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1. Introduction

R.H. Bing had shown that a closed 3-manifold M is homeomorphic to S* if
and only if every knot in M can be ambient isotoped to lie inside a 3-ball [1].
In [5], J. Hass and A. Thompson generalize this to show that M has a genus
one Heegaard splitting if and only if there exists a genus one handlebody V'
embedded in M such that every knot in M can be ambient isotoped to lie inside
V. Moreover, they conjectures that this can be naturally generalized for
genus g(>1). The purpose of this paper is to show that this is actually true.
Namely we prove:

Main Theorem. Let M be a closed 3-manifold. There exists a genus
g handlebody V such that every knot in M can be ambient isotoped to lie inside V
if and only if M has genus g Heegaard splitting.

The proof of this goes as follows. First we generalize Myers’ construction
of hyperbolic knots in 3-manifolds [14] to show that, for each integer g(>1),
every closed 3-manifold has a knot whose exterior contains no essential closed
surfaces of genus less than or equal to g (Theorem 4.1). Knots with this pro-
perty will be called g-characteristic knots. Then we show that, for each integer
h(>1), there exists a knot K in M such that K cannot be ambient isotoped to a
‘simple position’ in any gensu % handlebody which gives a Heegaard splitting of
of M. This is carried out by using good pencil argument of K. Johannson
[9] (, and we note that this also can be proved by using inverse operation of
type 4 isotopy argument of M. Ochiai [15]). By using this very complicated
knot in M, we can show that if M contains a genus g handlebody as in Main
Theorem, then M admits a Heegaard splitting of genus g.

This paper is organized as follows. In Section 2, we slightly generalize
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results of Johannson in [8], which will be used in Sections 3 and 5. In Section
3, we generalize the concept of prime tangles [13] to ‘height g’ tangles, and
show that there are many height g tangles. In Section 4, we show that, by using
these tangles, there are infinitely many g-characteristic knots in M. In Sec-
tion 5, we show that there are non-simple position knots by using these g-
characterisisc knots. In Section 6, we prove Main Theorem.

The second author would like to express her thanks to Prof. Mitsuyoshi
Kato for his constant encouragement.

2. Preliminaries

Throughout this paper, we work in the piecewise linear category. All
submanifolds are in general position unless otherwise specified. = For a subcom-
plex H of a complex K, N(H, K) denotes a regular neighborhood of H in K.
When K is well understood, we often abbreviate N(H, K) to N(H). Let N
be a manifold embedded in a manifold M with dim N=dim M. Then Fr,, N
denotes the frontier of N in M. For the definitions of standard terms in 3-
dimensional topology, we refer to [6], and [7].

An arc a properly embedded in a 2-manifold S is inessential if there exists
an arc b in 8S such that aUb bounds a disk in S. We say that a is essential
if it is not inessential. A surface is a connected 2-manifold. Let E be a 2-
sided surface properly embedded in a 3-manifold M. We say that E is essential
if E is incompressible and not parallel to a subsurface of 0M. We say that
E is 0-compressible if there is a disk A in M such that ANE=0ANE=« is
an essential arc in E, and ANOM=0ANOM=g is an arc such that a U 8=0A.
We say that E is 0-incompressible if it is not 0-compressilee.

Let F be a closed surface of genus g. A genus g compression body W is a 3-
manifold obtained from F X [0, 1] by attaching 2-handles along mutually disjoint
simple closed curves in FX {1} and attaching some 3-handles so that 9_-W=
OW—a.W has no 2-sphere components, where 0. W is a component of W
which corresponds to F'x {0}. It is known that W is irreducible ([2, Lemma
2.3]). We note that W is a handlebody if 8_-W=0.

A complete disk system D for a compression body W is a disjoint union of
disks (D, aD)c (W, 8., W) such that W cut along D is homeomorphic to

{a_Wx[O, 1], if 0.W =0,
B, ifOW=0.

Note that for any handle decomposition of W as above, the union of the
cores of the 2-handles extended vertically to Fx [0, 1] contains a complete disk
system for W.

Let M be a compact 3-maniifold such that M has no 2-sphere compon-
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ents. A genus g Heegaard splitiing of M is a pair (V, W) where V, W are genus
g compression bodies such that VUW=M, VN W=08,V=0,.W. Then the
purpose of this section is to give a generalization of some results of Johannson
[8] to the above Heegaard splittings.

The next lemma can be proved by using the above complete eisk system,
and the proof is left to the reader (cf. [2, Lemma 2.3]).

Lemma 2.1. Let S be an incompressible and 8-incompressible surface pro-
perly embedded in a compression body W. Then S is etiher a closed surface parallel
to a component of 0-W, disk D with 0DC 0o, W, or an annulus A, where one
component of 04 lies in 0. W and the other in 0_W.

The annulus 4 as in Lemma 2.1 is called vertical.

Let S be an essential surface in a 3-manifold M, and (W, W,) a Heegaard
splitting of M. We say that S is normal with respect to (W, W,) if:

(1) each component of SN W, is an essential disk or a vertical annulus,
and

(2) SNW,is an essential surface in W,.

By using the incompressibility of S and Lemma 2.1, we see that if M is
irreducible then S is ambient isotopic to a normal surface. Suppose that S is
normal. Let S,=SNW,, and & an arc properly embedded in S,. We say
that b is a compression arc (for S,), if b is essential in S,, and there exists a disk
A in W, such that A=bU &', where &'=A N 8.. W, (and, possibly, Int A N S, =+0@).
Let M, (W, W,), and S be as above. Let 9 be a complete disk system for W,.
We say that S is strictly normal (with respect to 9), if:

(1) S is normal with respect to (¥;, W,), and

(2) for each component D; of 9), we have; (i) each component of S,N D;
(if exists) is an essential arc in S; and (ii) if 4 is an arc of S, D; such that 8b is
contained in mutually different components C;, C, of 3.5, and that C, or C, is a
boundary of a disk component E of .S N W, then for each (open arc) component
0D;—0b, say ay, a,, we have have a; N 0E (.

Then the next proposition is a generalization of [8, 2.3].

Proposition 2.2. Let M, (W,, W,) be as above. Let S be an essential sur-
face in M which is normal with respect to (W,, W,). Then we have either :

(1) S s strictly normal, or

(2) S is ambient isotopic to a surface S’ in M such that; (1) S’ is normal with

respect to (W1, Wy), and (i) ${S" N Wi} <#{S N W}.

The proof of this is essentially contained in [8, Sect. 2]. However, for
the convenience of the reader, we give the proof here.

Lemma 2.3. Let M, (W, W,), and S be as in Proposition 2.2. Let b be a
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compression arc for SNW,, with a disk A in W, such that dA=bUb’, where
b'=AN038.W, and 0b=0b". Suppose that there is a disk compornet E of SNW,
such that b’ NE=0b"NOE consists of a point. Then S is ambient isotopic to a
surface S" in M such that ;

(1) S’ is normal with respect to (W, W,), and

(2) #{S'NW}=#{SNnWy}—1.

Proof. Note that b joins mutually different components of SN W, one
of them is E and the other is D, say. Let E, be one of the components of
Fry, N(E, W;) which meets ’. We note that dE, meets 4’ in one point. Let
B=N(E,,N(E, W))UN(A, W,). Then B is a 3-ball in M since dE, N0A isa
point. Move W, by an ambient isotopy along B so that the image W{ has the
following form: Wi{=cl(W,—N(E,, N(E, W,))) UN (b, W,).

