
Title Cut Down the Trees, and Save the Environment

Author(s) Stirk, C. Ian

Citation 大阪外大英米研究. 1999, 23, p. 301-322

Version Type VoR

URL https://hdl.handle.net/11094/99233

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Cut Down the Trees, and Save the Environment 

Ian C. Stirk 

I'm afraid the explanation of my cryptic title will have to wait till the end of a 

rather lengthy 

Introduction 

In early work on Generalized Phrase Structure Grammar (see, for example、

Gazdar, 1981 and 1982), it was regularly pointed out that context sensitive rules 

could be used in a grammar without giving it more than context free powers, 

provided only that the rules of the grammar were treated as node admissibility 

conditions. Oddly enough, neither then nor since, as far as I know, has this usel'ttl 

possibility actually been made use of in any variety of Phrase Structure Grammar. 

It is not mentioned at all, for instance, in Gazdar, Klein, Pullum and Sag (1985). 

That fact about node admissibility conditions was proved by Joshi and Levy in 

their (1977). I presented a different and simpler proof in my (1987). That proof 

depended on a result of Salomaa (1973, p68ft), to the effect that any context free 

language can be represented as a homomorphic image of the intersection of a finite 

state language and a Dyck language. 

It is useful to sketch that result again here. If we use the familiar old CF 

language a"b" as an example, and generate it with the following grammar: 

(1) X□►X1X, 

(2) X,→xxJ 

-301 



(3) X,)→ X1X:i 

(4) X1→a 

(5) Xi→b 

Ian C. Stirk 

then derivations like the following emerge: 

x,9 

X1X2 

X1XoX:i 

X1X1X:X:i 

X1X1X::X:, 

ax1xx, 

aaX:iX:: 

aabX3 

aabb 

The tree stmcture associated with this derivation, together with a few bits and 

pieces, would be: 
X。

こ図

302 



Cut Down the Trees, and Save the Environment 

The bits and pieces include a labelling for some of the branches in the tree. 

There are three rules in the grammar which rewrite a symbol as a pair of symbols, 

meaning that there will be three kinds of paired branches, each kind receiving a 

labelling of the form X;, x;'. Now if we travel round the tree in the manner shown 

by the wiggly arrowed line, we pass the various labels and terminal symbols in this 

order: 

x1 a X1'x, x" ax/bx/ b 

The insight into the result is that the paired labels behave like a proper 

bracketing of left hand and right hand brackets. After passing x, and凡 wecannot 

reach x/ before x;'. The brackets must be closed in the proper order. 

It will be handy later to have a brief way of referring to left hand brackets and 

right hand brackets. The physicist P.A.M. Dirac used the terms "bras" and "kets" 

for similar brevity in his notation for quantum mechanics. I think I shall try "bracs" 

and "kets" and avoid any ambiguity. 

Now Dyck grammars generate sets of brackets only, so in what follows I 

generalise them a little to what shall be called bracketing grammars. A suitable 

bracketing grammar to generate the result of the tree tour above, together with an 

infinity of other sentences, would be: 

(1) y→YY 

(2) y→X1YX1' 

(3) y→x,Yx/ 

(4) y→x,Yx」'

(5) y→ a 

(6) y→ b 

303 



Ian C. Stirk 

It is easy to see that this grammar will generate correct bracketings with the 

three sorts of brackets, together with a random sprinkling of a's and b's, by virtue 

of rules 1, 5 and 6. Bracketing grammars are only allowed to have one non-

terminal symbol, and mies of only three kinds, exemplified above by 1, 2 and 5. 

The following FS grammar will also generate the tour, among any number of 

other things: 

(1) 乙→ X1Z1

(2) Z戸→ x」Z,9

(3) Z)→ xZl 

(4) Z1→ axl'Z2 

(5) Z1→ ax/Z:i 

(6) Z`；→ bxク'Z;

(7) Z3→ b 

The FS rules are clearly related to those of the original CF grammar. It can be 

seen how the FS rules attach the terminal symbols a and b to the correct kets. Thus 

the intersection of the bracketing and the FS languages consists of sentences of the 

CF grammar, together with unwanted bracs and kets. "Homomorphic image" is 

just a fancy way of referring to the deletion of the unwanted items, leaving a CF 

sentence. 

My version of the context sensitive node admissibility condition proof involved 

adding extra pairs of symbols to the bracketing language, which were exempt from 

the bracketing condition, and could occur more freely. These take care of the 

context sensitivity, and provided the souped up bracketing grammar remains 

context free, only context free languages can be generated. 

