|

) <

The University of Osaka
Institutional Knowledge Archive

Title Using Analogy

Author(s) |[Stirk, C. Ian

Citation | KPRHEFERZZAKFRE. 2002, 26, p. 17-31

Version Type|VoR

URL https://hdl. handle.net/11094/99257

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

Using Analogy

Ian. C. Stirk
Introduction
In a previous paper (Stirk 2001), I gave a rather abstract defence of the use
of analogy in formal linguistics, showing that grammars based on analogy would put
human languages into the class of mildly context sensitive languages, which seems
correct. In what follows, I want to look at some of the practical possibilities of using

analogy for the elucidation of how languages work.
Casting on

This is the term used for beginning a piece of knitting — forming the first
loop to which all the others will be attached. I never mastered this with wool, but I

hope to do a little better with starting off analogies and getting somewhere with them.

The simplest beginning I can think of for the English language is the two

word sentence. Let us look at some :

marywalks
johnwalks

maryruns

lan. €. Stirk
Imagine an ideal language learner - an automaton rather than a human being - with a
capacious memory. Any sentence containing new material is stored verbatim in the
memory. We suppose that these are the first three sentences presented to the
automaton, so that all three are entered into memory. Once they are in, though, the

automaton can form a new sentence

johnruns

by using the analogy

marywalks : johnwalks :: maryruns : johnruns

Since the new sentence can be formed by analogy, there is no need to store it separately
in memory. Of course English is being considered here, quite legitimately, asan
orthographic language: phonetic symbols, or some other device, would have to be
used to illustrate the automaton’s acquisition of the spoken language. Word boundaries

are not indicated, because they can be determined by the analogy process itself.

It is not very impressive so far that three éentences have to be committed to
memory in order for just one more to be generated by analogy. But now suppose that
we continue the process by presenting more sentences to the automaton after the three
above. The results of the continuation can conveniently be expressed by means of a

table :

18

Using Analogy

walks runs sings dances
mary I 3
john 2 5
sally 4 7
josephine 6
gwilym 8
bert 9
angharad 10
jane 11

Sentences 1, 2 and 3 are those already noted, while 5 to 11 are sentences containing
new material, which need to be stored. The blank cells show sentences that can be
formed by analogy from the 11, as the reader may readily check. They amount to 21
new sentences, building up the 8<4 =32 cell matrix. Elementary mathematics shows
that for an mxn matrix, m + n — 1 sentences need to be stored in memory, while the
remainder can be generated analogically. The saving in memory storage thus grows
rapidly as m and n increase. With 100 names and 100 verbs, the automaton would
need to stock its memory with just 199 items to gain the ability to generate 9,801 other

sentences.

Language pairs

For my next trick, I translate the 11 sentences of the matrix into Welsh :

1 maemaryyncerdded = marywalks

2 macejohnyncerdded = johnwalks

3 maemaryynrhedeg = maryruns

4 maesallyynrhedeg = sallyruns

5 maejohnyncanu = johnsings

6 maejosephineyncanu = josephinesings

19

lan. C. Stirk
7 maesallyyndawnsio = sallydances
maegwilymyndawnsio = gwilymdances
9 maebertyncanu = bertsings
10 maeangharadynrhedeg = angharadruns

11 maejaneyncerdded = janewalks

Clearly 21 new pairs can be formed analogically from these. There are two
ways of doing this. In the first, the sentences in each language can be considered

separately and then combined:

marywalks : johnwalks :: maryruns : johnruns

maemaryyncerdded : maejohnyncerdded :: maemaryynrhedeg : maejohnynrhedeg

In the second, the pairs are considered as one string :

maemaryyncerdded = marywalks : maejohnyncerdded = johnwalks ::

maemaryynrhedeg = maryruns : maejohnynrhedeg = johnruns

The purpose of the sentence pairs is that one can provide a semantics for the
other. It is a liberal version of the method employed in the early days of Phrase
Structure Grammar (see for instance Gazdar, Klein, Pullum and Sag, 1985, and the
references therein) where each sentence is accompanied by its translation into
the language of intensional logic. Translations into intensional logic could also be
employed analogically, of course, but I think the flexibility of using another human
language as the other member of the pair can be useful as well as interesting. In terms
of the language learning automaton, we can imagine presenting it with one half of a

pair, on which it will produce the other half: the equivalent in the other language.

