

Title	On quasifields
Author(s)	Oyama, Tuyosi
Citation	Osaka Journal of Mathematics. 1985, 22(1), p. 35-54
Version Type	VoR
URL	https://doi.org/10.18910/9938
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Oyama, T. Osaka J. Math. 22 (1985), 35-54

ON QUASIFIELDS

Dedicated to Professor Kentaro Murata on his 60th birthday

Tuyosi OYAMA

(Received August 22, 1983)

1. Introduction

A finite translation plane Π is represented in a vector space V(2n, q) of dimension 2n over a finite field GF(q), and determined by a spread $\pi = \{V(0), V(\infty)\} \cup \{V(\sigma) | \sigma \in \Sigma\}$ of V(2n, q), where Σ is a subset of the general linear transformation group GL(V(n, q)). Furthermore Π is coordinatized by a quasifield of order q^n .

In this paper we take a GF(q)-vector space in $V(2n, q^n)$ and a subset Σ^* of $GL(n, q^n)$, and construct a quasifield. This quasifield consists of all elements of $GF(q^n)$, and has two binary operations such that the addition is the usual field addition but the multiplication is defined by the elements of Σ^* .

2. Preliminaries

Let q be a prime power. For $x \in GF(q^n)$ put $x = x^{(0)}$, $\bar{x} = x^{(1)} = x^q$ and $x^{(i)} = x^{q^i}$, $i=2, 3, \dots, n-1$. Then the mapping $x \to x^{(i)}$ is the automorphism of $GF(q^n)$ fixing the subfield GF(q) elementwise.

For a matrix $\alpha = (a_{ij}) \in GL(n, q^n)$ put $\overline{\alpha} = (\overline{a_{ij}})$. Let

$$\boldsymbol{\omega} = \begin{pmatrix} 0 \cdots \cdots 0 & 1 \\ 1 & 0 \cdots \cdots & 0 \\ 0 & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots \\ 0 \cdots \cdots & 0 & 1 & 0 \end{pmatrix}$$

be an $n \times n$ permutation matrix. Set $\mathfrak{A} = \{\alpha \in GL(n, q^n) | \overline{\alpha} = \alpha \omega\}$.

Lemma 2.1. $\mathfrak{A}=GL(n,q)\alpha_0$ for any $\alpha_0 \in \mathfrak{A}$. Furthermore let α be an $n \times n$ matrix over $GF(q^n)$. Then $\alpha \in \mathfrak{A}$ if and only if

$$\alpha = \begin{pmatrix} a_0 & a_0^{(1)} \cdots & a_0^{(n-1)} \\ [a_1 & a_1^{(1)} \cdots & a_1^{(n-1)} \\ \vdots & \vdots & \vdots \\ a_{n-1} & a_{n-1}^{(1)} \cdots & a_{n-1}^{(n-1)} \end{pmatrix}$$

and a_0, a_1, \dots, a_{n-1} are linearly independent over the field GF(q).

Proof. For any element δ of GL(n, q), $\overline{\delta \alpha_0} = \delta \overline{\alpha_0} = \delta \alpha_0 \omega$. Hence $\delta \alpha_0 \in \mathfrak{A}$. Conversely for any element α of \mathfrak{A} , $\overline{\alpha \alpha_0^{-1}} = \alpha \omega \omega^{-1} \alpha_0^{-1} = \alpha \alpha_0^{-1} \in GL(n, q)$ and so $\alpha \in GL(n, q)\alpha_0$. Thus $\mathfrak{A} = GL(n, q)\alpha_0$.

Let $\alpha = (a_{ij})$ be any element of \mathfrak{A} . Since $\overline{\alpha} = \alpha \omega$, $\overline{a_{i1}} = a_{i2}$, $\overline{a_{i2}} = a_{i3}$, \cdots , $\overline{a_{i_{n-1}}} = a_{in}$, $i=1, 2, \cdots, n$. Hence $a_{ij} = a_{i1}^{(j-1)}$, $i=1, 2, \cdots, n$, $j=2, 3, \cdots, n$. Furthermore since α is a non-singular matrix, $a_{11}, a_{21}, \cdots, a_{n1}$ are linearly independent over GF(q).

The converse is clear.

Lemma 2.2. If $\alpha \in \mathfrak{A}$, then

$$\alpha^{-1} = \begin{pmatrix} a_0 & a_1 & \cdots & a_{n-1} \\ a_0^{(1)} & a_1^{(1)} & \cdots & a_{n-1}^{(1)} \\ \vdots & \vdots & \vdots \\ a_0^{(n-1)} & a_1^{(n-1)} & \cdots & a_{n-1}^{(n-1)} \end{pmatrix} \in GL(n, q^n).$$

Proof. Since $\alpha \in \mathfrak{A}$, $\overline{\alpha} = \alpha \omega$. Hence $\overline{\alpha^{-1}} = \omega^{-1} \alpha^{-1}$. Then the proof is similar to the proof of Lemma 2.1.

Lemma 2.3. Let $\alpha \in \mathfrak{A}$. Then $GL(n, q)^{\omega} = \{\gamma \in GL(n, q^n) | \overline{\gamma} = \gamma^{\omega}\}$.

Proof. For any $\delta \in GL(n, q)$ $\overline{\delta^{\alpha}} = \delta^{\overline{\alpha}} = (\delta^{\alpha})^{\omega}$. Conversely let $\gamma \in GL(n, q^n)$ with $\overline{\gamma} = \gamma^{\omega}$. Then $\overline{\gamma^{\alpha^{-1}}} = \overline{\gamma^{\alpha^{-1}}} = \gamma^{\omega \omega^{-1} \alpha^{-1}} = \gamma^{\alpha^{-1}}$. Thus $\gamma^{\alpha^{-1}} \in GL(n, q)$ and so $GL(n, q)^{\omega} = \{\gamma \in GL(n, q^n) | \overline{\gamma} = \gamma^{\omega}\}$.

Since α is any element of \mathfrak{A} , we denote $GL(n, q)^{\alpha}$ by $GL(n, q)^*$.

Lemma 2.4. Let γ be an $n \times n$ matrix over $GF(q^n)$. Then $\overline{\gamma} = \gamma^{\omega}$ if and only if

$$\gamma = \begin{pmatrix} a_0 & a_{n-1}^{(1)} \cdots a_1^{(n-1)} \\ a_1 & a_0^{(1)} \cdots a_2^{(n-1)} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-1} & a_{n-2}^{(1)} \cdots a_0^{(n-1)} \end{pmatrix}.$$

Proof. Let $\gamma = (a_{ij})$ with $\bar{\gamma} = \gamma^{\omega}$. Then

$$\begin{pmatrix} a_{11} a_{12} \cdots a_{1n} \\ \overline{a_{21}} \overline{a_{22}} \cdots \overline{a_{2n}} \\ \cdots \\ \overline{a_{n1}} \overline{a_{n2}} \cdots \overline{a_{nn}} \end{pmatrix} = \begin{pmatrix} a_{22} a_{23} \cdots a_{21} \\ a_{23} a_{33} \cdots a_{31} \\ \cdots \\ a_{12} a_{13} \cdots a_{11} \end{pmatrix}$$

Thus $a_{i,j} = \overline{a_{i-1,j-1}}$, $i, j = 1, 2, \dots, n$ modulo n. Hence $a_{i1}^{(j)} = a_{i+j,1+j}$, $i, j = 1, 2, \dots, n$ modulo n, and so γ has the required form.

The converse is clear.

From Lemma 2.3 and Lemma 2.4 we have

Lemma 2.5.

$$GL(n, q)^{\texttt{s}} = \left\{ \begin{pmatrix} a_0 & a_{n-1}^{(1)} \cdots & a_1^{(n-1)} \\ a_1 & a_0^{(1)} & \cdots & a_2^{(n-1)} \\ \vdots & \vdots & \vdots \\ a_{n-1} & a_{n-2}^{(1)} & \cdots & a_0^{(n-1)} \end{pmatrix} \in GL(n, q^n) \right\}$$

Let V(2n, q) be a vector space of dimension 2n over GF(q), and π be a nontrivial partition of V(2n, q). If $V(2n, q) = V \oplus W$ for all $V, W \in \pi$ with $V \neq W$, then π is called a spread of V(2n, q). Then the component of π is a *n*-dimensional GF(q)-subspace of V(2n, q) [1].

Let π be a spread of V(2n, q), then we can construct a translation plane $\pi(V(2n, q))$ of order q^n as follows [1]:

- a) The points of $\pi(V(2n, q))$ are the vectors in V(2n, q).
- b) The lines are all cosets of all the components of π .
- c) Incidence is inclusion.

Conversely any translation plane is isomorphic to some $\pi(V(2n, q))$.

We may assume that $V(2n, q) = V(n, q) \oplus V(n, q)$ is the outer sum of two copies of V(n, q). Set $V(\infty) = \{(0, v) | v \in V(n, q)\}$, $V(0) = \{(v, 0) | v \in V(n, q)\}$ and $V(\sigma) = \{(v, v^{\sigma}) | v \in V(n, q)\}$ for $\sigma \in GL(V(n, q))$. Then the followings hold ([6], Theorem 2.2, Theorem 2.3):

(I) Let π be a spread of V(2n, q) containing V(0), $V(\infty)$. Then we have:

a) If $V \in \pi$ and if $V \neq V(0)$, $V(\infty)$, then there is exactly one $\sigma \in GL(V(n, q))$ such that $V = V(\sigma)$. Set $\Sigma = \{\sigma \mid \sigma \in GL(V(n, q)), V(\sigma) \in \pi\} \cup \{0\}$.

