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Natural deduction really can be natural 

Ian C. Stirk 

Introduction 

The notation I use in this paper is that of Whitehead and Russell (1910), 

including the dot notation as revised by W.V. Quine in earlier editions of his Methods 

of Logic (for instance Quine, 1974). It is both elegant and practical. 

In that same work, Quine uses a method of proof in symbolic logic which he 

calls "the Main Method". It is a kind of reductio ad absurdum. RaA is a convenient 

abbreviation for this. Observe the following three examples: 

II 
Ill ••• 

1. （ヨx)Fx 1. (x)Fx l. （ヨx)Fx

2. （ヨx)-Fx 2. (x)-Fx 2. (x)-Fx 

3. Fa 1 3. Fa 1 3. Fa 1 

4. -Fb 2 4. -Fa 2 4. -Fa 2 

5. R 3,4 5. R 3,4 

In example (i), we assume that the first two lines, the premises, are both true 

together. The first line states that at least one individual is F, so we can pick some 
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name for that individual, or one of those individuals. We choose the name "a", and 

write "Fa" ¥lS line 3. The number 1 to the right shows that line 3 was derived from 

line 1. This kind of derivation is called "existential instantiation", or EI for short. 

Line 2 states that at least one individual is not F. Clearly lines 1 and 2 are not 

inconsistent, for the individual or individuals which are F and -F may be different 

ones. We show this by selecting a different name, "b", to instantiate the second line. 

We end up with Fa and -Fb, and there is nothing absurdum about those. 

In example (ii), however, the premises state that all individuals are F and that all 

individuals are -F, which is obviously inconsistent. Line 3 here is a case of "universal 

instantiation", or UI. Clearly if all individuals are F, we could pick any one of 

them to receive the name "a", as in line 3. We can also use the name "a" for UI on 

line 2, since all individuals are involved, and one of them is already named "a". 

Thus we obtain the absurdum lines 3 and 4. Line 5 contains a convenient symbol 

for inconsistency, and the numbers to the right of it show just which lines were 

inconsistent. 

Example (iii) is a mixed case. We choose the name "a" for EI on line 1. Going 

from line 2 to line 4 is a case of UI, so we can choose any individual, including the 

one already named "a". An inconsistency again arises. 

Even such simple examples indicate the power and simplicity of RaA. The 

main rule of it is just that each existential quantifier we come across must be 

instantiated with a new letter, because a different individual with a different name 

may be involved. Universal quantifiers can clearly be instantiated with whatever 

letter we like, including those that are already the names of some individuals. It is 

best to follow those rules strictly, even though in example (iii) we might have used 

UI on line 2 first, thus using the name "a" for any individual, and then used EI on 
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line 1 using the same name for some particular one. But strict application of the rules 

just means that existential quantifiers should be instantiated before universal ones 

whenever possible. It is better to be strict rather than compromise and fall into error. 

There is an alternative method of proof called "natural deduction", ND for 

short. The concept seems pretty natural at first sight. It is to begin with some premise 

or premises and see what can be deduced from it or them. To start with a trivial 

example, given the premise (x) Fx we should be able to deduce (ヨx)Fx from it, 

since if something is true for all individuals it must also be true for some of them. A 

deduction like the following seems plausible: 

．
 

1

2

3

 

(x)Fx 

Fa 

（ヨx)Fx

1

2

 

The premise, line 1, states that all individuals are F, so we can pick any one and give 

it the name "a", as in line 2. Line 2 is fairly deduced from line 1. If line 2 is true, then 

clearly we can deduce line 3: if Fis true of the individual named "a", it has to be true 

of something. 

The example above was labelled (i), and there are three other basic possible 

deductions to go with it: 

11 ．． 
Ill IV 

1. （ヨx)Fx 1. (x)Fx 1. （ヨx)Fx

2. Fa 1 2. Fa 1 2. Fa 1 

3. （ヨx)Fx 2 3. (x)Fx 2 3. (x)Fx 2 
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Cases (ii) and (iii) are clearly all right, as they just go there and back again, as it 

were. But case (iv) cannot be right. Just because some individuals are F, we cannot 

deduce that all of them are. 

