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Naturally ad Absurdum

Ian C. Stirk

W.V. Quine introduced an elegant method of Natural Deduction (ND) and a
straightforward method of Reductio ad Absurdum (RaA) in various editions of his
“Methods of Logic” (Quine 1974). There he used them only for first order predicate
calculus, but they can both be easily adapted to solve problems in higher order calculi,

as I have pointed out on various occasions (Stirk 1985, 1994, 1995).

However, I must now admit to brushing some difficulties under the carpet and
concealing them from my dear reader. These difficulties all involved proofs which
were plain sailing using RaA, but which had no obvious ND equivalent. This was
disturbing, because anything that can be proved using one of the two methods should

have a proof using the other, even if it is a less simple proof.

I think I have now solved these problems, and the solutions all have some-

thing in common. They are presented below with a sense of relief.

Here is a proof that the plausible looking formula (3 F)(x)Fx is indeed
logically true :
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1. (F)(3x)-Fx

2. (3x)-0y)Gy v -Gy)x 1
3. -(AyXGy Vv -Gy)a 2
4. ~(Gayv -Ga) 3
5. -Ga.Ga 4
6. ® 5

This is a proof by RaA, so the first line is the negation of the formula we are
trying to prove. It begins with a universal quantifier over predicates, so any
predicate may be chosen to instantiate it. We try to find a predicate that will result in
an inconsistency, and the one chosen, (Ay)}(Gy V -Gy), does this admirably. Line 5 is

obviously inconsistent, and this is indicated by the sign ® in line 6.

But with ND, how could we begin? These proofs generally start with some
fully quantified formula p, from which another fully quantified formula q is deduced,
thus proving that p D q is logically true. What could p be in this case? If p were a
tautology, and p D q logically true, then q itself would have to be logically true. For

instance, if we started with
1. Fav-Fa tautology

then “a” could be the name of any individual : it does not need to be flagged, and could

be universally generalized :
2. (x)(Fx vV -Fx) la

66,33

Now “a” is flagged for the first time, quite legitimately. We have a ND proof in
first order predicate calculus that (x) (Fx Vv -Fx) is logically true. Obviously the
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proof corresponds to the RaA demonstration
1. (3IX)(-Fx.Fx)

2. -Fa.Fa 1

3. ®

With that working, let us go back to (I F)(x)Fx. Beginning with a tautology

1. Gav-Ga tautology

we can go on to form a predicate by A-conversion :

2. (W)GyV -Gy)a 1 )Gy Vv -Gy)

This predicate has been flagged to the right, because although we began with a taut-

ology, the predicate of line 2 is a particular kind, not any predicate, so it cannot

undergo universal generalisation. The letter “a” hasnotbeen flagged, however, so

we can continue :

3. (OOy)GyV-Gy)x 2a

flagging “a”, and finish up with

4. (IF)X)Fx 3

just as we wanted.

The simple tautology we have been employing is an alternation, so we might

wonder what the effect of branching would be. Starting like this :
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1. -Ga v Ga tautology

2. Ga a,G

We want to consider the right hand branch. The idea of branching is to consider what-
would happen if the material in that branch were true : in this case, what would happen
if some individual called “a” had a property whose name is “G”. We certainly could
not universally generalise either “a” or “G”. In fact, the effect of considering only one
branch is to flag the letters occurring in it, as has been done with “a” and “G” above.

We could continue with existential generalisation :

3. (Ix)Gx 2

and then bring the branches back together :

/

4, Ga D (3Ix)Gx 1,3 {a,G}

The alternation has been replaced with a conditional, taking advantage of the tautol-

ogy

PpVq.=.pDgq

The process of rejoining the branches is itself justified by the tautology

pYqQ.pDOr.gqDOs. D.1rVs
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What we have ended up with is a proof that Ga D (3 x)Gx is logically true. But there
is more. Since we have got something logically true, “G” could now be the name of
any predicate, and “a” that of any individual. We could say that they have both been
“deflagged”, and the curly bracket notation to the right of line 4 is meant to illustrate

this. Instead of stopping at line 4, we could continue :

5. WGy D (IXGx) 4a
6. FYy)Fy D (Ix)Fx) 5G

ending up with another logically true formula.

