

Title	Doubly transitive groups of even degree whose one-point stabilizer has a normal subgroup isomorphic to $PSL(3, 2^n)$
Author(s)	Hiramine, Yutaka
Citation	Osaka Journal of Mathematics. 1979, 16(3), p. 817-830
Version Type	VoR
URL	https://doi.org/10.18910/9948
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Hiramine, Y.
Osaka J. Math.
16 (1979), 817-830

DOUBLY TRANSITIVE GROUPS OF EVEN DEGREE WHOSE ONE POINT STABILIZER HAS A NORMAL SUBGROUP ISOMORPHIC TO $PSL(3, 2^n)$

YUTAKA HIRAMINE

(Received October 16, 1978)

1. Introduction

Let G be a doubly transitive permutation group on a finite set Ω and $\alpha \in \Omega$. By [4], the product of all minimal normal subgroups of G_α is the direct product $A \times N$, where A is an abelian group and N is 1 or a nonabelian simple group.

In this paper we consider the case $N \simeq PSL(3, q)$ with q even and prove the following:

Theorem. *Let G be a doubly transitive permutation group on Ω of even degree and let $\alpha, \beta \in \Omega$ ($\alpha \neq \beta$). If G_α has a normal subgroup N^α isomorphic to $PSL(3, q)$, $q = 2^n$, then N^α is transitive on $\Omega - \{\alpha\}$ and one of the following holds:*

- (i) *G has a regular normal subgroup E of order $q^3 = 2^{3n}$, where n is odd and G_α is isomorphic to a subgroup of $\Gamma L(3, q)$. Moreover there exists an element g in $Sym(\Omega)$ such that $\alpha^g = \alpha$, $(G_\alpha)^g$ normalizes E and $A\Gamma L(3, q) \geq (G_\alpha)^g E \geq ASL(3, q)$ in their natural doubly transitive permutation representation.*
- (ii) *$|\Omega| = 22$, $G^\alpha = M_{22}$ and $N^\alpha \simeq PSL(3, 4)$.*
- (iii) *$|\Omega| = 22$, $G^\alpha = Aut(M_{22})$ and $N^\alpha \simeq PSL(3, 4)$.*

We introduce some notations.

- $V(n, q)$: a vector space of dimension n over $GF(q)$
- $\Gamma L(n, q)$: the group of all semilinear automorphism of $V(n, q)$
- $A\Gamma L(n, q)$: the semidirect product of $V(n, q)$ by $\Gamma L(n, q)$ in its natural action
- $ASL(n, q)$: the semidirect product of $V(n, q)$ by $SL(n, q)$ in its natural action
- $F(X)$: the set of fixed points of a nonempty subset X of G
- $X(\Delta)$: the global stabilizer of a subset Δ ($\subseteq \Omega$) in X
- X_Δ : the pointwise stabilizer of Δ in X
- X^Δ : the restriction of X on Δ
- $Sym(\Delta)$: the symmetric group on Δ

X^H : the set of H -conjugates of X
 $|X|_p$: the maximal power of a prime p dividing the order of X
 $I(X)$: the set of involutions contained in X
 E_m : an elementary abelian group of order m

Other notations are standard and taken from [1].

2. Preliminaries

Lemma 2.1 *Let G be a doubly transitive permutation group on Ω of even degree, $\alpha \in \Omega$ and N^α a normal subgroup of G_α isomorphic to $PSL(2, q)$, $Sz(q)$ or $PSU(3, q)$ with $q (> 2)$ even. Then $N^\alpha \simeq PSL(2, q)$, $N^\alpha \neq Sz(q)$, $PSU(3, q)$, N^α is transitive on $\Omega - \{\alpha\}$ and one of the following holds:*

- (i) *G has a regular normal subgroup E of order q^2 , $N_\beta^\alpha = N^\alpha \cap N^\beta \simeq E_q$, and G_α is isomorphic to a subgroup of $\Gamma L(2, q)$. Moreover there exists an element g in $Sym(\Omega)$ such that $\alpha^g = \alpha$, $(G_\alpha)^g$ normalizes E and $A\Gamma L(2, q) \geq (G_\alpha)^g E \geq A\Gamma L(2, q)$ in their natural doubly transitive permutation representation.*
- (ii) *$|\Omega| = 6$ and $G^\alpha = A_6$ or S_6 .*

Proof. By Theorem 2 of [2], it suffices to consider the case that $N_\beta^\alpha = N^\alpha \cap N^\beta \simeq E_q$ and G has a regular normal subgroup of order q^2 . Since $|N^\alpha : N_\beta^\alpha| = q^2 - 1$, N^α is transitive on $\Omega - \{\alpha\}$.