In ND, we are clearly adding quantifiers as well as removing them. We could call the 

process of adding an existential quantifier "existential generalisation", EG, and that 

of adding a universal quantifier "universal generalisation", UG. Using those terms, 

the case we want to avoid in ND is EI followed by UG of the same letter, which 

happens in case (iv). A simple way to avoid that case is to bear in mind, or "flag", to 

use Quine's term, the letters involved in EI and UG, like this: 

II lll IV 

1. （ヨx)Fx l. (x)Fx 1. （ヨx)Fx

2. Fa 1 a 2. Fa 1 2. Fa la 

3. （ヨx)Fx 2 3. (x)Fx 2a 3. (x)Fx 2a 

This is because an instance of EI is rather special. It may be a possible name of only 

some individuals, or only one. Similarly in UG we need to be sure that the name 

involved could be the name of any individual. All will be well as long as a letter is 

not flagged twice in a deduction, as "a" is in example (iv). That would mean trying 

to go from "at least one" to "all", which of course is not proper. Examples (ii) and (iii) 

are all right, as is example (i), where no flag is needed. 

So ND is already more complicated than RaA, despite its "naturalness". Quine 

used ND exclusively in his earlier work, but later abandoned it for RaA, not so 

surprisingly. 

In fact there is yet another complication in ND, which will be investigated m 

100 



Ian C. Stirk 

the next section. 

RaA and ND compared 

A classic problem that illustrates the advantages and disadvantages of RaA and 

ND is to prove that while 

（ヨx)(y)Rxyつ（y)（ヨx)Rxy

is logically true, 

(y)（ヨx)Rxyつ（ヨx)(y) Rxy 

is not. 

The two symbolic sentences can receive a straightforward interpretation 

in ordinary language. The first could translate "If someone loves everyone, then 

everyone is loved by someone", which rings true. The second sentence, in that case, 

would be "If everyone is loved by someone, then someone loves everyone". That 

doesn't sound right: "Someone loves everyone" suggests just one person doing all 

the loving, while "Everyone is loved by someone" could mean that each person has a 

different admirer. 

Let us try to deal with these using RaA. There will be two premises in each 

case, one being the left hand side of the conditional, the other the negation of the 

right hand side. In the first case, the negation will be -(y)（ヨx)Rxy,or（ヨy)(x) 

-Rxy if we move the negation to the right of the quantifiers. The RaA might start 
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1.（ヨx)(y)Rxy 

2. （ヨy)(x)-Rxy 

3. (y) Ray 1 

4. (x)-Rxb 2 

The existential quantifiers have been instantiated with two different letters, according 

to the rule, and now only universal quantifiers are left, which can be instantiated as 

we please. We want to reach an inconsistency if we can, and instantiating the (y) 

of line 3 with "b", and the (x) of line 4 with "a", will get us one: 

．

．

．

 

5

6

7

 

Rab 

-Rab 

R 6
 ， 

3

4

5

 

Now for the case of "If everyone is loved by someone, then someone loves everyone". 

The RaA could start as follows: 

1. (y)（ヨx)Rxy

2. (x)（ヨy)-Rxy

3. （ Rxa 1 

4. Rba 3 

5. （ヨy)-Rby 2 

It is clear, though, that we cannot reach any inconsistency. A universal quantifier has 

to be instantiated first, and the two existential quantifiers must later be instantiated 

with different letters, so there will be three different letters around. In the working 

above, the（ヨy)of line 5 cannot be instantiated with "a", which would be the only 

way to get an inconsistency with line 4. 
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The example illustrates a potential difficulty with RaA. In this simple case, 

it is easy to show that there cannot be an inconsistency, but in more complicated 

cases it might be much more difficult. We might wonder whether there really was no 

inconsistency, or whether we had missed some possible instantiation. Also in RaA 

we have to guess some conclusion to start with in order to find out whether or not 

its negation is inconsistent with the premises. It would be nice to have some way of 

just exploring: beginning with some premises, and playing around with them to see 

where they lead. 

