

Title	On quasifields
Author(s)	Oyama, Tuyosi
Citation	Osaka Journal of Mathematics. 1985, 22(1), p. 35-54
Version Type	VoR
URL	https://doi.org/10.18910/9938
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

ON QUASIFIELDS

Dedicated to Professor Kentaro Murata on his 60th birthday

TUYOSI OYAMA

(Received August 22, 1983)

1. Introduction

A finite translation plane Π is represented in a vector space $V(2n, q)$ of dimension $2n$ over a finite field $GF(q)$, and determined by a spread $\pi = \{V(0), V(\infty)\} \cup \{V(\sigma) | \sigma \in \Sigma\}$ of $V(2n, q)$, where Σ is a subset of the general linear transformation group $GL(V(n, q))$. Furthermore Π is coordinatized by a quasifield of order q^n .

In this paper we take a $GF(q)$ -vector space in $V(2n, q^n)$ and a subset Σ^* of $GL(n, q^n)$, and construct a quasifield. This quasifield consists of all elements of $GF(q^n)$, and has two binary operations such that the addition is the usual field addition but the multiplication is defined by the elements of Σ^* .

2. Preliminaries

Let q be a prime power. For $x \in GF(q^n)$ put $x = x^{(0)}$, $\bar{x} = x^{(1)} = x^q$ and $x^{(i)} = x^{q^i}$, $i = 2, 3, \dots, n-1$. Then the mapping $x \rightarrow x^{(i)}$ is the automorphism of $GF(q^n)$ fixing the subfield $GF(q)$ elementwise.

For a matrix $\alpha = (a_{ij}) \in GL(n, q^n)$ put $\bar{\alpha} = (\bar{a}_{ij})$. Let

$$\omega = \begin{pmatrix} 0 & \dots & 0 & 1 \\ 1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots \\ 0 & \dots & 0 & 1 & 0 \end{pmatrix}$$

be an $n \times n$ permutation matrix. Set $\mathfrak{A} = \{\alpha \in GL(n, q^n) | \bar{\alpha} = \alpha\omega\}$.

Lemma 2.1. $\mathfrak{A} = GL(n, q)\alpha_0$ for any $\alpha_0 \in \mathfrak{A}$. Furthermore let α be an $n \times n$ matrix over $GF(q^n)$. Then $\alpha \in \mathfrak{A}$ if and only if

$$\alpha = \begin{pmatrix} a_0 & a_0^{(1)} & \dots & a_0^{(n-1)} \\ a_1 & a_1^{(1)} & \dots & a_1^{(n-1)} \\ \vdots & \vdots & & \vdots \\ a_{n-1} & a_{n-1}^{(1)} & \dots & a_{n-1}^{(n-1)} \end{pmatrix}$$

and a_0, a_1, \dots, a_{n-1} are linearly independent over the field $GF(q)$.

Proof. For any element δ of $GL(n, q)$, $\overline{\delta\alpha_0} = \delta\overline{\alpha_0} = \delta\alpha_0\omega$. Hence $\delta\alpha_0 \in \mathfrak{A}$. Conversely for any element α of \mathfrak{A} , $\overline{\alpha\alpha_0^{-1}} = \alpha\omega\omega^{-1}\alpha_0^{-1} = \alpha\alpha_0^{-1} \in GL(n, q)$ and so $\alpha \in GL(n, q)\alpha_0$. Thus $\mathfrak{A} = GL(n, q)\alpha_0$.

Let $\alpha = (a_{ij})$ be any element of \mathfrak{A} . Since $\overline{\alpha} = \alpha\omega$, $\overline{a_{i1}} = a_{i2}$, $\overline{a_{i2}} = a_{i3}$, \dots , $\overline{a_{i(n-1)}} = a_{in}$, $i = 1, 2, \dots, n$. Hence $a_{ij} = a_{i1}^{(j-1)}$, $i = 1, 2, \dots, n$, $j = 2, 3, \dots, n$. Furthermore since α is a non-singular matrix, $a_{11}, a_{21}, \dots, a_{n1}$ are linearly independent over $GF(q)$.

The converse is clear.

Lemma 2.2. *If $\alpha \in \mathfrak{A}$, then*

$$\alpha^{-1} = \begin{pmatrix} a_0 & a_1 & \cdots & a_{n-1} \\ a_0^{(1)} & a_1^{(1)} & \cdots & a_{n-1}^{(1)} \\ \vdots & \vdots & \ddots & \vdots \\ a_0^{(n-1)} & a_1^{(n-1)} & \cdots & a_{n-1}^{(n-1)} \end{pmatrix} \in GL(n, q^n).$$

Proof. Since $\alpha \in \mathfrak{A}$, $\overline{\alpha} = \alpha\omega$. Hence $\overline{\alpha^{-1}} = \omega^{-1}\alpha^{-1}$. Then the proof is similar to the proof of Lemma 2.1.

Lemma 2.3. *Let $\alpha \in \mathfrak{A}$. Then $GL(n, q)^\alpha = \{\gamma \in GL(n, q^n) \mid \overline{\gamma} = \gamma^\omega\}$.*

Proof. For any $\delta \in GL(n, q)$, $\overline{\delta^\alpha} = \delta\overline{\alpha} = (\delta^\alpha)^\omega$. Conversely let $\gamma \in GL(n, q^n)$ with $\overline{\gamma} = \gamma^\omega$. Then $\overline{\gamma^{\alpha^{-1}}} = \overline{\gamma^{\alpha^{-1}}} = \gamma^{\omega\omega^{-1}\alpha^{-1}} = \gamma^{\alpha^{-1}}$. Thus $\gamma^{\alpha^{-1}} \in GL(n, q)$ and so $GL(n, q)^\alpha = \{\gamma \in GL(n, q^n) \mid \overline{\gamma} = \gamma^\omega\}$.

Since α is any element of \mathfrak{A} , we denote $GL(n, q)^\alpha$ by $GL(n, q)^*$.

Lemma 2.4. *Let γ be an $n \times n$ matrix over $GF(q^n)$. Then $\overline{\gamma} = \gamma^\omega$ if and only if*

$$\gamma = \begin{pmatrix} a_0 & a_{n-1}^{(1)} \cdots a_1^{(n-1)} \\ a_1 & a_0^{(1)} \cdots a_2^{(n-1)} \\ \vdots & \vdots \ddots \vdots \\ a_{n-1} & a_{n-2}^{(1)} \cdots a_0^{(n-1)} \end{pmatrix}.$$

Proof. Let $\gamma = (a_{ij})$ with $\overline{\gamma} = \gamma^\omega$. Then

$$\begin{pmatrix} \overline{a_{11}} \overline{a_{12}} \cdots \overline{a_{1n}} \\ \overline{a_{21}} \overline{a_{22}} \cdots \overline{a_{2n}} \\ \cdots \cdots \cdots \\ \overline{a_{n1}} \overline{a_{n2}} \cdots \overline{a_{nn}} \end{pmatrix} = \begin{pmatrix} a_{22} a_{23} \cdots a_{21} \\ a_{23} a_{33} \cdots a_{31} \\ \cdots \cdots \cdots \\ a_{12} a_{13} \cdots a_{11} \end{pmatrix}.$$

Thus $a_{ij} = \overline{a_{i-1, j-1}}$, $i, j = 1, 2, \dots, n$ modulo n . Hence $a_{i1}^{(j)} = a_{i+j, 1+j}$, $i, j = 1, 2, \dots, n$ modulo n , and so γ has the required form.

The converse is clear.

From Lemma 2.3 and Lemma 2.4 we have

Lemma 2.5.

$$GL(n, q)^* = \left\{ \begin{pmatrix} a_0 & a_{n-1}^{(1)} \cdots a_1^{(n-1)} \\ a_1 & a_0^{(1)} \cdots a_2^{(n-1)} \\ \cdots & \cdots \\ a_{n-1} & a_{n-2}^{(1)} \cdots a_0^{(n-1)} \end{pmatrix} \in GL(n, q^*) \right\}.$$

Let $V(2n, q)$ be a vector space of dimension $2n$ over $GF(q)$, and π be a nontrivial partition of $V(2n, q)$. If $V(2n, q) = V \oplus W$ for all $V, W \in \pi$ with $V \neq W$, then π is called a spread of $V(2n, q)$. Then the component of π is a n -dimensional $GF(q)$ -subspace of $V(2n, q)$ [1].

Let π be a spread of $V(2n, q)$, then we can construct a translation plane $\pi(V(2n, q))$ of order q^n as follows [1]:

- a) The points of $\pi(V(2n, q))$ are the vectors in $V(2n, q)$.
- b) The lines are all cosets of all the components of π .
- c) Incidence is inclusion.

Conversely any translation plane is isomorphic to some $\pi(V(2n, q))$.

We may assume that $V(2n, q) = V(n, q) \oplus V(n, q)$ is the outer sum of two copies of $V(n, q)$. Set $V(\infty) = \{(0, v) | v \in V(n, q)\}$, $V(0) = \{(v, 0) | v \in V(n, q)\}$ and $V(\sigma) = \{(v, v^\sigma) | v \in V(n, q)\}$ for $\sigma \in GL(V(n, q))$. Then the followings hold ([6], Theorem 2.2, Theorem 2.3):

(I) Let π be a spread of $V(2n, q)$ containing $V(0)$, $V(\infty)$. Then we have:

- a) If $V \in \pi$ and if $V \neq V(0)$, $V(\infty)$, then there is exactly one $\sigma \in GL(V(n, q))$ such that $V = V(\sigma)$. Set $\Sigma = \{\sigma | \sigma \in GL(V(n, q)), V(\sigma) \in \pi\} \cup \{0\}$.
- b) If $u, v \in V(n, q)$, then there is exactly one σ in Σ such that $u^\sigma = v$.
- c) If $\sigma, \rho \in \Sigma$ and if $\sigma \neq \rho$, then $\sigma - \rho \in GL(V(n, q))$.

