|

) <

The University of Osaka
Institutional Knowledge Archive

Title Cut Down the Trees, and Save the Environment

Author(s) |[Stirk, C. Ian

Citation | KPRAMAKIEAKFZT. 1999, 23, p. 301-322

Version Type|VoR

URL https://hdl. handle.net/11094/99233

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Cut Down the Trees, and Save the Environment

Ian C. Stirk

I’m afraid the explanation of my cryptic title will have to wait till the end of a

rather lengthy

Introduction

In early work on Generalized Phrase Structure Grammar (see, for example,
Gazdar, 1981 and 1982), it was regularly pointed out that context sensitive rules
could be used in a grammar without giving it more than context free powers,
provided only that the rules of the grammar were treated as node admissibility
conditions. Oddly enough, neither then nor since, as far as I know, has this useful
possibility actually been made use of in any variety of Phrase Structure Grammar.
It is not mentioned at all, for instance, in Gazdar, Klein, Pullum and Sag (1985).

That fact about node admissibility conditions was proved by Joshi and Levy in
their (1977). 1 presented a different and simpler proof in my (1987). That proof
depended on a result of Salomaa (1973, p68If), to the effect that any context {ree
language can be represented as a homomorphic image of the intersection of a finite
state language and a Dyck language.

It is useful to sketch that result again here. If we use the familiar old CF

language a"b" as an example, and generate it with the following grammar:

1) XXX
2) XXX,

— 301 —



fan C. Stirk

(3) X‘.—’X;X;
@) X-—a
6y X, —b

then derivations like the following emerge:

X

XX,
XXX
XX XX
XX XX,
aX XuX,
aaX, X,
aabX;
aabb

The tree structure associated with this derivation, together with a few bits and

pieces, would be:




Cut Down the Trees, and Save the Environment

The bits and pieces include a labelling for some of the branches in the tree.
There are three rules in the grammar which rewrite a symbol as a pair of symbols,
meaning that there will be three kinds of paired branches, each kind receiving a
labelling of the form x,, x;”. Now if we travel round the tree in the manner shown
by the wiggly arrowed line, we pass the various labels and terminal symbols in this

order:

Xax’ X:X;axy bx,'b

The insight into the result is that the paired labels behave like a proper
bracketing of left hand and right hand brackets. After passing x. and x; we cannot
reach x,” before x;’. The brackets must be closed in the proper order.

1t will be handy later to have a brief way of referring to left hand brackets and
right hand brackets. The physicist P.A.M. Dirac used the terms “bras” and “kets”
for similar brevity in his notation for quantum mechanics. I think I shall try “bracs”
and “kets” and avoid any ambiguity.

Now Dyck grammars generate sets of brackets only, so in what follows 1
generalise them a little to what shall be called bracketing grammars. A suitable
bracketing grammar to generate the result of the tree tour above, together with an

infinity of other sentences, would be:

1) Y—YY
@) Y- xYx’
3 Y x.Yx,
@y Y xYx/S
B) Y—a

®) Y—b

~ 303 —



lan C. Stirk

It is easy to see that this grammar will generate correct bracketings with the
three sorts of brackets, together with a random sprinkling of a’s and b’s, by virtue
of rules 1, 5 and 6. Bracketing grammars are only allowed to have one non-
terminal symbol, and rules of only three kinds, exemplified above by 1, 2 and 5.

The following FS grammar will also generate the tour, among any number of

other things:

1)y Z—xZ
2) Z,~ x2Z,
3) Z—xZ
4) Z,— axZ.
(5) Zi— axsZ;
6) Z~bx,Z;
N Z~—b

The FS rules are clearly related to those of the original CF grammar. It can be
seen how the FS rules attach the terminal symbols a and b to the correct kets. Thus
the intersection of the bracketing and the FS languages consists of sentences of the
CF grammar, together with unwanted bracs and kets. “Homomorphic image” is
just a fancy way of referring to the deletion of the unwanted items, leaving a CF
sentence.

My version of the context sensitive node admissibility condition proof involved
adding extra pairs of symbols to the bracketing language, which were exempt from
the bracketing condition, and could occur more freely. These take care of the
context sensitivity, and provided the souped up bracketing grammar remains
context free, only context free languages can be generated.