- b) If $u, v \in V(n, q)$, then there is exactly one σ in Σ such that $u^{\sigma} = v$.
- c) If σ , $\rho \in \Sigma$ and if $\sigma \neq \rho$, then $\sigma \rho \in GL(V(n, q))$.

(II) Conversely if a union Σ of a subset of GL(V(n, q)) and $\{0\}$ satisfies b) and c) of (I), then $\pi = \{V(\infty)\} \cup \{V(\sigma) | \sigma \in \Sigma\}$ is a spread of V(2n, q).

3. Construction of quasifields

Let Q be a set with two binary operations + and \circ . We call $Q(+, \circ)$ a quasifield, if the following conditions are satisfied:

- 1) Q(+) is an abelian group.
- 2) If a, b, $c \in Q$, then $(a+b) \circ c = a \circ c + b \circ c$.
- 3) $a \circ 0 = 0$ for all $a \in Q$.
- 4) For $a, b \in Q$ with $a \neq 0$, there exists exactly one $x \in Q$ such that $a \circ x = b$.

5) For a, b, $c \in Q$ with $a \neq b$ there exists exactly one $x \in Q$ such that $x \circ a - x \circ b = c$.

6) There exists an element $1 \in Q \setminus \{0\}$ such that $1 \circ a = a \circ 1 = a$ for all $a \in Q$ (see [6] p. 22).

It is well known that an affine plane is a translation plane if and only if it is coordinatized by a quasifield (see [4], Theorem 6.1). Using this result, we give a new description of a quasifield.

After fixing a suitable basis in V(n, q), we denote a vector v of V(n, q) by the form $(x_0, x_1, \dots, x_{n-1})$, $x_i \in GF(q)$. Let α be a fixed element of \mathfrak{A} in the section 2. Then

$$\alpha = \begin{pmatrix} a_0 & a_0^{(1)} & \cdots & a_0^{(n-1)} \\ a_1 & a_1^{(1)} & \cdots & a_1^{(n-1)} \\ \vdots & \vdots & \vdots \\ a_{n-1} & a_{n-1}^{(1)} & \cdots & a_{n-1}^{(n-1)} \end{pmatrix}.$$

Hence $v\alpha = (x, x^{(1)}, \dots, x^{(n-1)}) \in V(n, q^n), x = \sum_{i=0}^{n-1} x_i a_i.$

Conversely, let v^* be a vector of $V(n, q^n)$ of the form $(x, x^{(1)}, \dots, x^{(n-1)})$, $x \in GF(q^n)$. Since a_0, a_1, \dots, a_{n-1} are linearly independent over GF(q), x is uniquely represented by a_0, a_1, \dots, a_{n-1} such that $x = \sum_{i=0}^{n-1} x_i a_i, x_i \in GF(q)$. Hence $v^{*\sigma^{-1}} = (x_0, x_1, \dots, x_{n-1}) \in V(n, q)$. Thus $V(n, q)^{\sigma} = \{(x, x^{(1)}, \dots, x^{(n-1)}) | x \in GF(q^n)\}$, and $V(n, q)^{\sigma}$ is a GF(q)-vector space isomorphic to V(n, q).

Set $V(2n, q)^{\sigma} = \{(u\alpha, v\alpha) | u, v \in V(n, q)\}$. Then similarly $V(2n, q)^{\sigma}$ is a GF(q)-vector space isomorphic to V(2n, q).

Denote a vector $(x, x^{(1)}, \dots, x^{(n-1)})$ of $V(n, q)^{\sigma}$ by ((x)). Then any vector of $V(2n, q)^{\sigma}$ is denoted by (((x)), ((y))). The additive group of $GF(q^n)$ is isomorphic to $V(n, q)^{\sigma}$ under a mapping $x \to ((x))$. In this mapping the inverse image of $v^* \in V(n, q)^{\sigma}$ is denoted by v^* .

Let M be any element of GL(n, q). Since by Lemma 2.5

$$M^{\boldsymbol{\omega}} = \begin{pmatrix} x_0 & x_{n-1}^{(1)} & \cdots & x_1^{(n-1)} \\ x_1 & x_0^{(1)} & \cdots & x_2^{(n-1)} \\ \vdots \\ \vdots \\ x_{n-1} & x_{n-2}^{(1)} & \cdots & x_0^{(n-1)} \end{pmatrix},$$

 M^{σ} is uniquely determined by the first column $\begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_{n-1} \end{bmatrix}$. Hence we denote M^{σ} by $\begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$.

Let $\pi = \{V(\infty)\} \cup \{V(M) \mid M \in \Sigma\}$ be a spread of V(2n, q), where Σ is a union of a subset of GL(n, q) and $\{0\}$. Set $\pi^{\mathfrak{a}} = \{V^*(\infty)\} \cup \{V^*(M^{\mathfrak{a}}) | M \in \Sigma\}$, where $V^*(\infty) = \{(((0)), ((x))) | ((x)) \in V(n, q)^{a}\}$ and $V^*(M^{a}) = \{(((x)), ((x))M^{a}) | ((x)) \in V(n, q)^{a}\}$ $((x)) \in V(n, q)^{\omega}$.

Then since $(v\alpha)M^{\alpha} = (vM)\alpha$, π^{α} is a spread of $V(2n, q)^{\alpha}$. Hence π^{α} determines a translation plane, which is denoted by Π^* . From now on we may assume that a spread π^{α} contains $V^*(1) = \{(\langle (x) \rangle, \langle (x) \rangle) \mid \langle (x) \rangle \in V(n, q)^{\alpha}\}$ ([6], Lemma 2.1).

For any two vectors $((x)) \neq ((0))$, ((y)) of $V(n, q)^{\alpha}$, there is a unique matrix $M^{*} \in \Sigma^{*}$ such that $(x)M^{*} = (y)$. Set $(x) = (1, 1, \dots, 1)$. Then any ele-

ment y of $GF(q^n)$ uniquely determines $M^{\omega} = \begin{bmatrix} y_1 \\ y_0 \\ \vdots \\ y_{n-1} \end{bmatrix} \in \Sigma^{\omega}$ such that $(1)M^{\omega} = ((y))$. This implies $y = \sum_{i=0}^{n-1} y_i$. Conversely $M^{\omega} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_{n-1} \end{bmatrix} \in \Sigma^{\omega}$ uniquely determines

 $y \in FG(q^n)$ such that $(1)M^{\omega} = (y)$ with $y = \sum_{i=0}^{n-1} y_i$. Hence we denote $M^{\omega} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_{n-1} \end{bmatrix} \in \Sigma^{\omega}$ by [y], where $y = \sum_{i=0}^{n-1} y_i$. Then a mapping $GF(q^n) \to \Sigma^{\omega}$ is a bijec-

tion under $y \rightarrow [y]$. Hence $\sum^{a} = \{[x] | x \in GF(q^{n})\}$. In this mapping the inverse image of $M^* \in \Sigma^{\sigma}$ is denoted by \hat{M}^* .

Let Π^* be a translation plane with a spread π^{α} defined in $V(2n, q)^{\alpha}$. If a point of Π^* is represented by $(\langle x \rangle, \langle y \rangle)$ as a vector of $V(2n, q)^{\alpha}$, then we give a coordinate (x, y), $x, y \in GF(q^n)$, for this point. Then the set Q consisting of all elements of $GF(q^*)$ coordinates the plane Π , and Q is a quasifield with the following two binary operations + and \circ :

(1) The addition + is the usual field addition.

(1) The addition + is the usual here addition. (2) The multiplication \circ is given by $x \circ y = \langle (x) \rangle [y]$, and if $[y] = \begin{vmatrix} y_0 \\ y_1 \\ \vdots \\ \vdots \\ \vdots \end{vmatrix}$, then $x \circ y = \sum_{i=0}^{n-1} x^{(i)} y_i$.

Using this coordinate, we can write the lines of Π^* as follows:

$$V^{*}(m)+k = \{(x, x \circ m+k) | x \in GF(q^{n})\} \cup \{(m)\}, \\V^{*}(\infty)+k = \{(k, y) | y \in GF(q^{n})\} \cup \{(\infty)\}, \\l_{\infty} = \{(m) | m \in GF(q^{n})\} \cup \{(\infty)\}.$$

Assume that Σ^* consists of $q^n - 1$ matrices of $GL(n, q)^{\alpha}$ and 0. We call Σ^* a spread set of degree *n* over $GF(q^n)$ if Σ^* has the following properties:

a) For
$$m = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_{n-1} \end{bmatrix} \in \Sigma^*$$
, put $\beta(m) = \sum_{i=0}^{n-1} x_i$. Then $\{\beta(m) | m \in \Sigma^*\} = GF(q^n)$.

Hence we may set $m = [\beta(m)]$.

b) If $m_1, m_2 \in \Sigma^*$ and if $m_2 \neq m_2$, then $m_1 - m_2 \in GL(n, q)^{\omega}$.

