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Natural deduction really can be natural

Ian C. Stirk

Introduction

The notation I use in this paper is that of Whitehead and Russell (1910},
including the dot notation as revised by W.V. Quine in earlier editions of his Methods

of Logic (for instance Quine, 1974). It is both elegant and practical.

In that same work, Quine uses a method of proof in symbolic logic which he
calls “the Main Method”. It is a kind of reductio ad absurdum. RaA is a convenient

abbreviation for this. Observe the following three examples:

o=
b+
o
_
=
=

1. (3x)Fx 1 (x)Fx 1 (3x)Fx
2. (3Ix)-Fx 2 (x)-Fx 2 (x)-Fx
3. Fa 1 3 Fa 1 3 Fa 1
4. -Fb 2 4 -Fa 2 4 -Fa 2
5 ® 3,4 5 ® 34

In example (i), we assume that the first two lines, the premises, are both true

together. The first line states that at least one individual is F, so we can pick some
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Natural deduction really can be natural

name for that individual, or one of those individuals. We choose the name “a”, and
write “Fa” as line 3. The number 1 to the right shows that line 3 was derived from
line 1. This kind of derivation is called “existential instantiation”, or El for short.
Line 2 states that at least one individual is not F. Clearly lines 1 and 2 are not
inconsistent, for the individual or individuals which are F and ~F may be different
ones. We show this by selecting a different name, “b’, to instantiate the second line.

We end up with Fa and —Fb, and there is nothing absurdum about those.

In example (i), however, the premises state that all individuals are F and that all
individuals are —F, which is obviously inconsistent. Line 3 here is a case of “universal
instantiation”, or Ul Clearly if all individuals are F, we could pick any one of
them to receive the name “a’, as in line 3. We can also use the name “a” for Ul on
line 2, since all individuals are involved, and one of them is already named "a".
Thus we obtain the absurdum lines 3 and 4. Line 5 contains a convenient symbol

for inconsistency, and the numbers to the right of it show just which lines were

inconsistent.

Example (iii) is a mixed case. We choose the name “a” for EI on line 1. Going
from line 2 to line 4 is a case of UL, so we can choose any individual, including the

one already named “a”. An inconsistency again arises.

Even such simple examples indicate the power and simplicity of RaA. The
main rule of it is just that each existential quantifier we come across must be
instantiated with a new letter, because a different individual with a different name
may be involved. Universal quantifiers can clearly be instantiated with whatever
letter we like, including those that are already the names of some individuals. It is
best to follow those rules strictly, even though in example (iii) we might have used

o

UI on line 2 first, thus using the name “a” for any individual, and then used EI on
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line 1 using the same name for some particular one. But strict application of the rules
just means that existential quantifiers should be instantiated before universal ones

whenever possible. It is better to be strict rather than compromise and fall into error.

There is an alternative method of proof called “natural deduction”, ND for
short. The concept seems pretty natural at first sight. It is to begin with some premise
or premises and see what can be deduced from it or them. To start with a trivial
example, given the premise (x)Fx we should be able to deduce ( =x)Fx from it,
since if something is true for all individuals it must also be true for some of them. A

deduction like the following seems plausible:

-+

1 (x)Fx
2. Fa 1
3 (3x)Fx 2

The premise, line 1, states that all individuals are F, so we can pick any one and give
it the name “a”, as in line 2. Line 2 is fairly deduced from line 1. If line 2 is true, then
clearly we can deduce line 3: if F is true of the individual named “a", it has to be true

of something.

The example above was labelled (i), and there are three other basic possible

deductions to go with it:

ii iii v

1. (2x)Fx 1. (x)Fx L. (3x)Fx

2. Fa 1 2. Fa 1 2. Fa 1
3 (Ix)Fx 2 3. (x)Fx 2 3. (x)Fx 2
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Natural deduction really can be natural

Cases (ii) and (iii) are clearly all right, as they just go there and back again, as it
were. But case (iv) cannot be right. Just because some individuals are F, we cannot

deduce that all of them are.