In effect, the bracketing grammar with its additions provides two or more

systems of brackets which are oblivious to each other. It seemed interesting to

— 304 —



Cut Down the Trees, and Save the Environment

probe this possibility further. Suppose, instead of adding extra rules to one
bracketing grammar, we just have several simple bracketing grammars. What kind
of languages would appear in the intersection between their languages and a finite
state one?

More than just context free ones is the immediate answer. For there is no
difficulty in generating the classic context sensitive language a'b'c". The following

two bracketing languages, D, and D., together with the finite state grammar G will

do the trick:
D) (D.)
Y— Y)Y, Y~ Y.Y.
Y= xYx/’ Y.~ x.Y.x)'
Y,—a S a
Y—b Y.~ b
Y—c¢ S C
Y — x. Y.~ x,
Y, X, Y.—x/’
(&)

Zy> X, Lo X xbZy, 2y xJ ¢y, L xJc

Notice how D, generates equal numbers of x, and x,’, but everything else at
random, while D, does a similar job for x., and x.”. Meanwhile G links every x,
with an a, and every x;” with a ¢, while each b is preceded by both an x,” and an x..
This forces the sentences in the intersection to have equal numbers of each, with
a’s, b’s and ¢’s in the correct order. A typical intersection sentence could be re-

presented as follows:

—305 —



fan C. Stirk

PN

This is read in the order indicated by the arrowed wiggly line. The bracs and
kets are segregated in boxes, and are the items eliminated by the homomorphism to
leave the final result aabbcc.

Escape from the confines of context freeness might seem to doom languages
generated in this way from having any interest to students of human languages. On
the other hand, it can be proved that the set of these languages cannot include all
context sensitive ones, and is unlikely to include any languages that are not context
sensitive. The necessary proofs and specuiations are somewhat technical, however,
so I have relegated them to an appendix to this paper. Even more significantly, this
way of generating languages can accommodate the troublesome examples of non-
context-freeness that have occasionally been observed in human tongues.

As an example, 1 shall use the subset of (possibly) English sentences brought to

light by Higginbotham (1984). We begin with the sentence.
The mermaid combed her hair
Adding a subordinate clause to this could produce

The mermaid such that the flying fish jumped from her to him combed her

hair

The point about a “such that” relative clause is that it needs to contain a retained

pronoun “her” referring to “the mermaid”. The sentence is equivalent in meaning

—306 —



Cut Down the Trees, and Save the Environment

to the marginally less clumsy

The mermaid from whom the flying fish jumped to him combed her hair

There is no need to stop at one relative clause:

The mermaid such that the mermaid such that the flying fish jumped from

her to him swam from her to him combed her hair

and so on. The crucial point in these examples is that each “such that” clause must
contain a referring “her” within it. Thus the following sentence is also

grammatical, if no less unintelligible:

The mermaid [such that the mermaid [such that the flying fish jumped from

her to her] swam from him to him] combed her hair

Here the two occurrences of “her” appear in the inmost clause. The next

sentence is ungrammatical:

The mermaid [such that the mermaid [such that the flying fish jumped from

him to him] swam from her to her] combed her hair

This is because the inmost clause does not contain a “her”, even though there are
two in the sentence overall. Some reflection shows that, in a grammatical sentence,
as you go from left to right the number of him’s you have traversed must never
exceed the number of her’s you have traversed by more than one. It is this property
that makes the set of sentences context sensitive.

The next task is to generate the set as the intersection of bracketing languages

—307 —



lan C. Stirk

and a finite state language. To save space a few abbreviations will be useful:

m  the mermaid a  from her to him
k combed her hair b from her to her

s such that ¢ fromhim to him
i the flying fish jumped d  from him to her

w swam

The last grammatical example above would abbreviate to msmsjbwck, and the
last ungrammatical one to msmsjcwbk. In the abbreviated sentences, the
grammaticality condition boils down to saying that as you go from left to right, the
number of ¢’s passed must never exceed the number of b’s passed.

