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SCIENTIFIC REASONING・ FROM POPPER TO BAYES 

Ian C. Stirk 

Reasoning and Probabilitv 

The major problem in the philosophy of science is to establish when scientific 

theories should be accepted or discarded in the light of evidence obtained. The word 

"probable"often arises in this context: has a hypothesis become more or less probable 

in the light of certain new evidence? The same word is also used about events in the 

physical world: how probable is it that a spun coin will come down heads, that the die 

will land showing a six, that it will rain tomorrow, and so on? 

What exactly is the connection between these two notions of subjective and 

physical probability? We know how to attach numbers to many physical probabilities, 

and there is an elaborate mathematical apparatus for dealing with them. Yet somehow 

1t seems absurd to link this to subjective probabilities. We arc satisfied that the 

probability of an ordinary coin coming down heads on being spun is exactly 0.5,. but 

how could we ever cstablish that the probability of the theory of evolution, say, was 

some number like 0.95? There must be a link of some kind, however, or otherwise why 

should we be so content to use the same vocabulary for both? 

-ThePrincipleofIndifference 

A link that is often invoked is that of the "Principle of Indifference". It is most 

useful in calculating physical probabilities, and tacitly underlies the sort of probability 

calculations we are taught in our schooldays. We have no reason to suppose any 
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difference between one side of a coin and another, so the probability of either side 

landing uppermost is 1/2. The six sides of a die seem all the same, so the probability of 

throwing any one of them is 1/6. If we know that a box contains a mixture of white and 

coloured balls, we guess initially that the probability of drawing a white one out is 1/2. 

That last example shows how we can slip easily from a physical principle of 

Indifference to a subjective one. If there arc n hypotheses to choose from, the 

probability of any one of them being true is 1/n. That seems an excellent conclusion at 

first sight, but already our suspicions might be aroused. Suppose we had been told 

instead that the box contained white, red and blue balls? The probability of selecting a 

white one, according to the Principle, drops to 1/3. Yet the situation could be exactly 

the same: the probabilities seem to change rather mysteriously depending on just how 

the state of affairs is described. 

Supposing that odd little matter could be resolved, what does the Principle of 

Indifference tell us about the probabilities of scientific hypotheses? It is useful to 

introduce here the philosopher Nelson Goodman's "Grue Paradox"(See Goodman, 

1954). This begins with the statement, "All emeralds are green", which we take to be a 

scientific hypothesis, confinned by the discovery of green emeralds, falsified by the 

discovery of any of a different colour. (To make this work, we must pretend that being 

green is not a defining property of an emerald: we recognise an object as an emerald by 

some method which has nothing to do with its colour.) 

The property "grue" is now defined as "green until midnight on the 31" 

December 1999, and blue thereafter". Clearly, until the date mentioned in the 

definition, the discovery of a green emerald supports the hypothesis "All emeralds are 

grue" just as well as "All emeralds are green". There are any number of other dates 

that could be used to define other properties, and thus an infinite number of hypotheses 
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that are confirmed by any observation. Following the Principle of Indifference, we can 

only conclude that the probability of any scientific hypothesis is zero, since we can 

concoct any number of alternatives. Thus "Every action has an equal and opposite 

reaction until lが March2046 and no reaction thereafter". 

TheLogic ofScientifie Discoverv 

This is the title of a work by the most influential philosopher of science, Karl 

Popper. It was first published in German (Logik der Forschung) in I 934. Its English 

translation did not appear until 1959, and underwent many revisions and additions by 

its author. I am using the sixth revised impression of 1972. 

In the view of many practising scientists, if not philosophers, Popper's 

achievement in this work was to lay to rest the terrible problem of induction, which 

had haunted scientists'worst nightmares for centuries. How can we know for certain 

that the sun will rise tomorrow? How can we be sure that the law of gravitation will 

continue to hold? No one had ever succeeded in providing a logical reason for these 

beliefs. If there was a "Principle of Induction", which told us how to reason from like 

events in the past to like events in the future, how could we be certain of the truth of 

that principle? Only, it seems, by induction itself: a vicious regress seems to lurk 

behind the problem of induction. 