(II) Conversely if a union Σ of a subset of $GL(V(n, q))$ and $\{0\}$ satisfies b) and c) of (I), then $\pi = \{V(\infty)\} \cup \{V(\sigma) | \sigma \in \Sigma\}$ is a spread of $V(2n, q)$.

3. Construction of quasifields

Let Q be a set with two binary operations $+$ and \circ . We call $Q(+, \circ)$ a quasifield, if the following conditions are satisfied:

- 1) $Q(+)$ is an abelian group.
- 2) If $a, b, c \in Q$, then $(a+b)\circ c = a\circ c + b\circ c$.
- 3) $a\circ 0 = 0$ for all $a \in Q$.
- 4) For $a, b \in Q$ with $a \neq 0$, there exists exactly one $x \in Q$ such that $a\circ x = b$.

5) For $a, b, c \in Q$ with $a \neq b$ there exists exactly one $x \in Q$ such that $x \circ a - x \circ b = c$.

6) There exists an element $1 \in Q \setminus \{0\}$ such that $1 \circ a = a \circ 1 = a$ for all $a \in Q$ (see [6] p. 22).

It is well known that an affine plane is a translation plane if and only if it is coordinatized by a quasifield (see [4], Theorem 6.1). Using this result, we give a new description of a quasifield.

After fixing a suitable basis in $V(n, q)$, we denote a vector v of $V(n, q)$ by the form $(x_0, x_1, \dots, x_{n-1})$, $x_i \in GF(q)$. Let α be a fixed element of \mathfrak{A} in the section 2. Then

$$\alpha = \begin{pmatrix} a_0 & a_0^{(1)} & \cdots & a_0^{(n-1)} \\ a_1 & a_1^{(1)} & \cdots & a_1^{(n-1)} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n-1} & a_{n-1}^{(1)} & \cdots & a_{n-1}^{(n-1)} \end{pmatrix}.$$

Hence $v\alpha = (x, x^{(1)}, \dots, x^{(n-1)}) \in V(n, q^n)$, $x = \sum_{i=0}^{n-1} x_i a_i$.

Conversely, let v^* be a vector of $V(n, q^n)$ of the form $(x, x^{(1)}, \dots, x^{(n-1)})$, $x \in GF(q^n)$. Since a_0, a_1, \dots, a_{n-1} are linearly independent over $GF(q)$, x is uniquely represented by a_0, a_1, \dots, a_{n-1} such that $x = \sum_{i=0}^{n-1} x_i a_i$, $x_i \in GF(q)$. Hence $v^{*\alpha^{-1}} = (x_0, x_1, \dots, x_{n-1}) \in V(n, q)$. Thus $V(n, q)^\alpha = \{(x, x^{(1)}, \dots, x^{(n-1)}) \mid x \in GF(q^n)\}$, and $V(n, q)^\alpha$ is a $GF(q)$ -vector space isomorphic to $V(n, q)$.

Set $V(2n, q)^\alpha = \{(u\alpha, v\alpha) \mid u, v \in V(n, q)\}$. Then similarly $V(2n, q)^\alpha$ is a $GF(q)$ -vector space isomorphic to $V(2n, q)$.

Denote a vector $(x, x^{(1)}, \dots, x^{(n-1)})$ of $V(n, q)^\alpha$ by $\langle\langle x \rangle\rangle$. Then any vector of $V(2n, q)^\alpha$ is denoted by $\langle\langle\langle x \rangle\rangle, \langle\langle y \rangle\rangle\rangle$. The additive group of $GF(q^n)$ is isomorphic to $V(n, q)^\alpha$ under a mapping $x \rightarrow \langle\langle x \rangle\rangle$. In this mapping the inverse image of $v^* \in V(n, q)^\alpha$ is denoted by $\widehat{v^*}$.

Let M be any element of $GL(n, q)$. Since by Lemma 2.5

$$M^\alpha = \begin{pmatrix} x_0 & x_{n-1}^{(1)} & \cdots & x_1^{(n-1)} \\ x_1 & x_0^{(1)} & \cdots & x_2^{(n-1)} \\ \cdots & \cdots & \cdots & \cdots \\ x_{n-1} & x_{n-2}^{(1)} & \cdots & x_0^{(n-1)} \end{pmatrix},$$

M^α is uniquely determined by the first column $\begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_{n-1} \end{bmatrix}$. Hence we denote M^α by $\begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_{n-1} \end{bmatrix}$.

Let $\pi = \{V(\infty)\} \cup \{V(M) \mid M \in \Sigma\}$ be a spread of $V(2n, q)$, where Σ is a union of a subset of $GL(n, q)$ and $\{0\}$. Set $\pi^* = \{V^*(\infty)\} \cup \{V^*(M^*) \mid M \in \Sigma\}$, where $V^*(\infty) = \{((0), (x)) \mid (x) \in V(n, q)^*\}$ and $V^*(M^*) = \{((x), (x)M^*) \mid (x) \in V(n, q)^*\}$.

Then since $(v\alpha)M^* = (vM)\alpha$, π^* is a spread of $V(2n, q)^*$. Hence π^* determines a translation plane, which is denoted by Π^* . From now on we may assume that a spread π^* contains $V^*(1) = \{((x), (x)) \mid (x) \in V(n, q)^*\}$ ([6], Lemma 2.1).

For any two vectors $((x)) \neq ((0))$, $((y))$ of $V(n, q)^*$, there is a unique matrix $M^* \in \Sigma^*$ such that $((x))M^* = ((y))$. Set $((x)) = ((1)) = (1, 1, \dots, 1)$. Then any element y of $GF(q^n)$ uniquely determines $M^* = \begin{bmatrix} y_1 \\ y_0 \\ \vdots \\ y_{n-1} \end{bmatrix} \in \Sigma^*$ such that $((1))M^* = ((y))$.

This implies $y = \sum_{i=0}^{n-1} y_i$. Conversely $M^* = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_{n-1} \end{bmatrix} \in \Sigma^*$ uniquely determines $y \in GF(q^n)$ such that $((1))M^* = ((y))$ with $y = \sum_{i=0}^{n-1} y_i$. Hence we denote $M^* = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_{n-1} \end{bmatrix} \in \Sigma^*$ by $[y]$, where $y = \sum_{i=0}^{n-1} y_i$. Then a mapping $GF(q^n) \rightarrow \Sigma^*$ is a bijection under $y \rightarrow [y]$. Hence $\Sigma^* = \{[x] \mid x \in GF(q^n)\}$. In this mapping the inverse image of $M^* \in \Sigma^*$ is denoted by \hat{M}^* .

Let Π^* be a translation plane with a spread π^* defined in $V(2n, q)^*$. If a point of Π^* is represented by $((x), (y))$ as a vector of $V(2n, q)^*$, then we give a coordinate (x, y) , $x, y \in GF(q^n)$, for this point. Then the set Q consisting of all elements of $GF(q^n)$ coordinates the plane Π , and Q is a quasifield with the following two binary operations $+$ and \circ :

(1) The addition $+$ is the usual field addition.

(2) The multiplication \circ is given by $x \circ y = \overbrace{((x))}^{\text{a}} [y]$, and if $[y] = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_{n-1} \end{bmatrix}$, then $x \circ y = \sum_{i=0}^{n-1} x^{(i)} y_i$.

Using this coordinate, we can write the lines of Π^* as follows:

$$\begin{aligned} V^*(m) + k &= \{(x, x \circ m + k) \mid x \in GF(q^n)\} \cup \{(m)\} , \\ V^*(\infty) + k &= \{(k, y) \mid y \in GF(q^n)\} \cup \{(\infty)\} , \\ l_\infty &= \{(m) \mid m \in GF(q^n)\} \cup \{(\infty)\} . \end{aligned}$$

Assume that Σ^* consists of $q^n - 1$ matrices of $GL(n, q)^*$ and 0. We call Σ^* a spread set of degree n over $GF(q^n)$ if Σ^* has the following properties:

a) For $m = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_{n-1} \end{bmatrix} \in \Sigma^*$, put $\beta(m) = \sum_{i=0}^{n-1} x_i$. Then $\{\beta(m) \mid m \in \Sigma^*\} = GF(q^n)$.

Hence we may set $m = [\beta(m)]$.

b) If $m_1, m_2 \in \Sigma^*$ and if $m_2 \neq m_1$, then $m_1 - m_2 \in GL(n, q)^\alpha$.

Clearly for any vector $\langle\langle x \rangle\rangle \neq \langle\langle 0 \rangle\rangle \in V(n, q)^\alpha$, $\{\langle\langle x \rangle\rangle m \mid m \in \Sigma^*\} = V(n, q)^\alpha$. Set

$$V^*(\infty) = \{\langle\langle 0 \rangle\rangle, \langle\langle x \rangle\rangle \mid \langle\langle x \rangle\rangle \in V(n, q)^\alpha\},$$

$$V^*(m) = \{\langle\langle x \rangle\rangle, \langle\langle x \rangle\rangle m \mid \langle\langle x \rangle\rangle \in V(n, q)^\alpha\}.$$

Then $\{V^*(\infty)\} \cup \{V^*(m) \mid m \in \Sigma^*\}$ is a spread of $V(2n, q)^\alpha$, and so defines a translation plane Π^* .