Let Wi=cl(M—Wf{). Then clearly (W{, W3})is a Heegaard splitting of M
which is ambient isotopic to (W, W,). Note that S N W7 is a system of essential
disks and vertical annuli which has the number of components one less than
that of SN W, because E is connected with D by the band SNN(b, W,).
Moreover, S N W} is an essential surface since b is essential in S,. It follows
that there exists an ambient isotopy of M which push S into S’ so that S’ is
normal with respects to (W, W,) and ${S' N W} =#{SNW,}—1. W

Proof of Proposition 2.2. Let 9= U D, be a complete disk system for W,.
Suppose that S is not strictly normal. Since S, is incompressible and W, is ir-
reducible, by standard innermost disk argument, we may assume that S, N D; has
no circle components. If there exists an inessential arc component & of S, N D;
in S,, then without loss of generality, we may assume that there exists a disk A
in S, such that AN 9=b, and ANJ.,.W, is an arc b’ such that 9b=05b’, and
bUb'=0A. We note that Fry,, N(D;UA, W,) consists of three disks Ey, E;, E,
such that E; is parallel to D;. Then it is easy to sce that either (9—D,)UE,
or (9—D,;) UE, is a complete disk system for W,. Moreover this complete disk
system intersects S, in less numbzr of components. Continuing in this way,
we can finally get the complete disk system for W, which intersects S, in all es-
sential arcs.

Therefore, it S is not striclty normal, we may assume that it does not satis-
fy (ii) of the definition. Then, there exists an arc component b of PN S, such
that 06 is contained in mutually different components Cj, C, of 8, and one of
them, say C,, is a boundary of a disk component E of SN W, and for one of
open arc components @ of 0D;—08b,aNdE=(@. Note that b is a compression
arc for S;, and 5N E=08bN0E is a point. Hence by Lemma 2.3, S can be ambi-
ent isotoped to a 2-manifold S’ which is normal with respects to (W,, W), and
gHS'nwir<g{snmw}. B
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3. Height h tangles

An n-string tangle is a pair (B, t), where B is a 3-ball, and ¢ is a union of
mutually disjoint z arcs properly embedded in B. We note that for each tangle
(B, t) there is a (unique) 2-fold branched cover of B with branch set t. We
say that a tangle (B, £) has height h if the 2-fold branched cover of B over ¢ con-
tains no essential surface S with —X(S)<h. We note that 2-string tangles
with height —1 are called prime tangles in [13]. We say that a tangle (B, ¢) has
property I if X=cl(B—N(t, B)) is 0-irreducible, i.e. 8X is incompressible in
X. The purpose of this section is to show that a height 4 tangle actually exi-
sts. Namely we prove:

Proposition 3.1.  For each even integer g(>2), and for each integer m(>—1).
there exists a g-string tangle (B, t) with height m. Moreover if we suppose that
2¢—4>m=>0, then we can take (B, t) to have proprety I.

~——

56 £ 0

w

S

Figure 3.1
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For the proof of Proposition 3.1, we recall some definitions and results
from [12]. Let W be a compression body and I/(C 9, W) a simple closed curve.
Then the height of I for W, denoted by Ay(/), is defined as follows [12].

| hy(l)=min{—X(S)|S is an essential surface in W such that 8.5 NI=0}. |

Let W be a handlebody of genus g(=>2), and m,, m,, I simple closed curves
on W as in Figure 3.1. Then for a sufficiently large integer ¢ we let f be an
automorphism of dW such that f=T,, T4, where T, denotes a right hand
Dehn twist along the simple closed curve m;. By sections 2, 3 of [12] we have:

Proposition 3.2. For each m(>—1), there exists a constant N (m) such
that if p>>N(m), then hy(1)>m for each simple closed curve 1 on dW which is dis-
joint from f?(1) and not contractible in OW.

Let N be the 3-manifold obtained from W by attaching a 2-handle along
the simple closed curve f¥™+Y(]), By Proposition 3.2 and the handle addition
lemma (see, for example [3]), we see that N is irreducible. We note that W
admits an orientation preserving involution ¢ as in Figure 3.1. Then we have:

Lemma 3.3. The involution ¢ extends to an involution ¢ of N. More-
over, the quotient space of N under ¢ is a 3-ball B, and the singular set t in B con-
sists of a union of g arcs properly embedded in B.

Proof. We note that m,, m,, and [ are invariant under ¢. Hence we may
suppose that f¥™*1(]) is invariant under ¢. Hence the involution ¢ naturally
extends to the 2-handle D?x[0, 1], where the quotient space of D?*X[0, 1] is
a 3-ball and the singular set in D?X[0, 1] is an arc a properly embedded in
D*x {1/2}. We note that W/¢ is a 3-ball, the singular set consists of g1 arcs
s, and N(f¥™+(]), 0W)/¢ is a 2-disk. Moreover it is easy to see that the
components of d are contained in mutually different components of s. Hence
we see that B is a 3-ball and ¢ consists of g arcs properly embedded in B. W

Let B, t be as above, and we regard (B, ¢) as a g-string tangle. Then we show
that (B, t) is a height m tangle (the first half of Proposition 3.1) by using good
pencil argument of Johannson used in [9].

Lemma 3.4. (B, t) has hight m.

Proof. Let C=N(dW, W)U (a 2-handle). Let E be a disk properly em-
bzdded in C, which is obtained by extending the core of the 2-handle vertically
to N(OW, W) (==0Wx[0,1]). Then C is a genus g compression body, and E
is a complete disk system for C. We regard cI(N—C) as W. Then we note
that (C, W) is a Heegaard splitting of N.
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Let C'=cl(C—N(E, C)), then C’ is homeomorphic to 8-C'x [0, 1], where
9_C corresponds to 0-CX {0}. Let E*, E- be the disks in 0_-CX {1} cor-
responding to Fr, N(E, C).

Claim 1. Let D be an essential disk in C' which is non-separating in C.
Then D is ambient isotopic to E in C.

Proof. Since C is irreducible, by standard innermost disk argument, we
may suppose that DN E has no circle components. Suppose that DNE=0.
Then 8D bounds a disk D’ in 8_-C X {1} such that D is parallel to D’. Since
0D is essential in 3.,.C and non-separating in 0,C, we see that D’ contains ex-
actly one of E*, E~. Hence D is parallel to E in C. Suppose that DN E=0.
Let A be an outermost disk in D, i.e. a=ANE=0ANE an arc, B=AN0dD an
arc such that aUB=0A and aNB=0a=0B. Then we see that ANC’ isa
properly embedded disk in C’. Without loss of generality, we may suppose
that 0(ANC’)NE-=@. Then there is a disk A’ in 9_-Cx {1} such that
0A'=09(ANC’). If A’ does not contain E~, then by moving D by an ambient
isotopy, we can remove ¢ from DNE. Suppose that A’ contains E-. Then,
by tracing cl(8D— ) from one endpoint to the other, we see that there exists a
subarc B8’ in 8D— such that 3'NE*=@, B'CA’, and 08’ COE. Hence, by
moving D by an ambient isotopy, we can reduce the number of components of
DNE. Then by the induction on #{DN E}, we have the conclusion. M

Claim 2. Let D be an essential disk in C which is separating in C. Then
D can be ambient isotoped so that D is disjoint from E. Moreover, D splits C
into a solid tours containing E, and a manifold homeomorphic to 8_-C x [0, 1].

Proof. Since C is irreducible, by standard innermost disk arguement, we
may assume that DN E has no circle components. Suppose that DN E=(.
Let A be an outrmost disk in D such that ANE=q and B=AN0dD. Then
ANC' is a properly embedded disk in C’. Without loss of generality, we may
assume that 9(ANC')NE-=@. Then there is a disk A" in 0_C X {1} such that
0A'=08(ANC’). If A’ does not contain E~, then by moving D by an ambient
isotopy, we can remove « from DN E. Suppose that A’ contains E~. Then,
by tracing cl(0D—g) from one endpoint to the other, we see that there exists a
subarc B’ in 0D—g such that ' NE*=@, B'CA’, and 08'COE-. Hence, by
moving D by an ambient isotopy, we can reduce the number of components of
DNE. Then by the induction on #{D N E}, we have the first conclusion of
Claim 2. Hence we may assume that DN E=(.

