy class of £F in E(K).

First we show that there exists a system £?' of surfaces which is ambient
isotopic to £F in E(K) and £?' Π Vx has at least five annulus components Au "',A5

which are mutually parallel in V\ and essential in ΞF'.

Let 2Γ, = ί F Π F f ( ί = l , 2). Then we note that since dVf can contain at most
3h—3 parallel classes of mutually disjoint essential simple closed curves, there
exists a system of mutually parallel disk components {Du ••-,Dq} of 31 which
lies in this order in Vly where q>9.

By the argument of the proof of Proposition 2.2, there exists a complete
disk system S) for V2 such that each component of 3) Π 3ϊ2 is an essential arc in
S£2. Let A be an annulus in d+Vλ such that A contains dD1 U ••• U dDq, and each
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dDi is isotopic to a core of A. We suppose that #{d<3)\J 3Z),} is minimal in the
ambient isotopy class of dS) in dV2{=d+V1), and hence, I=dWΓ\A is a system
of essential arcs in A. We label the points dD{ Π/ by /, then, in each compo-
nent of /, they lie in this order. Let D be a component of 3) such that D Π A Φ
0. Then by applying the argument of Claim 6 of Lemma 3.4, we see that there
exists a subsystem P of Z) Π ί?2

 s u ch that there exists a component 70 of 7 which
satisfies the following.

(1) Every arc of P has one end-point in 70.
(2) Every arc of Df]^2 which has one end point in 70 belongs to P.
(3) Every arc t of P joints 70 with one of components of / which are neigh-

bouring of 70 in 3D.

Moreover, by the argument of Claim 7 of Lemma 3.4, for each component
of Pf both of its endpoints are contained in 7. Then, by using Lemma 2.3, we
see that the endpoints of each component of P have the same label. Hence P
consists of at most two subsystems each of which contains all arcs of P joing
two components of 7. Therefore by labelling " 1 , 2, •••, q" instead of "q, q — 1,
•••, 1" if necessary, we may assume that there exists a subsystem of at least five
arcs {aly •••, ap} (p>5) of D Π 32

 s u c n t n a t ai joints two points in 70 and Iu say.
Let Δ : be the disk in D splitted by ax and does not contain a2Ό ••• U <xp, and Δ t

(2<ί<p) the closure of the component of D—a{ such that ΔjOΔx. Move £F
by an ambient isotopy along Δ, successively, and denote the image by ί?'. Then
we see that 3' Π Vx has p mutually parallel annuli {Au •••, Ap} in Vx. By the
argument of the proof of Claim 5 of Lemma 3.4, we see that A{ is incompressi-
ble, hence essential in Vx.

Now in these parallelisms A{ X [0, 1] in Vτ where A{ X {0} =Aiy A{ X {1} =
Ai+1(l<i<p— 1), there exist annuli Λ, such that each Λ, corresponds to
C, x[0, 1] where C, is a core curve of Ai(i=l, •••,/>— 1) (Figure 5.2).

Λ Λ
Figure 5.2

Let E(K)=X0\jXiΌ \JXH wheie Xj corresponds to the inside' of Fj
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(hence X0Γ\Xj—Fj,j—l9 •••, ή). Then Λ, is an annulus properly embedded in
Xky for some k. Assume that there exists a compressing disk D for Λ, in Xj.
Let Λ be a subannulus in Λt cobounded by dD and Q. Move the disk £>U Λ
slightly by an ambient isotopy so that ΰ U Λ becomes a properly embedded
disk in Xk. This contradicts the in compressibility of £F in E(K). Hence,
Λ, is incompressible in Xk. We have either A x cX 0 or A2dXQ. If AιClX0,
then we have Λ 3 c j o , and if Λ 2 C l 0 , then we have Λ 4 C l 0 . Now we suppose
that ΔJCXQ, A2CXU and Λ 3 c l o . (The case of Λ2, Λ 4 c l o is essentially the
same.)

Claim. We have either one of:
(1) Λi is boundary-parallel in XOi or
(2) Λ2 is boundary-parallel in Xlf or
(3) Λ3 is boundary-parallel in Xo.