In effect, the bracketing grammar with its additions provides two or more 

systems of brackets which are oblivious to each other. It seemed interesting to 

304-



Cut Down the Trees, and Save the Environment 

probe this possibility further. Suppose, instead of adding extra rules to one 

bracketing grammar, we just have several simple bracketing grammars. What kind 

of languages would appear in the intersection between their languages and a finite 

stale one? 

More than just context free ones is the immediate answer. For there is no 

difficulty in generating the classic context sensitive language a"b"c". The following 

two bracketing languages, D1 and De, together with the finite state grammar G will 

do the trick: 

(D1) 

Y1→ Yふ

Y1→ X1Y凶'

Y1→ a 

Y1→ b 

Y1→ c 

Y1→ X, 

Y1→ x29 

(G) 

(DJ 

Y,→ Y,Y, 

Y,→ x,Y,x; 

Y,→ a 

Y2→ b 

Y2→ c 

Y,→ xl 

Y,→ x]' 

ZII→ xlaZ(1,z(1→ xl'x」bZJ, z1→ xJ'cZJ, z1→ X入'c

Notice how D1 generates equal numbers of x1 and x1', but everything else at 

random, while D, does a similar job for x, and x/. Meanwhile G links every x1 

with an a, and eve1-y xこ'witha c, while each bis preceded by both an x1'and an x,・

This forces the sentences in the intersection to have equal numbers of each, with 

a's, b's and c's in the correct order. A typical intersection sentence could be re-

presented as follows: 

-305 



Ian C. Stirk 

This is read in the order indicated by the arrowed wiggly line. The braes and 

kets are segregated in boxes, and are the items eliminated by the homomorphism to 

leave the final result aabbcc. 

Escape from the confines of context freeness might seem to doom languages 

generated in this way from having any interest to students of human languages. On 

the other hand, it can be proved that the set of these languages cannot include all 

context sensitive ones, and is unlikely to include any languages that are not context 

sensitive. The necessary proofs and speculations are somewhat technical, however, 

so I have relegated them to an appendix to this paper. Even more significantly, this 

way of generating languages can accommodate the troublesome examples of non-

context-freeness that have occasionally been observed in human tongues. 

As an example, I shall use the subset of (possibly) English sentences brought to 

light by Higginbotham (1984). We begin with the sentence. 

The mermaid combed her hair 

Adding a subordinate clause to this could produce 

The mermaid such that the flying fish jumped from her to him combed her 

hair 

The point about a "such that" relative clause is that it needs to contain a retained 

pronoun "her" referring to "the mermaid". The sentence is equivalent in meaning 

306-



Cut Down the Trees, and Save the Environment 

to the marginally less clumsy 

The mermaid from whom the flying fish jumped to him combed her hair 

There is no need to stop at one relative clause: 

The mermaid such that the mermaid such that the flying fish jumped from 

her to him swam from her to him combed her hair 

and so on. The crucial point in these examples is that each "such that" clause must 

contain a referring "her" within it. Thus the following sentence is also 

grammatical, if no less unintelligible: 

The mermaid [such that the mermaid [such that the flying fish jumped from 

her to her] swam from him lo him] combed her hair 

Here the two occurrences of "her" appear in the inmost clause. The next 

sentence is ungrammatical: 

The mermaid [sueh that the mermaid [such that the flying fish jumped from 

him to him] swam from her to her] combed her hair 

This is because the inmost clause does not contain a "her", even though there arc 

two in the sentence overall. Some reflection shows that, in a grammatical sentence, 

as you go from left to right the number ~f' him's you have traversed must never 

exceed the number of her's you have traversed by more than one. It is this property 
that makes the set of sentences context sensitive. 

The next task is to generate the set as the intersection of bracketing languages 

307 



Ian C. Stirk 

and a finite state language. To save space a few abbreviations will be useful: 

m the mermaid 

k combed her hair 

s such that 

j the flying fish jumped 

w swam 

a from her to him 

b from her to her 

c from him to him 

d from him to her 

The last grammalical example above would abbreviale lo msmsjbwck, and lhe 

last ungrammatical one lo msmsjcwbk. In the abbreviated senlences, the 

grammaticality condition boils down to saying that as you go from left to right, the 

number of c's passed musl never exceed the number of b's passed. 