Let T be the closure of the component of C—D which contains E, and
T’ the closure of the other componnet. By [2, Corollary B.3], we see that
T, T' are compression bodies. Since T contains a non-separating disk E,
and 0-CCT", we see that T is a handlebody. Then, by Claim 1, we see that
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T is a solid torus. This shows that 0_7"(=0-C) is homeomorphic to 0. 7",
so that 7" is homeomorphic to 8_-Cx[0,1]. W

By Claim 2, we immediately have:

Claim 3. Let D, D, be essential disks in C such that D, and D, are both
separating, and mutually disjoint in C. Then D, is parallel to D,.

Next, we show:

Claim 4. Let A4 be a vertical annulus in C. Then 4 can be ambient iso-
toped so that it is disjoint from E.

Proof. Since C is irreducible and A is incompressible in C, by standard
innermost disk argument, we may suppose that EN 4 has no circle components.
Suppose that ANE=@. Then each component of EN A4 is an arc whose end-
points are contained in 9,C. Let A be an outermost disk in A4, such that
ANE=a an arc and 8=AN04 an arc in 04Nad,C. Then, ANC’ is a pro-
perly embedded disk in C’. Without loss of generality, we may assume that
d(ANCYNE-=@. Then thete is a disk A’ in 8_-C X {1} such that 0A'=
a(ANC’). If A’ does not contain E-, then by moving 4 by an ambient isotopy,
we can remove & from AN E. Suppose that A’ contains E~. Then, by tracing
cl(04N03,C—pP) from one endpoint to the other, we see that there exists a
subarc B’ in (04N08,C)—B such that B'NE =0, B'CA’, and 9B’ COE".
Hence, by moving 4 by an ambient isotopy, we can reduce the number of
components of ANE. Then by the induction on #{4NE}, we have the
conclusion. W

Let S bz an essential surface properly embedded in N and chosen to mini-
mize —X(S). In the rest of this proof, we show that —X (S)>m. By moving
S by an ambient isotopy, we may assume that .S is normal with respect to
(C, W) (Sect. 2). Then SNC=+@, and each component of SN C is an essential
disk or a vertical annulus in C. Let p be the number of the disk components
of SN C, and suppose that p is minimal among all the essential surfaces S such
that —X(S)=—X(S), and S is normal with respect to (C, W). Let S*=SNW.

Suppose that S N C has no disk components. Let 4 be any annulus com-
ponent of SNC. Then, by Claim 4, we may asume that A is disjoint from E.
Therefore (S*, 88*)C (W, 0W—08E)=(W, dW—f¥™+Y(])). Since f¥™*Y(]) has
height m, we have —X(S)=—X(S*)>m.

Now suppose that SN C has a disk component. By the aigument of the
proof of Proposition 2.2, there exists a complete disk system 9 of W such that
each component of 9N S* is an essential arc in S*. Let « be an outermost arc
component of PN S*, i.e. there exists a disk A in @ such that AN S*=0ANS*
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=q an essential arc in S*, and ANOW=0A N0W=4 an arc such that a U 8=
0A.

Assume that 8 is contained in mutually different components of 90.5%,
and one of which is a boundary of a disk component E* of SNC. Then S
is not strictly normal since Int3NAE*=(@. Hence, by Proposition 2.2, S is
ambient isotopic to a normal surface S” with respect to (C, W), and S’ intersects
W in less number of disk components than that of .S, contradicting the mini-
mality of p.

Therefore we have the following four cases.

Case 1. Both endopoints of @ are contained in the boundaries of annulus
components of SN C.

By Claims 1, and 2, we may suppose that BN 9E=@. Let A;=8X%][0, 1]C
C'(=9_-Cx[0, 1]) be a disk in C such that @ {1} corresponds to 5, and 98 X
[0, 1]=A,N(SNC). Let A=AUA,. Let.S bz the 2-manifold obtained by 8-
compressing S along A. If S is disconnected, choose one essential component
of S and we denote it by .S again. Then S is an essential surface in N and
—X(S)<—X(S)—1<—X(S). This contradicts the minimality of —X(.S).

Case 2. Both endopints of @ are contained in the boundary of one non-
separating disk component D of SN C.

Let S’ be an essential surface obtained by moving .S by an ambient isotopy
along A. Then S'NC has an annulus component A4’, which is obtained from
D by attaching a band produced 'along 8. Let 04’'={a, @,}. By Claim 1,
we may suppose that 0D NdE=, hence, that ¢ NE=0@ (i=1, 2). Let 4;=¢;
%[0, 1]c8-Cx[0, 1] bz a vertical annulus in C. Let S=(S'—A4")UA4,U 4,.
If S is disconnected, choose one essential component, and denote it by .S again.
Then S is an essential surface in N, and —X(S)<—X(S). Moreover S is nor-
mal with respect to (C, W), and the number of the disk components of SN C is
less than p. This contradicts the minimality of p.

Case 3. Both endpoints of 3 are contained in the boundary of one separat-
ing disk component D of SN C, and @ does not lie in the solid torus Ty split-
ted by D from C.

Let S’ bz as in Case 2. Then there exists an annulus 4’ in S’ N C such
as in Case 2. Let 04'={ay, a,}. Then, by Claim 2, we may assume that D
is disjoint from E. Hence o; N E=0 (=1, 2). 'Then, by the same argument as
in Case 2, we have a contradiction.

Case 4. Both endpoints of B are contained in the boundary of one sepa-
rating disk component D of SN C, and @ lies in the solid torus T, splitted by
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D from C.
Let S’, A’ be as in Case 2.
Claim 5. A4’ is incompressible in C.

Proof. Assume that A’ is compressible in C. Since S’ is incompressible,
the core curve of 4’ is contractible in S’. Hence there is a planar surface P in
S* such that 0P=L,UL U ---Ul,, where r>1, ;N D=[,N 0D an arc, L, ---, I, are
boundary of disk components of S'NC. See Figure 3.2. Since 9 is a com-
plete disk system for W, each component of P—(Q N P) is simply connected.
This shows that there is a component & of YN P(C DN S*) which satisfies the
assumption of Lemma 2.3, contradicting the minimality of p. M

Figure 3.2

By Claims 1, and 5, we see that SN C has no non-separating disk compo-
nent. Let {D, D,, --+, D ;} be the system of disk components of S N C which
lies in this order. Then, by Claim 3, these components are mutually parallel
in C. Let A be an annulus in 8,C such that 4 contains 6D, U - U8D,, and
each 9D, is ambient isotopic in 4 to a core of A. We suppose that #{09DNa8D;}
is minimal in the ambient isotopy class of 89 in W (=9,C), and hence,
I=09N A is a system of essential arcs in 4. We lable the points 9D; N I by i,
then in each component of /, they lie in this order.

Claim 6. There exists a subsystem P of 9N S* such that there exists a
component I, of I which satisfies the following.

(1) Every arc of P has one of its endpoints in I,

(2) Every arc of 9N S* which has one of its endpoints in I, belongs to P.

(3) Every arc ¢ of P joins I, with one of components of I which are neigh-
bouring of I, in 89, i.e. if s,s, are subarcs of 09 such that (Ints;)NI=0,
and one of its endpoints lies in 8/, and the other in the boundary of a compon-
ent I; of I, say, then one of the endpoints of ¢ lies in [; Us; U, U I, (Figure 3.3).