Popper made the problem disappear in a puff of smoke. There is no such thmg 

as induction, he claimed: we can never logically justify a scientific hypothesis, but 

only falsify one that has been put forward. Newton's law of gravitation failed to predict 

irregularities in the motion of the planet Mercury, and was thus falsified. Einstein's 

Jaw did predict them, and is thus to be preferred. 

Where hypotheses come from in the first place is a matter for psychology rather 

than logic. It does not matter -intuition or guesswork will do for formulating 

hypotheses. It is up to scientists to try to falsify them afterwards. Theories should 

always be subjected to the most rigorous tests in the search for falsification. Thus 
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Newton's gravitation was tested in an extreme condition: on the planet nearest to the 

Sun, where the gravitational field is much stronger than elsewhere in the Solar System. 

Theories which make surprising predictions are also to be preferred, for those 

predictions provide ways for them to be falsified. Einstein's law of gravitation 

predicted that light rays passing near the sun would be deflected by an amount 

different from Newton's law, but it passed the test. 

Unfortunately, Popper was under the spell of the Principle of Indifference. If 

the prior probability of any theory is zero, what is the point of testing it? Why should 

surprising predictions be preferred? Nothing we can do will make the theory other than 

quite impossible, according to that Principle. A good deal of The Logic of Scientific 

Discovery is concerned with an analysis of probability, and various attempts at a 

theory of corroboration, which would make some theories preferable to others even if 

they were all impossible. 

None of these ideas could be made to work. Although they seemed to reflect 

the scientist's instinctive way of working, Popper's views came to resemble ethical 

pronouncements on the methods of s~ience, rather than logical ones. Although Popper 

as a young man was, in the words of A. J. Ayer, "still tolerant of criticism"(l977, 

p 164) he later became quite immune to it. Maybe the failure to come to terms with 

probability was the reason for this. 

There are also some other problems with Popper's philosophy, not directly 

related to subjective probability. One of these is connected with the well-known "raven 

paradox" of Hempel (Vide Hempel 1965). If two hypotheses ar~ logically equivalent, 

then confirmation of one must equally be confirmation of the other, one would 

unagine. But consider the hypothesis "All ravens are black". (As in the case of the 

green emeralds above, it must be assumed that being black is not a defining property of 

a raven.) This hypothesis is logically equivalent to "All not-black things are not-
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ravens", which should mean that my computer mouse, for instance, which is grey, and 

thus not-black, and is certainly a not-raven, is a good test of the hypothesis "All ravens 

are black". Certainly paradoxical, though not fatally so: a smooth tongued orator might 

be able to convince one that grey computer mice do indeed confirm the hypothesis that 

all ravens are black. 

Much more serious is the problem of whether it is ever possible to falsify any 

hypothesis. An excellent example of this is pointed out by Feyerabend (1975). It seems 

perfectly obvious to us nowadays that lunar eclipses are caused by the earth coming 

between the moon and the sun. How could anyone have ever doubted this? Some early 

Greek thinkers did、andnot for any foolish reason. They observed that occasionally a 

lunar eclipse can be seen just around the time of sunset, when both the moon and the 

sun are visible in the sky together. There could hardly be more convincing evidence 

against the theory. Of course now we explain away the phenomenon with theory of 

refraction in the atmosphere. Objects which are in fact below the horizon still appear to 

be above it, thanks to the bending of light rays through the atmosphere. 

This kind of situation poses a really severe problem for Popper's programme. 

Given evidence which is inconsistent with a theory, we may choose to reject the 

evidence and not the theory. It is always possible to do this、andsometimes it may be 

the right thing to do. 

