
Title More on analogical grammars

Author(s) Stirk, C. Ian

Citation 大阪大学英米研究. 2010, 34, p. 15-24

Version Type VoR

URL https://hdl.handle.net/11094/99339

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

More on analogical grammars

Ian C. Stirk

Introduction

In a previous paper in this Journal (Stirk 2008), l set out an outline proof that

analogical grammars are mildly context-sensitive. As part of that proof, I suggested

(p 74) a way of generating any analogical language using a CS grammar. I have

since found a better way of doing this, and since it throws some light on analogical

languages in general, and thus on human languages, l think it is a good idea to

present the method in detail.

Analogical languages and grammars

It is best to introduce the general principles with an example. Consider the CS

language a"b"c", where n?: 1, and the following finite state (FS) grammar:

(1) X。→ {。もax。

X。→ {。も aX1

X1 → }。bX1

X1→}。bX2

X2→ }1 cX2

15

More on analogical grammars

X2→ }1C

That grammar will generate any number of a's, each preceded by {0 {i, followed

by any number of b's preceded by }0, and ending up with any number of c's preceded

by h, for example

｛。も a{。もa}。b}(l b }I C }I C

Clearly if the number of a's and b's and e's is to be the same, the brackets{。
}。 andも｝1have to be properly paired, and the numbers of each pair have to be the

same. There is a slight complication in that one member of a pair may sometimes be

enclosed in another pair: in the above example, for instance, aもappearsbetween

a {。 anda }0. That complication might be avoided in simple cases like the present

example, but we should consider the general case. In order to get the pairings

and the numbers of pairs correct, we arrange that the final language should be the

intersection of the FS language and the two context-free (CF) languages generated

by the following grammars:

(2) y。→Y。Y。

Y。→Y{。YY。Y}。Y

Y。→Y{。Y}。Y

Y → a, b, C, {l, }l

(3)乙→Z乙

乙→Z{。z乙Z}。z
z)→ Z{。z}。z
z → a, b, c, {0,}。

16

Ian C. Stirk

Grammar (2) generates proper pairs of {0}。interspersedwith random strings

of other symbols. The last rule means that Y may be rewritten as a or b or c and so

on. Grammar (3) does the same work for the pairsも｝1.Clearly the language of

the intersection will be anb11c11 together with brackets. Thus in general analogical

grammars consist of a FS grammar and a number of CF grammars like (2) and (3),

one for each pair of brackets involved. The analogical language is the intersection of

the languages generated by these grammars, with the brackets removed.

This deletion of brackets is the main problem when we come to proving that

analogical languages are mildly context-sensitive. Deletion is always a problem for

such proofs, and it is even worse when we do not know exactly what is being deleted

in every case. There may be any number of bracket pairs.

The simplest way round the problem is to generate analogical languages using a

CS grammar right from the start.

Context-sensitive grammars for analogical languages

The CS grammar will be based on the FS grammar which is part of the

analogical one. In what follows I will concentrate on the simple analogical grammar

described above, and indicate how it may be extended to the general case. The first

set of rules of the CS grammar is

(4) X。→P。RぷQ

X1→A1X1

X1→Ai X2

X2→ B X2

X2→ BX:1

17

X3→CX:i

X:i→ C

More on analogical grammars

Compared to the original FS rules, it will be seen that these produce similar

strings, but where all the terminal symbols have been replaced by non-terminals,

a by Al and so on. Also strings generated by these rules will be preceded by P。
R。andwill end in Q. The reason for the subscript 1 on A1 is that in the original
grammar a was accompanied by two brackets,{。and{i. The terminals b and c were
only accompanied by one each, so B and C have no subscript. (I suppose strictly

speaking they should have a subscripted 0, but no subscript at all saves typing!)

Anyway, we can more easily see the action of the next sets of rules by using a

sample derivation from those in (4), perhaps

P。R。A1A1 A1 B BBC CC Q

The next of rules will be

(5) R。a→ a R。

R。A1→ AS。
S。f]→fJs。
S。B→ bT。
T。y→y T。

T。Q→ U。Q

(That is actually a rule schema: a is to range

over all symbols except Al and Q)

(/3ranges over all symbols except B and Q)

(y ranges over all symbols except Q and P

with any subscript)

The effect of those rules on our sample string will be that the first A1 becomes

A, the first B becomes b, and a U。willend up just to the left of Q:

18

Ian C. Stirk

P。R。AA1A1bBBCCCU。Q

Notice that the effect has been, in a way, to check a {0}。bracketingthat would

have appeared in the analogical grammar. Of course we are using a sample string that

will eventually lead to a correct derivation, but that is not guaranteed by the FS rules

of (4). If there had been no B's in our sample string, then S。wouldhave moved

right as far as Q, after which no further rule of the grammar would have applied, and

the derivation would have become stuck without ever leading to a terminal string.

Anyway, the next step is to move U。tothe left, and sta1t the process again:

(6) y u。→U。y
P。U。→P。R。

The rules in (6) and (5) will bring our sample string to

P。AAAbbbCCCR。Q

R。willhave moved right as far as Q, since at the end there will be no A/s to stop it.