Proof. Let I; be a component of I. Suppose that I; does not satisfy the
conclusions of Claim 6. Then there is an arc t; of 9N S* such that one of its
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Figure 3.3

endpoints lies in /; and does not join two neighbouring components of I. Let
E, be the closure of a component of 9—t,, and I, a component of I contained
in 0E,. If I, does not satisfy the conclusions of Claim 6, then there is an arc £,
of E; N S* such that one of its endpoints lies in 7, and does not join two neigh-
bouring of I. Let E, be the closure of the components of 9—#, such that
E,CE,. By continueing in this way, it is easy to see that we finally obtain a
component of I satisfying the conclusion of Claim 6. M

Claim 7. For each component of P in Claim 6, both of its endpoints are
contained in I, and have the same label.

Proof. Assume that there exists an arc « such that it has one of its end-
points in J; and the other not in /. Then « satisfies the assumption of Lemma
2.3, contradciting the minimality of p. Let a,, a, be the closures of the com-
ponents of 39 —0P which contains s, s, respectively. Since D,, -, D, are
mutually parallel separating disks in C, we see that the points 0a; are con-
tained in either 8D, or 0D,. This immediately shows that, for each com-
ponent & of P, the endpoints of & have the same label (Figure 3.4). W

I,
12 g-1¢

Figure 3.4

Claim 8. '0Pc U, say (Figure 3.5).
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Io

oy O %+t o

Figure 3.5

Proof. Let a; be the component of P such that one of its endpoints con-
tained in I, is labelled by 7.  Assume that one endpoint of «, is contained in I,
and that there exists a; such that one endpoint of «; is contained in I,, Then
by Claim 7, d«, is contained in 8D,, and one endpoint of «, is contained in .
Let A be a disk in 9 which is splitted by «, and does not contain a;; U «++ U ay-;.
We may suppose that AN3,C is not contained in the solid torus splitted by
D, from W. Assume that there exists a component o of YNS* in A—a,.
Then 0« is contained in annulus components of S N C. Hence it reduces to
Case 1, and we have a contradiction. Therefore AN S*=a,. Let 8,=AN39D.
Since B3, cannot lie in the solid torus T, it reduces to Case 3, a contradic-
tion. M

Let P={ay, -, a;} be as above. Let A, be the disk in 9 splitted by a;
and does not contain o, U --- U ¢, and A;(2<¢<q) the closure of the component
of 9—a; such that A;DA,. By moving S by an ambient isotopy along A; suc-
cessively, we obtain a surface S which intersects C in annuli, and in particular,
there exist ¢ annuli which are mutually parallel in C. Let I be one of the
components of 34. Then [ is a simple closed curve in 8W, and by Claim 2,
we may assume that [ is disjoint from f¥™+Y(])(=08E). Let S be an essential
component of S”NW. Then (S, 3dS)c (W, dW—I). By Proposition 3.2, we
see that —X (8)>—X(S)>m. This completes the proof. M

Now we give the proof of the latter half of Proposition 3.1. Let W’ be
a genus g compression body with 9_W’ a genus g—1 closed surface, m{, m3, I’
simple closed curves on 8, W’ as in Figure 3.1. 'Then by applying the above
argument to W’ and f'=T,,0 T} together with Sect. 6 of [12] we have:

Proposition 3.2’. For each m(>—1), there exists a constant N'(m) such
that if p>N'(m), then hy/1)>m for each simple closed curve I on 8, W' which
is disjoint from f*(l') and not contractible in 8*W'.

Let ¢’ be the involution on W’ as in Figure 3.6. Let N’ be a 3-manifold
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obtained from W’ by attaching a 2-handle along f¥'™*Y(l'). 'Then we have:

! //‘\\ /, - \\
! 1 \ 1 \ /
1 ] \ ] \ 1
{ 1 [} 1 \ '
\ 1 ] 1 i ‘\
v / ' ! \
N N
\
N e e e e e e
w’
Figure 3.6

Lemma 3.3. The involution ¢' extends to the involution ¢’ of N'.
Moreover, the quotient space of N’ under ¢', denoted by B’, is homeomorphic to
(2-sphere) x [0, 1], and the singular set t' in B’ consists of a union of 2g arcs such
that the endpoints of each component of t' are contained in pairwise different com-
ponents of dB’.

Moreover, by applying the argument of the proof of Lemma 3.4 to N', we
have:

Lemma 3.4. Let S be an essential surface in N'. Then we have —X(S)>m.
The proofs of these are essentially the same as above, and we omit them.

Proof of the latter half of Proposition 3.1. Let (B, ) be a tangle which is
obtained from (B, ¢) by capping off (B’, ¢') so that 9t is joined with 8¢’ in a
component of dB’. Then the 2-fold branched cover N of B branched over #
is regarded as a union of N and N’. Let F=N NN’, then F is a closed orient-
able surface of genus g—1.

Claim. Nis irreducible and F is incompressible in V.

Proof. Since Ay (f¥™*(1))>m, 8, W—fV™*Y(]) is incompressible in W.
We note that W is irreducible. Then by the handle addition lemma, we see
that N is irreducible and 0N is incompressible in IN. Similarly, N” is irreducible
and AN’ is incompressible in N’. Hence N is irreducible and F is incompres-

siblein N. W

First we show that (B, f) has height m. Let S be an essential surface in N,
chosen to minimize —X(S). Suppose that SNF=@. If.S is boundary-parallel
in N or N’, then —X(S)=2¢g—4>m. If S is not boundary-parallel (hence,
essential) in N, then by Lemma 3.4, —X(S)>m. If S is not boundary-parallel
(hence, essential) in N”, then by Lemma 3.4°, we see that —X(.S)>m.

Suppose that SNF=+@ and S NF has the minimal number of the com-
ponents among all the essential surfaces in N ambient isotopic to S. Then,
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by the irreducibility of N, we see that each component of SN N is incompres-
sible in N. Moreover, by using the minimality of #{S N F} again, we see that
each component of SNN is an essential surface in N. Hence we have
—X(SNN)>m, by Lemma 3.4. On the other hand, since F is incompressible
in N, S NN’ has no disk components. Therefore X(S NN’)<0, and, hence,
—X(S)=—X(S NN)+X(SNN")>—X(SNN)>m.

Next, we show that (B, f) has Property I. Let X=cl(B—N(#, B)) be the
tangle space and X=XNB,X'=XNB’. Let P=XNX'. Then P is a planar
surface properly embedded in X. By Propositions 3.2 and 3.2, it is easy to see
that P is incompressible in X and X’. Suppose that there exists a compressing
disk D for 8X, and #{D NP} is minimal among all the compressing disks for
0X.

If DN P=0@, then DC X’ and 0DC9X'—P. Hence by moving D by a rel
P ambient isotopy of X', we may suppose that 8DC 98X’ N0B. Since 0X'N0B
is incompressible in X', we see that 9D bounds a disk in 6.X'N 8B, a contradic-
tion.

Suppose that DN P=¢. Since P is incompressible in X, and X is irreduci-
ble, by standard innermost disk argument, we may suppose that DN P has no
circle components. Moreover, by the minimality of ${D NP}, we see that
DN P has no inessential components in P. Let «a be an outermost arc compo-
nent of DN P in D, i.e. there exists a disk A in D such that AN P=a, ANOD=2
an arc such that 0A=aUB and 0a=08B. Then A is properly embedded in
either X or X’. The first case contradicts the incompressibility of P in X.
Then we consider the second case. Suppose that the endpoints of & are con-
tained in different boundary components of P, say d,,d,. Let t{,t; be the
components of ¢" such that N (¢/, B") N P=d,(1=1, 2). Let A=Fry N(N(¢{, B')
UAUN(#, B’), X’). Recall that N'—B’ is the 2-fold branched cover with ¢’
generating the group of covering translation. Let 4 be the lift of 4 in N'.
Then 4 consists of two annuli. If 4 is compressible in N, then by equivariant
loop theorem ([10]), there exists a compressing disk D such that ¢ (D) N D=0
or ¢(D)=D. The first case contradicts the incompressibility of 4. Since ¢
exchanges the components of 4, the second case does not occur. Therefore 4
is incompressible in N'. Since 4 is not boundary parallel, 4 is essential in N’
with X(A4)=0. This contradicts Lemma 3.4’ Suppose that 0a lies in one
component of 8P, say «,. Let t; be the component of #* such that N (¢, B’)N
P=qa, Let A be the component of Fry N(N (¢, B’)UA) such that each
component of P—(A N P) contains even components of 0P. Then we have a
contradiction as above, completing the proof. M

4. Characteristic knots

Let M be a closed 3-manifold throughout this section.
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Two knots K, and K, in M are equivalenet if there exists an ambient iso-
topy A, (0<¢t<1) of M such that k=id, and i(K,)=K,;. We say that K, and
K, are inequivalent if they are not equivalent. Let g be an inetger such that
g=>1. A knot K in M is a g-characteristic knot if the exterior of K has no
2-sided closed incompressible surfaces of genus less than or equal to g except
for boundary-parallel tori.