20

Using Analogy
To continue with Welsh-English pairs, suppose we add this one to our

collection :

yrwyfiyngwybodfodjohnyncanu = iknowthatjohnsings

It contains new material, so it would have to occupy more space in the automaton’s
memory, but the results of analogising are quite impressive. The automaton could
already produce 32 sentence pairs, and the addition of the new pair will double that
number to 64, since “yrwyfiyngwybodfod™ can replace the initial “mae” in any of
the Welsh sentences, and “iknowthat™ can prefix any of the English ones. The process
can be imagined as adding a third dimension to the two dimensional grid of sentences

that was used as an illustration above.

Adding the next pair

maeangharadynrhedegynaml = angharadoftenruns

would bring the total number of possible sentence pairs to 128, since any of the 64

previous ones could have “ynaml” and “often” added to them.

Adding some transitive sentences, such as

maejohnynadnabodmary = johnknowsmary

macangharadyncarugwilym = angharadlovesgwilym

maejosephineyngweldbert = josephineseesbert

maejaneynclywedjohn = janehearsjohn

will add a large number of extra possible sentences to the total, which is not worth

calculating precisely. In fact, it is probably clear that we have already passed the

21

lan. C. Stirk
threshold of an indefinite number of new sentences, the touchstone of any viable
grammar since the earliest days of Chomsky. We can prefix “iknowthat” to any of
the English sentences we already have, including those beginning with “iknowthat”.

In Welsh, the picture is slightly more complicated. We find the pair

iknowthatiknowthatjohnsings = yrwytiyngwybodfymodiyngwybodfodjohnyncanu

showing that “thatiknow” translates as “fymodiyngwybod”, involving a more
substantial change than prefixing some items. But once this item is stored in memory,
recursion can take place by analogy to give any number of Welsh sentences of

increasing length.

Up to now we have been a bit cavalier about the nature of analogy, assuming
it will always work to give us the results we already expected, as human
language speakers. But it is all too easy for our human intuition to be used

unconsciously, as the following attempted analogy may show:

maeangharadynrhedeg = angharadruns :
maeangharadynrhedegynaml = angharadoftenruns ::

maejohnyncanu = johnsings : maejohnyncanuynaml = johnoftensings

Are you convinced? The Welsh case is straightforward, as the adverb is just appended
to the simple sentence, but in the English case the adverb is inserted between the
subject and the verb, and this could cause difficulty to the unintuitive automaton.
Why should “often” be inserted just where it is? Why not “jooftenhnsings”, or any
of the various other possibilities? This is a serious point, for if human intuition were
allowed to slip into analogy making, we could hardly use the results to explain why

human languages work as they do. The process of analogy making must be entirely

22

Using Analogy

algorithmic.

A tentative analogy algorithm

Back to the simplest cases for a moment. An analogy like

marywalks : johnwalks :: maryruns : johnruns

just has to work, but how can we make it mechanical? Look at this way :

m a T y w a 1 k]
i) 0 h n w 1 k S
m a r y r u n S A
i To [h [n [r Ju [n [s [r |

“\” is used here to indicate a blank cell. Notice how the fourth row, the result of the
analogy, can be formed column by column. The first three entries of the first column
g0 “m-j-m” -afurther “j” isneeded to complete the symmetry. Similarly the second
column, starting “a-o-a” needs another “o0” for completion. In the fifth column,
the pattern changes. The columnstarts “w-w-1", needing another “r” for symmetry.
Andsoon. A “nothing” occurs in the last column, “s-s-A-A”. The reader may check
that similar symmetries will occur in other analogies, and be convinced by trying out

a few that this is a regular pattern that has been uncovered here.
Let us try it out on a more complicated example. Arabic is complex

morphologically, with its triliteral roots. For instance, we can compare the forms

“katab — wrote” and “maktub — written”, “hasab - calculated (past tense)”.