It is easiest lo appreciale lhe FS grammar needed from its slale diagram: 

d
 

There are two sets of brackets, xx'and yy', which are to be independent. Thus 

there will be two bracketing grammars, namely: 

(D1) (D,) 

-308 



Y]→ Y1Y1 

Y1→ xY1x' 

Y1→ y 

Y1→y' 

Y1→ a 

etc 

Cut Down the Trees, and Save the Environment 

Y,→ Y,Y, 

Y,→yY,y' 

Y,→ x 

Y2→ x' 

Y2→ a 

etc 

The etceteras obviously cover rules for generating all other terminal symbols at 

random. Strolling through the FS grammar, or rather its state diagram, we see that 

from the initial state 1 we must go straight to 2, outputting m, after which we have 

a choice of going straight to 3 and ending with a k. Otherwise we can go from 2 to 

4, and thence loop with an output of xsm, or go straight to 5 emitting sj. From 5 

there are four possible routes to 6, with outputs of a, yb, y'c and d respectively. 

After 6, there are paths to 3, emitting nothing, or through a loop back to 6, on 

which x'w and one of a, yb, y'c or d must be produced. 

Now clearly D, will ensure the xx'pairs, meaning that the beginning of each 

clause has precisely one conclusion. As for y, it will only appear when the 

abbreviation for two "her"s is chosen, thus preempting a possible later "her". There 

cannot be too many "her"s, though, because y'must come up later together with 

the abbreviation of "from him to him". The resulting set of sentences, then, is the 

one required. 

So these languages, the homomorphic images of the intersections of a finite 

number of bracketing languages and one finite state language, may well have a 

significance in the analysis of human languages. They do not have the possible 

weakness of the context free, nor the unwanted power surge of the totally context 

sensitive. In fact they deserve some special name, so, for reasons given in the next 

section, I shall call them treeless languages. 

309 



Ian C. Stirk 

Down with the Trees! 

To provide an example almost at random, I reproduce a tree diagram from 

Gazdar, Klein, Pullum and Sag (1985, pl45): 

s 

NP[3s] S(NP[3s] 

sa4 NP[3~ロニ
wl 

NP[+N1L,3s]/NP[3s] 

want e V VP 

I I to V[l] 

＼ succeed 
Here we can see something of all the paraphernalia of phrase structure 

grammars. The vast categories at each node (of course grossly abbreviated), the 

head feature conditions for passing feature values down the trees, the 

interconnecting slash features to relate "Sandy" to the rest of the monster, and so 

on. And all this passing down and passing up of feature values is, it seems to me, 

due only to not taking advantage of the possibility of using context sensitivity 

without being carried out to sea by it. 

Suppose the trees were just cut away, leaving just a string of categories and the 

words that go with them, as I intended to show by the diagram on page 4. We 

might get this: 

-310 



Cut Down the Trees. and Save the Environment 

―

―

 

y
 

d
 
a
 

NP
xi
_

n

 

-
|
|
」

s

―

―

 

NP
X

i

_

 

t

- `
-
N
P
9
X
I
I
 

―

―

 

r

,

-
＞

冷

均

ー

一

j
t

,

-
＞

凶

1

-

l

 

｀

↑

＇

i

 

V
X
J
凶
ー

f

`

 

we want e
 

to succeed 

Braes and kets can occur in categories like features, linking them directly. The 

x1,xi'bracket links "Sandy" with the later hole, x,,x/ links the subject "we" with 

the verb "want" in its correct form, X:;,x、;'linksthe verb "want" to an infinitive, 

x,,x/ links "to" with a verb "succeed" in base form, and so on. Why do we need 

vast trees to perform these simple correlations? 

What is more, at least one problem associated with trees can be dispensed 

with, namely the problem of excessive structure that can go with rules like 

NP→ NP and NP. Gazdar, Klein, Pullum and Sag, like others, need "coordination 

schemes" (1985, p248) to evade this problem. 

Of course I am neglecting here the semantic component, the translation of a 

sentence into intensional logic, at least in earlier phrase structure grammars. There 

is no room for details here, but intensional logic is after all a language, and could 

also be treated as a treeless one, so that a sentence in ordinary language would be 

correlated with another one in intensional logic. 

This might not work for the Barwise and Peny (1983) kind of semantics which 

is used, for instance, in "Head-Driven Phrase Structure Grammar" (Pollard and 

Sag, 1994), which may not be expressible in sentences. On the other hand, we may 

note the devastating criticism of situational semantics to be found in Cresswell 

(1985). 