In this section, we prove the following theorem. The proof of this is a
generalization of a construction of simple knots in [14] (see also [5]).

Theorem 4.1. For each integer g(>1), every closed orientable 3-manifold
M contains infinitely many, mutually inequivalent g-characteristic knots.

RemMARK. We note that if rank H,(M; @)>2, then, for each knot K in
M, there exists a non-separating closed incompressible surface in E(K).

Proof. First we recall a special handle decomposition of M from [14] A
handle decomposition {Af} of M is special if;

(1) The intersection of any handle with any other handle is either empty
or connected.
(2) Each 0-handle meets exactly four 1-handles and six 2-hanles.
(3) Each 1-handle meets exactly two 0-handles and three 2-handles.
(4) Each pair of 2-handles either
(a) meets no common 0-handle or 1-handle, or
(b) meets exactly one common 0-handle and no common 1-handle, or
(c) meets exactly one common 1-handle and two common 0-handles.
(5) The complement of any 0-handles in H is connected, where H is the
union of the 0-handles and the 1-handles.
(6) The union of any 0-handle with H’ is a handlebody, where H' is the
union of the 2-handles and the 3-handles.

Note that every closed orientable 3-manifold has a special handle decom-
position [14, Lemma 5.1].

Now we fix a special handle decomposition {#!} of M. For each 1-handle
h}, we identify &} with D X [0, 1], where D is a disk and D x [0, 1] meets O-handles
in Dx {0, 1}. Let g be an integer such that g>1. Let «; be a system of 2g+2
arcs properly embzdded in £ such that each arc is identified with {one point}
x[0,1] (cD?*x [0, 1]). Let 7,=(B;, t;) be a copy of (4g+4)-string tangle with
height 4g—4 and Property I (Progosition 3.1). Identify each 0-handle A} with
B; in a way that 0¢; is joined with the boundary of the arcs a;,a), @), Q@5
i, where K ), =+, hjw are the four 1-handles which meet the 0-handle A3,
and (U ;#)U (U ;a;) becomes a knot K where the unions are taken over all the
0-handles and 1-handles of the handle decomposition.
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Let V=(U;A?)U (U ;k}) and V'=M—Int V. Then we note that (V, V') is
a Heegaard splitting of M.

Assertion 1. The above knot K in M is a g-characteristic knot.

Proof. Let Vy=cl(V—N(K)), V,=V', X!=V,Nh}, and Xi=TV;Nhi.
Then X;N(UX}) consists of four disk-with~(2g+-2)-holes properly embedded
in Vl) SaY Pil’ Pi2> Px’3) Pi4-

Claim 1. Each P;; is incompressible in V3, and V), is irreducible.

Proof. Suppose that X3 N X]=P,;. Since the height of 7, is greater than
—1, we see that P,; is incompressible in X}. Since (X}, P;;) is homeomorphic
to (Py; X [0, 1], P,; X {0}), we see that P,; is incompressible in Xj. From these
facts, it is easy to see that each P,; is incompressible in V;. Then the irreduci-
bility of each X}, X}, and the incompressibility of each P;; imply that V; is ir-
redicible. W

Let Q,=0X!N8B;. Then Q; is an (8g-+8)-punctured sphere properly
embedded in E(K).

Claim 2. Each @; is incompressible in E(K), and E(K) is irreducible.

Proof. Let W=cl(V—U ;X})and W'=V'U(U;X]) (Figure 4.1). Then
we note that W, W’ are handlebodies.

N
) 28

Figure™4.1

Suppose that there exists a compresing disk D for @; in E(K). Since (B;, t;)
has height 4g—4, we see that Int D is not contained in #}. Let D’ be a disk in
8h? such that 3D’=0D. We note that V' U A} is a handlebody by the definition
of a special handle decomposition (6). Then it is easy to see that W' Uh{ is a
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handlebody. Hecne W’ U h{ is irreducible, and the 2-sphere DU D’ bounds a
3-ball B in W' U#h}. Since V—Ah} is connected by the definition of a special
handle decomposition (5), we see that W—A] is connected. Since 8D=8D'C@);,
and W—h{ is not contained in B, this implies that 8D bounds a disk in @,.
Hence @; is incompressible. Since E(K)=W'U(U;X}), W' N X?=Q;, by the
irreducibility of W’, X{, and the incompressibility of @;, we see that E(K) is
irreducible. W

Let S be a closed incompressible surface in the exterior E(K) of K in M
which is not a boundary parallel torus in E(K). Then S must intersect V;
since V, is a handlebody. We suppose that #{S N0V} is minimal among all
surfaces which is ambient isotopic to S in E(K).

Claim 3. SNV, is incompressible in ¥V}, and there exists X} such that
XN SNV)=*0. ‘

Proof. By the irreducibility of E(K) (Claim 2), and the minimality of
#{SNoVi}, we see that SNV, is incompressible in ;. Assume that X?N
(SNVy)=0 for each 7, i.e. SNV,C UX]. Suppose that X;N(SNV7)=*=0. Let
S;=X;N(SNVy). Then, by [4, Sect.8 Lemma], we see that each component
of S; is an annulus which is parallel to an annulus in X} N8V, contradicting the
miniimality of #{SNoV;}. W

Now we suppose that #{(SNV;)N(U;Q,)} is minimal among the ambient
isotopy class of SNV, in V. Let X! be the tangle space in a 0-handle A? such
that X{N(SNV)+0, and S;=X!N(SNV;). Let p: N—>B; be the 2-fold
branched cover of B; over t; with ¢ generating the group of the covering trans-
lation. Let S;=p~%(S;). If S, is compressible in N, there exists a compressing
disk D for S; in N such that either ¢(D)ND=@ or ¢(D)=D [10]. However
the first case contradicts the incompressibility of S;. Hence ¢(D)=D and p(D)
is a disk in B; meeting £; in one point. Then compress S; by (D) (hence, the
surface intersects K in two points). By repeating this step finitely many times
for all ¢ such that X? N (S NV;)=*0, we finally get a 2-manifold S’ in M such
that each component of S7=p~Y(S?) is incompressible in N, where S/=B;N
(S’NV;). Then we have the following two cases.

Case 1. There exists 7 such that S/ has a non-boundary-parallel com-
ponent.

Then S/ has an essential component F in N. Since (B;, t;) has height
4g—4, —X(F)>4g—4. Suppose that p(F) does not intersect with the singular
set. Then either p(F) is homeomorphic to F, or p: F—p(F) is a regular cover-
ing, and, hence, we have either X(F)=X(p(F)), or X(p(F))=X(F)/2. By the
minimality of #{(SNV;)N(U;Q;)}, incompressibility of @;, and Claim 2, we
see that each component of 9p(F) is essential in S. Hence we have —X(S)>
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—X(F)>2g—2, and the genus of S is greater than g. Suppose that F intersects
the singular set in ¢(>1) points. Then we have X(p(F)—K)=(X(F)—q)/2<
(X(F))|2<2—2g. By the same reason as above, we see that each component of
dp(F) is essential in S. Hence we see that —X(S)=—X(S'—K)>—X(p(F)—
K)>2g—2. Hence the genus of S is greater than g.