ND promises to let us do just that, so let us try the deductions above with 

that method. "If someone loves everyone then everyone is loved by someone" is 

straightforward: 

1. （ヨx)(y)Rxy 

2. (y)Ray la 

3. Rab 2 

4. （ヨx)Rxb

5. (y)（ヨx)Rxy 4b 

That is encouraging: the quantifiers were reversed in the working, and the rule about 

only flagging a letter once was followed. The difficulty arrives with the following: 

1. (y)（ヨx)Rxy

2. （ヨx)Rxa 1 

3. Rba 2b 

4. (y)Rby 3a 

5. （ヨx)(y)Rxy 4 
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Again the flagging rule has been followed, but the result has to be wrong! It needs a 

bit of subtle thought to work out where that deduction fails. In going from line 1 to 

line 2, "a" could be the name of any individual, as it came from the instantiation of a 

universal quantifier. In going from line 2 to line 3, however, "b" is the name of some 

particular individual or individuals, not of any. Line 3 states that "b" loves "a", to use 

the ordinary language illustration. Now, however, "a" may not be the name of any 

individual, but only of those that are loved by "b". The existential instantiation that 

provided line 3 had an effect on the reference of "a" also. There is a trick to avoid 

this problem, which can be called the "alphabet rule: 

The flagged letter of any line must be alphabetically later than any free letter in 

the same line. 

Here "free" means that the letter is not in the scope of some quantifier using the same 

letter for its variable name. Thus in line 2 above, "a" is free but "x''is not, while in 

line 3 both "a" and "b" are free. Clearly in line 4 the alphabet rule has been broken: 

"a" is flagged, but an alphabetically later letter, "b", is free in line 4. Following the 

alphabet rule would prevent us from deducing anything from line 3, apart from 

replacing the quantifiers in the same order and getting back to line 1, a pointless 

exercise, or proceeding with an existential quantifier as follows: 

l. (y)（ヨx)Rxy

2. （ヨx)Rxa 1 

3. Rba 2b 

4. （ヨy)Rby 3 

5. （ヨx)（ヨy)Rxy 4 

In that case, "a" does not need to be flagged. 
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A bit of thought shows us that the alphabet rule prevents a universal quantifier 

being moved to the right of an existential quantifier. But the whole procedure is 

rather unnatural, even if it is easy enough to follow in practice. 

Although Quine would have hated the idea, it is quite straightforward to adapt 

RaA as a method of proof in modal logic, using the analogy between "M" and“（ヨ）＂

and "L" and "(x) ". (I use "M" to mean "true in at least one accessible possible 

world" and "L" to mean "true in every accessible possible world", following Hughes 

and Cresswell in their standard text, Hughes and Cresswell, 1996.) As an example, 

I show that MLpつ Lpis logically true in S5: 

l. MLp I 2 

2. M-p 

3. -p 

5. p 

6. R 

1 

4. Lp 

5
 ，
 

2

4

3

 

ー

Possible worlds are indicated by rectangles. The one on the left contains the two 

premises, the left hand side of the conditional and the negation of the right. The next 

step is to "instantiate" the "M" of line 2 with another possible world on the right. 

In this world, "-p" is true. The world is also labelled "2" at the top left, to show its 

origin. Next the "M" of line 1 is instantiated with world 1, where Lp is true. But since 

in S5 all worlds are accessible to each other, if "Lp" is true in one world, "p" has to 

be true in every one. Hence line 5 in world 2, which provides the inconsistency. An 
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arrow connects worlds 1 and 2, to show accessibility -not really necessary in S5. 

RaA is thus easy to apply to modal logic. But what about ND? What could 

possibly be the analogue of flagging, or the alphabet rule? A few years ago I 

struggled to find some way of using ND with modal propositional logic, and 

succeeded to some extent with S5. The method was clumsy and I soon gave up on 

it. It is described in Stirk (2005). Recently, however, I stumbled across a way of 

making ND in general a whole lot more natural, as described in the next section. 

More natural natural deduction 

Let us go back to what we can deduce from（ヨx)(y) Rxy, "Someone loves everyone". 