In ND, we are clearly adding quantifiers as well as removing them. We could call the
process of adding an existential quantifier “existential generalisation”, EG, and that
of adding a universal quantifier “universal generalisation”, UG. Using those terms,
the case we want to avoid in ND is EI followed by UG of the same letter, which
happens in case (iv). A simple way to avoid that case is to bear in mind, or “flag”, to

use Quine’s term, the letters involved in EI and UG, like this:

i i iv

(3x)Fx 1 (x)Fx 1. (Ix)Fx

2. Fa la 2. Fa 1 2. Fa la
3. (AxIFx 2 3. (x)Fx 2a 3. (x)Fx 2a

—

This is because an instance of EI is rather special. It may be a possible name of only
some individuals, or only one. Similarly in UG we need to be sure that the name
involved could be the name of any individual. All will be well as long as a letter is
not flagged twice in a deduction, as “a” is in example (iv). That would mean trying
to go from “at least one” to “all”, which of course is not proper. Examples (ii) and (jii)

are all right, as is example (i), where no flag is needed.

So ND is already more complicated than RaA, despite its “naturalness”. Quine
used ND exclusively in his earlier work, but later abandoned it for RaA, not so
surprisingly.

In fact there is yet another complication in ND, which will be investigated in
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the next section.

RaA and ND compared

A classic problem that illustrates the advantages and disadvantages of RaA and

ND is to prove that while

(3x) (y)Rxy D (y) (Ix)Rxy
is logically true,

(y)(3x) Rxy D (3Fx) (y) Rxy
is not.

The two symbolic sentences can receive a straightforward interpretation
in ordinary language. The first could translate “If someone loves everyone, then
everyone is loved by someone”, which rings true. The second sentence, in that case,
would be “If everyone is loved by someone, then someone loves everyone”. That
doesn’t sound right: "Someone loves everyone” suggests just one person doing all
the loving, while “Everyone is loved by someone” could mean that each person has a

different admirer.

Let us try to deal with these using RaA. There will be two premises in each
case, one being the left hand side of the conditional, the other the negation of the
right hand side. In the first case, the negation will be — (y) (Zx)Rxy, or (3y) &)

-Rxy if we move the negation to the right of the quantifiers. The RaA might start
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L. (3x) (y)Rxy

2. (3y) (x)-Rxy

3. (y)Ray

4. (x)-Rxb 2

The existential guantifiers have been instantiated with two different letters, according
to the rule, and now only universal quantifiers are left, which can be instantiated as
we please. We want to reach an inconsistency if we can, and instantiating the (y)

of line 3 with “b”, and the (x) of line 4 with “a”, will get us one:

Rab 3
6. -Rab
7. ® 5,6

Now for the case of “If everyone is loved by someone, then someone loves everyone”.

The RaA could start as follows:

L. (y) (3x)Rxy -

2. (x) (Fy)-Rxy

3. (3x)Rxa 1
4. Rba

5. (Zy)-Rby 2

1t is clear, though, that we cannot reach any inconsistency. A universal quantifier has
to be instantiated first, and the two existential quantifiers must later be instantiated
with different letters, so there will be three different letters around. In the working
above, the (Jy) of line 5 cannot be instantiated with “a”, which would be the only

way to get an inconsistency with line 4.
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The example illustrates a potential difficulty with RaA. In this simple case,
it is easy to show that there cannot be an inconsistency, but in more complicated
cases it might be much more difficult. We might wonder whether there really was no
inconsistency, or whether we had missed some possible instantiation. Also in RaA
we have to guess some conclusion to start with in order to find out whether or not
its negation is inconsistent with the premises. It would be nice to have some way of
just exploring: beginning with some premises, and playing around with them to see

where they lead.

ND promises to let us do just that, so let us try the deductions above with

that method. “If someone loves everyone then everyone is loved by someone” is

straightforward:

1. (Ix) (y)Rxy

2. (y)Ray la
3. Rab 2
4. {Ix)Rxb

5. (y) (3x)Rxy 4b

That is encouraging: the quantifiers were reversed in the working, and the rule about

only flagging a letter once was followed. The difficulty arrives with the following:

1. (y) (3x)Rxy

2. (3x)Rxa 1
3. Rba 2b
4, (y)Rby 3a
5. (3x) (y)Rxy 4
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Again the flagging rule has been followed, but the result has to be wrong! It needs a
bit of subtle thought to work out where that deduction fails. In going from line 1 to
line 2, “a” could be the name of any individual, as it came from the instantiation of a
universal quantifier. In going from line 2 to line 3, however, “b” is the name of some
particular individual or individuals, not of any. Line 3 states that “b” loves “a”, to use
the ordinary language illustration. Now, however, “a” may not be the name of any
individual, but only of those that are loved by “b". The existential instantiation that
provided line 3 had an effect on the reference of “a” also. There is a trick to avoid

this problem, which can be called the “alphabet rule:

The flagged letter of any line must be alphabetically later than any free letter in

the same line.

