|

) <

The University of Osaka
Institutional Knowledge Archive

Title More on analogical grammars

Author(s) |[Stirk, C. Ian

Citation | KPRKZFEZHAKFZL. 2010, 34, p. 15-24

Version Type|VoR

URL https://hdl. handle.net/11094/99339

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



More on analogical grammars

lan C. Stirk

Introduction

In a previous paper in this Journal (Stirk 2008), I set out an outline proof that
analogical grammars are mildly context-sensitive. As part of that proof, I suggested
(p 74) a way of generating any analogical language using a CS grammar. I have
since found a better way of doing this, and since it throws some light on analogical
languages in general, and thus on human languages, I think it is a good idea to

present the method in detail.

Analogical languages and grammars

It is best to introduce the general principles with an example. Consider the CS

nn

language a"bc”, where n = 1, and the following finite state (FS) grammar:

(1) Xo—={eliaXo
Xo~HhliaX
Xi—7bX,
Xi—™}bX,
Xs—=heX,

15



More on analogical grammars

Xy=he

That grammar will generate any number of a's, each preceded by {, {;, followed
by any number of b's preceded by },, and ending up with any number of ¢'s preceded

by }4, for example

{otratfofiakoblbliche

Clearly if the number of a's and b's and ¢’s is to be the same, the brackets {,
}oand {; }, have to be properly paired, and the numbers of each pair have to be the
same. There is a slight complication in that one member of a pair may sometimes be
enclosed in another pair: in the above example, for instance, a {, appears between
a {; and a },. That complication might be avoided in simple cases like the present
example, but we should consider the general case. In order to get the pairings
and the numbers of pairs correct, we arrange that the final language should be the
intersection of the FS language and the two context-free (CF) languages generated

by the following grammars:

(2) Yo=Y, Y,
Yo=Y HYYeY hY
Yo=Y LY HY
Y —ab,c{,}h

(3) 2, 2,2,
Zy—=Z%Z2ZZyZ}2Z
Zy>Z{HZ 2

Z-+>a,b,c {o}

16



Ian C. Stirk

Grammar (2) generates proper pairs of {, ¥, interspersed with random strings
of other symbols. The last rule means that Y may be rewritten as a or b or ¢ and so
on. Grammar (3) does the same work for the pairs {; },. Clearly the language of
the intersection will be a’b'c" together with brackets. Thus in general analogical
grammars consist of a FS grammar and a number of CF grammars like (2) and (3),
one for each pair of brackets involved. The analogical language is the intersection of

the languages generated by these grammars, with the brackets removed.

This deletion of brackets is the main problem when we come to proving that
analogical languages are mildly context-sensitive. Deletion is always a problem for
such proofs, and it is even worse when we do not know exactly what is being deleted

in every case. There may be any number of bracket pairs.

The simplest way round the problem is to generate analogical languages using a

CS grammar right from the start.

Context-sensitive grammars for analegical languages

The CS grammar will be based on the FS grammar which is part of the
analogical one. In what follows I will concentrate on the simple analogical grammar
described above, and indicate how it may be extended to the general case. The first

set of rules of the CS grammar is

(4) Xo=PReX,Q
X, = A X
X, =AX
X, = BX,
Xy~ BX;

17



More on analogical grammars

X;—=>CX,y
X;—C

Compared to the original FS rules, it will be seen that these produce similar
strings, but where all the terminal symbols have been replaced by non-terminals,
a by Al and so on. Also strings generated by these rules will be preceded by P,
R, and will end in Q. The reason for the subscript 1 on A, is that in the original
grammar a was accompanied by two brackets, {, and {,. The terminals b and ¢ were
only accompanied by one each, so B and C have no subscript. (1 suppose strictly
speaking they should have a subscripted 0, but no subscript at all saves typing!)
Anyway, we can more easily see the action of the next sets of rules by using a

sample derivation from those in (4), perhaps
P,RyA/AJ/A,BBBCCCQ
The next of rules will be

(5) Rpa = a Ry (That is actually a rule schema: a is to range

over all symbols except Al and Q)

RoA, —AS,

S B—0S (B ranges over all symbols except B and Q)

SeB—bT,

Toy v Ty (9 ranges over all symbols except Q and P
with any subscript) »

ToQ—UyQ

The effect of those rules on our sample string will be that the first A) becomes

A, the first B becomes b, and a U, will end up just to the left of Q:

18



Ian C. Stirk

PsR(AAJA/BBBCCCUQ

Notice that the effect has been, in a way, to check a {; }, bracketing that would
have appeared in the analogical grammar. Of course we are using a sample string that
will eventually lead to a correct derivation, but that is not guaranteed by the FS rules
of (4). If there had been no B’s in our sample string, then S, would have moved
right as far as Q, after which no further rule of the grammar would have applied, and

the derivation would have become stuck without ever leading to a terminal string.