If we name the individuals in question al, a2 and so on, we could make a deduction 

as follows: 

l.（ヨx)(y)Rxy 

?
i
 
(y)Ra1y 1 3. (y)Ra2y 1 

The branches are meant to indicate alternatives: in the first branch, it is a1 who loves 

everybody, in the second branch it is a2, and there may be other possibilities, as 

shown by the third branch and the dots. At least one of the branches must be true. 

This use of branching to indicate alternation is often convenient in RaA: 
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1. (x)-Fx 

2. (x)-Gx 

3. （ヨx)(Fx V Gx) 

4. Fa V Ga 3 

＼ 
．
．
 

5

6

7

 

Fa 

-Fa 

R 6
 ， 

1

5

 

8. 

9. 

10. 

Ga 

-Ga 2 

R 8,9 

Here both branches end in inconsistency, so the three premises are inconsistent. Now 

the previous ND branching could continue: 

l.（ヨx)(y)Rxy 

2. (y)Ra1y 1 3. (y)Ra2y 1 

4. Ra1b 2 5. Ra2b 3 

6. （ヨx)Rxb 4 7. （ヨx)Rxb 5 

8. (y)（ヨx)Rxy6 9. (y)（ヨx)Rxy 7 

I ----ニニニニ
10. (y)（ヨx)Rxy

All the branches end up the same, so they can be collapsed into one, the conclusion. 

Steps like the one from line 4 to line 6, an existential generalisation, are always 

possible because Faつ（ヨx)Fx is logically true. It is impossible for the left hand 

side of the conditional to be true while the right is false. Steps like that from line 

6 to line 8, a universal generalisation, are justified because "b" itself arose from a 
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universal instantiation in the same branch. 

That all seems reasonable, so let us have a look at the more problematic case, 

what we can deduce from (y)（ヨx)Rxy: 

1. (y)（ヨx)Rxy

2
 
（ヨx)Rxa ー

3. Rb1a 2
 
4
 
Rb咀 2

 

Now we see right away that universal generalisation of "a" is impossible in any 

particular branch, since they may not all be true. One way to complete a deduction 

would be 

．
．
 

1

2

 

(y)（ヨx)Rxy

（ヨx)Rxa ー

．
．
 

3

5

 

Rb1a 2 

（ヨx)Rxa 3 
．
 

4

6

 

Rb2a 2 

（ヨx)Rxa4 

7. （ヨx)Rxa

8. (y)（ヨx)Rxy7 

This is the pointless deduction which takes us right back to the starting point. The 

end points of the branches become identical in line 5 and line 6, so the collapse 
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into one in line 7 is justified. Now that there is again only a single branch, the final 

universal generalisation can be allowed, since "a" came from a universal instantiation 

further back on the same branch. Another possible deduction is the slightly more 

interesting 

．
．
 

1

2

 

(y)（ヨx)Rxy

（ヨx)Rxa ー

．

．

．

 

3

5

7

 

Rb1a 2 

（ヨy)Rb1Y 3 

（ヨx)（ヨy)Rxy 5 

．

．

 

4

6

8

 

Rb2a 2 

（ヨy)Rb2Y 4 

（ヨx)（ヨy)Rxy 6 

9. （ヨx)（ヨy)Rxy

where existential generalisation is used on each separate "a" in each separate branch. 

Finally the branches become identical and can be collapsed. 

The difficulty of the alphabet rule has been solved! Branching is much clearer 

than flagging in making the possibilities for generalisation apparent. The rules for 

the new style of ND can be summed up as follows: 

Universal instantiation (UI) A universal quantifier may be instantiated by any 

letter in the next line of the same branch. 

Existential instantiation (EI) An existential quantifier may be instantiated by any 

letter, but must also be instantiated by other letters 
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in other branches. 

Existential generalisation (EG) Any free letter in any branch may be existentially 

generalised. 

Universal generalisation (UG) A letter that came from a previous UI in the same 

branch may be universally generalised. 

Branch collapsing (BC) Branches that end with identical lines may be 

collapsed into one branch. 