It is easiest to appreciate the FS grammar needed from its state diagram:

m k
B)

O——H —
/ i

§
}\

There are two sets of brackets, xx” and yy’, which are to be independent. Thus

there will be two bracketing grammars, namely:

D) (D.)

308 —



Cut Down the Trees, and Save the Environment

Y~ YY, Y.~ Y.Y.
Y xYx’ Yo yYey
Y—y Y. ™ x
Y—y Y., x’
Y—a Y.~ a

etc etc

The etceteras obviously cover rules for generating all other terminal symbols at
random. Strolling through the FS grammar, or rather its state diagram, we see that
from the initial state 1 we must go straight to 2, outputting m, after which we have
a choice of going straight to 3 and ending with a k. Otherwise we can go from 2 to
4, and thence loop with an output of xsm, or go straight to 5 emitting sj. From 5
there are four possible routes to 6, with outputs of a, yb, y’c and d respectively.
After 6, there are paths to 3, emitting nothing, or through a loop back to 6, on
which x’w and one of a, yb, y’c or d must be produced.

Now clearly D, will ensure the xx’ pairs, meaning that the beginning of each
clause has precisely one conclusion. As for y, it will only appear when the
abbreviation for two “her”’s is chosen, thus preempting a possible later “her”. There
cannot be too many “her”s, though, because y’ must come up later together with
the abbreviation of “from him to him”. The resulting set of sentences, then, is the
one required.

So these languages, the homomorphic images of the intersections of a finite
number of bracketing languages and one finite state language, may well have a
significance in the analysis of human languages. They do not have the possible
weakness of the context free, nor the unwanted power surge of the totally context
sensitive. In fact they deserve some special name, so, for reasons given in the next

section, I shall call them treeless languages.

—309 —



fan C. Stirk

Down with the Trees!

To provide an example almost at random, I reproduce a tree diagram from
Gazdar, Klein, Pullum and Sag (1985, p145):

S
NP{3s] SINP[3s]
Sanéi bnq36T”“”—‘—”j;;;;;gii;;y
we  V[17] VP
NP[+NU11L,35]/NP[3S]
want e vV VP

to V1]

succeed

Here we can see something of all the paraphernalia of phrase structure
grammars. The vast categories at each node (of course grossly abbreviated), the
head feature conditions for passing feature values down the trees, the
interconnecting slash features to relate “Sandy” to the rest of the monster, and so
on. And all this passing down and passing up of feature values is, it seems to me,
due only to not taking advantage of the possibility of using context sensitivity
without being carried out to sea by it.

Suppose the trees were just cut away, leaving just a string of categories and the
words that go with them, as I intended to show by the diagram on page 4. We

might get this:

— 310~



Cut Down the Trees, and Save the Environment

7 e (o
I |

Sandy we want e to succeed

Bracs and kets can occur in categories like features, linking them directly. The
X,X,” bracket links “Sandy” with the later hole, x,,x.” links the subject “we” with
the verb “want” in its correct form, X;,X;” links the verb “want” to an infinitive,
XX, links “to” with a verb “succeed” in base form, and so on. Why do we need
vast trees to perform these simple correlations?

What is more, at least one problem associated with trees can be dispensed
with, namely the problem of excessive structure that can go with rules like
NP— NP and NP. Gazdar, Klein, Pullum and Sag, like others, need “coordination
schemes” (1985, p248) to evade this problem.

Of course T am neglecting here the semantic component, the translation of a
sentence into intensional logic, at least in earlier phrase structure grammars. There
is no room for details here, but intensional logic is after all a language, and could
also be treated as a treeless one, so that a sentence in ordinary language would be
correlated with another one in intensional logic.

This might not work for the Barwise and Perry (1983) kind of semantics which
is used, for instance, in “Head-Driven Phrase Structure Grammar” (Pollard and
Sag, 1994), which may not be expressible in sentences. On the other hand, we may
note the devastating criticism of situational semantics to be found in Cresswell

(1985).