Case 2. For every 7, each component of S/ is boundary-parallel in N.

Move S? by an equivariant ambient isotopy along those parallelisms so that
S? is pushed off B;. By Claim 3, we see that S’ meets K. Let A,=0k;—
(U;0h?). Assume that S'N(U;4,)=0@. Then S'CInt(U;Aj). Then, by [4,
Sect. 8 IL.emma], we see that each component of S’ is a 2-sphere intersecting
exactly one component of «; in two points. This implies that .S is a boundary-
parallel torus, contradicting our assumption. Therefore SN (U ;4;)=@. Since
§'is incompressible in E(K), and E(K) is irreducible (Claim 2), the minimality
of #{S N3V} implies that SN (U ;A4;) has no inessential components in U ;4;.
Hence, by [4, Sect. 8 Lemma], we see that each component of S’ N4} is a hori-
zontal disk in A;=D x [0, 1]. It follows that S’ meets all the components of «;.
Since «a; consists of 2g-2 arcs, this shows that for each component F’ of .£’, we
have X(F'—K)<2—(2g+2)=—2g. Hence X(S)=X(S'—K)<—2g. Then
we conclude that the genus of S is greater than g. M

Let n be the number of 0-handles of {hi}. Let F;(i=1, +:-, n) be a closed
surface of genus 4g+4 in E(K) obtained by pushing 9.X? slightly into Int E(K).

Assertion 2. Fy, -, F, are incompressible in E(K) and F; is not parallel
to F; for each i+j].

Proof. Assume that there is a compressing disk D for F; in E(K). Since
the tangle 7; has Property I, D lies in cl(E(K)—X;). Let A be the union of
4g+4 annuli in cl(E(K)—X;) such that one boundary component of each an-
nulus is contained in F; and the other boundary component is a union of core
curves of the annuli in dE(K) corresponding to Frp, N(¢;, B;) (Figure 4.2).

If DN A=0, by moving D by an ambient isotopy of E(K), we may assume
that 0D lies in @;=0B;N X;. This contradicts the incompressibility of @; in
E(K) (Claim 2 in the proof of Theorem 4.1). Hence we have DN A=%0.
Then we suppose that #{D N A} is minimal among all compressing disks for F;.
Since cl(E(K)—X;) is irreducible, we see that D N <A has no circle components,
by standard innermost disk argument. Let @ be an outermost arc component
of DN A in A, i.e. there exists a disk A in .4 such that AND=a, AN A=
an arc such that 9A=aU B and da=08. Then by compressing D along A
toward F; we have two disks D’, D’ such that 0D'CF;, 8D’ CF;. SinceDisa
compressing disk for F;, we see that one of D', D”” is a compressing disk for F;,
contradicting the minimality of ${D N A}. Hence F; is incompressible in E(K).
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N(K)

F;
Figure 4.2

Next suppose that F; and F; are parallel in E(K) for some 7=j. Then
n=2, and contradicting the fact that {A} is special (cf. [5, Fact 1 of Proposition
3). N

For the proof of Theorem 4.1, we need the following theorm which is
due to Haken.

Theorem 4.2. ([4], [6]). Let M be a compact, orientable 3-manifold. There
is an integer n(M) such that if {F,, ---, F,} is any collection of mutually disjoint
incompressible closed surfaces in M, then either k<<n(M), or for some i= j, F; is
parallel to F; in M.

Completion of the Proof of Theorem 4.1. First we note that for every non-
negative integer %, there exists a special handle decomposition of M with more
than # 0-handles [5, Fact 2 of Proposition 3].

Let K=K be a g-characteristic knot in M obtained by the above con-
struction (Assertion 1). Let My=M—Int N(K,). Then we find a special
handle decomposition of M with % 0-handles, where A>n(M,). Let K, be a
g-characteristic knot constructed as above by using this handle decomposition.
Then M;=M—1Int N(K;) contains % incompressible, mutually non-parallel
closed surfaces (Assertion 2). Then, by Theorem 4.2, we see that M, is not
homeomorphic to M, Hence K, and K, are inequivalent. Continuing in
this way, we obtain infinitely many inequivalent g-characteristic knots in M. W

5. Existence of a non-simple position knot

Let H be a handlebody, and % a knot in H. We say that & is in a simple
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position in H if there exists a disk D properly cmbedded in H such that
DN k=@, and D splits a solid torus V' from H such that k(CV and % is a core
curve of ¥ (Figure 5.1). We note that % is in a simple position in H if and
only if cl(H—N(k)) is a compression body.

00 )¢

Figure 5.1
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Then the prupose of this section is to prove:

Thoerem 5.1. Suppose that a closed, orientable 3-manifold M admits a
Heegaard splitting of genus h. Then for each integer g>1, there exists a g-
characteristic knot K in M such that, for any genus h Heegaard splitting (V, W) of
M, K is not ambient isotopic in M to a simple position knot in V.

Proof. Let {hi} be a special handle decomposition of M with z 0-handles,
where n>8(34—3)+1. By applying the argument of Sect. 4 to this handle
decomposition, we get a g-characteristic knot K whose complement contains a
system of mutually disjoint, non-parallel incompressible closed surfaces of
genus 4g+4, denoted by F'={F,, -+, F,} (Sect. 4 Assertion 2).

We show that this knot K satisfies the conclusion of Theorem 5.1.

Assume that there is a genus % Heegaard splitting (V, W) of M such that K
is in a simple position in V. Let Vi=cl(V—N(K))and V,=W. Then V,isa
genus / compression body with 9_V; is a torus. We note that (V;, V,) is a
Heegaard splitting of E(K). Then, by the irreducibility of E(K), & can be
ambient isotoped to be normal with respect to (V7, V,) (see Sect. 2). We sup-
pose that #{< N V}} is minimal in the ambient isotopy class of & in E(K).

First we show that there exists a system <’ of surfaces which is ambient
isotopic to F in E(K) and &' NV, has at least five annulus components 4;, -++, 45
which are mutually parallel in V', and essential in <.

Let ;=9 NV;(i=1,2). Then we note that since 8V; can contain at most
3h—3 parallel classes of mutually disjoint essential simple closed curves, there
exists a system of mutually parallel disk components {D;, -+, D} of &, which
lies in this order in ¥;, where ¢>9.

By the argument of the proof of Proposition 2.2, there exists a complete
disk system 9 for V, such that each component of YN, is an essential arc in
&F,. Let Abean annulus in 8,7V, such that 4 contains 8D, U --- U dD,, and each
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dD; is isotopic to a core of 4. We suppose that {09 U 0D;} is minimal in the
ambient isotopy class of 89 in 0V,(=0.V}), and hence, I=09 N A4 is a system
of essential arcs in 4. We label the points 8D; NI by 7, then, in each compo-
nent of I, they lie in this order. Let D be a component of 9 such that DN A=+
@. Then by applying the argument of Claim 6 of Lemma 3.4, we see that there
exists a subsystem P of DN, such that there exists a component [, of I which
satisfies the following.

(1) Every arc of P has one end-point in I,

(2) Every arc of DN, which has one end point in I, belongs to P.

(3) Every arc ¢ of P joints I, with one of components of I which are neigh-
bouring of [, in 8D.