Conversely let Q be any finite quasifield with binary two operations $+$ and \circ . The kernel of Q is the set $K(Q)$ consisting of all elements $k \in Q$ such that $(k \circ a) \circ b = k \circ (a \circ b)$ and $k \circ (a + b) = k \circ a + k \circ b$ for all $a, b \in Q$. Then $K(Q)$ is a finite field, and Q is a $K(Q)$ -vector space. Let $K(Q)$ be of order q and let Q be of dimension n over $K(Q)$. Then M. Hall has proved the following ([3]):

Let $V(2n, q) = Q \oplus Q$, the outer direct sum of two copies of the $K(Q)$ -vector space Q . If $V(m) = \{(x, x \circ m) \mid x \in Q\}$ and $V(\infty) = \{(0, x) \mid x \in Q\}$, then $\pi = \{V(m) \mid m \in Q \cup \{\infty\}\}$ is a spread of $V(2n, q)$. Furthermore the spread set is $\Sigma = \{(x \rightarrow x \circ m) \mid m \in Q\}$.

Hence the translation plane defined by π is coordinatized by Q . Thus we have

Theorem 1. Let $\Sigma^* = \{[x] \mid x \in GF(q^n)\}$ be a spread set of degree n over $GF(q^n)$. Then we have a quasifield Q with two binary operations $+$ and \circ satisfying the followings:

(1) $Q = GF(q^n)$ as a set.

(2) The addition $+$ is the usual field addition of $GF(q^n)$.

(3) The multiplication \circ is given by $x \circ y = \overbrace{\langle\langle x \rangle\rangle [y]}$, where $\langle\langle x \rangle\rangle = (x, x^{(1)}, \dots, x^{(n-1)}) \in V(n, q^n)$ and $[y] \in \Sigma^*$.

Furthermore any finite quasifield is isomorphic to some quasifield constructed by the above method.

A quasifield Q with a spread set Σ^* of degree n over $GF(q^n)$ is denoted by $Q(n, q^n, \Sigma^*)$. Since $\langle\langle k \rangle\rangle = (k, k, \dots, k)$ for $k \in GF(q)$ in $Q(n, q^n, \Sigma^*)$, $k \circ x = \overbrace{\langle\langle k \rangle\rangle [x]} = kx$ for any $x \in Q$. Hence $(k \circ a) \circ b = \overbrace{\langle\langle ka \rangle\rangle [b]} = k \overbrace{\langle\langle a \rangle\rangle [b]} = k \circ (a \circ b)$ and $k \circ (a + b) = k(a + b) = ka + kb = k \circ a + k \circ b$. Thus $GF(q)$ is contained in the kernel $K(Q)$ of $Q(n, q^n, \Sigma^*)$.

4. Examples

A quasifield is determined by the spread set. In this section we show some spread sets of the known quasifields. To construct spread sets we need a condition for two spread sets to define isomorphic quasifields or translation planes.

First using the spread set, we prove the following Maduram's Theorem. From now on $GL(n, q)^\alpha$ is denoted by G^* .

Theorem A (D.M. Maduram [7]). *Let $Q_1 = Q(n, q^\alpha, \Sigma_1^*)$ and $Q_2 = Q(n, q^\alpha, \Sigma_\sigma^*)$. Then Q_1 and Q_2 are isomorphic if and only if there is N in G^* and θ in $\text{Aut } GF(q^\alpha)$ such that $\Sigma_2^* = N^{-1} \Sigma_1^* \theta N$ and $\langle\langle 1 \rangle\rangle N = \langle\langle 1 \rangle\rangle$.*

Furthermore let f be the isomorphism from Q_1 to Q_2 , then $f(x) = \langle\langle x^\theta \rangle\rangle N$ and $[f(x)] = N^{-1} [x]^\theta N$ for $x \in Q_1$.

Proof. Let f be an isomorphism from Q_1 to Q_2 . Then f fixes $GF(q)$ as a set and so f induces an automorphism of $GF(q)$. Hence there is θ in $\text{Aut } GF(q^\alpha)$ such that $f(k) = k^\theta$ for any element k of $GF(q)$. Then for $a \in Q_1$

$$f(ka) = f(k \circ a) = f(k) \circ f(a) = k^\theta f(a).$$

Let \tilde{f} be a mapping of $V(n, q)^\alpha$ onto itself defined by $\tilde{f}(\langle\langle x \rangle\rangle) = \langle\langle f(x) \rangle\rangle$ for $\langle\langle x \rangle\rangle \in V(n, q)^\alpha$. Then

$$\begin{aligned} \tilde{f}(\langle\langle x \rangle\rangle + \langle\langle y \rangle\rangle) &= \tilde{f}(\langle\langle x+y \rangle\rangle) = \langle\langle f(x+y) \rangle\rangle = \langle\langle f(x) + f(y) \rangle\rangle \\ &= \langle\langle f(x) \rangle\rangle + \langle\langle f(y) \rangle\rangle = \tilde{f}(\langle\langle x \rangle\rangle) + \tilde{f}(\langle\langle y \rangle\rangle) \end{aligned}$$

and for $k \in GF(q)$

$$\tilde{f}(\langle\langle kx \rangle\rangle) = \langle\langle f(kx) \rangle\rangle = \langle\langle k^\theta f(x) \rangle\rangle = k^\theta \langle\langle f(x) \rangle\rangle = k^\theta \tilde{f}(\langle\langle x \rangle\rangle).$$

Thus \tilde{f} is a non-singular semi-linear transformation of $V(n, q)^\alpha$.

Next let ϕ be a mapping of $V(n, q)$ onto itself defined by $\phi(v) = \tilde{f}(v\alpha)\alpha^{-1}$. Then clearly $\phi(v_1 + v_2) = \phi(v_1) + \phi(v_2)$ and $\phi(kv) = k^\theta \phi(v)$. Thus ϕ is also a non-singular semi-linear transformation of $V(n, q)$. Hence there is N_1 in $GL(n, q)$ such that

$$\phi((x_1, \dots, x_n)) = (x_1, \dots, x_n)^\theta N_1$$

for $(x_1, \dots, x_n) \in V(n, q)$. On the other hand set $(x_1, \dots, x_n)\alpha = \langle\langle x \rangle\rangle$. Then

$$\phi((x, \dots, x_n)) = \tilde{f}(\langle\langle x \rangle\rangle)\alpha^{-1}.$$

Hence

$$\tilde{f}(\langle\langle x \rangle\rangle) = (x_1, \dots, x_n)^\theta N_1 \alpha.$$

By Lemma 2.1 $\alpha^\theta = N_2 \alpha$, $N_2 \in GL(n, q)$. Hence

$$\langle\langle x^\theta \rangle\rangle = (x_2, \dots, x_n)^\theta \alpha^\theta \alpha = (x_2, \dots, x_n)^\theta N_2 \alpha$$

and so

$$(x_1, \dots, x_n)^\theta = \langle\langle x^\theta \rangle\rangle \alpha^{-1} N_2^{-1}.$$

Thus

$$\tilde{f}(\langle\langle x \rangle\rangle) = \langle\langle x^\theta \rangle\rangle \alpha^{-1} N_2^{-1} N_1 \alpha.$$

Set $N = \alpha^{-1} N_2^{-1} N_1 \alpha \in G^*$. Then

$$\tilde{f}(\langle\langle x \rangle\rangle) = \langle\langle x^\theta \rangle\rangle N.$$

Since $\tilde{f}(\langle\langle x \rangle\rangle) = \langle\langle f(x) \rangle\rangle$,

$$\langle\langle 1 \rangle\rangle = \langle\langle f(1) \rangle\rangle = \tilde{f}(\langle\langle 1 \rangle\rangle) = \langle\langle 1 \rangle\rangle N \quad \text{and} \quad f(x) = \langle\langle x^\theta \rangle\rangle \hat{N}.$$

Then since $f(x \circ y) = f(x) \circ f(y) = \langle\langle f(x) \rangle\rangle \hat{N} [f(y)] = \langle\langle x^\theta \rangle\rangle \hat{N} [f(y)]$ and $f(x \circ y) = \langle\langle x \circ y \rangle\rangle^\theta N = \langle\langle x^\theta \rangle\rangle \hat{N} [y]^\theta N$, $\langle\langle x^\theta \rangle\rangle N [f(y)] = \langle\langle x^\theta \rangle\rangle [y]^\theta N$ for any $\langle\langle x \rangle\rangle \in V(n, q)^\theta$.

Thus $N [f(y)] = [y]^\theta N$ and so $[f(y)] = N^{-1} [y]^\theta N$ for any $y \in Q_1$. Hence we have $\Sigma_2^* = N^{-1} \Sigma_1^* N$.