Conclusion
A somewhat lame conclusion to come to, perhaps, but actual natural language

examples of treeless languages will have to await a further paper. Meanwhile, 1

—311—



fan C. Stirk

think I have laid most of the technical foundations for a formulation of grammars

which

(1) is slightly more powerful than CF grammars, as seems to be required,
(2) simplifies the nagging problem of coordination, and

(3) simplifies the whole system of categories and their interrelations.

Further, I believe there is a simple reason why the structures of human
languages can so easily be expressed in treeless form, but its revelation must await

further work.

Technical Appendix

Firstly I prove that these intersections of bracketing languages and finite state
languages are dangerously close to being able to generate the full monty of
unrestricted rewriting (UR) languages, that is, virtually anything rule governed. At
least, with a possibly essential addition to the power of the bracketing grammars,
and a generously purgative homomorphism, that terror may be unleashed. For
consider any arbitrary UR grammar.

Suppose it has a non-terminal vocabulary Vy, a terminal vocabulary Vi, and that
V stands for Vi, U V.. We construct a disjoint vocabulary V’ so that any member
a of V has a counterpart «’ in V’. The symbols « and «’ will be used to
represent individual members of V and V' in what follows, while, if s is some
string over V, §” represents the string over V' in which each symbol of s has been
replaced by its counterpart. Thus if the ith rule in the UR grammar is P, — Q,, then
P’ — Q) is the same rule using V' instead of V. The symbol R; will be used to
represent the right hand side of the jth rule of the UR grammar which has X,, the
initial symbol, as its left hand side. There must of course be at least one such rule

in the grammar. Finally 2 will represent any member of V.

—312—



Cut Down the Trees, and Save the Environment

As well as V’, we shall need two pairs of brackets, x,, x,” and y,, y,’ for each
member « of V. If s is a string over V’, then (ys’) is the string in which each
symbol of s’ is preceded by the corresponding brac. Thus it §” is a’b’c’, (ys”) will
be y.a’y,b’y.c’. Similarly for (y’s’). Two other pairs of brackets will also be used:
d, d’ and e, ¢’. Finally, mi(s) is to stand for the mirror image of a string s. I s is
abc, then mi(s) will be cba.

It is easiest to appreciate the structure of the FS language L by looking at a

simplified state diagram of its grammar:

B

(y(mi(Ry")))

4i+1 N 4i+2 > 4i+3 4i+4
i j y’P7) e’e / j (y(mi(Qi" )M ( —\—
XoYo O Xo¥o O X Vo’ Xo Yol

In moving from the initial state 1 to state 2, only X,’e can be output, meaning
that every sentence of the FS language must begin with X,’. From 2 to 3, however,
there are a number of possible paths, which here have been compressed into one
for simplicity. There will in fact be a fresh path for each rule of the UR grammar
which rewrites X, as something. This is represented by the subscript j. From state
3, we can go directly to 4, outputting nothing, or follow the loop through four other
states before returning to 3. Or rather, one of the loops, for there will be a different
one for each of the UR rules from P,— Q,, the first one, to the last. When i is 1, we
pass through states b, 6, 7 and 8, when i is 2, through 9, 10, 11, 12 and so on.

In the general case, after outputting d and reaching state (4i+1), we can either go

—~313—



fan C. Stirk

on to (4i+2) and produce the left hand side of a UR rule in vocabulary V’ and
accompanied by y-kets, or we can take any number of loops first. Once more, there
is a simplification here: there is a separate loop for each «’ ¢ V’. Each pass
through a loop will introduce a member of V* preceded by its x-brac and y-ket.
From (4i+2) we can make any number of similar loops before outputting e’e and
going on to (4i+3). A somewhat different kind of looping is available from (4i+3):
this time each member of V’ is preceded by an x-ket and a y-brac. Going from
(4i+3) to (4i+4) produces the mirror image of the right hand side of the UR rule,
written in V' and accompanied by y-bracs. From (4i+4) there is the possibility of
more looping before producing a d” and returning to 3.

State 4 can be reached from state 3, and from it we can either go directly to the
final state, outputting an ¢’, or make some loops first. There is one of these loops
for each member S of Vy, preceded by its y-ket.