Clearly for any vector $((x)) \neq ((0)) \in V(n, q)^{a}$, $\{((x))m \mid m \in \Sigma^*\} = V(n, q)^{a}$. Set

$$V^{*}(\infty) = \{(((0)), ((x))) | ((x)) \in V(n, q)^{\alpha}\}, V^{*}(m) = \{(((x)), ((x))m) | ((x)) \in V(n, q)^{\alpha}.$$

Then $\{V^*(\infty)\} \cup \{V^*(m) | m \in \Sigma^*\}$ is a spread of $V(2n, q)^{\alpha}$, and so defines a translation plane Π^* .

Conversely let Q be any finite quasifield with binary two operations +and \circ . The kernel of Q is the set K(Q) consisting of all elements $k \in Q$ such that $(k \circ a) \circ b = k \circ (a \circ b)$ and $k \circ (a+b) = k \circ a + k \circ b$ for all $a, b \in Q$. Then K(Q)is a finite field, and Q is a K(Q)-vector space. Let K(Q) be of order q and let Q be of dimension n over K(Q). Then M. Hall has proved the following ([3]):

Let $V(2n, q) = Q \oplus Q$, the outer direct sum of two copies of the K(Q)-vector space Q. If $V(m) = \{(x, x \circ m) | x \in Q\}$ and $V(\infty) = \{(0, x) | x \in Q\}$, then $\pi = \{V(m) | m \in Q \cup \{\infty\}\}$ is a spread of V(2n, q). Furthermore the spread set is $\Sigma = \{(x \to x \circ m) | m \in Q\}$.

Hence the translation plane defined by π is coordinatized by Q. Thus we have

Theorem 1. Let $\Sigma^* = \{[x] | x \in GF(q^n)\}$ be a spread set of degree *n* over $GF(q^n)$. Then we have a quasifield Q with two binary operations + and \circ satisfying the followings:

(1) $Q = GF(q^n)$ as a set.

(2) The addition + is the usual field addition of $GF(q^n)$.

(3) The multiplication \circ is given by $x \circ y = \langle x \rangle [y]$, where $\langle x \rangle = \langle x, x^{(1)}, \dots, x^{(n-1)} \rangle \in V(n, q^n)$ and $[y] \in \Sigma^*$.

Furthermore any finite quasifield is isomorphic to some quasifield constructed by the above method.

A quasifield Q with a spread set Σ^* of degree n over $GF(q^n)$ is denoted by $Q(n, q^n, \Sigma^*)$. Since $(k) = (k, k, \dots, k)$ for $k \in GF(q)$ in $Q(n, q^n, \Sigma^*)$, $k \circ x = (k) [x] = kx$ for any $x \in Q$. Hence $(k \circ a) \circ b = (ka) [b] = k(a) [b] = k \circ (a \circ b)$ and $k \circ (a+b) = k(a+b) = ka+kb = k \circ a+k \circ b$. Thus GF(q) is contained in the kernel K(Q) of $Q(n, q^n, \Sigma^*)$.

4. Examples

A quasifield is determined by the spread set. In this section we show some spread sets of the known quasifields. To construct spread sets we need a condition for two spread sets to define isomorphic quasifields or translation planes.

First using the spread set, we prove the following Maduram's Theorem. From now on $GL(n, q)^*$ is denoted by G^* .

Theorem A (D.M. Maduram [7]). Let $Q_1 = Q(n, q^n, \Sigma_1^*)$ and $Q_2 = Q(n, q^n, \Sigma_{\sigma}^*)$. Then Q_1 and Q_2 are isomorphic if and only if there is N in G^* and θ in Aut $GF(q^n)$ such that $\Sigma_2^* = N^{-1} \Sigma_1^{*\theta} N$ and ((1)) N = ((1)).

Furthermore let f be the isomorphism from Q_1 to Q_2 , then $f(x) = \langle x^{\theta} \rangle N$ and $[f(x)] = N^{-1}[x]^{\theta}N$ for $x \in Q_1$.

Proof. Let f be an isomorphism from Q_1 to Q_2 . Then f fixes GF(q) as a set and so f induces an automorphism of GF(q). Hence there is θ in Aut $GF(q^n)$ such that $f(k) = k^{\theta}$ for any element k of GF(q). Then for $a \in Q_1$

$$f(ka) = f(k \circ a) = f(k) \circ f(a) = k^{\theta} f(a) .$$

Let \overline{f} be a mapping of $V(n, q)^{\alpha}$ onto itself defined by $\overline{f}(\langle \! (x) \rangle \!) = \langle \! (f(x)) \rangle$ for $\langle \! (x) \rangle \! \in V(n, q)^{\alpha}$. Then

$$\begin{split} \bar{f}((\!(x)\!) + (\!(y)\!)) &= \bar{f}((\!(x\!+\!y)\!)) = (\!(f(x\!+\!y))\!) = (\!(f(x)\!+\!f(y))\!) \\ &= (\!(f(x))\!) + (\!(f(y))\!) = \bar{f}((\!(x))\!) + \bar{f}((\!(y))\!) \end{split}$$

and for $k \in GF(q)$

$$\overline{f}(\langle\!\langle kx\rangle\!\rangle) = \langle\!\langle f(kx)\rangle\!\rangle = \langle\!\langle k^{\theta}f(x)\rangle\!\rangle = k^{\theta}\langle\!\langle f(x)\rangle\!\rangle = k^{\theta}\overline{f}(\langle\!\langle x\rangle\!\rangle) \,.$$

Thus f is a non-singular semi-linear transformation of $V(n, q)^{\alpha}$.

Next let ϕ be a mapping of V(n, q) onto itself defined by $\phi(v) = f(v\alpha)\alpha^{-1}$. Then clearly $\phi(v_1+v_2) = \phi(v_1) + \phi(v_2)$ and $\phi(kv) = k^{\theta}\phi(v)$. Thus ϕ is also a non-singular semi-linear transformation of V(n, q). Hence there is N_1 in GL(n, q) such that

$$\phi((x_1, \cdots, x_n)) = (x_1, \cdots, x_n)^{\theta} N_1$$

for $(x_1, \dots, x_n) \in V(n, q)$. On the other hand set $(x_1, \dots, x_n) \alpha = \langle \! \langle x \rangle \! \rangle$. Then

$$\phi((x, \cdots, x_n)) = \bar{f}(\langle\!\langle x \rangle\!\rangle) \alpha^{-1}$$

Hence

$$f(((x))) = (x_1, \cdots, x_n)^{\theta} N_1 \alpha$$
.

By Lemma 2.1 $\alpha^{\theta} = N_2 \alpha$, $N_2 \in GL(n, q)$. Hence

Т. Оуама

$$((x^{\theta})) = (x_2, \cdots, x_n)^{\theta} \alpha^{\theta} \alpha = (x_2, \cdots, x_n)^{\theta} N_2 \alpha$$

and so

$$(x_1, \cdots, x_n)^{\theta} = ((x^{\theta}))\alpha^{-1}N_2^{-1}.$$

Thus

$$f(((x))) = ((x^{\theta}))\alpha^{-1}N_2^{-1}N_1\alpha$$
.

Set $N = \alpha^{-1} N_2^{-1} N_1 \alpha \in G^*$. Then

$$f(((x))) = ((x^{\theta}))N.$$

Since f(((x))) = ((f(x))),

$$((1)) = ((f(1))) = \overline{f}(((1))) = ((1))N$$
 and $f(x) = ((x^{\theta}))N$.

Then since $f(x \circ y) = f(x) \circ f(y) = \langle (f(x)) \rangle [f(y)] = \langle (x \circ y) \rangle N[f(y)]$ and $f(x \circ y) = \langle (x \circ y) \rangle \theta N$ $= (\!(x^{\theta})) \widehat{[y]}^{\theta} N, (\!(x^{\theta})) N[f(y)] = (\!(x^{\theta})) [y]^{\theta} N \text{ for any } (\!(x)\!) \in V(n, q)^{\omega}.$ Thus $N[f(y)] = [y]^{\theta} N$ and so $[f(y)] = N^{-1} [y]^{\theta} N$ for any $y \in Q_1$. Hence

we have $\Sigma_2^* = N^{-1} \Sigma_1^{*\theta} N$.

Conversely let f be a mapping from Q_1 to Q_2 defined by $f(x) = \langle x^{\theta} \rangle N$. Then

$$f(x+y) = \langle \langle (x+y)^{\theta} \rangle \rangle N = \langle \langle x^{\theta} \rangle \rangle N + \langle \langle y^{\theta} \rangle \rangle N = f(x) + f(y)$$

and

$$f(x \circ y) = \langle\!\langle x \circ y \rangle\!\rangle^{\theta} N = \langle\!\langle x^{\theta} \rangle\!\rangle [y]^{\theta} N = \langle\!\langle x^{\theta} \rangle\!\rangle N N^{-1} [y]^{\theta} N.$$

Since $\Sigma_2^* = N^{-1} \Sigma_1^{*\theta} N$,

$$f(x \circ y) = f(x) \circ N^{-1} [y]^{\theta} N.$$

Furthermore

$$((1))N^{-1}[y]^{\theta}N = ((1))[y]^{\theta}N = ((y^{\theta}))N.$$

On the other hand

$$((1))[((y^{\theta}))N] = ((y^{\theta}))N.$$

Hence

$$N^{-1}[y]^{\theta}N = [((y^{\theta}))N]$$

and so

$$f(x \circ y) = f(x) \circ ((y^{\theta})) \stackrel{}{N} = f(x) \circ f(y) .$$

Thus f is an isomorphism from Q_1 to Q_2 .