Let E be the regular normal subgroup of G . Then we may assume $\Omega = E$, $\alpha = 0 \in E$ and the semidirect product $GL(E)E$ is a subgroup of $Sym(\Omega)$. There is a subgroup H of $GL(E)$ such that $H \simeq \Gamma L(2, q)$ and $HE \simeq A\Gamma L(2, q)$. Let L be the normal subgroup of H isomorphic to $SL(2, q)$. Then $L_\beta \simeq E_q$ for $\beta \in \Omega - \{\alpha\}$. Hence $(N^\alpha)^{\Omega - \{\alpha\}} \simeq L^{\Omega - \{\alpha\}}$ and so there are an automorphism f from N^α to L and $g \in Sym(\Omega)$ satisfying $\alpha^g = \alpha$ and $(\beta^x)^g = (\beta^x)^{f(x)}$ for each $\beta \in \Omega - \{\alpha\}$ and $x \in N^\alpha$. From this, $(\beta^x)^{g^{-1}xg} = (\beta^x)^g = (\beta^x)^{f(x)}$, so that $g^{-1}xg = f(x)$. Hence $g^{-1}N^\alpha g = L$.

Set $S = L_\beta$, $X = Sym(\Omega) \cap N(L)$, $D = C_X(L)$ and $Y = N_L(S)$. By the properties of $A\Gamma L(2, q)$, L is transitive on $\Omega - \{\alpha\}$, $|F(S)| = q$ and $Y/S \simeq Z_{q-1}$. Hence D is semi-regular on $\Omega - \{\alpha\}$ and $Y^{F(S)}$ is regular on $F(S) - \{\alpha\}$ and so $D \simeq D^{F(S)} \leq Y^{F(S)}$ because $[D, N^\alpha] = 1$. Therefore $D \leq Z_{q-1}$. Since X/DL is isomorphic to a subgroup of the outer automorphism group of $SL(2, q)$, we have $|X| \leq |\Gamma L(2, q)|$, while $\Gamma L(2, q) \simeq H \leq X$. Hence $X = H$ and X normalizes E . Therefore, as $(G_\alpha)^g \trianglelefteq (N^\alpha)^g = L$, we have $(G_\alpha)^g \leq H$. Thus Lemma 2.1 is proved.

Lemma 2.2 *Let G be a doubly transitive permutation group on Ω of even degree and N^α a nonabelian simple normal subgroup of G_α , $\alpha \in \Omega$. If $C_G(N^\alpha) \neq 1$, then $N_\beta^\alpha = N^\alpha \cap N^\beta$ for $\alpha \neq \beta \in \Omega$ and $C_G(N^\alpha)$ is semi-regular on $\Omega - \{\alpha\}$. Moreover $C_G(N^\alpha) = 0(N^\alpha)$.*

Proof. See Lemma 2.1 of [2].

Lemma 2.3 *Let G be a transitive permutation group on a finite set Ω , H a stabilizer of a point of Ω and M a nonempty subset of G . Then*

$$|F(M)| = |N_G(M)| \times |\{M^g \mid M^g \subseteq H, g \in G\}| / |H|.$$

Proof. See Lemma 2.2 of [2].

Lemma 2.4 *Let H be a transitive permutation group on a finite set Δ and N a normal subgroup of H . Assume that a subgroup X of N satisfies $X^H = X^N$. Then*

- (i) $|F(X) \cap \beta^N| = |F(X) \cap \gamma^N|$ for $\beta, \gamma \in \Delta$.
- (ii) $|F(X)| = |F(X) \cap \beta^N| \times r$, where r is the number of N -orbits on Δ .

Proof. By the same argument as in the proof of Lemma 2.4 of [3], we obtain Lemma 2.4.

2.5 Properties of $PSL(3, q)$, $q = 2^n$.

Let $N_1 = SL(3, q)$, $S_1 = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \mid a, b, c \in GF(q) \right\}$, $A_1 = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid a, b \in GF(q) \right\}$, $B_1 = \left\{ \begin{pmatrix} 1 & 0 & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \mid b, c \in GF(q) \right\}$ and $Z = \left\{ \begin{pmatrix} d & 0 & 0 \\ 0 & d & 0 \\ 0 & 0 & d \end{pmatrix} \mid d \in GF(q), d^3 = 1 \right\}$.

Then $|Z| = (3, q-1)$ and $\bar{N}_1 = N_1/Z$ is isomorphic to $PSL(3, q)$. Set $N = \bar{N}_1$, $S = \bar{S}_1$, $A = \bar{A}_1$ and $B = \bar{B}_1$. Then the following hold.

(i) N is a nonabelian simple group of order $q^3(q-1)^3(q+1)(q^2+q+1)/(3, q-1)$.

(ii) $|S| = q^3$, $S' = \Phi(S) = Z(S) = \{x^2 \mid x \in S\} = \left\{ \begin{pmatrix} 1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid b \in GF(q) \right\} \simeq E_6$,

$S/S' \simeq E_{6,2}$ and S is a Sylow 2-subgroup of N .

(iii) $S = \langle A, B \rangle$, $A \cap B = Z(S)$, $I(S) \subseteq A \cup B$ and each elementary abelian subgroup of S is contained in A or B . Let $z \in I(S) - Z(S)$. Then $C_S(z) = A$ or B .

(iv) Set $M_1 = A^N$, $M_2 = B^N$. Then $M_1 \neq M_2$ and $M_1 \cup M_2$ is the set of all subgroup of N isomorphic to $E_{6,2}$.