Popper tried to explain this by invoking a certain amount of convention or 

intersubjectivity in the scientific method. Refutations are accepted or rejected 

according the general agreement of scientists. This comes inevitably back to scientific 

method as ethics rather than reasoning. 

The solution to this conundrum lies, as we shall see, in a different way of 

dealing with subjective probabilities. But first it is necessary to discredit once and for 

all the Principle of Indifference. 
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WilltheSunRiseTomorrowMorning? 

Suppose that box contains an unknown mixture of white and black balls. Ball 

after ball is removed from the box (whose contents are invisible from outside), and 

they all tum out to be white. What is the probability that'the next one will also be 

white? If there were n balls in the box to begin with, one can imagine all the possible 

sequences of white ones and black ones. In each of the n places in the sequence, there 

is a choice of putting either a white or a black ball. This gives 2" possible sequences 

altogether. The Principle of Indifference suggests that we regard each of these as 

equally likely to be the one in the box. In that case, clearly, the probability of drawing 

out black ball from the box after no matter how many white ones is precisely l /2, 

because in "constructing" any possible sequence there was always a free choice of 

putting a white or a black ball in the next place. Note that the probability of the colour 

of the next ball does not depend on n. 

This last feature is important, since it enables us to compare the risings of the 

sun on successive mornings to the drawing of balls from the box. Each day is a 

drawing of a ball: a white ball is analogous to the sun rising, a black ball to the sun not 

rising. We have no idea how many days are going to be in the sequence altogether, but 

this does not matter to the probabilities for tomorrow. But the result is a bit 

disappointing: surely we think that the chance of the sun rising tomorrow morning is 

considerably more that 50:50. 

Going back to the balls in the box, the situation we would like to have is one 

where the more white balls are drawn, the greater is the probability of the next one 

being white. A formula like the following would be agreeable. On the very first draw 

the probability of a white ball emerging should indeed be 1/2. If the first ball is white, 

however, suppose the probability of a second white one rose to 2/3, adding one to top 

and bottom of the fraction. The probability of a third white ball would be 3/4, and in 

general, if the sequence has so far consisted of r white balls, the probability of a 

subsequent white one will be (r+ 1)/(r+ 2). 
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An agreeable result, certainly, but the Principle of Indifference seems to have 

been left behind. However, the great French mathematician Pierre Simon de Laplace 

showed in an essay published in 1820 that the (r+ 1)/(r+ 2) fonnula can be reconciled 

with the Principle of Indifference. It turns out that if we proclaim our indifference not 

to a particular sequence, but to the number of white and black balls in a sequence, then 

the (r + I)/(r + 2) result follows. There is only one sequence which is all white, but n 

containing just one black ball. This means that with with the new kind of indifference, 

any particular sequence containing just one black ball has only 1/nth the probability of 

being in the box as the all white sequence. The all white and the all black sequences 

are the most likely to be in the box, the probability of each being 1/(n + l), as there are 

n + 1 different possible numbers of white or black balls in asequence, ranging from 0 

to n. Laplace used his fonnula to calculate that the probability of the sun rising the day 

after his calculation was l 826214/1826215, impressively close to unity, even though it 

looks as if Laplace was using the relatively recent date of somewhere in 4004 BC, 

calculated by biblical scholars, for the first sunrise of all. 

The proof of the relation between (r + 1)/(r + 2) and indifference to number 

requires rather more arithmetic than anything else in this paper, so I omit it here. Those 

who are not prepared to take it on trust can apply to the author. 

The logician John Venn called the (r+ l)/(r+2) fonnula "Laplace's Rule of 

Succession"(sce Venn 1888), and in criticising it, pointed out how many philosophers 

had been seduced by it, including de Morgan and Jevons. In more recent times we can 

cite Rudolf Carnap as one who has succumbed to its channs (see Carnap 1950). 