Moreover, by the argument of Claim 7 of Lemma 3.4, for each component
of P, both of its endpoints are contained in I. Then, by using Lemma 2.3, we
see that the endpoints of each component of P have the same label. Hence P
consists of at most two subsystems each of which contains all arcs of P joing
two components of I. Therefore by labelling “1, 2, -+, ¢” instead of “q, ¢ —1,
«++, 1" if necessary, we may assume that there exists a subsystem of at least five
arcs {ay, **+, at,} (p=5) of DN, such that a; joints two points in I, and 1, say.
Let A, bz the disk in D splitted by o, and does not contain a,U *+- U @,, and A,
(2<i< p) the closure of the component of D—¢; such that A,DA,. Move &
by an ambient isotopy along A; successively, and denote the image by ¥’. Then
we see that F' NV, has p mutually parallel annuli {4,, ---, 4,} in V,. By the
argument of the proof of Claim 5 of Lemma 3.4, we see that 4; is incompressi-
ble, hence essential in V.

Now in these parallelisms 4; X [0, 1] in V; where 4; X {0} =A4;, 4;x {1} =
A;,(1<i<p—1), there exist annuli A; such that each A; corresponds to
C; %[0, 1] where C; is a core curve of A;(i=1, -+, p—1) (Figure 5.2).

Let E(K)=X,U XU+ UX, where X; corresponds to the ‘inside’ of F;
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(hence X,N X;=F;,j=1,--,n). Then A, is an annulus properly embedded in
X, for some k. Assume that there exists a compressing disk D for A; in X;.
Let A be a subannulus in A; cobounded by 0D and C;. Move the disk DU A
slightly by an ambient isotopy so that DU A becomes a properly embedded
disk in X,. This contradicts the incompressibility of & in E(K). Hence,
A; is incompressible in X;,. We have either A;C X, or A,CX, If A,CX,
then we have A;C X, and if A,C X, then we have A,C X,. Now we suppose
that A, C X, A,C X, and A;CX,. (The case of A,, A,CX, is essentially the
same.)

Claim. We have either one of:

(1) A, is boundary-parallel in X, or
(2) A, is boundary-parallel in Xj, or
(3) As;is boundary-parallel in X,

Proof. Recall that @; is a planar surface in 0.X;, which corresponds to
0X;N0B; (Sect. 4). Let A bz a disjoint union of annuli properly embedded in
Xy, which is defined in the proof of Assertion 2 of Sect. 4 (Figure 4.2). We
suppose that #{A; N A} is minimal among the ambient isotpy class of A, in X,.
Suppose that A; N A=+@. If there are inessential arc components of A; N A in
Ay, let o be the outermost arc component of A; N A in A,, i.e. there exists a disk
Ain A; such that AN A=a, ANJA,=a an arc in 9A, such that 0A=a U
and da=08=aNB. Let A’ bz the disk in 4 such that Fr_; A’=«a. Then,
by moving AU A’ in a neighborhood of </ by an ambient isotopy of X,, we get
a disk properly embzdded in X, whose boundary contained in ;. Since @, is
incompressible in E(K) and X, is irreducible, we see that this disk is parallel to
a disk in Q,, This shows that ¢ N, is an ineseential arc in @,. Therefore
there is an ambient isotopy which removes a from A;N A, contradicting the
minimality of #{A; N A}. Suppose that every component of A;NA is an es-
sential arc in A;. Let IT be a disk in A, which is bounded by two arcs a, a,, of
A;N A and two arcs in 9A, such that IntIINA=@. Let A; be a disk in
such that ¢; bounds A; with an arc in 8.4(i=1, 2). Assume that one of A, is
contained in the other. Without loss of generality, we may assume that A;CA,.
Then by moving IIU A, by rel a, isotopy, we get a disk II' in X, such that
II' N A=a,, I1' N8 X,=cl(I1'—a,), and (II'N8X,) NQ,=B’ an arc. By the
above argument, we see that 3’ is an inessential arc in @, (i.e. there is a disk A*
in @, such that Fro A*=g’). Since IT is reproduced by adding a band to IT’
along an arc 7 such that v N A*=£ @, we wee that II N @, consists of two inessen-
tial arcs in @,, contradicting the minimality of #{A;NA}. Hence A;NA,=0.
Let E=IIUA,UA,. Then, by moving the disk E in a neighborhood of 4 by
an ambient isotopy of X,, we may assume that E is a disk properly embzdded
in X, and 0F in @,. Then by the above argument we see that E is parallel to a
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disk in @, The same is hold for any pair of neighbouring arcs of A;N A
Then we conclude that A, is boundary parallel in X,. Similarly, if every com-
ponent of A;N A is an essential arc in Ay, A; is boundary-parallel in Xj.

Now suppose that 9A; N0 A=0 (=1, 3) (hence A;N A=@ or each com-
ponent of A;N A is an essential circle in A;). Then 0A,N0A=@. Assume
that A, is not boundary-parallel in X;. Let p: N—B, be the 2-fold branched
cover over t;=K N B, with ¢ generating the group of covering translation. Let
A,=p~}(A,). Since the tangle (B,, #,) has height 4g—4, A, is compressible in N.
Then there exists a compressing disk D for A, in N such that ¢$(D)ND=¢ or
¢(D)=D ([10]). The first case contradicts the incompressibility of A, in X;.
In the second case, D=p (D) meets ¢, in one point. Let D, and D, be disks ob-
tained by compressing A, by D. Since the height of (B, t,) is greater than —1,
there is a closure of a component of B;—D,, say B, such that (B}, B‘'N¢,) is a
1-string trivial tangle. Then we have either B' N B*=@, or one of B!, B*is con-
tained in the other (Figure 5.3). In the first case, we see that A, is parallel to
an annulus in 98X, corresponding to a component of Frp N(#, B)). In the
second case, we see that A, is parallel to an annulus in @;,. Hence we have the

conclusion (2) of Claim. M

Figure 5.3

Now we may assume that A; is boundary-parallel in X; for some 7 and j.
By extending the ambient isotopy along this parallelism, we can remove two
annuli 4; and 4;,, from $'NV,;. Denote this image by ¥””. Then moving
" by an ambient isotopy, which coiresponds to the reverse that of & to &/,
we obtained a system of surfaces ¥’/ which intersects V; in essential disks and
the number of the components of /N V; is less than that of FNV,;. This
contradicts the minimality of the number of the components of & N V;, complet-
ing the proof. MW

6. Proof of Main Theorem

In this section, we give a proof of Hass-Thompson conjecture. First we
prepare the follwing lemma.
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Lemma 6.1. ([3]). Let (W), W,) be a Heegaard splitting of a 3-manifold
M. Let S be a disjoint union of essential 2-spheres and disks in M. Then, there
exists a disjoint union of essential 2-spheres and disks S’ in M such that

(1) &' s obtained from S by ambient 1-surgery and isotopy,

(2) each component of S’ meets 3, . W,—08, W, in a curcle,

(3) there exists complete disk systems 9D; for W;, such that D;NS'=0
(=1, 2).

(4) of M s irreducibl., then S’ is actually isotopic to S.

Let M bz a compact, orientable 3-manifold such that 0M has no 2-sphere
components. A Heegaard splitting (V, W) of M is of type T (unnel), if Wis a
handlebody (hence V is a compression hody with 8_-V=08M). Then we define
the T-Heegaard genus of M, denoted by g7(M), as the minimal genus of the
type T Heegaard splittings. Then for the proof of Main Theorem, we first
show:

Proposition 6.2. Let M be a connected 3-manifold such that 0M has no
2-sphere components. Suppose that there exists a compressing disk for M in M.
Let M be a 3-manifold obtained by cutting M aleng D. Then

(i) = { g§T(M) , if M is disconnected,
£ - g(M)—1, if M connected
Proof. First we note that the T-Heegaard genus is additive under con-
nected sum [3]. Let S be a system of 2-spheres which gives a prime decompo-
sition of M. By standard innermost disk argument, we may assume that D is
disjoint from S. Therefore we may assume, without loss of generality, that M
is irreducible.