Conclusion 

A somewhat lame conclusion to come to, perhaps, but actual natural language 

examples of treeless languages will have to await a further paper. Meanwhile, I 

311 



Ian C. Stirk 

think I have laid most of the technical foundations for a formulation of grammars 

which 

(1) is slightly more powerful than CF grammars, as seems to be required, 

(2) simplifies the nagging problem of coordination, and 

(3) simplifies the whole system of categories and their inteJTelations. 

Further, I believe there is a simple reason why the structures of human 

languages can so easily be expressed in treeless form, but its revelation must await 

further work. 

Technical Appendix 

Firstly I prove that these intersections of bracketing languages and finite state 

languages are dangerously close to being able to generate the full monty of 

unrestricted rewriting (UR) languages, that is, virtually anything rule governed. At 

least, with a possibly essential addition to the power of the bracketing grammars, 

and a generously purgative homomorphism, that terror may be unleashed. For 

consider any arbitra1y UR grammar. 

Suppose it has a non-terminal vocabulary VN, a terminal vocabulary Vr, and that 

V stands for VN U Vr. We construct a disjoint vocabulary V'so that any member 

a of V has a counterpart a'in V'. The symbols a and a'will be used to 

represent individual members of V and V'in what follows, while, if s is some 

string over V, s'represents the stiing over V'in which each symbol of s has been 

replaced by its counterpart. Thus if the ith rule in the UR grammar is P,→Q,, then 

pi’→Q;'is the same rule using V'instead of V. The symbol Ri will be used to 

represent the right hand side of the jth rule of the UR grammar which has X,, the 

initial symbol, as its left hand side. There must of course be at least one such rule 

in the grammar. Finally f will represent any member of Vr, 

-312 



Cut Down the T1-ccs, and Save the Environment 

As well as V', we shall need two pairs of brackets, x,,, x,,'and y,,, y,,'for each 

member a of V. If s'is a string over V', then (ys') is the string in which each 

symbol of s'is preceded by the coITesponding brac. Thus ifs'is a'b'c', (ys') will 

be y"a'y,,b'y心'.Similarlyfor (y's'). Two other pairs of brackets will also be used: 

d, d'and e, e'. Finally, mi(s) is to stand for the mirror image of a string s. Ifs is 

abc, then mi(s) will be cba. 

It is easiest to appreciate the structure of the FS language L by looking at a 

simplified state diagram of its grammar: 

y謹

9 9 

XaYa・a 
9 9 

Xぶaa xぶYau' X。'Yaa'

In moving from the initial state 1 to state 2, only Xo'e can be output, meaning 

that every sentence of the FS language must begin with X,'. From 2 to 3, however, 

there are a number of possible paths, which here have been compressed into one 

for simplicity. There will in fact be a fresh path for each rule of the UR grammar 

which rewrites X, as something. This is represented by the subscript j. From state 

3, we can go directly lo 4, outputting nothing, or follow the loop through four other 

states before returning lo 3. Or rather, one of the loops, for there will be a different 

one for each of the UR rules from P,→Q,, the first one, to the last. When i is 1, we 

pass through states 5, 6, 7 and 8, when i is 2, through 9, 10, 11, 12 and so on. 

In the general case, after outputting d and reaching state (4i+ 1), we can either go 

313 



Ian C. Stirk 

on to (4i+2) and produce the left hand side of a UR rule in vocabulary V'and 

accompanied by y-kets, or we can take any number of loops first. Once more, there 

is a simplification here: there is a separate loop for each a'E V'. Each pass 

through a loop will introduce a member of V'preceded by its x-brac and y-ket. 

From (4i+2) we can make any number of similar loops before outputting e'e and 

going on to (4i+3). A somewhat different kind of looping is available from (4i+3): 

this time each member of V'is preceded by an x-ket and a y-brac. Going from 

(4i+3) to (4i+4) produces the mirror image of the right hand side of the UR rule, 

written in V'and accompanied by y-bracs. From (4i+4) there is the possibility of 

more looping before producing ad'and returning to 3. 

State 4 can be reached from state 3, and from it we can either go directly to the 

final state, outputting an e', or make some loops first. There is one of these loops 

for each member (3 of Vr, preceded by its y-ket. 