Proof. Recall that ζ), is a planar surface in dXh which corresponds to
dXi Π dBi (Sect. 4). Let J b s a disjoint union of annuli properly embedded in
X0) which is denned in the proof of Assertion 2 of Sect. 4 (Figure 4.2). We
suppose that §{Aλ C[Jl} is minimal among the ambient isotpy class of Ax in Xo.
Suppose that Λ : Π J Φ 0 . If there are inessential arc components of A1 Π JL in
Λi, let a be the outermost arc component of Ax Π JL in Au i.e. there exists a disk
Δ in Ai such that A{\JL=a, Af]dA1=a an arc in 3AX such that ΘA=aU β
and da=dβ=af]β. Let Δ' be the disk in JL such that Fr^? Δ ' = α . Then,
by moving ΛUΔ' in a neighborhood of JL by an ambient isotopy of XQy we get
a disk properly embedded in Xo, whose boundary contained in Qi Since Qι is
incompressible in E(K) and Xo is irreducible, we see that this disk is parallel to
a disk in Qu This shows that aΠQi is an ineseential arc in Qλ. Therefore
there is an ambient isotopy which removes a from Λx Π Jl> contradicting the
minimality of #{A1ΓiJl}. Suppose that every component of ΛiΠ^Ϊ is an es-
sential arc in Av Let Π be a disk in Λi which is bounded by two arcs ^ a2y of
AxΓ[Jl and two arcs in 9ΛX such that IntΠΠc^?=0. Let Δf be a disk in JL
such that a{ bDunds Δf with an arc in dJl(i==ί9 2). Assume that one of Λ, is
contained in the other. Without loss of generality, we may assume that Δ!CΛ2.
Then by moving ΠUΔj by rel a2 isotopy, we get a disk Π' in Z o such that
U'f)Jl=a2y Π' ndX0=cl(dΠ'—a2), and (Π'naXo)nQi=/?' an arc. By the
above argument, we see that βf is an inessential arc in Qλ (i.e. there is a disk Δ*
in Qi such that Fr^Δ*^/?') . Since Π is reproduced by adding a band to Π'
along an arc γ such that γ Π Δ*Φ0, we wee that Π Π Qi consists of two inessen-
tial arcs in Qu contradicting the minimality of #{A1(~)Jl}. Hence Δ ! n Δ 2 = 0 .
Let E—H U Δx U Δ2. Then, by moving the disk E in a neighborhood of Jl by
an ambient isotopy of Xo, we may assume that E is a disk properly embedded
in Xo and dE in Qlu Then by the above argument we see that E is parallel to a
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disk in Qx The same is hold for any pair of neighbouring arcs of Ax (Ί <~Λ
Then we conclude that A1 is boundary parallel in Xo. Similarly, if every com-
ponent of Λ3 Π Jl is an essential arc in Λ3, Λ3 is boundary-parallel in Xo.

Now suppose that 9Λ, 0 9 ^ = 0 ( ί = l , 3) (hence Λf Π<->ϊ=0 or each com-
ponent of Λ, Πci is an essential circle in Λ, ). Then 9Λ 2 n9^?=0. Assume
that Λ2 is not boundary-parallel in Xλ. Let^: N->Bι be the 2-fold branched
cover over tχ=K Π-Bi with φ generating the group of covering translation. Let
-S 2==/>~1(Λ2). Since the tangle (Bly tx) has height 4^—4, Λ2 is compressible in N.
Then there exists a compressing disk D for Λ2 in N such that Φ(D) f)D=0 or
φ(D)=D ([10]). The first case contradicts the incompressibility of Λ2 in Xx.
In the second case, D=p(D) meets tλ in one point. Let Dλ and D2 be disks ob-
tained by compressing Λ2 by D. Since the height of (Bu ΐι) is greater than — 1,
there is a closure of a component of Bx—Diy say B\ such that (JB1*, B'Γϊh) is a
1-string trivial tangle. Then we have either B1 Π-B2— 0, or one of S1, B2 is con-
tained in the other (Figure 5.3). In the first case, we see that Λ2 is parallel to
an annulus in dX0 corresponding to a component of Fr 5 l N(tly Bλ). In the
second case, we see that Λ2 is parallel to an annulus in Qx. Hence we have the
conclusion (2) of Claim. •