We are not interested in the entire FS language, but only in those sentences
which can also be generated by the two almost bracketing languages, D, and D.. D,

has the initial symbol Y, and these rules:

1) Yu—eYe
@ Y YuYu
@ Y=y Yy,
@ Y—YY,
®) Y— o

® Y—p

7 Y—x,

& Y—x,

9 Y—d

10 Y~ d

~314 —



Cut Down the Trees, and Save the Environment

All of these rules, except for 1, 2, 4, 9 and 10 are in fact schemata: there is a rule
of forms 3, 5, 7 and 8 for each « ¢ V, and one of form 6 foreach ¢ V.

Clearly rules (schemata) 5 to § enable the grammar to produce random strings of
symbols from V* and V., together with x-bracs and x-kets. 3, however, ensures that
y-bracs and y-kets are always paired. D., on the other hand, with initial symbol Y.,

pairs x-bracs and x-kets while scrambling everything else:

1) Yu.—dY.d’
@) Ya YuYy
3) Y.~ x,Yx,
@) Y.~ Y.Y.
B Y™ o
© Y~ p

D Y—y.

@ Y.y,

© Y. —e

(10) Y, ¢’

D, and D, each have two non-terminal symbols, instead of the one of a true
bracketing grammar. Notice that the effect of the extra rules is to constrain the
bracketings to a series of independent blocks, bounded by occurrences of e and ¢’
and d and d’ respectively.

Let us have a look at what kinds of sentences can be generated by all three of
these grammars. Every one begins with X.’, for that is prescribed in L and allowed
by D, and D.. After that we get a string of symbols preceded by e, which, apart
from the fact that it is written in reverse and is scattered with y-bracs, could be the
second line of a derivation using the UR grammar. The developing sentence must

also be generable by Dy, so the presence of the y-bracs means that any following y-

—315—



lan C. Stirk

kets must be paired, in reverse order. The y-kets can come, whichever path is
followed from state 3: either on the way to state 4i+3, or by looping from state 4.
Thus the next stretch of symbols will have to be y* Rj followed by ¢’, apart from
the possible addition of some x-bracs. In other words, we basically have the second
line of a derivation of the UR grammar, this time in its usual order. Moreover, if
we have now reached state 4i+3, this second line will contain some P;, the left
hand side of some UR rule which could lead to a third line of some successful
derivation.

D. will force any x-bracs in this second line to be matched by some x-kets,
coming along in reverse order. This means that any loops that we make from 4i+3
and 4i+4 will have to generate paired x-kets. So by the time we output d’ and
return to 3, we shall have a reversed third line of a derivation, which differs from
the second line only in that Q” (backwards) has replaced P;’. Taking a further loop
from 3 will continue the process: first a line identical to the third except that it is in
the correct order and contains x-bracs will be formed, leading on to a fourth line
and so on.

An end comes when the path to 4 is selected. Now a series of terminal symbols
together with y-kets is generated, to match a previous line with the y-bracs and
some Q; in it. This previous line can only contain members of V., apart from
bracket symbols, because of the match. This is only possible if it represents the last
line of a complete derivation of the UR grammar. The last series of terminal
symbols must be a correct sentence of the UR language, in that case.

The reason for including the d,d’ and e,e’ brackets can now be appreciated.
Consider e,e’. If any y,,y.’ pair is represented by (,), and e,e’ itself by {,}, and
other symbols are ignored for the sake of simplicity, then two “cycles” of the FS

grammar, each going from some e to some ¢’, could be pictured like this:

{CCCOMDIM I ECCCCCCIININY
316 —



Cut Down the Trees, and Save the Environment

The structure of the grammar D, ensures that each e,e’ pair contains a complete

setofy,,y.” pairs, while the FS grammar prevents any patterns like the following:

{COCCHM TN NN

All bracs have to come before all kets inside each e,e’ block. If it were not for
the e,e” system, though, then nothing could prevent the following sort of pattern

over the two “cycles™:

GEOCD))Y CCCCCE N e

Here the first two bracs are not paired with their kets until the end of the second
“cycle”. In terms of the UR derivation, this would mean the possibility of
successive lines being different in ways not allowed by the rewriting rules. Similar
considerations apply to x,,x,” pairs.