The reason for this may be the relative complexity of the derivation of the Rule 

from the axioms of probability (the argument is set out in full in Howson and Urbach, 

I 993, pp 55 -58). This makes it look far more impressive. In my simplified argument 

above, the Rule was produced from thin air to begin with, then related to sequences, a 

much simpler procedure which also makes clearer the sheer arbitrariness with which 

the Principle of Indifference is applied. If the result of being indifferent to some 
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property is not to our satisfaction, then we cast around for something else to be 

indifferent to until we come up with a formula we approve of. 

The Rule of Succession gives a rather strange picture of induction, too. Is it 

only because the sun has risen so many times in the past that we feel certain it will rise 

tomorrow? Surely our know!、edgeof the way the solar system works has something to 

do with our confidence. 

T加I)utchBookTheorem

I can't resist using that rather charming name for what should more properly 

called the Ramsey-de Finetti Theorem, after its two independent discoverers (sec 

Howson and Urbach, 1993, p 79). No doubt it derives from times of conflict between 

England and the Netherlands, like "Dutch treat" and "Dutch courage": a "Dutch book" 

1s a series of bets on which the foolish punter who accepts them is bound to lose 

overall. The reason for the name will become clear as we proceed. 

What the theorem shows is that rational bets must observe the axioms of 

probability. It provides the proper link between objective and subjective probability, 

which the Principle of Indifference failed to do. The theorem will be proved first, and 

then its implications considered. 

Consider the process of making a casual bet. Person A says to person B, "I bet 

you 50p that it'll rain on our day off." B is not pessimistic, and accepts: if it rains, B 

pays A 50p, if it does not, A pays B the same amount. In a more formal situation, A 

may pay a bookmaker B a sum of money pS in return for a promise by B to pay a sum 

S if a certain horse wins a certain race. Bets of all kinds may be represented in a 

canonical form as follows: 
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h
 
payoff to A 

T

F

 

S-pS 

-pS 

Here A is betting on a hypothesis h: that it rains on a certain day, or that a certain horse 

wins a certain race. If the hypothesis turns out to be true (T), then A receives a sum S 

less the initial amount pS paid out. If h is false (F), then A loses the initial pS: this 

becomes a negative payoff. In the case of the 50p bet, no money changed hands 

originally, but clearly the result is the same as an initial payment by A to B of 50p, 

with a return (S) of £1 should it rain on the day. The value of pin that case is taken to 

be 1/2, and such casual bets will surely be judged "fair" if the actual chance of rain is 

about 50:50, and neither A nor B has a particular advantage. 

Of course a judgement about the value of p is a matter of belief, and one is 

entitled to one's own beliefs. All the same, for a rational person, even beliefs must 

together be logically consistent. This means, for one thing, that the value of p in the 

above payoff matrix must lie between O and I. For suppose p<O: in that case, A's 

payoff is positive whether his true or false, which clearly is not fair to B. If p>l, then 

A's payoff is negative whether his true or false: now B has the unfair advantage. 

Suppose now that A simultaneously makes two bets about h: one on h, as above, 

with what we shall call betting quotient p, and another against h with betting quotient 

q. The second bet will have the following payoff matrix: 

h
 
payoff to A 

T

F

 

-qS 

S-qS 
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For this time, A pays out a sum qS in the hope of receiving S if h is not true. When the 

two bets are summed, we get the following situation: 

h
 
payoff to A 

T

F

 

(1 -p -q)S 

(1-p -q)S 

Both lines are the same in this case, so at first sight it seems impossible to avoid the 

same positive or negative payoff to A, with unfairness to one or the other party in 

either case. There is just one way to avoid this: to make sure that (1-p-q) is zero, so 

that neither party gets anything whatever the outcome. This happens when q is equal to 

1-p, and reminds us of the familiar result that if the probability of an event his p, then 

the probability of not-h is 1蜘p.