All that seems natural enough. Let us see if there are analogues in modal logic 

to this new style of ND. What can be deduced from MLp in S5? 

| 1. MLp 

So there we are, a world in which MLp is assumed to be true. The "M" can be 

instantiated with another world, but allowing also for the possibility of other worlds, 

in the spirit of the EI rule: 

[ 1. MLp 

ー
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There is at least one accessible world in which Lp is true, and other worlds which we 

so far know nothing about. Both the worlds illustrated have "l" at the top left, since 

both represent the instantiation of the "M" in line 1. Now we can continue 

1. MLp I 1 

3. p 2 

6. Lp 3,4,5 
I 
2. Lp 

4. p 

1 

5. p 

1

2

 

2
 

All worlds are accessible to one another, so we can of course deduce lines 3 and 

4 from line 2. Also we can deduce line 5 from line 2, in another world. In fact we 

see that "p" is going to be true in all worlds, just because of the Lp in line 2.-That 

means we can go back to our original world, and deduce line 5, Lp, there, since in all 

accessible worlds p is true. Natural enough! 

Let us try a more complicated example. We can show that 

L(pつq)つ． Lpつ Lq

is logically true. Here is the proof: 
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1. L(pつq)

3. Lpつ Lp tautology し2. pコq 1 
I 5. p 4 

4. Lp 6. q 2,5 

7. Lq 6 

I 
8. Lpつ Lq 7 

The world on the right can be any world in this case, so there is no complication 

there. Notice also that nothing is assumed about the nature of the accessibility 

relation. The same proof will go through in any modal system, including K. It 

is often useful to introduce a tautology as a line in a proof, as in line 3 above. 

Tautologies clearly have to be true in any possible world. Branching is a way of 

dealing with an alternation, and line 3 is an alternation in disguise, since Lp二）

Lp is equivalent to -Lp V Lp. But nothing is deduced from the left hand side of 

the alternation in the proof, so there is no point in changing the conditional to its 

alternation form. 

Introducing tautologies can be very useful in ND, and in fact enables us to 

prove one or two things which cannot be proved by RaA, for instance the logical 

truth of (x) Fx三＿（ヨx)-Fx.This is best done in two parts, firstly showing that 

(x)Fxつ＿（ヨx)-Fx:
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l. (x)Fx 

2. ＿（ヨx)-Fx V （ヨx)-Fx tautology 

口
3. -Fa 4. -Fb 

5. Fa 1 6. Fb 1 

7. R 3,5 8. R 4,6 

9. ＿（ヨx)-Fx

On the right hand side of the alternation, EI takes place allowing for various 

possibilities. However, every one of these branches has to end in inconsistency, 

because of line 1. Thus only the left hand branch remains. The proof is certainly ND, 

of course, but it has an odd admixture of RaA! 

Now to show that -（ヨx)-Fxつ(x)Fx: 

l. —（ヨ x)-Fx

2. -Fa V Fa tautology 

＼ 

＼ 3. （ヨx)-Fx 2 

4. R 1,3 

5. (x) Fx 2 

Another cunning trick is illustrated here. Because line 2 is a tautology, the name "a" 

could refer to any individual. When the left hand branch turns out to be inconsistent, 

only the right remains, so UG is justified. 

The analogous formulae in modal logic can also be proved, starting with Lpつ-M-p:
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1. Lp 

2
 
-M-p V 

3. 

8. -M-p 

M-p tautology 

I 
M-p 

3
 

．
．
 

4

6

7

 

-p 3 

p 1 

R 4,6 

3

5

 
p
 

ー

Here the M-p of line 3 is "instantiated" with a couple of worlds, one where-pis true, 

and another where we are not sure. But clearly, given line 1, any world where -p is 

true would be inconsistent, so the right hand branch of the tautology is inconsistent 

too. 

Now for-M-pつ Lp:

1. -M-p 

5. M-p 4 

6. R 1,5 

8. Lp 3 

2. p V -p tautology 

| ¥ 
3. p 4. -p 

7. R 6 

I'm not sure I yet have the best notation for this, but the meaning is clear, I think. 