Conversely let f be a mapping from Q_1 to Q_2 defined by $f(x) = \langle\langle x^\theta \rangle\rangle \hat{N}$. Then

$$f(x+y) = \langle\langle (x+y)^\theta \rangle\rangle \hat{N} = \langle\langle x^\theta \rangle\rangle \hat{N} + \langle\langle y^\theta \rangle\rangle \hat{N} = f(x) + f(y)$$

and

$$f(x \circ y) = \langle\langle x \circ y \rangle\rangle^\theta N = \langle\langle x^\theta \rangle\rangle \hat{N} [y]^\theta N = \langle\langle x^\theta \rangle\rangle \hat{N} \hat{N}^{-1} [y]^\theta N.$$

Since $\Sigma_2^* = N^{-1} \Sigma_1^* N$,

$$f(x \circ y) = f(x) \circ N^{-1} [y]^\theta N.$$

Furthermore

$$\langle\langle 1 \rangle\rangle N^{-1} [y]^\theta N = \langle\langle 1 \rangle\rangle [y]^\theta N = \langle\langle y^\theta \rangle\rangle N.$$

On the other hand

$$\langle\langle 1 \rangle\rangle [\langle\langle y^\theta \rangle\rangle \hat{N}] = \langle\langle y^\theta \rangle\rangle N.$$

Hence

$$N^{-1} [y]^\theta N = [\langle\langle y^\theta \rangle\rangle \hat{N}]$$

and so

$$f(x \circ y) = f(x) \circ \langle\langle y^\theta \rangle\rangle \hat{N} = f(x) \circ f(y).$$

Thus f is an isomorphism from Q_1 to Q_2 .

Let π_1 and π_2 be two spreads in $V(2n, q)$ both containing $V(\infty)$. Let Π_1 and Π_2 be translation planes defined by π_1 and π_2 . Then Π_1 and Π_2 are isomorphic if and only if there is a non-singular semi-linear transformation in $V(2n, q)$ taking π_1 onto π_2 ([5], p. 82).

Let $M(n, q)$ be the set of all $n \times n$ matrices over $GF(q)$. Then all elements of $M(n, q)^a$ have the forms as in Lemma 2.4. Using elements of $M(n, q)^a$ and $\text{Aut } GF(q^n)$, we describe Sherk's Theorem with the following extended form.

Theorem B (F.A. Sherk [8]). *Let Π_1 and Π_2 be translation planes coordinatized by quasifields $Q_1=Q(n, q^a, \Sigma_1^*)$ and $Q_2=Q(n, q^a, \Sigma_2^*)$. Then Π_1 and Π_2 are isomorphic if and only if there exist A, B, C and D in $M(n, q)^a$ and θ in $\text{Aut } GF(q^n)$ with the following properties:*

- a) $\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} \neq 0$.
 - b) Either
 - i) $B=0, A \in G^*$ and $\Sigma_2^* = \{A^{-1}(C+[m]^a D) \mid [m] \in \Sigma_1^*\}$.
 - ii) $B \in G^*, B^{-1}D \in \Sigma_2^*$. Also, there is $[m_0] \in \Sigma_1^*$ such that $A+[m_0]^a B=0$.
- For any $[m] \in \Sigma_1^* \setminus \{[m_0]\}$, $A+[m]^a B \in G^*$ and $(A+[m]^a B)^{-1}(C+[m]^a D) \in \Sigma_2^*$.

From now on we denote the operations of $GF(q^n)$ by $+$ and \cdot , and the operations of a quasifield by $+$ and \circ .

(I) Finite fields

A quasifield $Q(n, q^a, \Sigma^*)$ with $\Sigma^* = \{[a] = \begin{bmatrix} a \\ 0 \\ \vdots \\ 0 \end{bmatrix} \mid a \in GF(q^n)\}$ is isomorphic to $GF(q^n)$.

(II) Finite generalized Andre quasifields

Let $Q=Q(n, q^a, \Sigma^*)$ be a quasifield. If the mapping $x \rightarrow (x \circ a)a^{-1}$ is an automorphism of $GF(q^n)$, then Q is called a generalized Andre quasifield.

Since $k \circ a = ka$ for $k \in GF(q)$, the automorphism $x \rightarrow (x \circ a)a^{-1}$ fixes $GF(q)$ elementwise. Hence $(x \circ a)a^{-1} = x^{q^{\rho(a)}}$, $\rho(a) \in \{0, 1, \dots, n-1\}$. This yields

$x \circ a = x^{q^{\rho(a)}} a = x^{(\rho(a))} a$. Let $[a] = \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix}$. Then

$$x \circ a = \langle (x) \rangle [a] = \sum_{i=1}^{n-1} x^{(i)} a_i = x^{(\rho(a))} a.$$

Hence

$$a_0 x + a_1 x^{(1)} + \dots + (a_{\rho(a)} - a) x^{(\rho(a))} + \dots + a_{n-1} x^{(n-1)} = 0$$

for all $x \in GF(q^n)$. Therefore $a_i = 0$ if $i \neq \rho(a)$ and $a_{\rho(a)} = a$. A matrix $\begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$ with

exactly one nonzero entry $a_i=a$ is denoted by $[a(i)]$. Then the spread set is $\Sigma^*=\{[a]=[a(\rho(a)+1)] \mid a \in GF(q^n) \setminus \{0\}\} \cup \{0\}$.

For instance, spread sets of generalized Andre quasifields $Q(2, q^2, \Sigma^*)$ and $Q(3, q^3, \Sigma^*)$ are as follows. For $x \in GF(q^2)$ or $GF(q^3)$ set $N(x)=x^{1+q}$ or $N(x)=x^{1+q+q^2}$ respectively.

(1) $Q(2, q^2, \Sigma^*)$

$\Sigma^*=\Sigma_1^* \cup \Sigma_2^* \cup \{0\}$, where $\Sigma_1^*=\{[a]=\begin{bmatrix} a \\ 0 \end{bmatrix}, a \neq 0\}$ and $\Sigma_2^*=\{[a]=\begin{bmatrix} 0 \\ a \end{bmatrix}, a \neq 0\}$. Moreover $N(a_1) \neq N(a_2)$ for $[a_1] \in \Sigma_1^*$ and $[a_2] \in \Sigma_2^*$ since $\det([a_1]-[a_2])=N(a_1)-N(a_2) \neq 0$.

(2) $Q(3, q^3, \Sigma^*)$

$\Sigma^*=\Sigma_1^* \cup \Sigma_2^* \cup \Sigma_3^* \cup \{0\}$, where $\Sigma_1^*=\{[a]=\begin{bmatrix} a \\ 0 \\ 0 \end{bmatrix}, a \neq 0\}$, $\Sigma_2^*=\{[a]=\begin{bmatrix} 0 \\ a \\ 0 \end{bmatrix}, a \neq 0\}$ and $\Sigma_3^*=\{[a]=\begin{bmatrix} 0 \\ 0 \\ a \end{bmatrix}, a \neq 0\}$. Moreover if $[a] \in \Sigma_i^*$, $[b] \in \Sigma_j^*$ and $i \neq j$, then $N(a) \neq N(b)$ since $\det([a]-[b])=N(a)-N(b) \neq 0$.

(III) Finite Dickson nearfields

We call a quasifield Q a nearfield, if the multiplication of Q is associative, i.e. $Q \setminus \{0\}$ is the multiplicative group. Let Q be a nearfield with a spread set Σ^* . Then for any $x \in Q$, $x \circ (a \circ b) = (x \circ a) \circ b$. Then $(x)[a \circ b] = (x)[a][b]$. Thus we have $[a \circ b] = [a][b]$ and so $[a][b] \in \Sigma^*$.

If a generalized Andre quasifield Q is a nearfield, then Q is called a Dickson nearfield. In a Dickson nearfield $Q(n, q^n, \Sigma^*)$, let ρ be the mapping defined in (II), i.e. $x \circ a = x^{q^{\rho(a)}} a$.

Lemma 4.1. *Let $Q=Q(n, q^n, \Sigma^*)$ be a Dickson nearfield. Then $K=\{a \in Q \mid a \circ x = ax \text{ for all } x \in Q\}$ is the subfield $GF(q^m)$ of $GF(q^n)$ with $n=mr$.*

Furthermore we have a Dickson nearfield $Q'=Q(r, (q^m)^r, \Sigma'^)$ as follows;*

If $[a]=[a][a(\rho(a)+1)]$ in Σ^ , then $[a]=\left[a\left(\frac{\rho(a)}{m}+1\right)\right]$ in Σ'^* . Hence Q' is identified with Q .*

Proof. Let $a, b \in K$. Then for any $x \in Q$, $(a+b) \circ x = a \circ x + b \circ x = ax + bx = (a+b)x$ and $(a \circ b) \circ x = a \circ (b \circ x) = a(bx) = (ab)x = (a \circ b)x$. Thus $a+b \in K$ and $a \circ b = ab \in K$ and so K is a subfield of $GF(q^n)$, say $K=GF(q^m)$. Then $n=mr$. Let $x \in K$ and $a \in Q \setminus \{0\}$. Then $xa = x \circ a = x^{q^{\rho(a)}} a$. Hence $x=x^{q^{\rho(a)}}$ and so $\rho(a) \equiv 0 \pmod{m}$. Thus $x \circ a = x^{q^{\rho(a)}} a = x^{(q^m)^r} \frac{\rho(a)}{m} a$. Hence if we take a $r \times r$ matrix $[a]'=a\left[\left(\frac{\rho(a)}{m}+1\right)\right]$, and set $\Sigma'^*=\{[a]' \mid a \in GF(q^n) \setminus \{0\}\} \cup \{0\}$, then we can identify $Q(r, (q^m)^r, \Sigma'^*)$ with $Q(n, q^n, \Sigma^*)$.

Now we describe a theorem of E. Ellers and H. Karzl [2] using a spread set.