Figure 5.3

Now we may assume that Λt is boundary-parallel in Xj for some i and j .
By extending the ambient isotopy along this parallelism, we can remove two
annuli Aέ and Ai+1 from £P Π Vx. Denote this image by £F". Then moving
3" by an ambient isotopy, which coiresponds to the reverse that of £F to £?',
we obtained a system of surfaces 3ϊ/;/ which intersects Vx in essential disks and
the number of the components of S 7 " fl V1 is less than that of £Ffl Vλ. This
contradicts the minimality of the number of the components of £F Π Fi, complet-
ing the proof. •

6. Proof of Main Theorem

In this section, we give a proof of Hass-Thompson conjecture. First we

prepare the follwing lemma.
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L e m m a 6.1. ([3]). Let {Wly W2) be a Heegaard splitting of a 2-manifold
M. Let S be a disjoint union of essential 2-spheres and disks in M. Then, there
exists a disjoint union of essential 2-spheres and disks S' in M such that

(1) S' is obtained from S by ambient ί-surgery and isotopy,
(2) each component of Sf meets d^Wι—dΛW2 in a circle,
(3) there exists complete disk systems 3){ for Wiy such that iZ), n<S'=0

(*=1,2).
(4) if M is irreducible, then Sf is actually isotopic to S.

Let M bs a compact, orientable 3-manifold such that dM has no 2-sphere
components. A Heegaard splitting (F, W) of M is of type T(unnel)y if W is a
handlebody (hence V is a compression body with d-V=dM). Then we define
the T-Heegaard genus of M, denoted by gτ(M), as the minimal genus of the
type T Heegaard splittings. Then for the proof of Main Theorem, we first
show:

Proposition 6.2. Let M be a connected Z-manifold such that dM has no
2-sphere components. Suppose that there exists a compressing disk for dM in M.
Let M be a Z-manίfold obtained by cutting M along D. Then

.77 ϋ> x J S T ( M ) > if M w disconnected,
gτ(M)= ,
6 κ J {gτ(M) -1, ifM connected

Proof. First we note that the T-Heegaard genus is additive under con-
nected sum [3]. Let S be a system of 2-spheres which gives a prime decompo-
sition of M. By standard innermost disk argument, we may assume that D is
disjoint from S. Therefore we may assume, without loss of generality, that M
is irreducible.

Case 1. D is separating in M.

Let M=MX U M2 where M{ (ί= 1, 2) is a connected component of M. Then
M is a boundary connected sum of Mx and M2) i.e. M=Mλ \\ M2. Hence, the
fact that gτ(M)=gτ(M) follws from Lemma 6.1 (for the detailed argument,
see [3]).

Case 2. D is non-separating in M.

Let (Vy W) bz a minimal genus type T Heegaard splitting of M. Then, by
Lemma 6.1, we may assume that D meets dW in a circle. Let Ό—D f) W and
A=D Π V. Then D is an essential disk in W and A is an essential annulus in
V. Let W=cl(W— N(D, W)), and N a sufficiently small regular neighborhood
of D in M such that NΓ\ W=0. We identity M to cl(Λf—iV), and let V=
cl(M—W). Then we see that (F, W) is a type T Heegaard splitting of M.
Hence gτ(M)<g(dW)=gτ(M)-l.
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Next suppose that (F, W) is a type T Heegaard splitting of M which real-
izes T-Heegaard genus of M. By considering dual picture, we identify V to
9_Fχ/U(l-handles). We identify N(Dy M) as Dχ[0, 1], then M=M\J
(flχ[0, 1]). Let a be an arc obtained by extendiog the core of Dx [0, 1] verti-
cally to d-Vχ[0, 1]. By general position argument, we may suppose that
αίl(l-handles) = 0 (hence, a is properly embedded in cl(M— W)). Let N' be
a regular neighborhood of a in cl(M-W), W=W\JN', and V=cl(M-W).
Then it is easy to see that W is a handlebody in Intikf, and V is a compression
body in M. Therefore (V, W) is a type T Heegaard splitting of M. Hence
gτ(M)<g(dW)=g(dW)+l=gτ(M)+l. Therefore gτ(M)=gτ(M)-l. •