This shows that even a seemingly trivial increase in the powers of bracketing
languages will take us straight into the realm of generative omnipotence. But it
does not show that UR languages cannot be generated as homomorphisms of the
intersections of a FS language and a finite number of bracketing languages.
Perhaps I just was not clever enough to find the right way to do it.

Fortunately it is quite easy to find a context sensitive language which is not
treeless, and so eliminate the possibility that they can generate absolutely any

language. The CS language is generated by a very simple grammar:

1) X— X
2 XXX
3) X/~ bX;

~317—



fan C. Stirk

) Xe—ce
(6) bX,—bb

The first two rules enable the generation of strings consisting of an initial X,
any number (say n) of X.’s, and a final c. Using rule 3 halts the production of X.’s,
and places an initial b. Rule 4 is the one that makes this grammar interesting. Every
time an X, jumps over an X, it doubles, so that eventually a large number of X,’s
emerge to the right of the X,’s. With n X.’s, 2" X.’s will be produced in this way.
Rules 5 and 6 change all the X.’s into ¢’s and all the X,’s into b’s.

Sentences of the language thus consist of a string of (n+1) b’s, where n >0,
followed by a string of (2"+1) ¢’s.

Suppose first that this language is treeless. Thus there is some FS grammar, and
some finite number of bracketing grammars, and some homomorphism which
between them will generate its sentences. Consider first the finite state component.
The FS grammar must allow recursion, or otherwise only a finite number of
sentences could be generated by it. Suppose there is a sentence with a chunk of
length t which could be multiplied by recursion. The sentence with the chunk
doubled to 2t, but otherwise the same, would also be grammatical in the FS
language, but if the doubling added only bracs or only kets belonging to one or
more bracketings, then it would be ungrammatical in at least one of the bracketing
languages. But there must be some other chunks, of lengths s;, s, ..., s,, say, which
could be multiplied recursively, and so ensure that with, say, ki, ks, ..., k;
repetitions respectively, together with m repetitions of the original chunk, we could
produce something acceptable by all the grammars. At least, unless this is true for
at least some chunks in some sentences, there can only be a finite number of
grammatical ones altogether.

An actual example will make this clear. Consider this one bracketing grammar:

—318 —



Cut Down the Trees, and Save the Environment

D) Y—YY, Y—xYx, Y—a Y—b
and this finite state one:

(G) Zi— xxxxxaZ,, Z,~ xxxxxaZ,, Z,— xX’x’x’bZ,, Z,~ x’x’x’b

G can provide recursive chunks xxxxxa and x’x’x’b, but the bracketing
grammar will only accept sentences with equal numbers of bracs and kets. The
briefest way to ensure this is to have three lots of xxxxxa and five lots of x’x’x’b,
to give 15 bracs and 15 kets, so the shortest sentence of the treeless language will
be aaabbbbb. Now we know that three repetitions and five repetitions will give
something grammatical, we can be sure that 6 and 10, 9 and 15 and so on will work
as well, giving sentences of twice the length of the shortest sentence, three times
the length, and so on.

The same must be true in the general case we were considering before. If there is
a grammatical sentence with parts of length ks, ks, ... , k.8, and mt, there will
also be one with parts of length 2k;s,, 2k.s., ... , 2k,s, and 2mt, and so on. Of course
the homomorphism will reduce the lengths by removing bracs and kets, but in
general we can argue that, for some values of K and L, then, in any particular
treeless language, there is a grammatical sentence of length K+L, and also ones of
lengths K+2L, K+3L, etc.

We are assuming that the CS language whose sentences consist of (n+1) b’s

followed by (2'+1) ¢’s is treeless, so for some values of K, L and n we must have

K+L=2"+n+2 and also

K+2L =2" 4+ n+x + 2, since this is also of grammatical length.
A bit of arithmetic shows that L=2" - 2"+ x, and
K= 2" - 2" + n - x + 2. This means that K would be impossibly negative if x is

greater than one, so K+2L is the length of the next longest sentence, 2" + n + 3,

~319—



Ian C. Stirk

A sentence of length K+3L, or 3.2" + n + 4, if we work it out, must also be
grammatical. But according to the CS grammar, the length of the next longest after

2% +n+3 would be 2" +n +4, or 4.2n + n + 4. The one of length K+3L is
too short, and so cannot be grammatical.