We are not interested in the entire FS language, but only in those sentences 

which can also be generated by the two almost bracketing languages, D1 and D> D1 

has the initial symbol Y1,, and these rules: 

(1) Y,))→ eY,e' 

(2) Y1rr→ Y11,Y1., 

(3) Y1→ Y≪Yり

(4) Y1→ Y1Y1 

(5) Y1→ a' 

(6) Y1→ B 

(7) Y1→ x,9 

(8) Y1→ x,,’ 

(9) Y1→ d 

(10) Yi→ d' 

314 



Cut Down the T比es,and Save the Environment 

All of these rules, except for 1, 2, 4, 9 and 10 are in fact schemata: there is a rule 

of forms 3, 5, 7 and 8 for each a c: V, and one of form 6 for each げ€ v,. 

Clearly rules (schemata) 5 to 8 enable the grammar to produce random strings of 

symbols from V'and Vr, together with x-bracs and x-kcts. 3, however, ensures that 

y-bracs and y-kets are always paired. D,, on the other hand, with initial symbol Y,"' 

pairs x-bracs and x-kets while scrambling everything else: 

(1) Y,↓',→dY,d' 

(2) Y□1→Y-IIY』I

(3) Y,→x,,Y,x,, 

(4) Y:→Y,Y, 

(5) Y,→ a' 

(6) Y,→ g 
(7) Y,→y.,' 

(8) Y,→y,,' 

(9) Y,→ e 

(10) Y,→e' 

D1 and D2 each have two non-terminal symbols, instead of the one of a true 

bracketing grammar. Notice that the effect of the extra rules is to constrain the 

bracketings to a series of independent blocks, bounded by occurrences of e and e' 

and d and d'respectively. 

Let us have a look at what kinds of sentences can be generated by all three of 

these grammars. Every one begins with X,', for that is prescribed in L and allowed 

by D1 and D,. After that we get a string of symbols preceded by e, which, apart 

from the fact that it is written in reverse and is scattered with y-bracs, could be the 

second line of a derivation using the UR grammar. The developing sentence must 

also be generable by D1, so the presence of the y-bracs means that any following y-

315 



Ian C. Stirk 

kets must be paired, in reverse order. The y-kets can come, whichever path is 

followed from state 3: either on the way to state 4i+3, or by looping from state 4. 

Thus the next stretch of symbols will have to be y'Iq followed by e', apart from 

the possible addition of some x-bracs. In other words, we basically have the second 

line of a derivation of the UR grammar, this time in its usual order. Moreover, if 

we have now reached state 4i+3, this second line will contain some P;', the left 

hand side of some UR rule which could lead to a third line of some successful 

derivation. 

D, will force any x-bracs in this second line to be matched by some x-kets, 

coming along in reverse order. This means that any loops that we make from 4i+3 

and 4i+4 will have to generate paired x-kets. So by the time we output d'and 

return to 3. we shall have a reversed third line of a derivation, which differs from 

the second line only in that Q;'(backwards) has replaced P;'. Taking a further loop 

from 3 will continue the process: first a line identical to the third except that it is in 

the correct order and contains x-bracs will be formed, leading on to a fourth line 

and so on. 

An end comes when the path to 4 is selected. Now a series of terminal symbols 

together with y-kets is generated, to match a previous line with the y-bracs and 

some Q;'in it. This previous line can only contain members of Vr', apart from 

bracket symbols, because of the match. This is only possible if it represents the last 

line of a complete derivation of the UR grammar. The last series of terminal 

symbols must be a correct sentence of the UR language, in that case. 

The reason for including the d,d'and e,e'brackets can now be appreciated. 

Consider e,e'. If any y,,,y,,'pair is represented by (,), and e,e'itself by {,}, and 

other symbols are ignored for the sake of simplicity, then two "cycles" of the FS 

grammar, each going from some e to some e', could be pictured like this: 

{(((())))) {(((((())))))} 

316-



Cut Down the Trees, and Save the Environment 

The structure of the grammar D, ensures that each e,e'pair contains a complete 

set of y,,y,,'pairs, while the FS grammar prevents any pallerns like the following: 

｛ （（） （（）））） ｛ （（（（（（））））））） 

All braes have to come before all kets inside each e,e'block. If it were not for 

the c,e'system, though, then nothing could prevent the following sort of pattern 

over the two "cycles": 

(i (,(()) (((((()))))))」)l

Here the first two braes are not paired with their kets until the end of the second 

"cycle". In terms of the UR derivation, this would mean the possibility of 

successive lines being different in ways not allowed by the rewriting rules. Similar 

considerations apply to x,,,x,,'pairs. 