Here “free” means that the letter is not in the scope of some quantifier using the same
letter for its variable name. Thus in line 2 above, “a” is free but "x” is not, while in
line 3 both “a” and “b” are free. Clearly in line 4 the alphabet rule has been broken:
“a” is flagged, but an alphabetically later letter, “b", is free in line 4. Following the
alphabet rule would prevent us from deducing anything from line 3, apart from
replacing the quantifiers in the same order and getting back to line 1, a pointless

exercise, or proceeding with an existential quantifier as follows:

1. (y) (3x)Rxy

2. (Ax)Rxa 1
3. Rba 2b
4. (3y)Rby 3
5.

(Tx) (Iy)Rxy 4

In that case, “a” does not need to be flagged.
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A bit of thought shows us that the alphabet rule prevents a universal quantifier
being moved to the right of an existential quantifier. But the whole procedure is

rather unnatural, even if it is easy enough to follow in practice.

Although Quine would have hated the idea, it is quite straightforward to adapt
RaA as a method of proof in modal logic, using the analogy between “M" and “(=)”
and “L" and “(x)". (I use “M” to mean “true in at least one accessible possible
world” and “L" to mean “true in every accessible possible world”, following Hughes
and Cresswell in their standard text, Hughes and Cresswell, 1996.) As an example,

I show that MLp D Lp is logically true in S5:

1. MLp 2
2. M-p
-P
P
® 35
1
4. Lp 1

Possible worlds are indicated by rectangles. The one on the left contains the two
premises, the left hand side of the conditional and the negation of the right. The next
step is to “instantiate” the "M” of line Z with another possible world on the right.
In this world, “-p” is true. The world is also labelled “2” at the top left, to show its
origin. Next the “M" of line 1 is instantiated with world 1, where Lp is true. But since
in S5 all worlds are accessible to each other, if “Lp" is true in one world, “p” has to

be true in every one. Hence line 5 in world 2, which provides the inconsistency. An
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arrow connects worlds 1 and 2, to show accessibility — not really necessary in S5.

RaA is thus easy to apply to modal logic. But what about ND? What could
possibly be the analogue of flagging, or the alphabet rule? A few years ago I
struggled to find some way of using ND with modal propositional logic, and
succeeded to some extent with S5. The method was clumsy and 1 soon gave up on
it. It is described in Stirk (2005). Recently, however, 1 stumbled across a way of

making ND in general a whole lot more natural, as described in the next section.

More natural natural deduction

Let us go back to what we can deduce from(3x) (y) Rxy, “Someone loves everyone”.
If we name the individuals in question al, a2 and so on, we could make a deduction

as follows:

1. (Ix) (y)Rxy

N

2. (y)Ray 1 3. (y)Ray 1

The branches are meant to indicate alternatives: in the first branch, it is a; who loves
everybody, in the second branch it is a,, and there may be other possibilities, as
shown by the third branch and the dots. At least one of the branches must be true.

This use of branching to indicate alternation is often convenient in RaA:
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1. (x)-Fx
2. (x)-Gx
3 (Zx) (Fx V Gx)
4. Fa V Ga 3
5 Fa \SGa
-Fa 1 -Ga
7 ® 5,6 10. ® 3,9

Here both branches end in inconsistency, so the three premises are inconsistent. Now

the previous ND branching could continue:

1. (3x) (y)Rxy

2. (y)Rayy 1 3 (y)Ray 1
4, Rab 2 5 Rayb 3
6. (Ix)Rxb 4 7. (3x)Rxb 5
8. (y) (3x)Rxy 6 9 (y) (3x)Rxy 7

| /

10. (y) (3x)Rxy

All the branches end up the same, so they can be collapsed into one, the conclusion.
Steps like the one from line 4 to line 6, an existential generalisation, are always
possible because Fa O (Zx)Fx is logically true. It is impossible for the left hand
side of the conditional to be true while the right is false. Steps like that from line

6 to line 8, a universal generalisation, are justified because “b" itself arose from a
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universal instantiation in the same branch.