Proof of Main Theorem. The 'if' part of Main Theorem is clear. Hence
we give a proof of 'only if part. Let M> V be as in Main Theorem. Let
£"=cl(M— V). If E is a handlebody, then we are done. Hence we suppose that
E is not a handlebody. Let g be an integer such that V can be extended to a
genus g Heegaard splitting of M (V, W), i.e. there exists a system of mutually
disjoint g—g arcs Jl properly embedded in E such that V=V{jN(<Jl, E), W=
cl(M-V) are handlebodies. Let K be a ^-characteristic knot in M which is
not ambient isotopic to a simple position in any genus g handlebody giving
Heegaard splittings of M (Theorem 5.1). Then take a handlebody V* in M
with the following properties; (i) V* contains K, (ii) V* can be extended to a
genus g Heegaard splitting, and (iii) the genus of V%, denoted by g%, is mini-
mal among all the handlebodies in M satisfying the above conditions (i), and
(ii). We note that V satisfies the above conditions (i), and (ii), and, hence,
g*<g. Let E*=cl(M— V*). Then in the rest of this sectoin, we show that
E* is a handlebody, which completes the proof of Main Theorem.

Now assume that E* is not a handlebody. Since E(K) is irreducible and
E*dE(K)> E* is irreducible. Hence there exists a maximal compression
body W* for dE* in E* unique up to ambient isotopy [2]. Since E% is not a
handlebody, 9 - ^ 4 = 0 . Let Y=V* U W*> then (F*, W*) is a Heegaard split-
ting of Y. We note that d-W* lies in E(K)y and the sum of the genus of com-
ponents of d-W* is less than or equal to g%. Then, by the property of g-
characteristic knot K, each component of d-W* is a boundary-parallel torus or
a compressible closed surface in E(K). Hence we have the following two cases.

Case 1. Each component of d-W* is a boundary-parallel torus in E(K).

Assume that d-W* has more than one components Tu •••, Tn(n>2). Let
Pi(i=ίy •••, n) be the paralleisms between T{ and dE(K). By exchanging the
suffix if necessary, we may suppose that PidPj if /</. Then we have P X 3 W*.
On the other hand, we have 9PF*=9F # U 9-PF*=8F # U Γi U T2 U Tn. Hence

2> •'•> Tn, 2L contradiction.
Therefore d-W* consists of one boundary-parallel torus in E(K). Then
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we see that Y=V*\JW* is a solid torus. Let D be a meridian disk of Y.
Since Y is irreducible, by moving D by an ambient isotopy, we may suppose
that D meets dV* in a circle (Lemma 6.1). By considering dual picture, we
identify W* to 8_W*X[0, 1] U (1-handles). Then, by Lemma 6.1 (3), we may
suppose that Df] W* is disjoint from the 1-handles. Let alf •••, agiΓ\ be arcs
properly embedded in W* obtained by extending the cores of the 1-handles
vertically to d-W* X [0, 1] (hence d-W* U tfiU ••• U ocgiΓι is a deformation retract
of PF*). Let Q=N( Y, M). Then, move K by an ambient isotopy in Q so that
KcdY,N(K9Q)nN(ai9Y)=0, and £ΓΠD=1CΠ 3D consists of one point.
Let Y*=Y\jN(K,Q)(ssY), and identify cl(Q-Y*) with the product of a
torus T(=dY*) and an interval Tx [0, 1]. Then, we may view W*, F* as fol-
lows: W*={Tx[0,1])Ό(\J{N(ai9 Y)), V*=cl(Y*-(\J{N(ai9 Y)).

Let A=Frγ*(N(K> Q)\JN(D, Y)) be a disk properly embedded in F*.
Then Δ splits a solid torus N(K, Q)UN(D, Y) from F*, and K lies in it as a
core curve. This implies that K is in a simple position in F*. Since V*
can be extended to a genus J1 Heegaard splitting, which is ambient isotopic to
(F, W)y we see that K is ambient isotopic to a simple position in F, a contradic-
tion.

Case 2. There exists a component of d-W* which is compressible in
E(K).

Let D be a compressing disk for 3-W7*. Since W* is a maximal compres-
sion body for dE* in E%, we see that Dd Y. Let F be the 3-manifold obtain-
ed by cutting Y along D. Then, by the proof of Proposition 6.2, there exists a
minimal genus Heegaard spitting (F*, W*) of Y such that F*Π-D is an es-
sential disk in F*. We note that since DczE(K)y K is disjoint from D. More-
over, by moving K by an ambient isotopy in Y, we may suppose that ί c P
- ( D Π F * ) . I f£(F*)<£*, attach g*-g(V*) trivial 1-handles in W* disjoint
from ΰ to F*. We denote the new genus g* Heegaard splitting of Y by
(F*, W*), again. Then (F*, ϊF*) is a genus £* Heegaard splitting of Y such
that F* cotains K and there exists an essential disk D*=V* Π ΰ in F* which is
disjoint from K.