Line 2 in the world on the right is a tautology, so that world could be any world. 

However, when we consider the branches separately, we may have something true 

in one or more worlds or none at all. If the right hand branch, line 4, is true in some 
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possible accessible world then line 5 will be true, but it is inconsistent with line 1. 

Thus there can be no world where line 4 is true -only the left hand branch of the 

alternation remains. Thus p must be true in every accessible world, hence line 8. 

The new style of ND seems to work very well with modal propositional logic. 

We already know it works with first order predicate calculus, but we must make sure 

it will work also with higher order calculi. Here is a very straightforward example: 

1. Fa V -Fa tautology 

／／  ＼ 
2. （ヨX)Xa 1 3. （ヨX)Xa 1 

¥ ／ 
4. （ヨX)Xa 2,3 

5. (x)（ヨX)Xx 4 

Here we begin again with a tautology, so any individual might be the one called "a", 

and any predicate the one called "F". In lines 2 and 3 EG is applied to the predicate 

of the particular branch: Fin the left hand, -Fin the right. The branches then collapse 

to give line 4, and UG can apply to the one instance of "a". The proof shows that 

(x)（ヨX)Xx is logically true, and of course it is plausible. For any individual, there 

should be at least one predicate which is true of it. 

A word about notation here. I am using X, Y, Z as predicate variables and F and 

G as predicate names. In previous work I have used F and G ambiguously as both 

variables and names, as do many writers. But this seems undesirable. 

It should also be the case that (ヨX)(x) Xx, that is, there is at least one predicate 

which is true of everything. It is difficult to see what kind of tautology it could be 
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deduced from, however. For if we had the name "a" in both branches, the branches 

would need to collapse before we could use UG on it, and get (x)…x, whatever the 

dots might represent. But we can prove（ヨX)(x) Xx like this: 

1. Fa V -Fa tautology 

2. (,l x) (Fx V -Fx)a 1 

3. (x) (,1, x) (Fx V -Fx)x 2 

4. （ヨX)(x)Xx 3 

This time, in going from line 1 to line 2, the alternation is collapsed by forming 

a,l -expression. UG can then give line 3. The,l -expression is not a general case 

that UG could be applied to, but we can use EG on it to give line 4, the result. It 

seems then that the,l notation represents not just a convenient abbreviation of more 

complex expressions, but a genuine increase in power. 

ND seems to work with higher order calculi, then, so let us use it on a more 

complicated example. Identity is an important relation, and it seems to be adequately 

described by the two axioms (x) (x = x) and (x) (y) (Fx. x = y.つ Fy).The 

second of those is generally known as Leibniz'Law. 

If we can quantify over predicates, it looks plausible that identity could actually be 

defined as follows: 

(x) (y) [x = y.三（X)(Xx三Xy)]

It turns out that this definition is actually equivalent to the conjunction of the two 

axioms. With quantification over predicates, Leibniz'Law can be written as 

116 



Ian C. Stirk 

(X) (x) (y) (Xx. x = y.つ Xy)

and using ND, it is easy enough to show that the axioms imply the definition: 

・

・

 

1

2

3

 

(x) (x = x) 

(X) (x) (y) (x = y. Xx.つXy)

a=b.二．a=b tautology 

b
 ＝
 

¥
a
 

4
 5. I (X) (x) (y) (x = y. Xx.コXy)

6. I a= b. Fa．つ Fb

7. I FaつFb

8. I b=a 

9. I b =a. Fb．つ Fa

10. I FbつFa

11. I Fa三 Fb

12. I (X) (Xa三 Xb)

／ 
13. a= b.つ（X)(Xa三 Xb)

14. (X) (Xa三 Xb)つ(X)(Xa三 Xb)

＼ 

15. I (X) (Xa三 Xb)

16. 

17. 

