

Title	A Künneth formula for equivariant K-theory
Author(s)	Minami, Haruo
Citation	Osaka Journal of Mathematics. 1969, 6(1), p. 143-146
Version Type	VoR
URL	https://doi.org/10.18910/9939
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Minami, H.
 Osaka J. Math.
 6 (1969), 143–146

A KÜNNETH FORMULA FOR EQUIVARIANT K-THEORY

Dedicated to Professor Atuo Komatu for his 60th birthday

HARUO MINAMI

(Received December 9, 1968)

1. In this note we prove the following theorem for equivariant K -theory which is a generalization of Atiyah's Künneth formula for K -theory [1].

Theorem. *Let X and Y be compact Hausdorff spaces on which operate compact Lie groups G and H respectively. If the orbit spaces X/G and Y/H are of finite covering dimension and X (or Y) is locally G —(or H —) contractible, there holds an exact sequence*

$$0 \rightarrow \sum_{i+j=k} K_G^i(X) \otimes K_H^j(Y) \rightarrow K_{G \times H}^k(X \times Y) \rightarrow \sum_{i+j=k+1} \text{Tor}(K_G^i(X), K_H^j(Y)) \rightarrow 0$$

where indices i, j and k are regarded as elements of Z_2 .

The author wishes to express his thanks to Professor S. Araki for his many valuable suggestions and discussions.

2. Let G and H be compact Lie groups, (X, A) be a compact G -pair and (Y, B) a compact H -pair. Put

$$\begin{aligned} h_{1,(Y,B)}^*(X, A) &= K_G^*(X, A) \otimes K_H^*(Y, B) \\ h_{2,(Y,B)}^*(X, A) &= K_{G \times H}^*((X, A) \times (Y, B)). \end{aligned}$$

When $K_H^*(Y, B)$ is a free abelian group, $h_{1,(Y,B)}^*$ and $h_{2,(Y,B)}^*$ define Z_2 -graded cohomology theories on the category whose objects are compact G -pairs.

If E is a G -vector bundle on X and F an H -vector bundle on Y , then $E \overset{\wedge}{\otimes} F$ is a $G \times H$ -vector bundle on $X \times Y$. This defines a natural pairing

$$\mu': K_G(X) \otimes K_H(Y) \rightarrow K_{G \times H}(X \times Y).$$

And then we can extend this pairing to a homomorphism

$$\mu'': K_G^{-m}(X, A) \otimes K_H^{-n}(Y, B) \rightarrow K_{G \times H}^{-m-n}((X, A) \times (Y, B))$$

making use of the canonical decomposition

$$\tilde{K}_{G \times H}^{-1}(X' \times Y') \cong \tilde{K}_{G \times H}^{-1}(X' \wedge Y') \oplus \tilde{K}_{G \times H}^{-1}(X') \oplus \tilde{K}_{G \times H}^{-1}(Y')$$

where X' and Y' are G -space and H -space with basepoints respectively. Clearly μ'' commutes with the Bott isomorphism and coboundary homomorphisms with respect to (X, A) . Thus μ'' defines a cohomology operation

$$\mu: h_{1, (Y, B)}^* \rightarrow h_{2, (Y, B)}^*.$$

3. Let Z be a compact Hausdorff space with an action of a compact Lie group G on Z , Z' be a compact Hausdorff trivial G -space of finite covering dimension and $\pi: Z \rightarrow Z'$ a G -map. When $K_H^*(Y, B)$ is a free abelian group, we denote by \mathfrak{S}_i the sheaves corresponding to the presheaves defined by

$$(h_{i, (Y, B)}^* \pi)(U) = h_{i, (Y, B)}^*(\pi^{-1}(\bar{U}))$$

for any open set U of Z' for $i=1, 2$. Then we get the following results by parallel discussions to [2], Lecture 3.

Proposition 1. *There are strongly convergent spectral sequences $\{E_{r, (i, (Y, B))}\}$ such that*

$$E_{2, (i, (Y, B))} = H^*(Z, \mathfrak{S}_i)$$

and $E_{\infty, (i, (Y, B))}$ are the graded groups associated with filtrations of $h_{i, (Y, B)}^*(Z)$ respectively, and μ induces a morphism of these spectral sequences

$$\{\mu_r\}: \{E_{r, (1, (Y, B))}\} \rightarrow \{E_{r, (2, (Y, B))}\}.$$

Next we show

Proposition 2. *Let G and H be compact Lie groups, and X'' and Y'' be compact Hausdorff G -space and H -space respectively. If the orbit spaces X''/G and Y''/H are of finite covering dimension, then we obtain isomorphisms*

$$(i) \quad K_G^*(X'') \otimes K_H^*(H/H_0) \cong K_{G \times H}^*(X'' \times H/H_0)$$