A further example. Suppose A bets on a hypothesis a with betting quotient p, 

and on another hypothesis b with betting quotient q. The combined results would be as 

follows: 
a I b I payoff to A 

T T S-pS + S-qS = 2S-pS-qS 

T F S-pS-qS = S-(p+q)S 

F T -pS + S-qS = S-(p+q)S 

F I F -pS-qS ＝ー(p+q)S

Except for the first line, where a and b are both true, there is a clear pattern of a bet 

with betting quotient (p+q), which is won if either or a or b is true, and lost if they are 

both false. Now there are many cases where two hypotheses are mutually exclusive: 

they cannot both be true. Take, for example, "this ink is blue" and "this ink is red". 

These can of course be both false: the ink may be green. It appears that if there are two 
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mutually exclusive hypotheses, when we can ignore the top line of the table, and if the 

betting quotients on them are p and q, then the rational betting quotient on their 

disjunction is (p+q). 

This needs a check to be sure, however. If somebody bets simultaneously both 

on and against a or b, with the same sum S involved, the only fair payoff can be zero. 

Suppose the bet on has betting quotient (p+q), and that against has quotient r. The 

results of the combined bet would be as follows: 

a orb payoff 

T

F

 

S-(p+q)S-rS = S(1-p-q-r) 

-(p+q)S + 1-rS = S(1-p-q-r) 

The quantity in brackets can only be zero if r is 1-(p+q), confirming that the only 

rational betting quotient on a orb is (p+q). 

After successfully dealing with a orb, at least in the mutual exclusion case, we 

might wonder about a and b. What should the rational betting quotient be, on both 

hypotheses turning out true? The a orb case looks as if it provide a clue at first sight, 

for when a orb is false, not-a and not-b must be true. Clearly, then, the rational betting 

quotient on not-a and not匹bmust be 1-(p+q). On the other hand, we have here rather a 

special case, as a and b are not independent of each other: they cannot both be true. 

Suppose that the rational betting quotient on a and b is r. If we make a bet with 

S as unity on a and b, the result will be as follows: 
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a
 

b
 
payoff 

T

T

F

F

 

T

F

T

F

 

1-r 

-r 

-r 

-r 

Suppose now that we simultaneously make a bet against a, choosing S in such a way 

that the net payoff will be zero when a is false. The net result will be a kind of bet on b 

only, which comes into effect when a is true. 

If the rational betting quotient against a is (1-p), then we stand to gain pS when a is 

false. We choose S so that -r+pS=O, or in other words so that S=r/p. The complete 

table works out as follows: 

a b a and b not-a total payoff 

T T 1-r -(卜p)r/p 1-r/p 

T F -r ー(1-p)r/p -r/p 

F T -r p.r/p 

゜F F -r p.r/p 

゜
The appearance of the total payoff is certainly that of a bet on b. If we use q for the 

rational betting quotient on b as before, then the table shows that q=r/p, or r=pq. This 

is familiar from the realm of objective probability. The probability of throwing a four 

with one die and with a second is 1/6 x 1/6, or 1/36, we all remember. 

However, this result is only so when we are considering independent events, 

like the throwing of two dice. Not all events or hypotheses are independent: for 
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example, the probability that a certain person is a Catholic is much higher given that he 

or she is British, say, rather than Japanese. Similarly with a die: given that an even 

number has been thrown, the chance that it is four is now 1/3 rather than 1/6, since the 

die has just three even numbered faces. 

The table above shows a situation like this: the bet on b only takes place when a is 

true, and a and b may not be independent. Some extra notation is useful at this point: 

let us use p(a) and p(b) to denote the rational betting quotients on a and b respectively, 

and p(b/a) to denote the betting quotient on b given a. The results of the above table 

can now be exprcssed as: 

p(a and b) = p(a) x p(b/a) 

An exceedingly similar table, so similar that I can safely leave readers to work it out 

for themselves, would result if we balanced the loss on a and b with a bet against b 

instead of a. This time we would find: 

p(a and b) = p(b) x p(a/b) 

Using the same notation for the case of a or b, which was worked out before, gives: 

p(a orb)= p(a) + p(b), provided a and bare mutually exclusive 

Of course in the previous discussion we have generally put q for p(b), and p for p(a). 