That all seems reasonable, so let us have a look at the more problematic case,

what we can deduce from (y) (3x)Rxy:

1. (y) (3x)Rxy

2. (3x)Rxa 1

3. Rbla 2 4. sza 2

Now we see right away that universal generalisation of “a” is impossible in any

particular branch, since they may not all be true. One way to complete a deduction

would be
(y) (3x)Rxy
2. (Fx)Rxa 1
3. Rbla 2 4, sza 2

(3x)Rxa 3 6. (Ix)Rxa 4

7. (Ix)Rxa
(y) (Ix)Rxy 7

This is the pointless deduction which takes us right back to the starting point. The

end points of the branches become identical in line 5 and line 6, so the collapse
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into one in line 7 is justified. Now that there is again only a single branch, the final
universal generalisation can be allowed, since “a” came from a universal instantiation
further back on the same branch. Another possible deduction is the slightly more

interesting

. {y) (Fx)Rxy
2. (3x)Rxa 1

bea 2 4 Rbga 2
5. (3y)Rbyy 3 6. (Zy)Rbyy 4

(3x) (Jy)Rxy 5 8. (3x) (3y)Rxy 6

9. (3x) (Fy)Rxy

where existential generalisation is used on each separate “a” in each separate branch.

Finally the branches become identical and can be collapsed.
The difficulty of the alphabet rule has been solved! Branching is much clearer
than flagging in making the possibilities for generalisation apparent. The rules for

the new style of ND can be summed up as follows:

Universal instantiation (UI) A universal quantifier may be instantiated by any

letter in the next line of the same branch.

Existential instantiation (EI)  An existential quantifier may be instantiated by any

letter, but must also be instantiated by other letters
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in other branches.

Existential generalisation (EG) Any free letter in any branch may be existentially

generalised.

Universal generalisation (UG) A letter that came from a previous Ul in the same

branch may be universally generalised.

Branch collapsing (BC) Branches that end with identical lines may be

collapsed into one branch.

All that seems natural enough. Let us see if there are analogues in modal logic

to this new style of ND. What can be deduced from MLp in S57

1. MLp

So there we are, a world in which MLp is assumed to be true. The “M” can be
instantiated with another world, but allowing also for the possibility of other worlds,

in the spirit of the EI rule:

1. MLp 1
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There is at least one accessible world in which Lp is true, and other worlds which we
so far know nothing about. Both the worlds illustrated have “1"” at the top left, since

both represent the instantiation of the “M” in line 1. Now we can continue

1. MLp 1
3. P 2
6. Lp 345 2. Lp 1
p 2
1
5 p 2

All worlds are accessible to one another, so we can of course deduce lines 3 and
4 from line 2. Also we can deduce line 5 from line 2, in another world. In fact we
see that “p” is going to be true in all worlds, just because of the Lp in line 2: That
means we can go back to our original world, and deduce line 5, Lp, there, since in all
accessible worlds p is true. Natural enough!

Let us try a more complicated example. We can show that

LpDg D.LpDlLg

is logically true. Here is the proof:
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1. L(pDq)
3. Lp D Lp tautology 2. pDgq 1
| 5  p 4
4. Lp 6. q 2,5
Lg 6
8. Lp D Lc/1 7

The world on the right can be any world in this case, so there is no complication
there. Notice also that nothing is assumed about the nature of the accessibility
relation. The same proof will go through in any modal system, including K. It
is often useful to introduce a tautology as a line in a proof, as in line 3 above.
Tautologies clearly have to be true in any possible world. Branching is a way of
dealing with an alternation, and line 3 is an alternation in disguise, since Lp O
Lp is equivalent to ~Lp V Lp. But nothing is deduced from the left hand side of
the alternation in the proof, so there is no point in changing the conditional to its

alternation form.