for any closed subgroup H_0 of H , and

(ii) when $K_H^*(Y'')$ is a free abelian group,

$$K_G^*(X'') \otimes K_H^*(Y'') \cong K_{G \times H}^*(X'' \times Y'').$$

Proof. Since $K_H^*(H/H_0) \cong R(H_0)$ [2] and $R(H_0)$ is a free abelian group, we can apply Proposition 1. If we put $Z=X''$, $Z'=X''/G$, $(Y, B)=(H/H_0, \phi)$ and $\pi: X'' \rightarrow X''/G$, the projection, then $\mu_2: E_{2, (1, H/H_0)} \rightarrow E_{2, (2, H/H_0)}$ is an isomorphism. Because, when we write $\pi(x)=[x]$ for any element x in X'' and denote the isotropy subgroup of G at x by G_x ,

$$\pi^{-1}[x] = G/G_x$$

and

$$\begin{aligned}
h_{1, H/H_0}^*(\pi^{-1}[x]) &= K_G^*(\pi^{-1}[x]) \otimes K_H^*(H/H_0) \\
&\cong K_G^*(G/G_x) \otimes K_H^*(H/H_0) \\
&\cong R(G_x) \otimes R(H_0) \\
&\cong R(G_x \times H_0) \quad \text{by [3], Lemma 3.2} \\
&\cong K_{G \times H}^*(G \times H/G_x \times H_0) \\
&\cong K_{G \times H}^*(\pi^{-1}[x] \times H/H_0) \\
&= h_{2, H/H_0}^*(\pi^{-1}[x]) .
\end{aligned}$$

Hence μ induces an isomorphism of sheaves $\mathfrak{S}_1 \cong \mathfrak{S}_2$. And so μ_2 induces an isomorphism of the spectral sequences

$$\{\mu_r\}: \{E_{r, (1, H/H_0)}\} \cong \{E_{r, (2, H/H_0)}\} \quad r \geq 2 ,$$

Since the both spectral sequences are strongly convergent by Proposition 1, this completes the proof of (i). We can prove (ii) by a parallel argument making use of (i).

Proof of Theorem. Suppose that X is locally G -contractible. Under this hypothesis and the condition that $\dim X/G < \infty$, L. Hodgkin [4] proved that there exist a compact differentiable manifold N on which operates G and G -map $f: X \rightarrow N$ such that $f^*: K_G^*(N) \rightarrow K_G^*(X)$ is an epimorphism and $K_G^*(N)$ is a free abelian group.

Then we get a short exact sequence

$$0 \rightarrow \tilde{K}_G^*(M_f/X) \rightarrow K_G^*(M_f) \rightarrow K_G^*(X) \rightarrow 0$$

where M_f is the mapping cylinder. Since $K_G^*(M_f) \cong K_G^*(N)$, $K_G^*(M_f)$ and $\tilde{K}_G^*(M_f/X)$ are free abelian groups. Further, $\dim M_f/G \leq \text{Max}(\dim N, \dim X/G + 1)$ [5] and so is $\dim(M_f/X)/G$. Therefore we can deduce

$$\begin{aligned}
K_G^*(M_f) \otimes K_H^*(Y) &\cong K_{G \times H}^*(M_f \times Y) , \\
\tilde{K}_G^*(M_f/X) \otimes K_H^*(Y) &\cong \tilde{K}_{G \times H}^*(M_f \times Y/X \times Y)
\end{aligned}$$

from Proposition 2, (ii).

Next consider the following commutative diagram with exact rows

$$\begin{array}{ccccccccc}
0 & \rightarrow & K_G^*(X) * K_H^*(Y) & \rightarrow & \tilde{K}_G^*(M_f/X) \otimes K_H^*(Y) & \rightarrow & K_G^*(M_f) \otimes K_H^*(Y) & \rightarrow & K_G^*(X) \otimes K_H^*(Y) \rightarrow 0 \\
& & J \uparrow & & \cong \downarrow \mu & & \cong \downarrow \mu & & \mu \downarrow \\
& & & & & & & & \\
& & \rightarrow & K_{G \times H}^*(X \times Y) & \rightarrow & \tilde{K}_{G \times H}^*(M_f \times Y/X \times Y) & \rightarrow & K_{G \times H}^*(M_f \times Y) & \longrightarrow K_{G \times H}^*(X \times Y) \rightarrow
\end{array}$$

We see that there exists a homomorphism $J: K_{G \times H}^*(X \times Y) \rightarrow K_G^*(X) * K_H^*(Y)$ determined uniquely by the above diagram and so that the sequence

$$0 \rightarrow K_G^*(X) \otimes K_H^*(Y) \xrightarrow{\mu} K_{G \times H}^*(X \times Y) \xrightarrow{J} K_G^*(X) * K_H^*(Y) \rightarrow 0$$

is exact.

OSAKA CITY UNIVERSITY

References

- [1] M.F. Atiyah: *Vector bundles and the Künneth formula*, Topology **1** (1962), 245–248.
- [2] M.F. Atiyah and G.B. Segal: Equivariant K-theory, Lecture note at Oxford, University of Warwick preprint, 1965.
- [3] L. Hodgkin: *On the K-theory of Lie group*, Topology **6** (1967), 1–36.
- [4] L. Hodgkin: *An Equivariant Künneth formula in K-theory*, 1968, University of Warwick preprint.
- [5] R.S. Palais: *The classification of G-spaces*, Mem. Amer. Math. Soc. 36, 1960.