Theorem C (E. Eller and H. Karzel). *Let $Q(n, q^n, \Sigma^*)$ be a finite Dickson nearfield such that $GF(q) = \{k \in Q \mid k \circ x = kx \text{ for all } x \in Q\}$. Then the following hold:*

- 1) *Every prime divisor of n divides $q-1$.*
- 2) *If $n \equiv 0 \pmod{4}$, then $q \not\equiv 3 \pmod{4}$.*

Furthermore the spread set Σ^ is as follows:*

Let ω be a generator of the multiplicative group $(GF(q^n), \cdot)$ and set $U = \langle \omega^n \rangle$. Then there is a positive integer t with $(n, t) = 1$,

$$(GF(q^n), \cdot) = \bigcup_{i=0}^{n-1} \omega^t (q^i - 1)(q - 1)^{-1} U.$$

If $a \in \omega^{t(q^i-1)(q-1)^{-1}} U$, then $[a] = [a(i+1)]$.

Conversely by a theorem of H. Lüneburg ([6], Theorem 6.4) we can construct a Dickson nearfield as follows;

Assume that n and q satisfy the conditions 1) and 2) of Theorem C. Let ω be a generator of the multiplicative group $GF(q^n)$ and $(n, t) = 1$. Then $\Sigma^* = \bigcup_{i=0}^{n-1} \{[a(i+1)] \mid a \in \omega^{t(q^i-1)(q-1)^{-1}} U\} \cup \{0\}$, where $U = \langle \omega^n \rangle$.

(IV) Quasifields of order 9

M. Hall has proved that there exist up to isomorphism exactly five quasifields of order 9 ([3]). We prove this theorem using a spread set.

Theorem 2. *There exist up to isomorphism exactly five quasifields with the following spread sets.*

$$\begin{aligned} \Sigma_1^* &= \{[a] = \begin{bmatrix} a \\ 0 \end{bmatrix} \mid a \in GF(9)\}, \\ \Sigma_2^* &= \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \pm 1 \\ 0 \end{bmatrix}, \begin{bmatrix} \pm \omega + 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ \pm \omega \pm 1 \end{bmatrix} \right\}, \\ \Sigma_3^* &= \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \pm 1 \\ 0 \end{bmatrix}, \begin{bmatrix} \pm \omega \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \pm \omega \pm 1 \end{bmatrix} \right\}, \\ \Sigma_4^* &= \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \pm 1 \\ 0 \end{bmatrix}, \begin{bmatrix} \pm \omega - 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ \pm \omega \pm 1 \end{bmatrix} \right\}, \\ \Sigma_5^* &= \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -\omega \\ 0 \end{bmatrix}, \begin{bmatrix} \pm(\omega - 1) \\ 0 \end{bmatrix}, \begin{bmatrix} \omega - 1 \\ \pm 1 \end{bmatrix}, \begin{bmatrix} \omega - 1 \\ \pm \omega \end{bmatrix} \right\}, \end{aligned}$$

where ω is the root of $f(x) = x^2 + 1$ in $GF(9)$.

Proof. $Q(1, 9, \Sigma^*)$ is isomorphic to $GF(9)$.

Next we construct $Q(2, 9, \Sigma^*)$. Take an irreducible polynomial $f(x) = x^2 + 1$ over $GF(3)$, and let ω and $-\omega$ be the roots of $f(x)$ in $GF(9)$. Set $N(x) = x^{1+3} = x^4$ for $x \in GF(9)$. Then $N(\pm 1) = N(\pm \omega) = 1$, $N(\pm \omega \pm 1) = -1$ and $\det \begin{bmatrix} a & b \\ b & a \end{bmatrix} = N(a) - N(b)$.

Lemma 4.2. Σ^* has the following properties:

1) Let $\begin{bmatrix} a \\ b \end{bmatrix} \in \Sigma^*$, $a, b \neq 0$ and $\begin{bmatrix} c \\ 0 \end{bmatrix} \in \Sigma^*$. Then $a=c$ or $N(a-c)=N(a)$. If $\begin{bmatrix} 0 \\ d \end{bmatrix} \in \Sigma^*$, then $b=d$ or $N(b-d)=N(b)$.

2) If $\begin{bmatrix} a \\ b \end{bmatrix} \in \Sigma^*$ and $a, b \neq 0$, then $a=\pm 1$ or $\pm \omega-1$.

3) If $\begin{bmatrix} 0 \\ b \end{bmatrix} \in \Sigma^* \setminus \{0\}$, then $b=\pm \omega \pm 1$.

Proof. 1) Since $\det(\begin{bmatrix} a \\ b \end{bmatrix} - \begin{bmatrix} c \\ 0 \end{bmatrix}) \neq 0$, $N(a-c) \neq N(b)$. Hence $a=c$ or $N(a-c)=N(a)$. Similarly if $\begin{bmatrix} 0 \\ d \end{bmatrix} \in \Sigma^*$, then $b=d$ or $N(b-d)=N(b)$.

2) Since $\begin{bmatrix} 1 \\ 0 \end{bmatrix} \in \Sigma^*$, $a=1$ or $N(a-1)=N(a)$ by 1). Hence $a=\pm 1$ or $\pm \omega-1$.

3) Since $\begin{bmatrix} 1 \\ 0 \end{bmatrix} \in \Sigma^*$ and $\det(\begin{bmatrix} 1 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ b \end{bmatrix}) \neq 0$, $b=\pm \omega \pm 1$.

We use this lemma frequently in the following proofs. By Lemma 4.2, $[-1]$, $[\omega+1]$ and $[\omega]$ have one of the following forms:

$$\begin{aligned} [-1] &= \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} \omega-1 \\ -\omega \end{bmatrix} \text{ or } \begin{bmatrix} -\omega-1 \\ \omega \end{bmatrix}, \\ [\omega+1] &= \begin{bmatrix} \omega+1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \omega+1 \end{bmatrix}, \begin{bmatrix} -1 \\ \omega-1 \end{bmatrix} \text{ or } \begin{bmatrix} \omega-1 \\ -1 \end{bmatrix}, \\ [\omega] &= \begin{bmatrix} \omega \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ \omega-1 \end{bmatrix}, \begin{bmatrix} -1 \\ \omega+1 \end{bmatrix} \text{ or } \begin{bmatrix} \omega-1 \\ 1 \end{bmatrix}, \end{aligned}$$

Case 1. $[-1] = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$.

If $\begin{bmatrix} a \\ b \end{bmatrix} \in \Sigma^*$ and $a, b \neq 0$, then $a=\pm 1$ since $\det(\begin{bmatrix} a \\ b \end{bmatrix} - \begin{bmatrix} -1 \\ 0 \end{bmatrix}) \neq 0$. Thus

$$\begin{aligned} [\omega+1] &= \begin{bmatrix} \omega+1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \omega+1 \end{bmatrix} \text{ or } \begin{bmatrix} -1 \\ \omega-1 \end{bmatrix}, \\ [\omega] &= \begin{bmatrix} \omega \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ \omega-1 \end{bmatrix} \text{ or } \begin{bmatrix} -1 \\ \omega+1 \end{bmatrix}. \end{aligned}$$

(1.1) Suppose $[\omega+1] = \begin{bmatrix} \omega+1 \\ 0 \end{bmatrix}$. Then $\begin{bmatrix} 0 \\ b \end{bmatrix} \in \Sigma^* \setminus \{0\}$. Furthermore if $\begin{bmatrix} a \\ b \end{bmatrix} \in \Sigma^*$ and $a, b \neq 0$, then $a=1$. Thus $\Sigma^* \subseteq \{ \begin{bmatrix} a \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ \pm \omega \pm 1 \end{bmatrix} \mid a \in GF(9) \}$.

(1.1.1) Suppose $[\omega] = \begin{bmatrix} \omega \\ 0 \end{bmatrix}$. Then $\begin{bmatrix} 1 \\ \pm \omega \pm 1 \end{bmatrix} \in \Sigma^*$. Thus we have the following spread set Σ_1^* :

$$\Sigma_1^* = \{ [a] = \begin{bmatrix} a \\ 0 \end{bmatrix} \mid a \in -GF(9) \}.$$

Then $Q(2, 9, \Sigma_1^*)$ is isomorphic to $GF(9)$.

(1.1.2) Suppose $[\omega] = \begin{bmatrix} 1 \\ \omega-1 \end{bmatrix}$. If $\begin{bmatrix} a \\ 0 \end{bmatrix} \in \Sigma^* \setminus \{0\}$, then $a = \pm 1$ or $\pm\omega+1$. Hence we have the following spread set Σ_2^* .

$$\Sigma_2^* = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \pm 1 \\ 0 \end{bmatrix}, \begin{bmatrix} \pm\omega+1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ \pm\omega\pm 1 \end{bmatrix} \right\}.$$

Since $\{\begin{bmatrix} \pm\omega+1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ \pm\omega\pm 1 \end{bmatrix}\}$ is a conjugate class in G^* , by Theorem A $Q(2, 9, \Sigma_2^*)$ is not isomorphic to any $Q(2, 9, \Sigma^*)$ with $\Sigma^* \neq \Sigma_2^*$.

(1.2) Suppose $[\omega+1] = \begin{bmatrix} 0 \\ \omega+1 \end{bmatrix}$. Then $\Sigma^* \subseteq \{\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \pm 1 \\ 0 \end{bmatrix}, \begin{bmatrix} \pm\omega \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \pm\omega\pm 1 \end{bmatrix}, \begin{bmatrix} \pm 1 \\ \pm(\omega+1) \end{bmatrix}\}$.