Let π_1 and π_2 be two spreads in V(2n, q) both containing $V(\infty)$. Let Π_1 and Π_2 be translation planes defined by π_1 and π_2 . Then Π_1 and Π_2 are isomorphic if and only if there is a non-singular semi-linear transformation in V(2n, q) taking π_1 onto π_2 ([5], p. 82).

Let M(n, q) be the set of all $n \times n$ matrices over GF(q). Then all elements of $M(n, q)^{\alpha}$ have the forms as in Lemma 2.4. Using elements of $M(n, q)^{\alpha}$ and Aut $GF(q^n)$, we describe Sherk's Theorem with the following extended form.

Theorem B (F.A. Sherk [8]). Let Π_1 and Π_2 be translation planes coordinatized by quasifields $Q_1 = Q(n, q^n, \Sigma_1^*)$ and $Q_2 = Q(n, q^n, \Sigma_2^*)$. Then Π_1 and Π_2 are isomorphic if and only if there exist A, B, C and D in $M(n, q)^{\alpha}$ and θ in Aut $GF(q^n)$ with the following properties:

- a) $\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} \neq 0.$
- b) *Either*
- i) $B=0, A \in G^* \text{ and } \Sigma_2^* = \{A^{-1}(C+[m]^{\theta}D) | [m] \in \Sigma_1^*\}.$

ii) $B \in G^*$, $B^{-1}D \in \Sigma_2^*$. Also, there is $[m_0] \in \Sigma_1^*$ such that $A + [m_0]^{\theta} B = 0$. For any $[m] \in \Sigma_1^* \setminus \{[m_0]\}, A+[m]^{\theta}B \in G^* \text{ and } (A+[m]^{\theta}B)^{-1}(C+[m]^{\theta}D) \in \Sigma_2^*.$

From now on we denote the operations of $GF(q^n)$ by + and \cdot , and the operations of a quasifield by + and \circ .

(I) Finite fields A quasifield $Q(n, q^n, \Sigma^*)$ with $\Sigma^* = \{[a] = \begin{bmatrix} a \\ 0 \\ \vdots \\ 0 \end{bmatrix} | a \in GF(q^n) \}$ is isomorphic to $GF(q^n)$.

(II) Finite generalized Andre quasifields

Let $Q = Q(n, q^n, \Sigma^*)$ be a quasifield. If the mapping $x \to (x \circ a)a^{-1}$ is an automorphism of $GF(q^n)$, then Q is called a generalized Andre quasifield.

Since $k \circ a = ka$ for $k \in GF(q)$, the automorphism $x \rightarrow (x \circ a)a^{-1}$ fixes GF(q)elementwise. Hence $(x \circ a)a^{-1} = x^{q^{\rho(a)}}$, $\rho(a) \in \{0, 1, \dots, n-1\}$. This yields $x \circ a = x^{q^{\rho(a)}} a = x^{(\rho(a))} a$. Let $[a] = \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ \vdots \end{bmatrix}$. Then $x \circ a = ((x))[a] = \sum_{i=1}^{n-1} x^{(i)} a_i = x^{(\rho(a))} a$.

Hence

$$a_0 x + a_1 x^{(1)} + \dots + (a_{\rho(a)} - a) x^{(\rho(a))} + \dots + a_{n-1} x^{(n-1)} = 0$$

for all $x \in GF(q^n)$. Therefore $a_i = 0$ if $i \neq \rho(a)$ and $a_{\rho(a)} = a$. A matrix $\begin{vmatrix} a_1 \\ \vdots \\ a \end{vmatrix}$ with

exactly one nonzero entry $a_i = a$ is denoted by [a(i)]. Then the spread set is $\Sigma^* = \{[a] = [a(\rho(a)+1)] | a \in GF(q^*) \setminus \{0\}\} \cup \{0\}.$

For instance, spread sets of generalized Andre quasifields $Q(2, q^2, \Sigma^*)$ and $Q(3, q^3, \Sigma^*)$ are as follows. For $x \in GF(q^2)$ or $GF(q^3)$ set $N(x) = x^{1+q}$ or $N(x) = x^{1+q+q^2}$ respectively.

(1) $Q(2, q^2, \Sigma^*)$

 $\Sigma^* = \Sigma_1^* \cup \Sigma_2^* \cup \{0\}$, where $\Sigma_1^* = \{[a] = \begin{bmatrix} a \\ 0 \end{bmatrix}, a \neq 0\}$ and $\Sigma_2^* = \{[a] = \begin{bmatrix} 0 \\ a \end{bmatrix}, a \neq 0\}$. Moreover $N(a_1) \neq N(a_2)$ for $[a_1] \in \Sigma_1^*$ and $[a_2] \in \Sigma_2^*$ since det $([a_1] - [a_2]) = N(a_1) - N(a_2) \neq 0$.

(2) $Q(3, q^3, \Sigma^*)$ $\Sigma^* = \Sigma_1^* \cup \Sigma_2^* \cup \Sigma_3^* \cup \{0\}$, where $\Sigma_1^* = \{[a] = \begin{bmatrix} a \\ 0 \\ 0 \end{bmatrix}$, $a \neq 0\}$, $\Sigma_2^* = \{[a] = \begin{bmatrix} 0 \\ a \\ 0 \end{bmatrix}$, $a \neq 0\}$ and $\Sigma_3^* = \{[a] = \begin{bmatrix} 0 \\ 0 \\ a \end{bmatrix}$, $a \neq 0\}$. Moreover if $[a] \in \Sigma_i^*$, $[b] \in \Sigma_j^*$ and $i \neq j$, then $N(a) \neq N(b)$ since det $([a] - [b]) = N(a) - N(b) \neq 0$.

(III) Finite Dickson nearfields

We call a quasifield Q a nearfield, if the multiplication of Q is associative, i.e. $Q \setminus \{0\}$ is the multiplicative group. Let Q be a nearfield with a spread set Σ^* . Then for any $x \in Q$, $x \circ (a \circ b) = (x \circ a) \circ b$. Then $(x)[a \circ b] = (x)[a][b]$. Thus we have $[a \circ b] = [a][b]$ and so $[a][b] \in \Sigma^*$.

If a generalized Andre quasifield Q is a nearfield, then Q is called a Dickson nearfield. In a Dickson nearfield $Q(n, q^n, \Sigma^*)$, let ρ be the mapping defined in (II), i.e. $x \circ a = x^{q^{P(a)}}a$.

Lemma 4.1. Let $Q = Q(n, q^n, \Sigma^*)$ be a Dickson nearfield. Then $K = \{a \in Q \mid a \circ x = ax \text{ for all } x \in Q\}$ is the subfield $GF(q^m)$ of $GF(q^n)$ with n = mr. Furthermore we have a Dickson nearfield $Q' = Q(r, (q^m)^r, \Sigma^*)$ as follows;

If $[a] = [a][a(\rho(a)+1)]$ in Σ^* , then $[a] = \left[a\left(\frac{\rho(a)}{m}+1\right)\right]$ in $\Sigma^{*'}$. Hence Q' is identified with Q.

Proof. Let $a, b \in K$. Then for any $x \in Q$, $(a+b) \circ x = a \circ x + b \circ x = ax + bx$ =(a+b)x and $(a \circ b) \circ x = a \circ (b \circ x) = a(bx) = (ab)x = (a \circ b)x$. Thus $a+b \in K$ and $a \circ b = ab \in K$ and so K is a subfield of $GF(q^n)$, say $K = GF(q^m)$. Then n = mr. Let $x \in K$ and $a \in Q \setminus \{0\}$. Then $xa = x \circ a = x^{q^{P(a)}}a$. Hence $x = x^{q^{P(a)}}$ and so $\rho(a) \equiv 0 \pmod{m}$. Thus $x \circ a = x^{q^{P(a)}}a = x^{(q^m)\frac{P(a)}{m}}a$. Hence if we take a $r \times r$ matrix $[a]' = a \left[\left(\frac{\rho(a)}{m} + 1 \right) \right]$, and set $\Sigma^{*'} = \{[a]' \mid a \in GF(q^n) \setminus \{0\}\} \cup \{0\}$, then we can identify $Q(r, (q^m)', \Sigma^*)$ with $Q(n, q^n, \Sigma^*)$.

Now we describe a theorem of E. Ellers and H. Karzl [2] using a spread set.

Theorem C (E. Eller and H. Karzel). Let $Q(n, q^n, \Sigma^*)$ be a finite Dickson nearfield such that $GF(q) = \{k \in Q \mid k \circ x = kx \text{ for all } x \in Q\}$. Then the following hold:

1) Every prime divisor of n divides q-1.

2) If $n \equiv 0 \pmod{4}$, then $q \neq 3 \pmod{4}$.

Furthermore the spread set Σ^* is as follows:

Let ω be a generator of the multiplicative group $(GF(q^n), \cdot)$ and set $U = \langle \omega^n \rangle$. Then there is a positive integer t with (n, t) = 1,

$$(GF(q^n), \cdot) = \bigcup_{i=0}^{n-1} \omega^i (q^i-1)(q-1)^{-1} U.$$

If $a \in \omega^{t(q^i-1)(q-1)^{-1}}U$, then [a] = [a(i+1)].