Introducing tautologies can be very useful in ND, and in fact enables us to
prove one or two things which cannot be proved by RaA, for instance the logical
truth of (x)Fx = -(3x)-Fx. This is best done in two parts, firstly showing that
(x)Fx D -(Ix)-Fx:
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1. (x)Fx
2. -(3x)-Fx Y (3x)-Fx tautology
-Fa 4. -Fb
Fa 1 6. Fb 1
® 35 8 ® 4,6
9. -(3x)-Fx

On the right hand side of the alternation, EI takes place allowing for various
possibilities. However, every one of these branches has to end in inconsistency,
because of line 1. Thus only the left hand branch remains. The proof is certainly ND,

of course, but it has an odd admixture of RaA!
Now to show that - (3x)-Fx D (x)Fx:

1. ~(3x)-Fx
2. -Fa vV Fa tautology
3. (3Ix)-Fx 2
4. ® 1,3
5. (x) Fx 2

Another cunning trick is illustrated here. Because line 2 is a tautology, the name “a”
could refer to any individual. When the left hand branch turns out to be inconsistent,

only the right remains, so UG is justified.

The analogous formulae in modal logic can also be proved, starting with Lp=>-M-p:
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1. Lp

2. Mp V M-p tautology
3

3 M-p

4 -p 3

8 -M-p P 1
7 & 4,6
3
5 p 1

Here the M-p of line 3 is “instantiated” with a couple of worlds, one where —p is true,
and another where we are not sure. But clearly, given line 1, any world where —p is
true would be inconsistent, so the right hand branch of the tautology is inconsistent

too.

Now for-M-p D Lp:

1. -M-p 2.p V -p tautology
5. Mp 4 | \
6. ® 1,5 3p 4. -p
8. Lp 3 7. ® 6

I'm not sure I yet have the best notation for this, but the meaning is clear, [ think.
Line 2 in the world on the right is a tautology, so that world could be any world.
However, when we consider the branches separately, we may have something true

in one or more worlds or none at all. If the right hand branch, line 4, is true in some
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possible accessible world then line 5 will be true, but it is inconsistent with line 1.
Thus there can be no world where line 4 is true — only the left hand branch of the

alternation remains. Thus p must be true in every accessible world, hence line 8.

The new style of ND seems to work very well with modal propositional logic.
We already know it works with first order predicate calculus, but we must make sure

it will work also with higher order calculi. Here is a very straightforward example:

1. Fa Vv -Fa tautology
2. (3X)Xa 1 3. (3X)Xa 1
4. (3X)Xa 23

(x)(TIX)Xx 4

Here we begin again with a tautology, so any individual might be the one called “a”,
and any predicate the one called “F". In lines 2 and 3 EG is applied to the predicate
of the particular branch: F in the left hand, -F in the right. The branches then collapse
to give line 4, and UG can apply to the one instance of “a”. The proof shows that
(x) (3X) Xx is logically true, and of course it is plausible. For any individual, there

should be at least one predicate which is true of it.
A word about notation here. I am using X, Y, Z as predicate variables and F and
G as predicate names. In previous work I have used F and G ambiguously as both

variables and names, as do many writers. But this seems undesirable.

It should also be the case that ( 3X) (x)Xx, that is, there is at least one predicate

which is true of everything. It is difficult to see what kind of tautology it could be
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deduced from, however. For if we had the name “a” in both branches, the branches
would need to collapse before we could use UG on it, and get (x)...x, whatever the

dots might represent. But we can prove (3X) (x)Xx like this:’

1. Fa V -Fa tautology
2. (1x) (Fx V -Fx)a 1
3. (x) (Ax) (Fx V -Fx)x 2
4. (3X) (0 Xx 3

This time, in going from line 1 to line 2, the alternation is collapsed by forming
a A -expression. UG can then give line 3. The A -expression is not a general case
that UG could be applied to, but we can use EG on it to give line 4, the result. It
seems then that the A notation represents not just a convenient abbreviation of more

complex expressions, but a genuine increase in power.
ND seems to work with higher order calculi, then, so let us use it on a more
complicated example. Identity is an important relation, and it seems to be adequately

described by the two axioms (x) (x =x) and (x)(y) (Fx.x=y. D Fy). The

second of those is generally known as Leibniz’ Law.