The contradiction shows that here we have a CS language which is not treeless,
as required.

This result is not enough to make treeless languages a proper subset of CS ones,
however. There are sets of languages which do not include some CS ones, but
which do include non-recursive ones, for instance, the set of local filtering
languages discussed by Peters and Ritchie (1973).

Fortunately it is not difficult to show that treeless languages must be recursive.
A language is recursive if and only if both L., the set of sentences of the language,
and -L, the set of strings over the same vocabulary which are not in L, are both
recursively enumerable. Proofs of this can be found in Salomaa (1973) and Stirk
(1988).

We check if it is possible to enumerate both these sets in the case of a treeless
language. First we enumerate all possible strings over the vocabulary of the
treeless language (by following alphabetical order and increasing length). These
strings are checked in turn to see if they can be generated by the FS grammar
concerned.

This process should be finite, since clearly a FS grammar can only generate a
finite number of strings up to a certain length, but here we have the complication of
bracs and kets, made invisible in the treeless language by the action of the
homomorphism. It has already been stipulated that only brackets should be deleted
by the homomorphism, but bracketing languages may still generate any number of
brackets to go with any terminal symbol, for instance, xax’, xxax’x” and so on. We
can halt this proliferation by requiring that each rule of the FS grammar that

generates bracs or kets must also generate at least one terminal symbol. In that

—320 —



Cut Down the Trees, and Save the Environment

way, each terminal symbol will only appear associated with a finite number of
bracs and kets. This proviso has been tacitly observed above.

Now we can use it to show that each possible terminal string needs only a finite
check to see whether or not the FS grammar can generate it, for there can only be a
finite number of strings in the FS language which contain all and only the terminal
symbols in correct order plus a certain finite number of bracs and kets. These can
each be checked in a finite way to see whether or not they can be generated by all
the finite number of bracketing languages. If one of them can be so generated, the
string of terminal symbols can be added to the growing list L, if not, to the growing
list -L. This is enumerating both L and -L, so the treeless language must be
recursive.

We still cannot say that treeless languages are all context sensitive, however,
because unfortunately there are some recursive languages that are not CS, as is
shown in Salomaa (1973) and Stirk (1988). It seems unlikely that any of these
exotic languages could be treeless, but I have not so far devised any formal proof

of this.

Bibliography

M. J. Cresswell (1985) “Structured Meanings” (MIT Press)

G. Gazdar (1981) “Unbounded Dependencies and Coordinate Structure” Linguistic Inquiry,
12

G. Gazdar (1982) “Phrase Structure Grammar” in Jacobson and Pullum, eds

G. Gazdar, E. Klein, G. “Pullum and . Sag (1985) Generalized Phrase Structure Grammar”
(Blackwell)

J. Higginbotham (1984) “English is not a Context-Free Language” (Linguistic Inquiry,

15, 225-234)

K. Hintikka, J. Moravcsik and P. Suppes (eds) “Approaches to Natural Languages” (Reidel,

~321—



Ian C. Stirk

1973)

P. Jacobson and G. Pullum (eds) (1982) “The Nature of Syntactic Representation” (Reidel)

A. K. Joshi and L. S. Levy (1977) “Constraints on Structural Descriptions: Local
Transformations” (Siam Journal of Computing, 6, 272-284)

P.S. Peters and R. W. Ritchie (1973) “Nonfiltering and Local-Filtering Transformational
Grammars” (in Hintikka, Moravesik and Suppes, eds)

C. Pollard and 1. Sag (1994) “Head-Driven Phrase Structure Grammar” (U. of ChicagoPress)

Arto Salomaa (1973) “Formal Languages” (Academic Press)

lan C. Stirk (1987) “Context-Free Languages Revisited Yet Again” (KHRIMAIEATFE,
15, pp 103-132)

Ian C. Stirk (1988) “Counting Languages”™ (K44 K IEKMFZE, 16, pp 191-209)

— 322~