Conversely by a theorem of H. Lüneburg ([6], Theorem 6.4) we can construct a Dickson nearfield as follows;

Assume that *n* and *q* satisfy the conditions 1) and 2) of Theorem C. Let ω be a generator of the multiplicative group $GF(q^n)$ and (n, t) = 1. Then $\Sigma^* = \bigcup_{i=0}^{n-1} \{[a(i+1)] | a \in \omega^{t(q^i-1)(q-1)^{-1}}U\} \cup \{0\}$, where $U = \langle \omega^n \rangle$.

(IV) Quasifields of order 9

M. Hall has proved that there exist up to isomorphism exactly five quasifields of order 9 ([3]). We prove this theorem using a spread set.

Theorem 2. There exist up to isomorphism exactly five quasifields with the following spread sets.

$$\begin{split} \Sigma_{1}^{*} &= \{ [a] = \begin{bmatrix} a \\ 0 \end{bmatrix} | a \in GF(9) \} , \\ \Sigma_{2}^{*} &= \{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \pm 1 \\ 0 \end{bmatrix}, \begin{bmatrix} \pm \omega + 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ \pm \omega \pm 1 \end{bmatrix} \} , \\ \Sigma_{3}^{*} &= \{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \pm 1 \\ 0 \end{bmatrix}, \begin{bmatrix} \pm \omega \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} \pm \omega - 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ \pm \omega \pm 1 \end{bmatrix} \} , \\ \Sigma_{4}^{*} &= \{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \pm 1 \\ 0 \end{bmatrix}, \begin{bmatrix} \pm \omega - 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ \pm \omega \pm 1 \end{bmatrix} \} , \\ \Sigma_{5}^{*} &= \{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -\omega \\ 0 \end{bmatrix}, \begin{bmatrix} \pm (\omega - 1) \\ 0 \end{bmatrix}, \begin{bmatrix} \omega - 1 \\ \pm 1 \end{bmatrix}, \begin{bmatrix} \omega - 1 \\ \pm \omega \end{bmatrix} \} , \end{split}$$

where ω is the root of $f(x) = x^2 + 1$ in GF(9).

Proof. $Q(1, 9, \Sigma^*)$ is isomorphic to GF(9).

Next we construct $Q(2, 9, \Sigma^*)$. Take an irreducible polynomial $f(x) = x^2 + 1$ over GF(3), and let ω and $-\omega$ be the roots of f(x) in GF(9). Set $N(x) = x^{1+3} = x^4$ for $x \in GF(9)$. Then $N(\pm 1) = N(\pm \omega) = 1$, $N(\pm \omega \pm 1) = -1$ and $\det \begin{bmatrix} a \\ b \end{bmatrix} = N(a) - N(b)$.

Lemma 4.2. Σ^* has the following properties: 1) Let $\begin{bmatrix} a \\ b \end{bmatrix} \in \Sigma^*$, $a, b \pm 0$ and $\begin{bmatrix} c \\ 0 \end{bmatrix} \in \Sigma^*$. Then a = c or N(a-c) = N(a). If $\begin{bmatrix} 0 \\ d \end{bmatrix} \in \Sigma^*$, then b = d or N(b-d) = N(b). 2) If $\begin{bmatrix} a \\ b \end{bmatrix} \in \Sigma^*$ and $a, b \pm 0$, then $a = \pm 1$ or $\pm \omega - 1$. 3) If $\begin{bmatrix} 0 \\ b \end{bmatrix} \in \Sigma^* \setminus \{0\}$, then $b = \pm \omega \pm 1$. Proof. 1) Since det $(\begin{bmatrix} a \\ b \end{bmatrix} - \begin{bmatrix} c \\ 0 \end{bmatrix}) \pm 0$, $N(a-c) \pm N(b)$. Hence a = c or N(a-c) = N(a). Similarly if $\begin{bmatrix} 0 \\ d \end{bmatrix} \in \Sigma^*$, then b = d or N(b-d) = N(b). 2) Since $\begin{bmatrix} 1 \\ 0 \end{bmatrix} \in \Sigma^*$, a = 1 or N(a-1) = N(a) by 1). Hence $a = \pm 1$ or $\pm \omega - 1$.

3) Since $\begin{bmatrix} 1\\ 0 \end{bmatrix} \in \Sigma^*$ and det $(\begin{bmatrix} 1\\ 0 \end{bmatrix} - \begin{bmatrix} 0\\ b \end{bmatrix}) \neq 0, b = \pm \omega \pm 1.$

We use this lemma frequently in the following proofs. By Lemma 4.2, [-1], $[\omega+1]$ and $[\omega]$ have one of the following forms:

$$\begin{bmatrix} -1 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} \omega -1 \\ -\omega \end{bmatrix} \text{ or } \begin{bmatrix} -\omega -1 \\ \omega \end{bmatrix}, \begin{bmatrix} \omega +1 \end{bmatrix}, \begin{bmatrix} \omega +1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \omega +1 \end{bmatrix}, \begin{bmatrix} -1 \\ \omega -1 \end{bmatrix} \text{ or } \begin{bmatrix} \omega -1 \\ -1 \end{bmatrix}, \begin{bmatrix} \omega \end{bmatrix}, \begin{bmatrix} \omega \end{bmatrix}, \begin{bmatrix} 1 \\ \omega -1 \end{bmatrix}, \begin{bmatrix} -1 \\ \omega +1 \end{bmatrix} \text{ or } \begin{bmatrix} \omega -1 \\ 1 \end{bmatrix}, \begin{bmatrix} \omega \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ \omega -1 \end{bmatrix}, \begin{bmatrix} -1 \\ \omega +1 \end{bmatrix} \text{ or } \begin{bmatrix} \omega -1 \\ 1 \end{bmatrix}, \begin{bmatrix} \omega \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ \omega \end{bmatrix}, \begin{bmatrix} 0 \\ \omega \end{bmatrix}, \begin{bmatrix} 1 \\ \omega \end{bmatrix}, \begin{bmatrix} 0 \\ \omega \end{bmatrix}, \begin{bmatrix}$$

Case 1. $[-1] = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$. If $\begin{bmatrix} a \\ b \end{bmatrix} \in \Sigma^*$ and $a, b \neq 0$, then $a = \pm 1$ since $\det(\begin{bmatrix} a \\ b \end{bmatrix} - \begin{bmatrix} -1 \\ 0 \end{bmatrix}) \neq 0$. Thus $[\omega+1] = \begin{bmatrix} \omega+1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \omega+1 \end{bmatrix} \text{ or } \begin{bmatrix} -1 \\ \omega-1 \end{bmatrix},$ $[\omega] = \begin{bmatrix} \omega \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ \omega-1 \end{bmatrix} \text{ or } \begin{bmatrix} -1 \\ \omega+1 \end{bmatrix}.$ (1.1) Suppose $[\omega+1] = \begin{bmatrix} \omega+1 \\ 0 \end{bmatrix}$. Then $\begin{bmatrix} 0 \\ b \end{bmatrix} \notin \Sigma^* \setminus \{0\}$. Furthermore if $\begin{bmatrix} a \\ b \end{bmatrix} \in \Sigma^*$ and $a, b \neq 0$, then a = 1. Thus $\Sigma^* \subseteq \{\begin{bmatrix} a \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ \pm \omega \pm 1 \end{bmatrix} | a \in GF(9) \}.$ (1.1.1) Suppose $[\omega] = \begin{bmatrix} \omega \\ 0 \end{bmatrix}$. Then $\begin{bmatrix} 1 \\ \pm \omega \pm 1 \end{bmatrix} \notin \Sigma^*$. Thus we have the following spread set Σ_1^* :

$$\Sigma_1^* = \{[a] = \begin{bmatrix} a \\ 0 \end{bmatrix} | a \in -GF(9)\}.$$

Then $Q(2, 9, \Sigma_1^*)$ is isomorphic to GF(9).

(1.1.2) Suppose $[\omega] = \begin{bmatrix} 1 \\ \omega - 1 \end{bmatrix}$. If $\begin{bmatrix} a \\ 0 \end{bmatrix} \in \Sigma^* \setminus \{0\}$, then $a = \pm 1$ or $\pm \omega + 1$. Hence we have the following spread set Σ_2^* .

$$\Sigma_2^* = \{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \pm 1 \\ 0 \end{bmatrix}, \begin{bmatrix} \pm \omega + 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ \pm \omega \pm 1 \end{bmatrix} \}.$$

Since $\{\begin{bmatrix} \pm \omega + 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ \pm \omega \pm 1 \end{bmatrix}\}$ is a conjugate class in G^* , by Theorem A $Q(2,9, \Sigma_2^*)$ is not isomorphic to any $Q(2, 9, \Sigma^*)$ with $\Sigma^* \pm \Sigma_2^*$.

(1.2) Suppose $[\omega+1] = \begin{bmatrix} 0 \\ \omega+1 \end{bmatrix}$. Then $\Sigma^* \subseteq \{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \pm 1 \\ 0 \end{bmatrix}, \begin{bmatrix} \pm \omega \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \pm (\omega+1) \end{bmatrix} \}$.