Here are another couple of examples :

1. -Ga Vv Ga tautology

2. ~Ga a,G 5. Ga a,G
3. (3x)-Gx 2 6. (Ix)Gx 5

4. (IF(3x)-Fx 3 7. (AF(Ix)Fx 6

\

8. (FF)(3x)-Fx ‘V (IF)(3x)Fx

1. -Ga Vv Ga tautology

P

2 4. Ga a,G
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3. (Ix)-Gx 2 5. (3Ix)Gx 4
6. (3x)-Gx v (I)Gx 3,5 {G}
7. BOIx)»Fx Vv (IOFx] 6G

Trivial examples, maybe, but this technique of starting with a tautology may have
some value in more complex situations — I just haven’t thought of any yet! Notice that
if we start with a tautology of the form p D p, and deduce g from p in the right hand
branch, to proi/e the logical truth of p D ¢, we are performing the same task as Quine
does with his method of conditionalisation in Natural Deduction (Quine, 1974, p205).
I think the method of splitting and rejoining branches illustrated above is easier to
handle than Quine’s system of asterisks, and shows clearly the relation with branching

in RaA.

Other problems involving modal prepositional calculus (MPC) seemed quite
impossible to solve. It is easy to adapt RaA to MPC, as the following example shows.
We want to prove the logical truth of the formula Lp . M(p D q) . © Mgq. The necess-

ary premises will be

1. Lp
2. M({(p>Dq
3. L-q

There is of course an analogy between the necessity operator L and universal quanti-
fication, and between the possibility operator M and existential quantification.
This suggests that we “instantiate” M with a different possible world, represented by

a rectangle as follows :
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4. pDg 2
5. p 1
6. -q 3
7. q 4,5
8. ® 6,7

This is a world where p O q is true. But L may be instantiated in any accessible world,

including this one. An inconsistency is soon reached, completing the proof.

Next we try to show that Lp D LLp :

1. Lp

2 MM-p

3 M-p 2

4 -p 3

5 p 1
6. ® 4,5

In order to reach a world where —p is true, we have to go via the world containing
M-p. Now if the world containing —p is accessible from the starting world, there will
be an inconsistency, as shown by the lines in bold type. This means that the
accessibility relation has to be transitive. If it is not transitive, there is no
inconsistency.

Now we try to adapt ND to these proofs. The first one is straightforward
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1 Lp

2. M({(p>Dqg

6. Mg 5
3. p>oq 2
4. p 1 *
5. q _ 34

After line 2, we go to a world where p D q is true. The asterisk to the right of it is to
remind us of flagging : this world may not be “universally generalised”. After line 5,
we can go back to the original world and write the deduction Mq as line 6. This is the

analogue of existential generalisation.

The other proof does not go so smoothly, however. Off we go with

1. Lp

This time there is no asterisk to the right of the new world, as we were “instantiating”
L. The analogue of universal generalisation can be applied here —but to what? It seems

impossible to get any further, certainly nowhere in the direction of the LLp we want.

It finally dawned on me that introducing a tautology can do the trick in this

case as well as in the previous ones. Here is the whole proof :
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1 Lp
9. LLp
2 p 1
3 -Lp v Lp tautology
4 M-p Lp 3
5. -p 8. Lp 4
6. p 1
® 5,6

Again bold type shows steps that are only possible if the accessibility relation is

transitive. In that case, the left hand branch after line 4 ends up in an inconsistency,

leaving only the right branch, so Lp has to be true. In that case, we obtain LLp in line

9 by “universal generalisation”. There is a curious admixture of RaA in this proof.

Finally let us try out the formula Mp D LMp. With RaA we get this :

1. Mp
2. ML-p
3. p 1
-P
6. ® 3,5

4. L-p
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Here we “instantiate” two different worlds, one for the M in line 1, the other for the M
in line 2. If the world containing line 3 is accessible from the world containing line 4,
then an inconsistency arises as shown in the bold lines. This will be the case if the
accessibility relation is symmetric as well as transitive, for then all the worlds will

be accessible to each other.

Now let us see if introducing a tautology into a ND proof will do the trick

here too :

1. Mp

10. LMp 9

2. p 1 * 3. ~-MpvMp  tautology

7. -p 5

8 ® 2,7 4. L-p v Mp3
5. L-p 6. Mp

9. Mp 68

The world to the left is flagged with an asterisk, but not the world to the right, since
tautologies have to be true in all worlds. If the world on the left is accessible to the one
on the right, then the lines in bold type follow, culminating in the “universal generali-

sation” of line 10.

The concept of Natural Deduction proofs in which certain branches are
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nullified by an inconsistency is somehow intriguing. I have a hunch that they could be

useful in more substantial examples than the ones above. Watch this space!

In their classic work “An Introduction to Modal Logic”, Hughes and
Cresswell (1968) prove that formulae of modal prepositional calculus are logically
true by demonstrating that they cannot be false. This of course is different from RaA,
which proves that some conjunction of formulae cannot be true. However, Hughes and

Cresswell’s method would be difficult to apply to predicate calculi.

They also show how a certain system of natural deduction may be adapted to
deal with modal prepositional calculus (Hughes and Cresswell, 1968, Appendix I).

However this system is nothing like so elegant as Quine’s.
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