Notice here that if there had been more B's than A/s they would remain as B's, that

is, as non-terminal symbols, even though R。stillreached Q. They will remain non-

terminals too, as no further rules will apply to them, so no derivation containing

them will reach a terminal string, whatever the effect of other rules. That ensures

proper pairings like the analogical grammar does: if there are too many left-hand

brackets, as it were, then a non-terminal symbol like S。willreach Q and block the

derivation, if there are too many right-hand brackets, at least one non-terminal like B

will be left stranded.

19

More on analogical grammars

We deal with the R。justto the left of Q as follows:

(7) R。Q→V。Q

yV。→V。y

P。V。→ P1R1

Now the idea is that R1 will be the trigger for checking the second lot of

brackets that were present in the analogical grammar. The rules involving it and

other symbols will of course be similar to those in (5) and (6):

(8) R1 a→ a R1

R1A→ a S1

S1 fJ→fJ S1

S1 C→cT1

Tl y →y T1

T]Q→ U1Q

Y U1→ Ul y

Pl U1→ E R]

(That is actually a rule schema: a is to range

over all symbols except A and Q)

((Jranges over all symbols except C and Q)

(y ranges over all symbols except Q and P

with any subscript)

Clearly those rules will operate on our sample string to end up with

P1 a a ab b b cc c R1 Q

Again derivations without the proper number of C's would fail -too few C's

would causeふQto appear, too many would leave some over. We can change R1 to

V1 and send it back left as we did to R。:

20

(9) Ri Q→VlQ

y Vl→ V1 y

Ian C. Stirk

but in this particular case, there are no more bracket pairs left to go. The

derivation could be brought to an end with these rules:

(10) R1 V1 Y→y R1 V1

R1V1Q→ttt

where t is a new terminal symbol, necessary because CS grammars cannot

delete any symbols. The t's do not cause any trouble: they can be ignored when

considering sentences of the analogical language, and added when we want to check

whether or not a particular string can be generated by the CS grammar.

It should be pretty clear that the example above can be generalised to suit

other analogical grammars. Non-terminal symbols are chosen for each terminal, the

number of brackets associated with each is registered as a subscript, and so on. But

there is one potential problem which I will explore below.

A potential difficulty

In the example above, one terminal symbol of the analogical grammar had two

left-hand brackets associated with it, while the others just had one right-hand bracket

each. It is important to be sure that the method of constructing a CS grammar

will still work if terminals are associated with a mixture of left-and right-handed

brackets. The following analogical FS grammar will put this to the test:

(11) X。→ {。ax。

21

X。→{。aX1

x]→ {l }。bX1

X1→ {1}。bX2
X2→ }l C X2

X2→ }1C

More on analogical grammars

The language generated will be the same as before, and the same pair of CF

grammars will provide the other languages for intersection. Notice that I still have

not neatly nested one bracket pair inside the other. Associated with b, though, is a

left-hand and a right-hand bracket. According to the procedure developed before, the

first set of rules of the CS grammar should be

(12) X。→ P。R。X1Q

X1→ AX1

X1→ AX2

X2→ B1 X2

X2→ Bぷ3

X:3→ CX3

X:i→ C

A sample string might be

P。R。AAAB1B1 B1 CCC Q

The other rules will be adapted as follows:

(13)凡 a→ a R。 (That is actually a rule schema: a is to range

22

R。A→ aS。
So/3→/3 s。
S。B1→BT。
T。y→y T。

T。Q→U。Q

y u。→U。y
P。u。→P。R。

Ian C. Stirk

over all symbols except Al and Q)

((Jranges over all symbols except B and Q)

(y ranges over all symbols except Q and P

with any subscript)

So far so good: the sample string will become

P。aaaBBBCCCR。Q

and any mismatch in numbers will block the derivations as before. The

remaining rules can be easily adapted, it seems:

(14) R。Q→ V。Q

y V。→V。y

P。V。→P1R1

R1 a→ a R1

R1B→ bS1

S1 /J→/J S1

S1 C→ cT1

Tl y → y Tl

T1Q→U]Q

(That is actually a rule schema: a is to range

over all symbols except B and Q)

(fJ ranges over all symbols except C and Q)

(y ranges over all symbols except Q and P

with any subscript)

23

Y U1→ U1 Y

Pi U1→ P1R1

More on analogical grammars

Those will certainly turn our sample string into

P1 a a ab b b cc c R1 Q

and the rules in (9) and (10) will turn that into the terminal string we

expect:

aaabbbcccttt

The other kind of bracketing does not cause any difficulty, fortunately.

Conclusion

I am relieved to make it absolutely certain that analogical languages are

definitely context-sensitive, and thus mildly context-sensitive, as demonstrated in my

(2008).

The result is important because I am convinced that human languages are

analogical, and that this fact explains how human infants are able to learn them, and

also explains why human languages have the characteristics that they do have.

Reference

Ian C. Stirk "Analogical grammars are mildly context sensitive" (Journal of Anglo-American

Studies,英米研究，2008)

24