(1.2.1) Suppose $[\omega] = \begin{bmatrix} \omega \\ 0 \end{bmatrix}$. Then $\begin{bmatrix} \pm 1 \\ \pm(\omega+1) \end{bmatrix} \notin \Sigma^*$. Hence we have the following spread set Σ_3^* :

$$\Sigma_3^* = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \pm 1 \\ 0 \end{bmatrix}, \begin{bmatrix} \pm\omega \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \pm\omega\pm 1 \end{bmatrix} \right\}.$$

Then $Q(2, 9, \Sigma_3^*)$ is a Dickson nearfield.

(1.2.2) Suppose $[\omega] = \begin{bmatrix} -1 \\ \omega+1 \end{bmatrix}$. Then

$$\Sigma^* = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \pm 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \pm(\omega+1) \end{bmatrix}, \begin{bmatrix} \pm 1 \\ \pm(\omega+1) \end{bmatrix} \right\}.$$

Take $\begin{bmatrix} -\omega+1 \\ \omega \end{bmatrix} \in G^*$. Then since $\begin{bmatrix} -\omega+1 \\ \omega \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ \omega+1 \end{bmatrix} \begin{bmatrix} -\omega+1 \\ \omega \end{bmatrix} = \begin{bmatrix} \omega+1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -\omega+1 \\ \omega \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ \omega+1 \end{bmatrix} \begin{bmatrix} -\omega+1 \\ \omega \end{bmatrix} = \begin{bmatrix} \omega \\ 0 \end{bmatrix}$ and $\langle (1) \rangle \begin{bmatrix} -\omega+1 \\ \omega \end{bmatrix} = \langle (1) \rangle$, the quasifield with this spread set is isomorphic to $GF(9)$ by Theorem A.

(1.3) Suppose $[\omega+1] = \begin{bmatrix} -1 \\ \omega-1 \end{bmatrix}$. Then $\Sigma^* \subseteq \{\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \pm 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ \pm\omega\pm 1 \end{bmatrix}, \begin{bmatrix} 1 \\ \pm(\omega-1) \end{bmatrix}, \begin{bmatrix} \pm\omega-1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \pm(\omega-1) \end{bmatrix}\}$.

(1.3.1) Suppose $[\omega] = \begin{bmatrix} 1 \\ \omega-1 \end{bmatrix}$. Take $\begin{bmatrix} \omega+1 \\ -\omega \end{bmatrix} \in G^*$. Then $\begin{bmatrix} \omega+1 \\ -\omega \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ \omega-1 \end{bmatrix} \begin{bmatrix} \omega+1 \\ -\omega \end{bmatrix} = \begin{bmatrix} \omega+1 \\ 0 \end{bmatrix}$ and $\langle (1) \rangle \begin{bmatrix} \omega+1 \\ -\omega \end{bmatrix} = \langle (1) \rangle$. Hence this case is included in the case (1.1).

(1.3.2) Suppose $[\omega] = \begin{bmatrix} -1 \\ \omega+1 \end{bmatrix}$. Then $\begin{bmatrix} 1 \\ \pm(\omega-1) \end{bmatrix}$ and $\begin{bmatrix} 1 \\ \pm(\omega-1) \end{bmatrix} \notin \Sigma^*$. Hence we have the following spread set Σ_4^* .

$$\Sigma_4^* = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \pm 1 \\ 0 \end{bmatrix}, \begin{bmatrix} \pm \omega - 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ \pm \omega \pm 1 \end{bmatrix} \right\}.$$

Similarly to the case (1.1.2), $\{\begin{bmatrix} \pm \omega - 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ \pm \omega + 1 \end{bmatrix}\}$ is a conjugate class in G^* and so $Q(2, 9, \Sigma_4^*)$ is not isomorphic to any $Q(2, 9, \Sigma^*)$ with $\Sigma^* \neq \Sigma_4^*$.

$$\text{Case 2. } [-1] = \begin{bmatrix} \omega - 1 \\ -\omega \end{bmatrix}.$$

Then $\Sigma^* \subseteq \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -\omega \\ 0 \end{bmatrix}, \begin{bmatrix} \pm(\omega - 1) \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -\omega \pm 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -\omega \pm 1 \end{bmatrix}, \begin{bmatrix} -1 \\ \omega \pm 1 \end{bmatrix}, \begin{bmatrix} \omega - 1 \\ \pm 1 \end{bmatrix}, \begin{bmatrix} \omega - 1 \\ \pm 1 \end{bmatrix}, \begin{bmatrix} -\omega - 1 \\ \pm \omega \end{bmatrix}, \begin{bmatrix} -\omega - 1 \\ \pm 1 \end{bmatrix}, \begin{bmatrix} -\omega - 1 \\ -\omega \end{bmatrix} \right\}$. Then

$$\begin{aligned} [\omega + 1] &= \begin{bmatrix} \omega - 1 \\ -1 \end{bmatrix} \text{ or } \begin{bmatrix} -1 \\ \omega - 1 \end{bmatrix}, \\ [\omega] &= \begin{bmatrix} \omega - 1 \\ 1 \end{bmatrix} \text{ or } \begin{bmatrix} -1 \\ \omega + 1 \end{bmatrix}. \end{aligned}$$

(2.1) Suppose $[\omega + 1] = \begin{bmatrix} \omega - 1 \\ -1 \end{bmatrix}$. Then $\Sigma^* \subseteq \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -\omega \\ 0 \end{bmatrix}, \begin{bmatrix} \pm(\omega - 1) \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -\omega - 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -\omega - 1 \end{bmatrix}, \begin{bmatrix} -1 \\ \omega + 1 \end{bmatrix}, \begin{bmatrix} \omega - 1 \\ \pm 1 \end{bmatrix}, \begin{bmatrix} \omega - 1 \\ \pm \omega \end{bmatrix}, \begin{bmatrix} -\omega - 1 \\ -\omega \end{bmatrix} \right\}$.
(2.1.1) Suppose $[\omega] = \begin{bmatrix} \omega - 1 \\ 1 \end{bmatrix}$. Then $\Sigma^* \subseteq \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -\omega \\ 0 \end{bmatrix}, \begin{bmatrix} \pm(\omega - 1) \\ 0 \end{bmatrix}, \begin{bmatrix} \omega - 1 \\ \pm 1 \end{bmatrix}, \begin{bmatrix} \omega - 1 \\ \pm \omega \end{bmatrix}, \begin{bmatrix} -\omega - 1 \\ -\omega \end{bmatrix} \right\}$. Since $\det(\begin{bmatrix} -\omega - 1 \\ -\omega \end{bmatrix} - \begin{bmatrix} -\omega \\ 0 \end{bmatrix}) = \det(\begin{bmatrix} -\omega - 1 \\ -\omega \end{bmatrix} - \begin{bmatrix} \omega - 1 \\ 0 \end{bmatrix}) = 0$, we have the following spread set Σ_5^* .

$$\Sigma_5^* = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -\omega \\ 0 \end{bmatrix}, \begin{bmatrix} \pm(\omega - 1) \\ 0 \end{bmatrix}, \begin{bmatrix} \omega - 1 \\ \pm 1 \end{bmatrix}, \begin{bmatrix} \omega - 1 \\ \pm \omega \end{bmatrix} \right\}.$$

Since $\begin{bmatrix} -1 \\ 0 \end{bmatrix} \notin \Sigma_5^*$, the quasifield with Σ_5^* is not isomorphic to any quasifield with Σ_i^* , $i=1, 2, 3, 4$.

(2.1.2) Suppose $[\omega] = \begin{bmatrix} -1 \\ \omega + 1 \end{bmatrix}$. Then $\Sigma^* \subseteq \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} \omega - 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -\omega - 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -\omega - 1 \end{bmatrix}, \begin{bmatrix} -1 \\ \omega + 1 \end{bmatrix}, \begin{bmatrix} \pm \omega - 1 \\ -1 \end{bmatrix}, \begin{bmatrix} \pm \omega - 1 \\ -\omega \end{bmatrix} \right\}$. Since $\det(\begin{bmatrix} \omega - 1 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ -\omega - 1 \end{bmatrix}) = \det(\begin{bmatrix} \omega - 1 \\ 0 \end{bmatrix} - \begin{bmatrix} 1 \\ -\omega - 1 \end{bmatrix}) = 0$, $\Sigma^* = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -\omega - 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -\omega - 1 \end{bmatrix}, \begin{bmatrix} -1 \\ \omega + 1 \end{bmatrix}, \begin{bmatrix} \pm \omega - 1 \\ -1 \end{bmatrix}, \begin{bmatrix} \pm \omega - 1 \\ -\omega \end{bmatrix} \right\}$. Then $\begin{bmatrix} -\omega + 1 \\ \omega \end{bmatrix}^{-1} \Sigma^* \begin{bmatrix} -\omega + 1 \\ \omega \end{bmatrix} = \Sigma_5^*$ and ((1)) $\begin{bmatrix} -\omega + 1 \\ \omega \end{bmatrix} = (1)$. Hence the quasifield with this spread set is isomorphic to the quasifield with Σ_5^* by Theorem A.