(1.2.1) Suppose $[\omega] = \begin{bmatrix} \omega \\ 0 \end{bmatrix}$. Then $\begin{bmatrix} \pm 1 \\ \pm (\omega+1) \end{bmatrix} \notin \Sigma^*$. Hence we have the following spread set Σ_3^* :

$$\Sigma_3^* = \{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \pm 1 \\ 0 \end{bmatrix}, \begin{bmatrix} \pm \omega \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \pm \omega \pm 1 \end{bmatrix} \}.$$

Then $Q(2, 9, \Sigma_3^*)$ is a Dickson nearfield.

(1.2.2) Suppose
$$[\omega] = \begin{bmatrix} -1 \\ \omega + 1 \end{bmatrix}$$
. Then

$$\Sigma^* = \{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \pm 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \pm (\omega + 1) \end{bmatrix}, \begin{bmatrix} \pm 1 \\ \pm (\omega + 1) \end{bmatrix} \}.$$

Take $\begin{bmatrix} -\omega+1\\ \omega \end{bmatrix} \in G^*$. Then since $\begin{bmatrix} -\omega+1\\ \omega \end{bmatrix}^{-1} \begin{bmatrix} 1\\ \omega+1 \end{bmatrix} \begin{bmatrix} -\omega+1\\ \omega \end{bmatrix} = \begin{bmatrix} \omega+1\\ 0 \end{bmatrix}$, $\begin{bmatrix} -\omega+1\\ \omega \end{bmatrix}^{-1} \begin{bmatrix} 0\\ \omega+1 \end{bmatrix} \begin{bmatrix} -\omega+1\\ \omega \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$ and $((1)) \begin{bmatrix} -\omega+1\\ \omega \end{bmatrix} = ((1))$, the quasifield with this spread set is isomorphic to GF(9) by Theorem A.

(1.3) Suppose $[\omega+1] = \begin{bmatrix} -1 \\ \omega-1 \end{bmatrix}$. Then $\Sigma^* \subseteq \{\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \pm 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ \pm \omega \pm 1 \end{bmatrix}, \begin{bmatrix} 1 \\ \pm (\omega-1) \end{bmatrix}, \begin{bmatrix} \pm \omega -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \pm (\omega-1) \end{bmatrix}\}$. (1.3.1) Suppose $[\omega] = \begin{bmatrix} 1 \\ \omega-1 \end{bmatrix}$. Take $\begin{bmatrix} \omega+1 \\ -\omega \end{bmatrix} \in G^*$. Then $\begin{bmatrix} \omega+1 \\ -\omega \end{bmatrix}^{-1}$ $\begin{bmatrix} 1 \\ \omega-1 \end{bmatrix} \begin{bmatrix} \omega+1 \\ -\omega \end{bmatrix} = \begin{bmatrix} \omega+1 \\ 0 \end{bmatrix}$ and $((1)) \begin{bmatrix} \omega+1 \\ -\omega \end{bmatrix} = ((1))$. Hence this case is included in the case (1.1).

(1.3.2) Suppose $[\omega] = \begin{bmatrix} -1 \\ \omega+1 \end{bmatrix}$. Then $\begin{bmatrix} 1 \\ \pm(\omega-1) \end{bmatrix}$ and $\begin{bmatrix} 1 \\ \pm(\omega-1) \end{bmatrix} \notin \Sigma^*$. Hence we have the following spread set Σ_4^* .

$$\Sigma_{4}^{*} = \{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \pm 1 \\ 0 \end{bmatrix}, \begin{bmatrix} \pm \omega - 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ \pm \omega \pm 1 \end{bmatrix} \}.$$

Similarly to the case (1.1.2), $\{\begin{bmatrix} \pm \omega - 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ \pm \omega + 1 \end{bmatrix}\}$ is a conjugate class in G^* and so $Q(2, 9, \Sigma_4^*)$ is not isomorphic to any $Q(2, 9, \Sigma^*)$ with $\Sigma^* \pm \Sigma_4^*$.

Case 2.
$$[-1] = \begin{bmatrix} \omega - 1 \\ -\omega \end{bmatrix}$$
.
Then $\Sigma^* \subseteq \{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -\omega \\ 0 \end{bmatrix}, \begin{bmatrix} \pm(\omega-1) \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -\omega\pm1 \end{bmatrix}, \begin{bmatrix} 1 \\ -\omega\pm1 \end{bmatrix}, \begin{bmatrix} -1 \\ \omega\pm1 \end{bmatrix}, \begin{bmatrix} \omega-1 \\ \pm1 \end{bmatrix}, \begin{bmatrix} \omega-1 \\ \pm1 \end{bmatrix}, \begin{bmatrix} -\omega-1 \\ \pm1 \end{bmatrix}, \begin{bmatrix} -\omega-1 \\ -\omega \end{bmatrix} \}$. Then

$$[\omega+1] = \begin{bmatrix} \omega - 1 \\ -1 \end{bmatrix} \text{ or } \begin{bmatrix} -1 \\ \omega - 1 \end{bmatrix},$$
$$[\omega] = \begin{bmatrix} \omega - 1 \\ 1 \end{bmatrix} \text{ or } \begin{bmatrix} -1 \\ \omega + 1 \end{bmatrix}.$$

(2.1) Suppose $[\omega+1] = \begin{bmatrix} \omega - 1 \\ -1 \end{bmatrix}$. Then $\Sigma^* \subseteq \{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -\omega \\ -1 \end{bmatrix}, \begin{bmatrix} -\omega \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -\omega \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -\omega \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -\omega \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -\omega \end{bmatrix}, \begin{bmatrix} -\omega \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -\omega \end{bmatrix}, \begin{bmatrix} -\omega \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -\omega \end{bmatrix}, \begin{bmatrix} -\omega \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -\omega \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -\omega \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -\omega \end{bmatrix}, \begin{bmatrix} -\omega \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -\omega \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -\omega \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -\omega \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -\omega \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -\omega \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -\omega \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -\omega \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -\omega \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -\omega \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -\omega \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -\omega \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -\omega \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -\omega \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1$

$$\boldsymbol{\Sigma}_{5}^{*} = \{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -\boldsymbol{\omega} \\ 0 \end{bmatrix}, \begin{bmatrix} \pm(\boldsymbol{\omega}-1) \\ 0 \end{bmatrix}, \begin{bmatrix} \boldsymbol{\omega}-1 \\ \pm 1 \end{bmatrix}, \begin{bmatrix} \boldsymbol{\omega}-1 \\ \pm \boldsymbol{\omega} \end{bmatrix} \}$$

Since $\begin{bmatrix} -1\\ 0 \end{bmatrix} \notin \Sigma_5^*$, the quasifield with Σ_5^* is not isomorphic to any quasifield with Σ_i^* , i=1, 2, 3, 4.

(2.1.2) Suppose
$$[\omega] = \begin{bmatrix} -1\\ \omega+1 \end{bmatrix}$$
. Then $\Sigma^* \subseteq \{\begin{bmatrix} 0\\ 0 \end{bmatrix}, \begin{bmatrix} 1\\ 0 \end{bmatrix}, \begin{bmatrix} \omega-1\\ 0 \end{bmatrix}, \begin{bmatrix} 0\\ -\omega-1 \end{bmatrix}, \begin{bmatrix} 0\\ -\omega-1 \end{bmatrix}, \begin{bmatrix} \pm \omega-1\\ -1 \end{bmatrix}, \begin{bmatrix} \pm \omega-1\\ -1 \end{bmatrix}, \begin{bmatrix} \pm \omega-1\\ -\omega \end{bmatrix} \}$. Since det $(\begin{bmatrix} \omega-1\\ 0 \end{bmatrix}, \begin{bmatrix} 0\\ -\omega-1 \end{bmatrix}, \begin{bmatrix} 0\\ -\omega-1 \end{bmatrix}, \begin{bmatrix} -1\\ \omega+1 \end{bmatrix}, \begin{bmatrix} \pm \omega-1\\ -1 \end{bmatrix}, \begin{bmatrix} \pm \omega-1\\ -\omega \end{bmatrix} = 0, \Sigma^* = \{\begin{bmatrix} 0\\ 0 \end{bmatrix}, \begin{bmatrix} 1\\ 0 \end{bmatrix}, \begin{bmatrix} 0\\ -\omega-1 \end{bmatrix}, \begin{bmatrix} 1\\ -\omega-1 \end{bmatrix}, \begin{bmatrix} -1\\ \omega+1 \end{bmatrix}, \begin{bmatrix} \pm \omega-1\\ -1 \end{bmatrix}, \begin{bmatrix} \pm \omega-1\\ -\omega \end{bmatrix} \}$. Then $\begin{bmatrix} -\omega+1\\ \omega \end{bmatrix}^{-1}\Sigma^* \begin{bmatrix} -\omega+1\\ \omega \end{bmatrix} = \Sigma^*_5$ and ((1)) $\begin{bmatrix} -\omega+1\\ \omega \end{bmatrix}$
=((1)). Hence the quasifield with this spread set is isomorphic to the quasifield with Σ^*_5 by Theorem A.