18. I a= a 

3 

2 

5 

4,6 

4, symmetry 

5 

8,9 

7,10 

10 

3,12 

tautology 

14 

（入x)(a= x) a三 0x) (a = x) b 15 

a=a.三． a=b 16 

19. I a= b 

¥ 20. (X) (Xa三 Xb)つ．a=b

1 

17,18 

14,19 
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21. a= b.三（X)(Xa三Xb)

22. (x) (y)[x = y.三（X)(Xx三Xy)]

13,20 

21 

The proof has been abbreviated slightly. In line 8, symmetry has been invoked to 

deduce b = a from a = b. But the symmetry of identity can easily be deduced from 

the axioms. In line 22, UG has been applied to both "b" and "a" simultaneously, 

clearly not a problem. 

It is also easy enough to show that the definition implies the axioms. It is most 

straightforward to deal with the axioms separately. First it is shown that Leibniz' 

Law follows from the definition: 

1. (x) (y) [x = y.三（X)(Xx三Xy)]

2. Fa. a= b.二． Fa.a= b tautology 

＼ 
3. Fa. a= b 2 

4. a=b.三（X)(Xa三Xb) 1 

5. (X) (Xa三Xb) 3,4 

6. Fa三Fb 5 

7. Fb 3,6 

I 
8. Fa. a= b.つFb 2,7 

9. (X) (x) (y) (x = y. Xx.つXy) 8 

Going from line 8 to line 9, there are three instances of UG compressed into one, but 

there is clearly no problem with this. 

It is even easier to show that the definition of identity implies (x) (x = x) : 
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.

.

.

.

 

1

2

3

4

5

6

 

(x) (y) [x = y.三（X)(Xx三Xy)]

a=a.三（X)(Xa三Xa)

Fa三 Fa

(X) (Xa三 Xa)

a=a 

(x) (x = x) 

y
 
g
 ゚゚

t
 
U

4

 

a

,

 

1

t

3

2

5

 

No special comment needed there. 

Now everything can be brought together in the following rather unfortunate result: 

・
・
 

1

2

 

(x) (y) [x = y.三（X)(Xx三Xy)]

a=b.三（X)(Xa三Xb)

definition 

1 

3. a= b.コ．a= b tautology 

＼ 
4. I a=b 

5. I (X) (Xa三 Xb) 2,4 

6. I O x) L (a = x) a三 0x) L (a = x) b 5 

7. I L(a = a)三 L(a=b) 6 

8. Fa三Fa tautology 

9. (X) (Xa三Xa) 8 

10. a=a.三（X)(Xa三Xa) 1 

11. a=a 8,10 

12. L(a = a) 11 

13. L(a = b) 7,12 
／／ 

14. a=b.つL(a= b) 3,13 

15. (x) (y) [x = y.つ L(x= y)] 14 
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That demonstrates that if two names belong to the same individual, then they 

necessarily belong to that individ叫 Noticehere that no rectangle has been placed 

around the main world, an obvious saving of effort. Also the other world cited could 

be any world, as only a tautology is assumed to be true in it. 

There is nothing wrong with the proof, but the result certainly seems strange. 

"George Orwell" and "Eric Blair" are two names for the same person in this world, 

but why should that mean that they refer to the same person in every possible world? 

Surely in the worlds of our imaginations at least they could be different. 

There could be even worse. If identity of individuals is defined by 

(x) (y) [x = y.三（X)(Xx三Xy)]

then maybe we could use a similar idea for the identity of predicates: 

(X) (Y) [X=Y.三（X)(XX三 XY)]

where Gothic letters are used for predicates of predicates. Distinguishing a hierarchy 

of predicates is one way of avoiding the deadly problem known as Russell's 

Paradox. lf there were no such hierarchy then we could imagine sentences such as 

FF, meaning "F is F'', or —FF, meaning "F is not F" and so on. Then we would be led 

to this: 

1.（ヨX)(Y) (XY -YY) V (X）（ヨY)(XY三YY) tautology 

＼ 
2. (Y) (FY三-YY) 1 5. （ヨY)((,l Z) (-ZZ)Y三YY) 1 

3. FF三-FF 2 6. 0 Z) (-ZZ)F三FF) 5 
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4 R 3
 

7. -FF三 FF

8. R 

6

7

 

Here we have a tautological alternation either branch of which leads to an 

inconsistency. A hierarchy of predicates, predicates of predicates and so on is the 

most obvious way to avoid this paradox, and it is adopted by writers like Richard 

Montague in their work on language. Unfortunately it is not a very satisfactory 

solution from the mathematical point of view, since it leads to a hierarchy of 

arithmetics: we need one set of numbers for counting individuals, another for 

counting predicates and so on. The problem still has no clear solution. 