(2.2) Suppose $[\omega + 1] = \begin{bmatrix} -1 \\ \omega - 1 \end{bmatrix}$. Then $\Sigma^* \subseteq \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} \omega - 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -\omega + 1 \end{bmatrix} \right\}$.

$$\begin{bmatrix} 1 \\ -\omega+1 \end{bmatrix}, \begin{bmatrix} -1 \\ \omega \pm 1 \end{bmatrix}, \begin{bmatrix} \pm \omega-1 \\ 1 \end{bmatrix}, \begin{bmatrix} \pm \omega-1 \\ -\omega \end{bmatrix} \}.$$

(2.2.1) Suppose $[\omega] = \begin{bmatrix} \omega-1 \\ 1 \end{bmatrix}$. Then $\Sigma^* \subseteq \{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} \omega-1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -\omega+1 \end{bmatrix}, \begin{bmatrix} 1 \\ -\omega+1 \end{bmatrix}, \begin{bmatrix} -1 \\ \omega-1 \end{bmatrix}, \begin{bmatrix} \pm \omega-1 \\ 1 \end{bmatrix}, \begin{bmatrix} \pm \omega-1 \\ -\omega \end{bmatrix} \}$. Since $\det(\begin{bmatrix} \omega-1 \\ 0 \end{bmatrix} - \begin{bmatrix} 1 \\ -\omega+1 \end{bmatrix}) = \det(\begin{bmatrix} \omega-1 \\ 0 \end{bmatrix} - \begin{bmatrix} -\omega-1 \\ 1 \end{bmatrix}) = 0$, $\Sigma^* = \{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -\omega+1 \end{bmatrix}, \begin{bmatrix} 1 \\ -\omega+1 \end{bmatrix}, \begin{bmatrix} -1 \\ \omega-1 \end{bmatrix}, \begin{bmatrix} \pm \omega-1 \\ 1 \end{bmatrix}, \begin{bmatrix} \pm \omega-1 \\ -\omega \end{bmatrix} \}$. Then $\begin{bmatrix} \omega+1 \\ -\omega \end{bmatrix}^{-1} \Sigma^* \begin{bmatrix} \omega+1 \\ -\omega \end{bmatrix} = \Sigma_5^*$ and $\langle\langle 1 \rangle\rangle \begin{bmatrix} \omega+1 \\ -\omega \end{bmatrix} = \langle\langle 1 \rangle\rangle$.

Hence the quasifield with this spread set is isomorphic to the quasifield with Σ_5^* by Theorem A.

(2.2.2) Suppose $[\omega] = \begin{bmatrix} -1 \\ \omega+1 \end{bmatrix}$. Then $\Sigma^* \subseteq \{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} \omega-1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ \omega \pm 1 \end{bmatrix}, \begin{bmatrix} \pm \omega-1 \\ -\omega \end{bmatrix} \}$, which consists of seven matrices. Hence this case does not occur.

Case 3. $[-1] = \begin{bmatrix} -\omega-1 \\ \omega \end{bmatrix}$.

Since $\begin{bmatrix} 0 \\ 1 \end{bmatrix}^{-1} \begin{bmatrix} -\omega-1 \\ \omega \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \omega-1 \\ -\omega \end{bmatrix}$ and $\langle\langle 1 \rangle\rangle \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \langle\langle 1 \rangle\rangle$, this case is reduced to the case 2.

M. Hall has proved that there exist up to isomorphism exactly two translation planes of order 9 [3].

We prove this theorem using the spread sets Σ_i^* , $i=1, 2, 3, 4, 5$. Since $\Sigma_3^* = \{ [a] + \begin{bmatrix} -1 \\ 0 \end{bmatrix} | [a] \in \Sigma_2^* \} = \{ [a] + \begin{bmatrix} 1 \\ 0 \end{bmatrix} | [a] \in \Sigma_4^* \} = \{ \begin{bmatrix} 0 \\ 1 \end{bmatrix} [a] + \begin{bmatrix} 0 \\ -\omega+1 \end{bmatrix} | [a] \in \Sigma_5^* \}$, the translation plane coordinatized by the quasifield with Σ_i^* , $i=2, 4$ or 5 is isomorphic to the translation plane coordinatized by the Dickson nearfield $Q(2, 9, \Sigma_3^*)$ by Theorem B.

(V) Hall quasifields

Let $Q=Q(2, q^2, \Sigma^*)$ be a quasifield. If Q satisfies the following conditions, then Q is called a Hall quasifield [3]:

1) Let $f(x)=x^2-rx-s$ be an irreducible polynomial over $GF(q)$. Every element ξ of Q not in $GF(q)$ satisfies the quadratic equation $f(\xi)=0$.

2) Every element of $GF(q)$ commutes with all elements of Q .

Now we determine the spread set Σ^* of a Hall quasifield $Q(2, q^2, \Sigma^*)$.

Theorem 3. Let ω be the element of $GF(q^2)$ such that $f(\omega)=\omega^2-r\omega-s=0$.

Case 1. Assume that q is a power of 2. Then Σ^* consists of the following matrices:

$$[k] = \begin{bmatrix} k \\ 0 \end{bmatrix} \quad \text{for } k \in GF(q),$$

$$[a\omega+b] = \begin{bmatrix} \omega + \tau(a, b) \\ (a+1)\omega + b + \tau(a, b) \end{bmatrix} \quad \text{for } a \neq 0, \text{ where} \\ \tau(a, b) = r^{-1}(as + br + a^{-1}f(b)).$$

The multiplication in $Q(2, q^2, \Sigma^*)$ is as follows:

$$(a\omega+b) \circ (c\omega+d) = \begin{cases} ad\omega + bd & \text{if } c = 0 \\ (bc - ad + ar)\omega + bd - ac^{-1}f(d) & \text{if } c \neq 0 \end{cases}.$$

Case 2. Assume that q is a power of an odd prime. Set $\lambda = \omega - \bar{\omega}$. Then Σ^* consists of the following matrices:

$$[k] = \begin{bmatrix} k \\ 0 \end{bmatrix} \quad \text{for } k \in G(q), \\ [a\lambda+b] = \begin{bmatrix} \left(\frac{1}{2}a - \tau(a, b)\right)\lambda + \frac{1}{2}r \\ \left(\frac{1}{2}a + \tau(a, b)\right)\lambda - \frac{1}{2}r + b \end{bmatrix} \quad \text{for } a \neq 0, \text{ where} \\ \tau(a, b) = (2a(r^2 + 4s))^{-1}f(b).$$

The multiplication in $Q(2, q^2, \Sigma^*)$ is as follows:

$$(a\lambda+b) \circ (c\lambda+d) = \begin{cases} ad\lambda + bd & \text{if } c = 0 \\ (bc - ad + ar)\lambda + bd - ac^{-1}f(d) & \text{if } c \neq 0 \end{cases}.$$

Proof. Case 1. q is a power of 2.

Since $f(\omega) = \omega^2 + r\omega + s = 0$, $\omega^2 = r\omega + s$, $\omega + \bar{\omega} = r$ and $\omega\bar{\omega} = s$. Set $GF(q^2) = \{a\omega + b \mid a, b \in GF(q)\}$. Let $[k] = \begin{bmatrix} a\omega + k' \\ a\omega + k' + k \end{bmatrix}$ for $k \in GF(q)$. Since $k \circ \omega = \omega \circ k$ by the assumption 2), we have

$$k \circ \omega = k\omega, \\ \omega \circ k = (\omega, \bar{\omega}) \begin{bmatrix} a\omega + k' \\ a\omega + k' + k \end{bmatrix} = a\omega^2 + k'\omega + a\omega\bar{\omega} + (k+k')\bar{\omega} \\ = a(r\omega + s) + k'\omega + as + (k+k')(r + \omega) \\ = (ar + k' + k + k')\omega + as + as + (k+k')r = (ar + k)\omega + (k+k')r.$$

Hence $a=0$ and $k=k'$. Thus $[k] = \begin{bmatrix} k \\ 0 \end{bmatrix}$.

Let $[a\omega+b] = \begin{bmatrix} a'\omega + b' \\ (a+a')\omega + b' + b \end{bmatrix}$, $a \neq 0$. Then

$$(a\omega+b) \circ (a\omega+b) = (a\omega+b, a\bar{\omega}+b) \begin{bmatrix} a'\omega + b' \\ (a+a')\omega + b' + b \end{bmatrix} \\ = aa'\omega^2 + ab'\omega + a'b\omega + bb' + a(a+a')\omega\bar{\omega} + a(b+b')\bar{\omega} + b(a+a')\omega + b(b+b')$$

$$\begin{aligned}
&= aa'(\omega+s) + ab'\omega + a'b\omega + bb' + a(a+a')s + a(b+b')(\omega+r) + b(a+a')\omega \\
&\quad + b(b+b') \\
&= aa'r\omega + a^2s + a(b+b')r + b^2.
\end{aligned}$$

Then since $f(a\omega+b)=0$ in Q ,

$$\begin{aligned}
&aa'r\omega + a^2s + a(b+b')r + b^2 + ar\omega + br + s \\
&= (aa'r + ar)\omega + a^2s + a(b+b')r + f(b) = 0.
\end{aligned}$$

Hence $a'+1=0$ and so $a'=1$. Furthermore $b'=r^{-1}(as+br+a^{-1}f(b))$. Thus

$$[a\omega+b] = \left[\frac{\omega+r^{-1}(as+br+a^{-1}f(b))}{(a+1)\omega+b+r^{-1}(as+br+a^{-1}f(b))} \right].$$

By computation, $\det[a\omega+b]=s\neq 0$, $\det([a\omega+b]-[k])=f(k)\neq 0$ and $\det([a\omega+b]-[a'\omega+b'])=(aa')^{-1}((ab'+a'b)+(a+a')\omega)((ab'+a'b)+(a+a')\bar{\omega})\neq 0$, where $a, a'\neq 0$. Thus we have a spread set.