23

fan, C. Stirk
Actually I have simplified these examples phonologically, but this makes no
difference to the present consideration, which is that the three forms given so far make
it appear that “mahsub — calculated (past participle)” should be generable

analogically. And indeed the algorithm predicts so:

I A k a t a b
m a k A t u b
A A h a S a b

which leads to a fourth row :

[m fa [h % [s Ju Jb]

The proposed algorithm seems to cope properly with that sort of complexity.
Another challenge for it would be a change in order of items in a sentence. Let us
consider an imaginary dialect of English in which all yes/no questions are formed by
an inversion of subject and verb, so that the question corresponding to “johnwalks”
would be “walksjohn”. Putting those two sentences together with “johnprevaricates”
should give “prevaricatesjohn” as a new analogically formed question form. The
verbs are chosen here especially because of their difference in length. In fact the

analogy algorithm copes in a satisfactory way:

j jo |h n dwja |1 (k |s |A A A A A XA A A A
Ao (A A w I |k §s | A A A 2 A A |j |o |h n
j o |h In jp jr le |v|a |r |i jc fa |t fe Is |A {A |A X
A pfrJefviade i Jefaft fefs [i Jo]h[n]

A further challenge cannot be met quite so casily. There are many instances of
reduplication in natural languages, the simplest of which may be illustrated by the

forms “E povero povero — he is very poor” and “E stanco stanco — he is very tired”

24

Using Analogy

of Italian. Looking at these analogically would give us:

& p 0 e r 0 A A A I8 A
€ p 0 e 1 0 p 0 v e r 0
¢ S t a n c 0 A A A A A A

Not quite right. There should be no difficulty in amending the algorithm to take care
of this case, butIhave not yet worked out a suitable notation. Perhaps numbering the

repeated columns would do, as follows:

I 2 3 4 5 6 i 2 3 4 5 6
e ip o |v je |Jr Jo
& |p o v Je |r }o
¢ S t a n c 0
(¢ s Jt Ja |n Jc Jo Jp lo |v Je |r Jo |

Anyway, now we can reexamine some of the casual analogies mentioned

before. Sentences with “iknowthat” could expand as follows:

jlolhin|siiin|g|s
ilkin|ojw|tlh|ajt|jjolh|n|s|i|nig|s

ilkin|ojwlt|h|a jlothin|s|i|njgis
[ilk[nfofwlt[hfat]ilk[n[ofw]t]h[a[t[jlo[h[n[s]i]n]e]s]

Here the A’s have been missed out for clarity. The Welsh forms also analogise

correctly:

fan. €. Stirk

<

yir|wiy|fli|ly|njgiw
3 :

yiriwlylfiijyin|g|lwl|y

Only the first twenty five columns are illustrated here — readers can readily work out

the remainder for themselves, as well as the concluding fourth line!

A potentially more serious problem was that of finding the proper place in

“johnsings” to insert “often”. The algorithm does not seem to help much, for, starting

like this:
alnjglhjajr|ald|A]XA]|A AT nis
a g | h rlaldjojf]jtle|n|riulnis

we see that anything can be placed to the left and right of “often”. Whatever itis, the
analogy can still go through. There is some mystery here in the workings of the
algorithm, which I have so far still not fathomed. Notice, though, that interestingly

enough, the following analogy works fine:

a{njigilh rla|d|rjujnjs
aln|g|hja|lria|d|o]|f e/ n|rtlu|n|s
jiolh ni{rju|n|s

LT T T TilofhfnJo]fltfefnfrjuln]s]

The puzzling thing, of course, is that the analogy works unambiguously precisely
because the letters of “runs” are not put into the same columns in the first and second
rows. The meaning of this is still obscure to me. Anyway, having got as far

as “johnoftenruns” we can proceed in a similar manner to “johnoftensings” :

26

Using Analogy

j o | h n r u | n]

Lilofbh[nfoffleleln[s[ilTunlels]

Thus we can get from “angharadoftenruns™ to “johnoftensings” unam-
biguously in two steps, via the intermediate form “johnoftenruns”. Analogies in two
steps also help with transitive sentences. As an example, let us derive “johnlovesjane™
and its Welsh equivalent, “maejohnyncarujane” from “maeangharadyncarugwilym

= angharadlovesgwilym”, which is already in memory. Firstly we establish:

jlolh|n siiinjgis
aln|gl|h rjajd|s|i|njg|s
a gl hjafr|a|d|l]lo elsigiw|ill|lyim
Lifofhfn]l [T | Jtfofvfels[g[w[i[l[y[m]

that is, “johnlovesgwilym”. Next we go on to:

o
0
=}
(42
[=9
~
]
L]
a
v

aQ

<
=
o
™
=
o
o
Wy

wlijl

Lilofhfnft]ofv]elsfjfafnfel [T T [[[T]

thus obtaining “johnlovesjane” via “johnlovesgwilym”. The process in Welsh

is similar:

27

Ian. C. Stirk

m|a jlo|h|n yinjcla | niu

m|a a|lniglh riaidjyinjcialn
mialeialnjgih rlaldly|nfjclalrfulgiw|i|]l]|ylm
[@]aleld[o[h[a] [[[[y[nfela[r[u[elw[i[T]y]m]
and then :

m jla|nle y|n|d|alw[njs|i]|o
mja giwli|l|yim|y|nidiaiw|n|s|ijo
m jlothin|y|n|cla|rjulg|w|i|l|y|m

[m[afe[ifo[n[n]y[n[c[alr ufifafofe[[T T T T T [[[T]

When analogies go wrong

Here is a simple and short analogy, short enough for both languages to be

analogised together :

jlan w 11kis =ljla pli dli|r|a|s
jlain wlajllkje|d|=]jlaln plijeldji|rlils
jla|n S i|m =1] nje|nja h als

Here the other language of the pair is Esperanto (without diacritics), chosen because

of its regular morphology, as the result of the analogy is:

[iTalnels[w[im[e[d[=[jJaln]ec]nfaje[n] | [i[s]

The Esperanto form of the past tense, “janenaghis”, is quite correct, but the English

28

Using Analogy
comes out as “janeswimed”, rather than “janeswam”. Nothing is wrong with the
analogy process, so how do we handle irregular forms like this? In order to keep the
apparatus of analogical grammar to a minimum, my suggestion here is to treat this as
a case of new information : when the automaton comes up with an incorrect analogical
form, the correct form is just added to memory. I hope that this may be enough to
suppress the incorrect form, given a principle that in analogising, the automaton
searches for the maximum amount of information in memory. Thus, asked to translate
an Esperanto sentence containing the form “naghis”, the automaton would find that
in memory, with its counterpart “swam”, and not bother to analogise from “nagh-"

and “-is”. That seems a reasonable expectation, but a little difficult to prove.

Prospects

Proofs, in fact, constitute the theoretical strand of future research into
analogies. How do analogical grammars stand with respect to the Chomsky hierarchy,
or, in other words, just how mild are the context sensitive grammars they determine?
Another important theoretical point is to ensure that the method of dealing with

irregularities, or failed analogies, will actually work.

It would probably be hard to disentangle that last point from empirical
studies. It should be easy enough to implement the analogy algorithm in an actual
computer program, and try out some actual language pairs just to see what happens.

The results might throw up some new and interesting features.

The main point about the analogy method is its sheer simplicity. The hope is
that with only the resources of a simple algorithm and a memory to contain any items
that cannot be predicted by analogy, a human language can be encapsulated in a finite

way. The example of “swam™ shows that the details of a language can be captured,

29

Ian. €. Stirk
and the broader picture can be made visible also. For an analogy may express the fact
that, say, “jane” and “theladystandingoverthere” can be substitued one for the other,
and thus belong to the same general class, although the class concept is not necessary

for the algorithms to work.

The language pair concept is also rather flexible. A language of formal logic
could be used for one member of the pair, or a semi-formal one might prove useful on

occasion. Observe the following examples, for instance:

I know that John is reading the book

=1 know that [John is reading the book]}
I know that John is sitting in the chair

=] know that [John is sitting in the chair]
the chair John is sitting in is comfortable

= the chair is comfortable [John is sitting in the chair]

Here we have an adapted English as one language of the pair, using straight brackets
to indicate subordinate clauses, and thus explicate something about relative clauses.
Readers might like to discover for themselves what, if anything, may be analogised

from those three sentence pairs!

The analogy concept also fits in well with at least one model of how language
is handled in the human brain, that of Calvin and Bickerton (2000). They envisage a
Darwinian process of sentence formation, in which previous memories of the usage

of words play a role. The relation between this and analogies is obvious.

30

Using Analogy

Conclusion

I hope I have been able to whet your appetite, as well as my own,
for analogising. It has only been a matter of casting on so far, but I have great

confidence in an interesting future for this strikingly simple method.

Bibliography

Calvin, W. H. and Bickerton, D. (ZOOQ) “Lingua ex Machina”
(MIT Press)

Gazdar, G., Klein, E., Pullum, G. and Sag, 1. (1985)
“Generalized Phrase Structure Grammar”

(Basil Blackwell)

Stirk, lan C. (2001) “Analogies and Universal Grammar”
(KIRSVEIRE REFORE Vol 25)

Tan C. Stirk, 2002

31