(2.2) Suppose
$$[\omega+1] = \begin{bmatrix} -1 \\ \omega-1 \end{bmatrix}$$
. Then $\Sigma^* \subseteq \{\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} \omega-1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -\omega+1 \end{bmatrix},$

$$\begin{bmatrix} 1\\ -\omega+1 \end{bmatrix}, \begin{bmatrix} -1\\ \omega\pm1 \end{bmatrix}, \begin{bmatrix} \pm\omega-1\\ 1 \end{bmatrix}, \begin{bmatrix} \pm\omega-1\\ -\omega \end{bmatrix};$$
(2.2.1) Suppose $[\omega] = \begin{bmatrix} \omega-1\\ 1 \end{bmatrix}$. Then $\Sigma^* \subseteq \{\begin{bmatrix} 0\\ 0 \end{bmatrix}, \begin{bmatrix} 1\\ 0 \end{bmatrix}, \begin{bmatrix} \omega-1\\ 0 \end{bmatrix}, \begin{bmatrix} 0\\ -\omega+1 \end{bmatrix}, \begin{bmatrix} 1\\ -\omega+1 \end{bmatrix}, \begin{bmatrix} \pm\omega-1\\ -\omega+1 \end{bmatrix}, \begin{bmatrix} \pm\omega-1\\ 1 \end{bmatrix}, \begin{bmatrix} \pm\omega-1\\ -\omega \end{bmatrix};$. Since $\det(\begin{bmatrix} \omega-1\\ 0 \end{bmatrix}, -\begin{bmatrix} 1\\ -\omega+1 \end{bmatrix}, \begin{bmatrix} -1\\ -\omega+1 \end{bmatrix}, \begin{bmatrix} -1\\ \omega-1 \end{bmatrix}, \begin{bmatrix} \pm\omega-1\\ -\omega \end{bmatrix};$. Then $\begin{bmatrix} \omega+1\\ -\omega \end{bmatrix}^{-1}\Sigma^*\begin{bmatrix} \omega+1\\ -\omega \end{bmatrix} = \Sigma^*_5$ and $((1))$ $\begin{bmatrix} \omega+1\\ -\omega \end{bmatrix} = ((1))$.
Hence the quasifield with this spread set is isomorphic to the quasifield with Σ^*_5 by Theorem A.
(2.2.2) Suppose $[\omega] = \begin{bmatrix} -1\\ \omega+1 \end{bmatrix}$. Then $\Sigma^* \subseteq \{\begin{bmatrix} 0\\ 0 \end{bmatrix}, \begin{bmatrix} 1\\ 0 \end{bmatrix}, \begin{bmatrix} \omega-1\\ 0 \end{bmatrix}, \begin{bmatrix} \omega-1\\ 0 \end{bmatrix}, \begin{bmatrix} -1\\ 0$

 $\begin{bmatrix} -\omega \end{bmatrix}^{7}, \text{ which consists of seven matrices. There is case does not occur.}$ $\text{Case 3. } [-1] = \begin{bmatrix} -\omega - 1 \\ \omega \end{bmatrix}.$ $\text{Since } \begin{bmatrix} 0 \\ 1 \end{bmatrix}^{-1} \begin{bmatrix} -\omega - 1 \\ \omega \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \omega - 1 \\ -\omega \end{bmatrix} \text{ and } ((1)) \begin{bmatrix} 0 \\ 1 \end{bmatrix} = ((1)), \text{ this case is reduced to the case 2.}$

M. Hall has proved that there exist up to isomorphism exactly two translation planes of order 9 [3].

We prove this theorem using the spread sets Σ_1^* , i=1, 2, 3, 4, 5. Since $\Sigma_3^* = \{[a] + \begin{bmatrix} -1 \\ 0 \end{bmatrix} | [a] \in \Sigma_2^*\} = \{[a] + \begin{bmatrix} 1 \\ 0 \end{bmatrix} | [a] \in \Sigma_4^*\} = \{\begin{bmatrix} 0 \\ 1 \end{bmatrix} [a] + \begin{bmatrix} 0 \\ -\omega+1 \end{bmatrix} | [a] \in \Sigma_5^*\}$, the translation plane coordinatized by the quasifield with Σ_i^* , i=2, 4 or 5 is isomorphic to the translation plane coordinatized by the Dickson nearfield $Q(2, 9, \Sigma_3^*)$ by Theorem B.

(V) Hall quasifields

Let $Q=Q(2, q^2, \Sigma^*)$ be a quasifield. If Q satisfies the following conditions, then Q is called a Hall quasifield [3]:

1) Let $f(x)=x^2-rx-s$ be an irreducible polynomial over GF(q). Every element ξ of Q not in GF(q) satisfies the quadratic equation $f(\xi)=0$.

2) Every element of GF(q) commutes with all elements of Q.

Now we determine the spread set Σ^* of a Hall quasifield $Q(2, q^2, \Sigma^*)$.

Theorem 3. Let ω be the element of $GF(q^2)$ such that $f(\omega) = \omega^2 - r\omega - s = 0$. Case 1. Assume that q is a power of 2. Then Σ^* consists of the following matrices:

$$[k] = \begin{bmatrix} k \\ 0 \end{bmatrix}$$
 for $k \in GF(q)$,

$$egin{aligned} & [a_{\omega}+b]=iggl[egin{aligned} & \omega+ au(a,b)\ & (a+1)\omega+b+ au(a,b) \end{bmatrix} & for \ a=0, \ where \ & au(a,b)=r^{-1}(as+br+a^{-1}f(b))\,. \end{aligned}$$

The multiplication in $Q(2, q^2, \Sigma^*)$ is as follows:

$$(a\omega+b)\circ(c\omega+d) = \begin{cases} ad\omega+bd & \text{if } c=0\\ (bc-ad+ar)\omega+bd-ac^{-1}f(d) & \text{if } c\neq0 \end{cases}.$$

Case 2. Assume that q is a power of an odd prime. Set $\lambda = \omega - \overline{\omega}$. Then Σ^* consists of the following matrices:

$$\begin{split} [k] &= \begin{bmatrix} k \\ 0 \end{bmatrix} \quad \text{for } k \in G(q) ,\\ [a\lambda+b] &= \begin{bmatrix} \left(\frac{1}{2}a - \tau(a,b)\right)\lambda + \frac{1}{2}r \\ \left(\frac{1}{2}a + \tau(a,b)\right)\lambda - \frac{1}{2}r + b \end{bmatrix} \quad \text{for } a \neq 0, \text{ where} \\ \tau(a,b) &= (2a(r^2 + 4s))^{-1}f(b) . \end{split}$$

The multiplication in $Q(2, q^2, \Sigma^*)$ is as follows:

$$(a\lambda+b)\circ(c\lambda+d) = \begin{cases} ad\lambda+bd & \text{if } c=0\\ (bc-ad+ar)\lambda+bd-ac^{-1}f(d) & \text{if } c\neq 0 \end{cases}$$

Proof. Case 1. q is a power of 2.

Since $f(\omega) = \omega^2 + r\omega + s = 0$, $\omega^2 = r\omega + s$, $\omega + \overline{\omega} = r$ and $\omega\overline{\omega} = s$. Set $GF(q^2) = \{a\omega + b \mid a, b \in GF(q)\}$. Let $[k] = \begin{bmatrix} a\omega + k' \\ a\omega + k' + k \end{bmatrix}$ for $k \in GF(q)$. Since $k \circ \omega = \omega \circ k$ by the assumption 2), we have

$$k \circ \omega = k \omega ,$$

$$\omega \circ k = (\omega, \overline{\omega}) \Big[\begin{matrix} a \omega + k' \\ a \omega + k' + k \end{matrix} \Big] = a \omega^2 + k' \omega + a \omega \overline{\omega} + (k + k') \overline{\omega}$$

$$= a(r \omega + s) + k' \omega + a s + (k + k')(r + \omega)$$

$$= (ar + k' + k + k') \omega + a s + a s + (k + k')r = (ar + k) \omega + (k + k')r.$$

Hence a=0 and k=k'. Thus $[k] = \begin{bmatrix} k \\ 0 \end{bmatrix}$. Let $[a\omega+b] = \begin{bmatrix} a'\omega+b' \\ (a+a')\omega+b'+b \end{bmatrix}$, $a \neq 0$. Then $(a\omega+b)\circ(a\omega+b) = (a\omega+b, a\overline{\omega}+b) \begin{bmatrix} a'\omega+b' \\ (a+a')\omega+b+b' \end{bmatrix}$ $= aa'\omega^2 + ab'\omega + a'b\omega + bb' + a(a+a')\omega\overline{\omega} + a(b+b')\overline{\omega} + b(a+a')\omega + b(b+b')$

$$= aa'(r\omega+s)+ab'\omega+a'b\omega+bb'+a(a+a')s+a(b+b')(\omega+r)+b(a+a')\omega$$
$$+b(b+b')$$
$$= aa'r\omega+a^2s+a(b+b')r+b^2.$$

Then since $f(a\omega+b)=0$ in Q,

$$aa'r\omega + a^2s + a(b+b')r + b^2 + ar\omega + br + s$$

= $(aa'r + ar)\omega + a^2s + a(b+b')r + f(b) = 0$.

Hence a'+1=0 and so a'=1. Furthermore $b'=r^{-1}(as+br+a^{-1}f(b))$. Thus

$$[a\omega+b] = \begin{bmatrix} \omega+r^{-1}(as+br+a^{-1}f(b))\\(a+1)\omega+b+r^{-1}(as+br+a^{-1}f(b))\end{bmatrix}.$$

By computation, det $[a\omega+b]=s\pm 0$, det $([a\omega+b]-[k])=f(k)\pm 0$ and det $([a\omega+b]-[a'\omega+b'])=(aa')^{-1}((ab'+a'b)+(a+a')\omega)((ab'+a'b)+(a+a')\overline{\omega})\pm 0$, where $a, a'\pm 0$. Thus we have a spread set.