The latter usage should not confuse, since in the new notation, p is always followed by 

some item in brackets. 

It has already been noted that in the case where a and bare mutually exclusive, 

p(not-a and not-b)=l-(p(a)+p(b)). Only the notation has been reformed in this 
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formula. According to what has been discovered, it is also the case that 

p(not-a and not-b) = p(not-a) x p(not-b/not-a) 

Going back to the previous p, q notation for simplicity, we can combine these two 
formulae and conclude 

p(not-b/not螂a)=(l-p-q)/(1-p) 

This conclusion can be checked by the method that has now been perfected, that of 

cunningly chosen simultaneous bets. We begin with a bet on not-a and bot-b, 

choosing Sas unity, for simplicity: 

a b payoff 

T F -(1-p-q) 

F T -(l-p-q) 

F F p+q 

Now we make a bet on a, so that the net payoff when a is true is zero. In other words, 

S must be chosen so that: 

-(1-p-q) + S(l-p) = 0 

This equation gives S= (1-p-q)/(1-p), and the table of all the bets is: 
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a I b I not-a and not-b I a I payoff 

T I F I -(1-p-q) I (1-p).(l-p-q)/(1-p) I 0 

F T -(l-p-q) -p.(l-p-q)/(l-p) |―(l-p-q)/(l-p) 

F I F I p+q I -p.(1-p-q)/(l-p) I 1-(1-p-q)/(l-p) 

The last column shows the betting quotient to be exactly what had been expected. 

Actually this kind of cross-checking is otiose: all the formulae of probability 

theory may be derived as theorems from the following four axioms: 

Axiom l p(X)~o 

~ p(x and not-x) = I 

~ p(x or y) = p(x) + p(y),if x and y are mutually exclusive 

Ax.i.illrL1 p(x and y) = p(x) x p(y/x) 

Here x and y are any events. 

Once these axioms are established, nothing more is needed. The arguments above have 

dealt with them all except Axiom 2, which is ve1-y straightforward. "x and not-x" 1s an 

example of a tautology, something which always turns out trne. Clearly anyone who 

bet on such a thing with a betting quotient p less than l would always eollect the sum 

S(l-p), which would be unfair. If p was greater than I, there would inevitably be a 

loss, equally unfair. 

The Dutch Book Theorem has been proved: we have shown that rational betting 

quotients must obey the axioms of probability. This establishes a proper connection 

between objective and subjective probability, one which does not lead us into the 

absurdities of the Principle of Indifference or the infamous Rule of Succession. A 

hugely important consequence of this liberation is that we are not led to the conclusion 
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that the probability of any scientific theory must be zero, since it is but one of an 

infinite number of different possible theories. Before we consider just what this means, 

it is necessary to explore one theorem of probability in more detail. 

Baves'Theorem 

It has already been shown that p(a and b) = p(a) x p(b/a) and that 

p(a and b) = p(b) x p(a/b).If we now put h in place of a and e in place of b, we can 

combine the two formulae and obtain: 

p(e) x p(h/e) = p(h) x p(e/h),or equivalently, p(h/e) = p(h) x p(e/h)/p(e) 

This, essentially, is all of Bayes'Theorem, named after the 18'" centu1-y clergyman and 

mathematician Thomas Bayes. The change of letters was merely to have h as a 

mnemonic for hypothesis. and e for evidence. Let us apply the theorem to Popper's 

philosophy of science. 