Anyway, if we do decide to define identity of predicates by 

(X) (Y) [X = Y.三（X)(XX三 XY)],similar definitions would obtain for predicates 
on all levels. The difficulty is that just as we proved (x) (y) [x = y．つ L (x = y)] 
above, we would obviously be able to prove (X) (Y) [X = Y.つL (X = Y)], 

(X) (Y)[ X = Y.つL(X= Y)] and so on ad infinitum. Every possible statement 
of identity would be necessarily true, and every possible world would be exactly the 

same as every other, a weird state of affairs! 

Luckily it is possible to define the identity of predicates in a different way: 

(X) (Y)[X = Y.三（x)(Xx三 Yx)]

that is, predicates are identical if and only if they are true of just the same 

individuals. This is treating predicates as sets of individuals, clearly. This definition 

could also be extended up the hierarchy: (X) (Y) [ X = Y.三（X)(XX三 YX)]

and so on. 
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Anyway, how are these alternative definitions related? It would be bad news indeed 

if they were equivalent: we would be stuck with the problem of only one possible 

world. Observe the following proof in ND: 

l. (X) (KF三 XG) つ (X)(KF三 XG)

＼ 
2. (,,l Z) (x) (Fx三 Zx)F三(,,lZ) (x) (Fx三 Zx)G1 

tautology 

3. (x) (Fx三 Fx)三 (x)(Fx三 Gx)

4. Fa三 Fa

5. (x) (Fx三 Fx)

6. (x) (Fx三 Gx)

＼ 
7. (K) (KF三 XG)つ(x)(Fx三 Gx)

8. (Y)[(K) (KF三 XY)つ(x)(Fx三 Yx)]

9. (X) (Y) [ (K) (KX三 XY)つ(x)(Xx三 Yx)]

2
 tautology 

4 

3,5 

6
 
，
 

1

7

8

 

The proof begins with a tautology, so line 7 is logically true, which justifies the two 

uses of UG at the end. Clearly the proof shows that the definition 

(X) (Y) [X =Y．三（ X) (XX三 KY)]implies the other definition 

(X) (Y) [X = Y.三（x) (Xx三 Yx)].This is not very surprising, because clearly 

if identical predicates were necessarily identical, they would have to be true of 

exactly the same sets of individuals, since identical individuals are necessarily 

identical too. 

Given that, we try the following rather anxiously: 

ー (x) (Fx三 Gx) 二） (x) (Fx三 Gx)
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But unlike in the previous proof, there is nowhere to go with the right hand side 

of this. We can construct,l -expressions at a certain level of the hierarchy out of 

entities at the next lower level: for instance, (,l x) C.x..) is a predicate formed with an 

individual variable, (AX) (..X..) is a predicate of predicates, and so on. But here we 

have only an individual variable to instantiate, so no,l -expression is possible, and 

thus no way of reaching the other definition. 

That is quite a relief. The fact that identical predicates are not necessarily identical 

gives us one way round the problem of necessarily identical individuals. Instead of 

individual names, we might think of a unique conjunction of predicates which are 

true of an individual. The conjunction could thus pick out some particular individual 

in one world, but a different individual in another. Such an approach is considered in 

chapter 17 of Hughes and Cresswell (1996). 

Another possibility is to bring in functions from possible worlds to individuals. The 

function could then pick out different individuals in different worlds. This is the 

approach taken by Richard Montague in his (1973). 

Conclusion 

I think I have been able to show that a more natural way of regarding natural 

deduction can provide a useful tool for students of higher order predicate calculi and 

modal logic, a tool which nicely accompanies reductio ad absurdum. 
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