If we can quantify over predicates, it looks plausible that identity could actually be

defined as follows:

W@ hkx=y. = X Xx=Xy)]

It turns out that this definition is actually equivalent to the conjunction of the two

axioms. With quantification over predicates, Leibniz’ Law can be written as
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X)) G Xx.x=y. D Xy)

and using ND, it is easy enough to show that the axioms imply the definition:

(x) (x=x)
X)x)(y) (x=y.Xx.DXy)
3. a=b.D.a=b tautology
4 \az b. 3
5. X G x=y.Xx. DXy) 2
6. a=b.Fa.DFb 5
7 Fa D Fb 4,6
8 b=a 4, symmetry
9. b=a.Fb. D Fa 5
10. Fb D Fa 8,9
11. Fa = Fb 7,10
12. (X) (Xa = Xb) 10
13. a=b.D(X) (Xé Xb) 312
14. (X) (Xa = Xb) D (X) (Xa = Xb) tautology
15. (x) ()la = Xb) 14
16. (Ax)(a=x) a= (Ax)(@a=x) b 15
17. a=a.=.a=b 16
18. a=a 1
19. a=b 17,18

200 (X)Xa=Xb) D.a=b 14,19

Il
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2. a=b.= (X) (Xa = Xb) 13,20
22.  WWhkx=y. = X Xx = Xy)] 21

The proof has been abbreviated slightly. In line 8, symmetry has been invoked to
deduce b = a from a = b. But the symmetry of identity can easily be deduced from
the axioms. In line 22, UG has been applied to both “b” and “a” simultaneously,

clearly not a problem.

It is also easy enough to show that the definition implies the axioms. It is most
straightforward to deal with the axioms separately. First it is shown that Leibniz’

Law follows from the definition:

1. X (y) [x=y.= X) Xx = Xy)]

2. Fa.a=b.D.Fa.a=b tautology
3. Fa.a=b 2

4, a=b. = (X)(Xa = Xb) 1

5. (X) (Xa = Xb) 34

6. Fa = Fb : 5

7. Fb 3,6

8. Fa.a=b. D Fb 2,7

9. XXy x=y.Xx. D Xy)

Going from line 8 to line 9, there are three instances of UG compressed into one, but

there is clearly no problem with this.

It is even easier to show that the definition of identity implies (x) (x =x):
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1. ) (y) x=y.= X Xx = Xy)]

2. a=a. = (X) (Xa = Xa) 1

3. Fa = Fa . tautology
4. (X) (Xa = Xa) 3

5. a=a 24

6. x) (x=x) 5

No special comment needed there.

Now everything can be brought together in the following rather unfortunate result:

1. x) @) x=y. = X Xx = Xy)] definition
a=b.= (X)(Xa = Xb) 1
3. a=b.D.a=b tautology
AN
4. a=b
5. (X) (Xa = Xb) 24
6. (Ax)LG@=xa= (Ax)La=x) b 5
7. L(a=a) = L(a=b)
Fa = Fa tautology
: (X) (Xa = Xa) 8
10. a=a.= (X)(Xa = Xa) 1
11, a=a 8,10
12. L(a=a) 11
13. L{a=b) 7,12
/
14. a=b.DL{a=b) 3,13
15, x{ylx=y. DOLkx=y)] 14
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That demonstrates that if two names belong to the same individual, then they
necessarily belong to that individual. Notice here that no rectangle has been placed
around the main world, an obvious saving of effort. Also the other world cited could

be any world, as only a tautology is assumed to be true in it.

There is nothing wrong with the proof, but the result certainly seems strange.
“George Orwell” and “Eric Blair” are two names for the same person in this world,
but why should that mean that they refer to the same person in every possible world?
Surely in the worlds of our imaginations at least they could be different.