This shows that even a seemingly trivial increase in the powers of bracketing 

languages will take us straight into the realm of generative omnipotence. But it 

does not show that UR languages cannot be generated as homomorphisms of the 

intersections of a FS language and a finite number of bracketing languages. 

Perhaps I just was not clever enough to find the right way to do it. 

Fortunately it is quite easy to find a context sensitive language which is not 

treeless, and so eliminate the possibility that they can generate absolutely any 

language. The CS language is generated by a very simple grammar: 

(1) x..→ X,c 

(2) Xi→ X1X, 

(3) X1→ bXふ

(4) X3X,→ X,X3Xふ

317 



(5) Xcc→ cc 

(6) bX,→ bb 

Ian C. Stirk 

The first two rules enable the generation of strings consisting of an initial Xi, 

any number (say n) of x;s, and a final c. Using rule 3 halts the production of X/s, 

and places an initial b. Rule 4 is the one that makes this grammar interesting. Every 

time an X:1 jumps over an X,, it doubles, so that eventually a large number of X;i's 

emerge to the right of the X/s. With n X/s, 2" X::'s will be produced in this way. 

Rules 5 and 6 change all the X:,'s into e's and all the X/s into b's. 

Sentences of the language thus consist of a string of (n+l) b's, where n >O, 

followed by a string of (2"+ 1) c's. 

Suppose first that this language is t1℃eless. Thus there is some FS grammar, and 

some finite number of bracketing grammars, and some homomorphism which 

between them will generate its sentences. Consider first the finite state component. 

The FS grammar must allow recursion, or otherwise only a finite number of 

sentences could be generated by it. Suppose there is a sentence with a chunk of 

length t which could be multiplied by recursion. The sentence with the chunk 

doubled to 2t, but otherwise the same, would also be grammatical in the FS 

language, but if the doubling added only bracs or only kets belonging to one or 

more bracketings, then it would be ungrammatical in at least one of the bracketing 

languages. But there must be some other chunks, of lengths S1, s,,…,s,,, say, which 

could be multiplied recursively, and so ensure that with, say, k1, k,,..., k" 

repetitions respectively, together with m repetitions of the original chunk, we could 

produce something acceptable by all the grammars. At least, unless this is true for 

at least some chunks in some sentences, there can only be a finite number of 

grammatical ones altogether. 

An actual example will make this clear. Consider this one bracketing grammar: 

318-



Cut Down the Trees, and Save the Environment 

(D) y→ YY, Y→ xYx', Y→ a, Y→ b 

and this finite state one: 

(G) 乙→ xxxxxaZ＂＇乙→ xxxxxaZ1,Z1→ x'x'x'bZ,, Z1→ x'x'x'b 

G can provide recursive chunks xxxxxa and x'x'x'b, but the bracketing 

grammar will only accept sentences with equal numbers of bracs and kets. The 

briefest way to ensure this is to have three lots of xxxxxa and five lots of x'x'x'b, 

to give 15 bracs and 15 kets, so the sho1test sentence of the treeless language will 

be aaabbbbb. Now we know that three repetitions and five repetitions will give 

something grammatical, we can be sure that 6 and 10, 9 and 15 and so on will work 

as well, giving sentences of twice the length of the shortest sentence, three times 

the length, and so on. 

The same must be true in the general case we were considering before. If there is 

a grammatical sentence with parts of length k母 k,s,,…,kl'sl'andmt, there will 

also be one with parts of length 2k心，2k,s,,…,2k"s"and 2mt, and so on. Of course 

the homomorphism will reduce the lengths by removing bracs and kets, but in 

general we can argue that, for some values of K and L, then, in any particular 

treeless language, there is a grammatical sentence of length K+L, and also ones of 

lengths K+2L, K+3L, etc. 

We are assuming that the CS language whose sentences consist of (n+l) b's 

followed by (2"+1) c's is treeless, so for some values of K, Land n we must have 

K +L = 2" + n + 2 and also 

K+2L = 2"+'+ n + x + 2, since this is also of grammatical length. 

A bit of arithmetic shows that L= 2"., -2" + x, and 

K= 2"+1 -2"+> + n -x + 2. This means that K would be impossibly negative if xis 

greater than one, so K+2L is the length of the next longest sentence, 2"+1 + n + 3. 