Furthermore we have

$$(a\omega+b)\circ(c\omega+d) = \langle\!\langle a\omega+b\rangle\!\rangle \begin{bmatrix} \omega+\tau(c, d)\\ (c+1)\omega+\tau(c, d)+d \end{bmatrix}$$

= $(bc+ad+ar)\omega+bd+ac^{-1}f(d)$, for $c\neq 0$.

~

Case 2. q is a power of an odd prime.

Let $\lambda = \omega - \overline{\omega}$. Then $\overline{\lambda} = -\lambda$ and $\lambda^2 = r^2 + 4s$. Set $GF(q^2) = \{a\lambda + b \mid a, b \in GF(q)\}$. Similarly to the case 1, $[k] = \begin{bmatrix} k \\ 0 \end{bmatrix}$ for $k \in GF(q)$.

Let
$$[a\lambda+b] = \begin{bmatrix} a'\lambda+b'\\(a-a')\lambda+b-b' \end{bmatrix}$$
, $a \neq 0$. Then
 $(a\lambda+b)\circ(a\lambda+b) = \langle (a\lambda+b) \rangle \begin{bmatrix} a'\lambda+b'\\(a-a')\lambda+b-b' \end{bmatrix}$
 $= aa'\lambda^2 + ab'\lambda + a'b\lambda + bb' - a(a-a')\lambda^2 - a(b-b')\lambda + b(a-a')\lambda + b(b-b')$
 $= 2ab'\lambda + (2aa'-a^2)(r^2+4s) + b^2$.

Then since $f(a\lambda+b)=0$ in Q,

$$2ab'\lambda+a(2a'-a)(r^2+4s)+b^2-r(a\lambda+b)-s=0.$$

Hence 2ab'-ar=0 so $b'=\frac{1}{2}r$. Furthermore $a(2a'-a)(r^2+4s)+f(b)=0$ so $a'=-(2a(r^2+4s))^{-1}f(b)+\frac{1}{2}a$. Set $\tau(a, b)=(2a(r^2+4s))^{-1}f(b)$. Then we have

$$[a\lambda+b] = \begin{bmatrix} \left(\frac{1}{2}a-\tau(a,b)\right)\lambda+\frac{1}{2}r\\ \left(\frac{1}{2}a+\tau(a,b)\right)\lambda+b-\frac{1}{2}r\end{bmatrix}.$$

By computation, $\det[a\lambda+b] = -s \neq 0$, $\det([a\lambda+b]-[k]) = f(k) \neq 0$ and $\det([a\lambda+b] - [a'\lambda+b']) = (2^{-1}(a-a')\lambda + ab' - a'b - 2^{-1}r(a-a'))(-2^{-1}(a-a')\lambda + ab' - a'b - 2^{-1}r(a-a')) = 0$, where $a, a' \neq 0$.

Furthermore we have

$$(a\lambda+b)\circ(c\lambda+d)=(bc-ad+ra)\lambda+bd-ac^{-1}f(d)$$
 for $c\neq 0$.

Moreover since $\lambda = 2\omega - r$, we have also

$$(a\omega+b)\circ(c\omega+d) = (bc-ad+ra)\omega+bd-ac^{-1}f(d)$$
 for $c \neq 0$.

(VI) Walker quasifields

A quasifield $Q = Q(2, q^2, \Sigma^*)$ with $q \equiv -1 \pmod{6}$ is called a Walker quasifield, if Q has the following multiplication:

$$(a\omega+b)\circ(c\omega+d)=(a(d-c^2)+bc)\omega-\frac{1}{3}ac^3+bo$$
,

where $GF(q^2) = \{a\omega + b \mid a, b \in GF(q)\}$ (see [4], p. 72).

Now we determine the spread set Σ^* of a Walker quasifield. Since $q \equiv -1 \pmod{6}$, $f(x) \equiv x^2 + 3$ is an irreducible polynomial over GF(q). Hence let ω and $-\omega$ be elements of $GF(q^2)$ such that $f(\omega) \equiv f(-\omega) \equiv \omega^2 + 3 \equiv 0$.

Set
$$[a\omega+b] = \begin{bmatrix} a'\omega+b'\\(a-a')\omega+b-b' \end{bmatrix}$$
. Then
 $\omega \circ (a\omega+b) = (\omega, -\omega) \begin{bmatrix} a'\omega+b'\\(a-a')\omega+b-b' \end{bmatrix}$
 $= a'\omega^2+b'\omega-(a-a')\omega^2-(b-b')\omega$
 $= (2b'-b)\omega+3(a-2a')$.

On the other hand by the definition of the multiplication,

$$\omega \circ (a\omega + b) = (b - a^2)\omega - \frac{1}{3}a^3.$$

Hence $2b'-b=b-a^2$ so $b'=b-\frac{1}{2}a^2$, and $3(a-2a')=-\frac{1}{3}a^3$ so $a'=\frac{1}{2}a+\frac{1}{18}a^3$. Then we have

$$[a\omega+b] = \begin{bmatrix} \left(\frac{1}{2}a + \frac{1}{18}a^3\right)\omega + b - \frac{1}{2}a^2 \\ \left(\frac{1}{2}a - \frac{1}{18}a^3\right)\omega + \frac{1}{2}a^2 \end{bmatrix}.$$

Furthermore by computation, we can show that $\{[a_{\omega}+b]|a, b \in GF(q)\}$ satisfies the condition of a spread set.

(VII) Lüneburg quasifields

A quasifield $Q=Q(2, (2^{2s+1})^2, \Sigma^{**})$ with 2s+1>1 is called a Lüneburg quasifield, if Q has the following multiplication:

$$(a\omega+b)\circ(c\omega+d) = (a(c^{\sigma}+dd^{\sigma})+bo)\omega+ac+bd$$
,

where σ is the automorphism of $GF(2^{2s+1})$ such that $x^{\sigma} = x^{2s+1}$ for all $x \in GF(2^{2s+1})$ and $GF((2^{2s+1})^2) = \{a\omega + b \mid a, b \in GF(2^{2s+1})\}$.

Now we determine the spread set Σ^* of a Lüenburg quasifield. Since $GF(2^{2s+1})$ is a field extension of odd dimension of GF(2), $f(x)=x^2+x+1$ is an irreducible polynomial over $GF(2^{2s+1})$. Hence let ω and $\overline{\omega}$ be elements of $GF((2^{2s+1})^2)$ such that $f(\omega)=f(\overline{\omega})=0$. Then $\omega+\overline{\omega}=1$, $\omega\overline{\omega}=1$ and $\omega^2=\omega+1$.

Set
$$[a\omega+b] = \begin{bmatrix} a'\omega+b'\\(a+a')\omega+b+b' \end{bmatrix}$$
. Then
 $\omega \circ (a\omega+b) = (\omega, \overline{\omega}) \begin{bmatrix} a'\omega+b\\(a+a')\omega+b+b' \end{bmatrix}$
 $= a'\omega^2 + b'\omega + (a+a')\omega\overline{\omega} + (b+b')\overline{\omega}$
 $= (a'+b)\omega+a+b+b'$.

On the other hand by the definition of the multiplication,

$$\omega \circ (a\omega + b) = (a^{\sigma} + bb^{\sigma})\omega + a$$

Hence $a' = a^{\sigma} + b + bb^{\sigma}$ and b' = b. Thus we have

$$[a\omega+b]=ig|ig(a^\sigma+b+bb^\sigma)\omega+big|(a+a^\sigma+b+bb^\sigma)\omegaig|.$$

Furthermore by computation, we can show that $\{[a\omega+b]|a, b\in GF(2^{2s+})\}$ satisfies the condition of a spread set.

Appendix. M. Matsumoto has showed the following:

A quasifield $Q=Q(2, q^2, \Sigma^*)$ is a Hall quasifield if and only if Σ^* consists of $\{[k \ 0] | k \in GF(q)\}$ and a conjugate class of G^* containing $\begin{bmatrix} \omega \\ 0 \end{bmatrix}$, where ω is a element of $GF(q^2) \setminus GF(q)$.

References

- J. André: Über nicht-Desarguesche Ebenen mit transitiver Translationgruppe, Math. Z. 60 (1954), 156-186.
- [2] E. Ellers and H. Karzel: Endliche Inzidenzgruppen, Abh. Math. Sem. Hamburg 27 (1964), 250-264.
- [3] M. Hall: Projective palnes, Trans. Amer. Math. Soc. 54 (1943), 229-277.

- [4] M. Kallaher: Affine planes with transitive collineation groups, North-Holland, 1982.
- [5] H. Lüneburg: Die Suzukigruppen und ihre Geometrien, Lecture Notes in Math. 10, Springer, 1965.
- [6] H. Lüneburg: Translation planes, Springer, 1980.
- [7] D.M. Maduram: Matrix representation of translation planes, Geom. Dedicata 4 (1975), 485-497.
- [8] F. Sherk: Indicator sets in an affine space of any dimension, Canad. J. Math. 31 (1979), 211-224.

Department of Mathematics Osaka Kyoiku University Tennoji, Osaka 543 Japan