Case 1. D is separating in M.

Let M=M,U M, where M;(i=1, 2) is a connected component of . Then
M is a boundary connected sum of M; and M,, i.e. M=M, 1 M,. Hence, the
fact that g7(M)=g"(M) follws from Lemma 6.1 (for the detailed argument,
see [3]).

Case 2. D is non-separating in M.

Let (V, W) bz a minimal genus type T Heegaard splitting of M. Then, by
Lemma 6.1, we may assume that D meets 0W in a circle. Let D=DNW and
A=DNV. Then D is an essential disk in W and 4 is an essential annulus in
V. Let W=cl(W—N(D, W)), and N a sufficiently small regular neighborhood
of D in M such that NN W=¢. We identity M to cI(M—N), and let V=
cl(M—W). Then we see that (77, W) is a type T Heegaard srlitting of M.
Hence g7(M)< g(0W)=g"(M)—1.
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Next suppose that (¥, W) is a type T Heegaard splitting of M which real-
izes T-Heegaard genus of M. By considering dual picture, we identify 7 to
8-V xIU(1-handles). We identify N(D, M) as Dx[0,1], then M=MU
(Dx[0, 1]). Let a be an arc obtained by extendiog the core of D X [0, 1] verti-
cally to 8-V x[0,1]. By general position argument, we may suppose that
aN(1-handles)=@ (hence, « is properly embedded in cl(M—W)). Let N’ be
a regular neighborhood of « in cl(M—W), W=WUN’, and V=cl(M—W).
Then it is easy to see that I is a handlebody in IntM, and V is a compression
body in M. Therefore (V, W) is a type T Heegaard splitting of M. Hence
eT(M)<g(0W)=g(@W)+1=g"(M)+-1. Therefore g7(M)="(M)—1. N

Proof of Main Theorem. The ‘if’ part of Main Theorem is clear. Hence
we give a proof of ‘only if’ part. Let M, V be as in Main Theorem. Let
E=cl(M—V). If Eisahandlebody, then we are done. Hence we suppose that
E is not a handlebody. Let g be an integer such that V" can be extended to a
genus g Heegaard splitting of M (V, W), i.e. there exists a system of mutually
disjoint §—g arcs A properly embedded in E such that V=V UN(J, E), W=
cl(M—7V) are handlebodies. Let K be a g-characteristic knot in M which is
not ambient isotopic to a simple position in any genus g handlebody giving
Heegaard splittings of M (Theorem 5.1). Then take a handlebody Vy in M
with the following properties; (i) V' contains K, (ii) ¥, can be extended to a
genus g Heegaard splitting, and (iii) the genus of V', denoted by g, is mini-
mal among all the handlebodies in M satisfying the above conditions (i), and
(ii). We note that V satisfies the above conditions (i), and (ii), and, hence,
g+<g. Let Ey=cl(M—V,). Then in the rest of this sectoin, we show that
E, is a handlebody, which completes the proof of Main Theorem.

Now assume that Ey is not a handlebody. Since E(K) is irreducible and
E,CE(K), E4 is irreducible. Hence there exists a maximal compression
body W, for 9E, in E, unique up to ambient isotopy [2]. Since Ey is not a
handlebody, 0-Wy=+0. Let Y=V, ,U W, then (V4, W) is a Heegaard split-
ting of Y. We note that 8_Wj lies in E(K), and the sum of the genus of com-
ponents of d_W, is less than or equal to g4. Then, by the property of g-
characteristic knot K, each component of 8_-W, is a boundary-parallel torus or
a compressible closed surface in E(K). Hence we have the following two cases.

Case 1. Each component of 8_W, is a boundary-parallel torus in E(K).

Assume that 9_W, has more than one components T, -+, T,,(n>2). Let
P(i=1, +++,n) bz the paralleisms between T; and 0E(K). By exchanging the
suffix if necessary, we may suppose that P,C P; if i<j. Then we have P,D W,.
On the other hand, we have 0W,=0V,U0_W,=0V,UT,UT,---UT,. Hence
P,oT,, -, T, a contradiction.

Therefore d_W, consists of one boundary-parallel torus in E(K). Then
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we see that Y=V, UW, is a solid torus. Let D be a meridian disk of Y.
Since Y is irreducible, by moving D by an ambient isotopy, we may suppose
that D meets 0V in a circle (Lemma 6.1). By considering dual picture, we
identify W, to 8_W, x[0, 1]U (1-handles). Then, by Lemma 6.1 (3), we may
suppose that DN Wy is disjoint from the 1-handles. Let o, -+, a, -, be arcs
properly embedded in W, obtained by extending the cores of the 1-handles
vertically to 9- W, X [0, 1] (hence 3_-Wy U a,U - Uex,, _, is a deformation retract
of Wy). Let @Q=N(Y,M). Then, move K by an ambient isotopy in € so that
KcaY, N(K,Q)NN(a;, Y)=@, and KND=KN3D consists of one point.
Let Y*=YUN(K, Q) (==Y), and identify cl(@—Y*) with the product of a
torus T(=0Y*) and an interval T'x[0, 1]. Then, we may view Wy, V as fol-
lows: Wye=(T'X[0, 1)U (U;N(a;, Y)), Ve=cl(Y*—(U;N(e;, Y)).

Let A=Fry(N(K, Q)UN(D, Y)) bz a disk properly embedded in Vi.
Then A splits a solid torus N(K, QQUN (D, Y) fiom V,, and K lies in it as a
core curve. This implies that K is in a simple position in V,. Since V,
can be extended to a genus § Heegaard splitting, which is ambient isotopic to
(V, W), we see thet K is ambient isotopic to a simple position in 7, a contradic-
tion.

Case 2. There exists a component of 0_-W, which is compressible in

E(K).

Let D be a compressing disk for 8_-W,. Since W, is a maximal compres-
sion body for 0Fy in Ey, we see that DCY. Let Y be the 3-manifold obtain-
ed by cutting Y along D. Then, by the proof of Proposition 6.2, there exists a
minimal genus Heegaard spltting (V*, W*) of Y such that V*ND is an es-
sential disk in V*. 'We note that since DC E(K), K is disjoint from D. More-
over, by moving K by an ambient isotopy in Y, we may suppose that KCV*
—(DNV*). If g(V*)<gy, attach go—g(V*) trivial 1-handles in W* disjoint
from D to V*. We denote the new genus g4 Heegaard splitting of Y by
(V*, W*), again. Then (V*, W*) is a genus g, Heegaard splitting of Y such
that V* cotains K and there exists an essential disk D*=V*N D in V* which is
disjoint from K.

Let E*¥*=cl(M—Y)U W*. Since Wy and W* are compression bodies such
that 0_W,=0_-W*=08Y, and 0, W,==0 W* a genus g, closed surface, Wy is
homeomorphic to W*. Hence Ey=cl(M—V)=cl(M—Y)U Wy==cl(M—Y)
U W*=E* i.e, Ey is homeomorphic to E*.

By the assumption, V' can be extended to a genus g Heegaard splitting
(P4, W) of M. Let Vi=cl(N(Vy, M)—V), and Wi=cl(E4—V%). Then
(V4 W) is a genus Z type T Heegaard splitting of E,. Since E* is home-
omorphic to Ey, there is a genus g type T Heegaard splitting (V*', W*') of E*
corresponding to (V%, W%). We note that since 9V*' N V*=0.V*'=08V¥,
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V*'UV*is a handlebody in M. Hence (V*'UV*, W*’) is a genus § Heegaard
splitting of M. Let V be a component of V*—N(D*) which contains K inside.
Then Vis a handlebody of genus less than g, and it can be extended to a genus
Z Heegaard splitting (V*'U V*, W*') of M. This contradicts the minimality

of gy.
This completes the proof of Main Theorem. M
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