319 



Ian C. Stirk 

A sentence of length K+3L, or 3.2" + n + 4, if we work il out, must also be 

grammatical. But according to the CS grammar, the length of the next longest after 

2"•1 + n + 3 would be 2"十~ + n + 4, or 4.2n + n + 4. The one of length K+3L is 

Loo sho1t, and so cannot be grammatical. 

The contradiction shows that here we have a CS language which is not treeless, 

as required. 

This result is not enough to make treeless languages a proper subset of CS ones, 

however. There are sets of languages which do not include some CS ones, but 

which do include non-recursive ones, for instance, the set of local filtering 

languages discussed by Peters and Ritchie (1973). 

Fortunately it is not difficult to show that treeless languages must be recursive. 

A language is recursive if and only if both L, the set of sentences of the language, 

and -L, the set of strings over the same vocabulary which are not in L, are both 

recursively enumerable. Proofs of this can be found in Salomaa (1973) and Stirk 

(1988). 

We check if it is possible to enumerate both these sets in the case of a treeless 

language. First we enumerate all possible strings over the vocabulary of the 

treeless language (by following alphabetical order and increasing length). These 

strings are checked in turn to see if they can be generated by the FS grammar 

concerned. 

This process should be finite, since clearly a FS grammar can only generate a 

finite number of strings up to a certain length, but here we have the complication of 

bracs and kets, made invisible in the treeless language by the action of the 

homomorphism. It has already been stipulated that only brackets should be deleted 

by the homomorphism, but bracketing languages may still generate any number of 

brackets to go with any terminal symbol, for instance, xax', xxax'x'and so on. We 

can halt this proliferation by requiring that each rule of the FS grammar that 

generates bracs or kets must also generate at least one terminal symbol. In that 

320 



Cul Down the Trees, and Save the Environment 

way, each terminal symbol will only appear associaしedwith a finite number of 

braes and kets. This proviso has been tacitly observed above. 

Now we can use it to show that each possible terminal string needs only a finite 

check to see whether or not the FS grammar can generate it, for there can only be a 

finite number of strings in the FS language which contain all and only the terminal 

symbols in correct order plus a certain finite number of bracs and kets. These can 

each be checked in a finite way to see whether or not they can be generated by all 

the finite number of bracketing languages. If one of them can be so generated, the 

string of terminal symbols can be added to the growing list L, if not, Lo the growing 

list -L. This is enumerating both L and -L, so the treeless language must be 

recursive. 

We still cannot say that treeless languages arc all context sensitive, however, 

because unfortunately there are some recursive languages that are not CS, as is 

shown in Salomaa (1973) and Stirk (1988). It seems unlikely that any of these 

exotic languages could be treeless, but I have not so far devised any formal proof 

of this. 

Bibliography 

M. J. Cresswell (1985) "Structured Meanings" (MIT Press) 

G. Gazdar (1981) "Unbounded Dependencies and Coordinate Structure" Linguistie Inquiry. 

12 

G. Gazdar (1982) "Phrase Strueture Grammar" in Jacobson and Pullum, eds 

G. Gazdar, E. Klein, G. "Pullum and I. Sag (1985) Generalized Phrase Structure Grammar" 

(Blackwell) 

J. Higginbotham (1984) "English is not a Context-FrじeLanguage" (Linguistic Inquiry, 

15, 225-234) 

K. Hintikka, J. Moravesik and P. Suppes (eds) "Approaches to Natural Languages" (Reidel, 

321 



Ian C. Stirk 

1973) 

P. Jacobson and G. Pullum (eds) (1982)'The Nature of Syntactic Representation" (Reidel) 

A. K. Joshi and L. S. Levy (1977) "Constraints on Structural Descriptions: Local 

Transformations" (Siam Journal of Computing, 6、272-284)

P.S. Peters and R. W. Ritchie (1973) "Nonfiltering and Local-Filtering Transformational 

Grammars" (in Hintikka, Moravcsik and Suppes, eds) 

C. Pollard and I. Sag (1994) "Head-Driven Phrase Structure Grammar" (U. of Chicago Press) 

Ario Salomaa (1973) "Formal Languages" (Academic Press) 

Ian C. Stirk (1987) "Context-Free Languages Revisited Yet Again"（大阪外大英米研究，

15, pp 103-132) 

Ian C. Stirk (1988) "Counting Languages”（大阪外大英米研究， 16,pp 191-209) 

322 