Let £*=cl(M— Y) U IF*. Since IF* and TF* are compression bodies such
that d-W*=d-W*=dY, and d+W*^d+W* a genus g* closed surface, PF^ is
homeomorphic to W*. Hence £ # = c l ( M - F s | s ) = c l ( M - Y) U W^«c l (M- Y)
U W*=zE* i.e, JB^ is homeomorphic to £*.

By the assumption, F^ can be extended to a genus g5 Heegaard splitting
(F*, ^ ) of M. Let V'*=d{N(V*9M)-V*), and ί F i - c l ^ - F i ) . Then
(Fi, W*) is a genus ^ type T Heegaard splitting of E*. Since £* is home-
omorphic to E*y there is a genus ^ type T Heegaard splitting (F* ' , IF*') of £ *
corresponding to (F4, JFJ). We note that since 3F* ' Π F * - 9 - F * ' =
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Γ*' U F * is a handlebody in M. Hence ( F * ' U F*, W*') is a genus £ Heegaard

splitting of M. Let Fbε a component of V*— N(D*) which contains K inside.

Then Fis a handlebody of genus less t h a n ^ and it can be extended to a genus

£ Heegaard splitting (F*'(J F*, W*') of M. This contradicts the minimality

f**-
This completes the proof of Main Theorem. •

Referenes

[1] R.H. Bing: Necessary and sufficient condition that a 3-nιanifold be S3, Ann. of
Math., 68 (1958), 17-37.

[2] F. Bonahon: Cobordism of automorphisms of surfaces, Ann. Sc. Ec. Norm. sup.
(4) 16 (1983), 237-270.

[3] AJ. Casson and C.McA Gordon: Reducing Heegaard splittings. Topology Appl.
27 (1987), 275-283.

[4] W. Haken: Some results on surfaces in 3-manifolds. Studies in Modern topology
(1968), 34-98, Math. Assos. Amer., Prentice-Hall.

[5] J. Hass and A. Thompson: A necessary and sufficient condition for a 3-manifold
to have Heegaard gensus one, Proc. Amer. Math. Soc. 107 (1989), 1107-1110.

[6] J. Hemple: 3-manifolds, Princeton University Press, Princeton N.J., 1976.
[7] W. Jaco: Lectures on three-manifold topology, C.B.M.S., Regional Conf. Ser.

in Math., 1980.
[8] K. Johannson: On surfaces and Heegaard surfaces, Trans. Amer. Math. Soc.

325(1991), 573-591.
[9] K. Johannson: Computations in 3-manifolds, preprint.

[10] P.K. Kim and J.L. Tollefson: Splitting the P.L. involutions of nonprime 3-
manifolds, Michigan Math. J. 27 (1980), 259-274.

[11] T. Kobayashi: Structures of full Haken manifolds, Osaka J. Math. 24 (1987),
173-215.

[12] T. Kobayashi: Heights of simple loops and pseudo-Anosov homeomorphisms,
Contemp. Math. 78 (1988), 327-338.

[13] W.B.R. Lickorish: Prime knots and tangles, Trans. Amer. Math. Soc. 267
(1981), 321-332.

[14] R. Myers: Simple knots in compact, orientable 3-manifolds, Trans. Amer. Math
Soc. 273(1982), 75-91.

[15] M. Ochiai: On Haken's theorem and its extension, Osaka J. Math. 20 (1983), 461-
468.

[16] F. Waldhausen: On irreducible 3-manifolds which are sufficiently large, Ann. of
Math. (2) 87 (1968), 56-88.

Tsuyoshi Kobayashi
Department of Mathematics
Nara Women's University
Kitauoya Nishimachi, Nara, 630
Japan



136 T. KOBAYASHI AND H. NlSHl

Haruko Nishi
Department of Mathematics
Kyushu University 33
Fukuoka 812
Japan