There could be even worse. If identity of individuals is defined by

K yhk=y. = X Xx = Xy)]
then maybe we could use a similar idea for the identity of predicates:

XM X=Y. = (X)(XX = XY)]
where Gothic letters are used for predicates of predicates. Distinguishing a hierarchy
of predicates is one way of avoiding the deadly problem known as Russell’s
Paradox. If there were no such hierarchy then we could imagine sentences such as

FF, meaning “F is F", or —-FF, meaning “F is not F” and so on. Then we would be led

to this:
L (33X M XY =-YY) VvV (X)(3Y) (XY = YY) tautology

2. (Y)(FY = -YY) 1 5 FYV)((A(zny=YY) 1
3. FF = _FF 2 6. (12)(-ZZ)F = FE) 5
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4 ® 3 7. -FF = FF
8 ©® 7

Here we have a tautological alternation either branch of which leads to an
inconsistency. A hierarchy of predicates, predicates of predicates and so on is the
most obvious way to avoid this paradox, and it is adopted by writers like Richard
Montague in their work on language. Unfortunately it is not a very satisfactory
solution from the mathematical point of view, since it leads to a hierarchy of
arithmetics: we need one set of numbers for counting individuals, another for

counting predicates and so on. The problem still has no clear solution.

Anyway, if we do decide to define identity of predicates by
X)W [X=Y. = (%) (XX= XY)], similar definitions would obtain for predicates
on all levels. The difficulty is that just as we proved (x) (y)[x =y D L (x=y)]
above, we would obviously be able to prove (X)(Y)[X=Y.DL (X=Y)],
(X)(YV)[X =Y. DL(X =Y)] and so on ad infinitum. Every possible statement

of identity would be necessarily true, and every possible world would be exactly the

same as every other, a weird state of affairs!

Luckily it is possible to define the identity of predicates in a different way:
XWX=Y.=x&Xx=Yx]

that is, predicates are identical if and only if they are true of just the same

individuals. This is treating predicates as sets of individuals, clearly. This definition

could also be extended up the hierarchy: (X)(Y) [X =Y. = (X) (XX = YX)]

and so on.
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Anyway, how are these alternative definitions related? It would be bad news indeed
if they were equivalent: we would be stuck with the problem of only one possible

world. Observe the following proof in ND:

1. (¥)(¥F= XG) D (X)(XF= XG) tautology
2. (A2)(x)(Fx = Zx)F=(12) (x) (Fx = Zx)G 1
3. WFx=Fx) = x)(Fx = Gx) 2
4. Fa = Fa tautology
5 (x)(Fx = Fx) 4
6. (x)(Fx = Gx) 35

7. (X)(¥F= %¥G) D x)(Fx = Gx) 1,6

8 (WI(X)(XF= XY) D () (Fx = Yx)] 7

9. (X)) (X)) (XX = XY) D (x)(Xx =Yx)] 8

The proof begins with a tautology, so line 7 is logically true, which justifies the two
uses of UG at the end. Clearly the proof shows that the definition

X)W [X=Y.= (%) (¥X = XY)] implies the other definition
XWX=Y.

if identical predicates were necessarily identical, they would have to be true of

(x) (Xx = Yx)]. This is not very surprising, because clearly

exactly the same sets of individuals, since identical individuals are necessarily

identical too.

Given that, we try the following rather anxiously:

1. (x) (Fx = Gx) ) (x) (Fx = Gx)
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But unlike in the previous proof, there is nowhere to go with the right hand side
of this. We can construct A -expressions at a certain level of the hierarchy out of
entities at the next lower level: for instance, ( 4 x) (_.x..) is a predicate formed with an
individual variable, ( 1 X) (_.X..) is a predicate of predicates, and so on. But here we
have only an individual variable to instantiate, so no A -expression is possible, and

thus no way of reaching the other definition.

That is quite a relief. The fact that identical predicates are not necessarily identical
gives us one way round the problem of necessarily identical individuals. Instead of
individual names, we might think of a unique conjunction of predicates which are
true of an individual. The conjunction could thus pick out some particular individual
in one world, but a different individual in another. Such an approach is considered in

chapter 17 of Hughes and Cresswell (1996).

Another possibility is to bring in functions from possible worlds to individuals. The
function could then pick out different individuals in different worlds. This is the

approach taken by Richard Montague in his (1973).

Conclusion
I think I have been able to show that a more natural way of regarding natural
deduction can provide a useful tool for students of higher order predicate calculi and

modal logic, a tool which nicely accompanies reductio ad absurdum.
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