Furthermore we have

$$\begin{aligned}
(a\omega+b)\circ(c\omega+d) &= ((a\omega+b)) \overset{\wedge}{\left[\frac{\omega+\tau(c, d)}{(c+1)\omega+\tau(c, d)+d} \right]} \\
&= (bc+ad+ar)\omega+bd+ac^{-1}f(d), \quad \text{for } c\neq 0.
\end{aligned}$$

Case 2. q is a power of an odd prime.

Let $\lambda=\omega-\bar{\omega}$. Then $\bar{\lambda}=-\lambda$ and $\lambda^2=r^2+4s$. Set $GF(q^2)=\{a\lambda+b \mid a, b \in GF(q)\}$. Similarly to the case 1, $[k]=\left[\begin{smallmatrix} k \\ 0 \end{smallmatrix} \right]$ for $k \in GF(q)$.

Let $[a\lambda+b]=\left[\begin{smallmatrix} a'\lambda+b' \\ (a-a')\lambda+b-b' \end{smallmatrix} \right]$, $a\neq 0$. Then

$$\begin{aligned}
(a\lambda+b)\circ(a\lambda+b) &= ((a\lambda+b)) \overset{\wedge}{\left[\begin{smallmatrix} a'\lambda+b' \\ (a-a')\lambda+b-b' \end{smallmatrix} \right]} \\
&= aa'\lambda^2 + ab'\lambda + a'b\lambda + bb' - a(a-a')\lambda^2 - a(b-b')\lambda + b(a-a')\lambda + b(b-b') \\
&= 2ab'\lambda + (2aa'-a^2)(r^2+4s) + b^2.
\end{aligned}$$

Then since $f(a\lambda+b)=0$ in Q ,

$$2ab'\lambda + a(2a'-a)(r^2+4s) + b^2 - r(a\lambda+b) - s = 0.$$

Hence $2ab'-ar=0$ so $b'=\frac{1}{2}r$. Furthermore $a(2a'-a)(r^2+4s)+f(b)=0$ so $a'=-(2a(r^2+4s))^{-1}f(b)+\frac{1}{2}a$. Set $\tau(a, b)=(2a(r^2+4s))^{-1}f(b)$. Then we have

$$[a\lambda+b] = \left[\begin{smallmatrix} \left(\frac{1}{2}a - \tau(a, b) \right)\lambda + \frac{1}{2}r \\ \left(\frac{1}{2}a + \tau(a, b) \right)\lambda + b - \frac{1}{2}r \end{smallmatrix} \right].$$

By computation, $\det[a\lambda+b]=-s\neq 0$, $\det([a\lambda+b]-[k])=f(k)\neq 0$ and $\det([a\lambda+b]-[a'\lambda+b'])=(2^{-1}(a-a')\lambda+ab'-a'b-2^{-1}r(a-a'))(-2^{-1}(a-a')\lambda+ab'-a'b-2^{-1}r(a-a'))\neq 0$, where $a, a'\neq 0$.

Furthermore we have

$$(a\lambda+b)\circ(c\lambda+d) = (bc-ad+ra)\lambda+bd-ac^{-1}f(d) \quad \text{for } c\neq 0.$$

Moreover since $\lambda=2\omega-r$, we have also

$$(a\omega+b)\circ(c\omega+d) = (bc-ad+ra)\omega+bd-ac^{-1}f(d) \quad \text{for } c\neq 0.$$

(VI) Walker quasifields

A quasifield $Q=Q(2, q^2, \Sigma^*)$ with $q\equiv-1 \pmod{6}$ is called a Walker quasifield, if Q has the following multiplication:

$$(a\omega+b)\circ(c\omega+d) = (a(d-c^2)+bc)\omega-\frac{1}{3}ac^3+bo,$$

where $GF(q^2)=\{a\omega+b \mid a, b \in GF(q)\}$ (see [4], p. 72).

Now we determine the spread set Σ^* of a Walker quasifield. Since $q\equiv-1 \pmod{6}$, $f(x)=x^2+3$ is an irreducible polynomial over $GF(q)$. Hence let ω and $-\omega$ be elements of $GF(q^2)$ such that $f(\omega)=f(-\omega)=\omega^2+3=0$.

Set $[a\omega+b]=\begin{bmatrix} a'\omega+b' \\ (a-a')\omega+b-b' \end{bmatrix}$. Then

$$\begin{aligned} \omega \circ (a\omega+b) &= (\omega, -\omega) \begin{bmatrix} a'\omega+b' \\ (a-a')\omega+b-b' \end{bmatrix} \\ &= a'\omega^2+b'\omega-(a-a')\omega^2-(b-b')\omega \\ &= (2b'-b)\omega+3(a-2a'). \end{aligned}$$

On the other hand by the definition of the multiplication,

$$\omega \circ (a\omega+b) = (b-a^2)\omega-\frac{1}{3}a^3.$$

Hence $2b'-b=b-a^2$ so $b'=b-\frac{1}{2}a^2$, and $3(a-2a')=-\frac{1}{3}a^3$ so $a'=\frac{1}{2}a+\frac{1}{18}a^3$.

Then we have

$$[a\omega+b] = \begin{bmatrix} \left(\frac{1}{2}a+\frac{1}{18}a^3\right)\omega+b-\frac{1}{2}a^2 \\ \left(\frac{1}{2}a-\frac{1}{18}a^3\right)\omega+\frac{1}{2}a^2 \end{bmatrix}.$$

Furthermore by computation, we can show that $\{[a\omega+b] \mid a, b \in GF(q)\}$ satisfies the condition of a spread set.

(VII) Lüneburg quasifields

A quasifield $Q=Q(2, (2^{2s+1})^2, \Sigma^{**})$ with $2s+1>1$ is called a Lüneburg quasifield, if Q has the following multiplication:

$$(a\omega+b)\circ(c\omega+d) = (a(c^\sigma+dd^\sigma)+bo)\omega+ac+bd,$$

where σ is the automorphism of $GF(2^{2s+1})$ such that $x^\sigma=x^{2s+1}$ for all $x\in GF(2^{2s+1})$ and $GF((2^{2s+1})^2)=\{a\omega+b|a, b\in GF(2^{2s+1})\}$.

Now we determine the spread set Σ^* of a Lüneburg quasifield. Since $GF(2^{2s+1})$ is a field extension of odd dimension of $GF(2)$, $f(x)=x^2+x+1$ is an irreducible polynomial over $GF(2^{2s+1})$. Hence let ω and $\bar{\omega}$ be elements of $GF((2^{2s+1})^2)$ such that $f(\omega)=f(\bar{\omega})=0$. Then $\omega+\bar{\omega}=1$, $\omega\bar{\omega}=1$ and $\omega^2=\omega+1$.

Set $[a\omega+b]=\begin{bmatrix} a'\omega+b' \\ (a+a')\omega+b+b' \end{bmatrix}$. Then

$$\begin{aligned} \omega\circ(a\omega+b) &= (\omega, \bar{\omega}) \begin{bmatrix} a'\omega+b \\ (a+a')\omega+b+b' \end{bmatrix} \\ &= a'\omega^2+b'\omega+(a+a')\omega\bar{\omega}+(b+b')\bar{\omega} \\ &= (a'+b)\omega+a+b+b'. \end{aligned}$$

On the other hand by the definition of the multiplication,

$$\omega\circ(a\omega+b) = (a^\sigma+bb^\sigma)\omega+a.$$

Hence $a'=a^\sigma+b+bb^\sigma$ and $b'=b$. Thus we have

$$[a\omega+b] = \begin{bmatrix} (a^\sigma+b+bb^\sigma)\omega+b \\ (a+a^\sigma+b+bb^\sigma)\omega \end{bmatrix}.$$

Furthermore by computation, we can show that $\{[a\omega+b]|a, b\in GF(2^{2s+1})\}$ satisfies the condition of a spread set.

Appendix. M. Matsumoto has showed the following:

A quasifield $Q=Q(2, q^2, \Sigma^*)$ is a Hall quasifield if and only if Σ^* consists of $\{[k \ 0]|k\in GF(q)\}$ and a conjugate class of G^* containing $\begin{bmatrix} \omega \\ 0 \end{bmatrix}$, where ω is a element of $GF(q^2)\setminus GF(q)$.

References

- [1] J. André: *Über nicht-Desarguesche Ebenen mit transitiver Translationgruppe*, Math. Z. **60** (1954), 156–186.
- [2] E. Ellers and H. Karzel: *Endliche Inzidenzgruppen*, Abh. Math. Sem. Hamburg **27** (1964), 250–264.
- [3] M. Hall: *Projective planes*, Trans. Amer. Math. Soc. **54** (1943), 229–277.

- [4] M. Kallaher: *Affine planes with transitive collineation groups*, North-Holland, 1982.
- [5] H. Lüneburg: *Die Suzuki-Gruppen und ihre Geometrien*, Lecture Notes in Math. 10, Springer, 1965.
- [6] H. Lüneburg: *Translation planes*, Springer, 1980.
- [7] D.M. Maduram: *Matrix representation of translation planes*, *Geom. Dedicata* 4 (1975), 485–497.
- [8] F. Sherk: *Indicator sets in an affine space of any dimension*, *Canad. J. Math.* 31 (1979), 211–224.

Department of Mathematics
Osaka Kyoiku University
Tennoji, Osaka 543
Japan