Anyway, the next step is to move Uy to the left, and start the process again:

(6) yU()'"’on
PoUs — Py Ry

The rules in (6) and (5) will bring our sample string to

PLAAABDBCCCR)Q

R, will have moved right as far as Q, since at the end there will be no A|'s to stop it.
Notice here that if there had been more B's than A;’s they would remain as B’s, that
is, as non-terminal symbols, even though R, still reached Q. They will remain non-
terminals too, as no further rules will apply to them, so no derivation containing
them will reach a terminal string, whatever the effect of other rules. That ensures
proper pairings like the analogical grammar does: if there are too many left-hand
brackets, as it were, then a non-terminal symbol like S; will reach Q and block the
derivation, if there are too many right-hand brackets, at least one non-terminal like B

will be left stranded.

19



More on analogical grammars

We deal with the R, just to the left of Q as follows:

(7) RyQ—V,Q
y Vo> Vo ¥

Now the idea is that R, will be the trigger for checking the second lot of
brackets that were present in the analogical grammar. The rules involving it and

other symbols will of course be similar to those in (5) and (6):

(8) Rya — aR (That is actually a rule schema: a is to range
over all symbols except A and Q)
RIA—a$,
SSB8—~BS (B ranges over all symbols except C and Q)
$;C—cT,
T,y v T ('y ranges over all symbols except Q and P
with any subscript)
T,Q—~UQ
yU—~uvy
Pl1U,— PR

Clearly those rules will operate on our sample string to end up with

PiaaabbbcccR Q

Again derivations without the proper number of C's would fail — too few C’s
would cause S; Q to appear, too many would leave some over. We can change R, to

V, and send it back left as we did to Ry

20



Ian C. Stirk

(9) RRQ—V,Q
y Vi—=Vy vy

but in this particular case, there are no more bracket pairs left to go. The

derivation could be brought to an end with these rules:

(10) Ry V, y = y R}V,
R, V,Q—1tt

where t is a new terminal symbol, necessary because CS grammars cannot
delete any symbols. The t's do not cause any trouble: they can be ignored when
considering sentences of the analogical language, and added when we want to check

whether or not a particular string can be generated by the CS grammar.

It should be pretty clear that the example above can be generalised to suit
other analogical grammars. Non-terminal symbols are chosen for each terminal, the
number of brackets associated with each is registered as a subscript, and so on. But

there is one potential problem which I will explore below.

A potential difficulty

In the example above, one terminal symbol of the analogical grammar had two
left-hand brackets associated with it, while the others just had one right-hand bracket
each. It is important to be sure that the method of constructing a CS grammar
will still work if terminals are associated with a mixture of left- and right-handed

brackets. The following analogical FS grammar will put this to the test:

(1D Xo—{aXe

21



More on analogical grammars

Xo*{aX
Xi~*{rbX
Xi*{hbXe
X heXy
X2 he

The language generated will be the same as before, and the same pair of CF
grammars will provide the other languages for intersection. Notice that I still have
not neatly nested one bracket pair inside the other. Associated with b, though, is a
left-hand and a right-hand bracket. According to the procedure developed before, the

first set of rules of the CS grammar should be

(12) Xe—PyRyX; Q
X, —~AX,
X, = AX,
X, — B X,
Xo— B X,
X;— CX;
X;—C

A sample string might be

PoRGAAAB BB, CCCQ

The other rules will be adapted as follows:

(13) Ry a > a Ry (That is actually a rule schema: a is to range

22



Ian C. Stirk

over all symbols except Al and Q)
RyA—>as$,
Se BB S (B ranges over all symbols except B and Q)
SoB, =BT,
Toy > 9Ty ('y ranges over all symbols except Q and P
with any subscript)
ToQ—UpQ
¥ Up™ Uy y
Py Uy = Py R,

So far so good: the sample string will become
P()aaﬂBBBCCCR()Q

and any mismatch in numbers will block the derivations as before. The

remaining rules can be easily adapted, it seems:

(14 R, Q—V,Q

Yy Vo™ Vo ¥

Py Vo — P, R,

Ria—akR (That is actually a rule schema: a is to range
over all symbols except B and Q)

RiB—bS,

S\ 8—+F8S (B ranges over all symbols except C and Q)

S$;C—cT,

T,y =7y T ('y ranges over all symbols except Q and P
with any subscript)

T,Q—U,Q

23



More on analogical grammars

yU—=Uy

Those will certainly turn our sample string into

PiaaabbbcccR, Q

and the rules in (9) and (10) will turn that into the terminal string we

expect:

aaabbbcccttt

The other kind of bracketing does not cause any difficulty, fortunately.

Conclusion
I am relieved to make it absolutely certain that analogical languages are

definitely context-sensitive, and thus mildly context-sensitive, as demonstrated in my

(2008).

The result is important because I am convinced that human languages are
analogical, and that this fact explains how human infants are able to learn them, and

also explains why human languages have the characteristics that they do have.

Reference

Ian C. Stirk “Analogical grammars are mildly context sensitive” (Journal of Anglo-American
Studies, JEKH4T, 2008)

24