From Popperto Baves 

The basis in reasoning for Popper's claims about the conduct of science now 

falls into place. Let us examine Bayer'formula in detail: 

p(h/e) = p(h) x p(e/h)/p(e) 

To say that evidence falsifies a theory means that p(e/h) is zero: given the 

hypothesis, the probability of the evidence zero. As mentioned above, we are no longer 

forced into the position of saying that a hypothesis has an initial probability of zero: 

p(h) can be guessed at in the light of our experience or background knowledge. The 

equation above shows that provided p(e) is not zero, but p(e/h) is, then p(h/e) does 

become zero, whatever p(h) was. The hypothesis has been falsified. If p(e/h)is not 
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zero, then p(h/e) just changes according to the evidence e. Whatever our initial guess 

about the probability of the hypothesis, further experience increases or decreases it 

until some equilibrium is reached. 

If certain evidence is predicted by a hypothesis, then p(e/h) is unity. It is clear 

why we should test the most surprising predictions of a theory: to say that evidence is 

surprising means that p(e) is low, and that in turn means that p(h/e) will increase a 

good deal if the prediction turns out to be the case, according to the equation above. 

Now that Popper's general points have been justified, let us turn to the paradox 

of the ravens. Remember the problem is to find the reason why the discovery of a 

black raven tends to confirm the them"j that all ravens are black, while the discovery of 

a non-black non-raven seems to make no difference. 

We will use the expression RB to mean a black raven, and -R-B to mean a non-

black non-raven. Bayes'theorem tells us that 

p(h/RB) = p(h) x p(RB/h)/p(RB) and also that p(h/-R-B) = p(h) x p(-R-B/h)/p(-R-B) 

Consider the term p(RB/h)This must be equal to p(lUh), since given the hypothesis 

"all ravens arc black", anything that is a raven must be black. Furthermore, p(R/h) is 

itself equal to p(R), as the probability of some object being a raven is quite 

independent of the hypothesis. The first equation above simplifies to 

p(h/RB) = p(h) x p(R)/p(RB) 

The change in the probability of the hypothesis on the discovery of a black raven 

depends on how surprising that evidence is. If this was new hypothesis, it might be 

quite surprising, so p(RB) would be low, and the probability of the hypothesis would 

be increased quite a lot. Now consider the term p(⇔R-B/h).The hypothesis says that 
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anything that is not black cannot be a raven, so this term is equal to p(-B/h).Being not 

black is itself independent of the hypothesis, so the term is equal to p(-B), and the 

second equation above becomes 

p(h/-R-B) = p(h) x p(-B)/p(-R-B) 

Since most things in the universe are not ravens, p(-B) is virtually equal to p(-R-B), so 

clearly the discovery of a non-black non-raven makes virtually no difference to the 

probability of the hypothesis, as required. 

We now turn to the problem of the lunar eclipse at sunset. Here h is the 

hypothesis that lunar eclipses are caused by the earth coming between the sun and the 

moon, while e is evidence that at sunset eclipses the earth is not between the sun and 

the moon. We can take -e to be evidence that the earth only appears not to be in 

between: there is some explanation like refraction for this. Bayes'theorem gives: 

p(h/e) = p(h) x p(e/h)/p(e) and also p(llf-e) = p(h) x p(-e/h)/p(-e) 

In the first equation, if p(e) is taken not to be unity, then since p(e/h) most certainly is 

zero, the probability of the hypothesis drops straight to nothing. On the other hand, if 

we have accepted the theory of refraction, then p(e) itself becomes zero, and the first 

equation tells us nothing. In that case p(-e) becomes one, and since p(-e/h) must also 

be one (if the hypothesis is true, it can only be an illusion that the earth is not between 

the sun and the moon), and the second equation tells us that the probability of the 

hypothesis is unchanged by the evidence. 

Conclusion 

I think it has been clearly shown that given the validity of the Dutch Book 
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Theorem, then Bayes can come to the rescue of Popper's programme. In a future 

paper, I hope to apply these results to hypothesis in linguistics. One interesting point is 

the great store placed by linguists in the value of independent evidence. Oddly in 

Bayes'theorem there is no special place for this: evidence is only valued by its 

probability. There is room for argument here. 
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