(v) Let z be an involution of N . Then $I(N) = z^N$ and $|C_N(z)| = (q-1)q^3/(3, q-1)$.

(vi) Let E denote A or B . Then $|N_N(E)| = (q-1)^2(q+1)q^3/(3, q-1)$, $N_N(E)/E \simeq Z_k \times PSL(2, q)$, where $k = (q-1)/(3, q-1)$ and $N_N(E)$ is a maximal subgroup of N .

(vii) Set $M = (N_N(E))'$. If $q > 2$, then $M = M'$, $M \trianglerighteq E$, $M/E \simeq PSL(2, q)$ and M acts irreducibly on E .

(viii) Set $\Delta = E^N$. Then $|\Delta| = q^2 + q + 1$ and by conjugation N is doubly transitive on Δ , which is an usual doubly transitive permutation representation

of N . If $C \in \{A, B\} - \{E\}$, $|F(C)| = q+1$, C is a Sylow 2-subgroup of $N_{F(C)}$ and C is semi-regular on $\Delta - F(C)$.

Lemma 2.6 ([6]). *Let notations be as in (2.5) and set $G = \text{Aut}(N)$. Then the following hold.*

(i) *There exist in G a diagonal automorphism d , a field automorphism f and a graph automorphism g and satisfy the following:*

$$G = \langle g, f, d \rangle N \supseteq H_1 = \langle f, d \rangle N \supseteq H_2 = \langle d \rangle N, H_1 = P\Gamma L(3, q), H_2 = PGL(3, q) \\ H_2/N \simeq Z_r, \text{ where } r = (3, q-1), G/H_1 \simeq Z_2, H_1/H_2 \simeq Z_n \text{ and } G/H_2 \simeq Z_2 \times Z_n.$$

(ii) $M_1 = A^{H_1}$, $M_2 = B^{H_1}$ and $A^g = B$.

Lemma 2.7 *Let $N = PSL(3, q)$, where $q = 2^n$. Let R be a cyclic subgroup of N of order $q+1$ and Q a nontrivial subgroup of R . Then $N_N(Q) = N_N(R) \simeq Z_k \times D_{2(q+1)}$, where $k = (q-1)/(3, q-1)$ and $D_{2(q+1)}$ is a dihedral group of order $2(q+1)$.*

Proof. We consider the group N as a doubly transitive permutation group on $\Delta = PG(2, q)$ with $q^2 + q + 1$ points. By (2.5) (i), R is a cyclic Hall subgroup of N and so we may assume $R \leq N_\alpha$, where $\alpha = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \in PG(2, q)$. Since $|N_{\alpha\beta}| = (q-1)^2 q^2 / (3, q+1)$ for $\alpha \neq \beta \in \Delta$ and $(q+1, (q-1)^2 q^2) = 1$, R is semiregular on $\Delta - \{\alpha\}$. Hence $N_N(Q) \leq N_\alpha$. Put $E = 0_2(N_\alpha)$. Then $N_\alpha = N_N(E)$ by (2.5) (viii) and $N_N(Q)E/E \simeq Z_k \times D_{2(q+1)}$ by (2.5) (vi). Since $N_N(Q) \cap E = C_E(Q) = 1$ by (2.5) (v). Hence $N_N(Q) \simeq Z_k \times D_{2(q+1)}$. As R is cyclic, $N_N(R) \leq N_N(Q)$. Thus $N_N(Q) = N_N(R) \simeq Z_k \times D_{2(q+1)}$.

Lemma 2.8 *Let $N = PSL(3, q)$, $q = 2^n$ and let $H (\neq N)$ be a subgroup of N of odd index. Then $H \leq N_N(E)$ for an elementary abelian subgroup E of N of order q^2 .*

Proof. Let S , A and B be as in (2.5) and let Δ be as in Lemma 2.7. Since $|N:H|$ is odd, H contains a Sylow 2-subgroup of N and so we may assume

$S \leq H$. Set $\alpha = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\beta = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\gamma = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. Then $S \leq N_\alpha = N_N(A)$, $S_\beta = B$, $S_\gamma =$

$$\left\{ \begin{pmatrix} 1 & \alpha & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid \alpha \in GF(q) \right\} \simeq E_q \text{ and hence } |\alpha^s| = 1, |\beta^s| = q \text{ and } |\gamma^s| = q^2.$$

If $\alpha^H = \{\alpha\}$, $H \leq N_\alpha = N_N(A)$ and the lemma holds. By (2.5) (i), $(q^2 + 1, |N|) = 1$. Hence $\alpha^H \neq \{\alpha\} \cup \gamma^s$, so that we may assume either $\alpha^H = \{\alpha\} \cup \beta^H$ or $\alpha^H = \Delta$.

If $\alpha^H = \{\alpha\} \cup \beta^H$, $\alpha^H = F(B)$ and B is a unique Sylow 2-subgroup of $H_{F(B)}$ by (2.5) (viii). Hence $H \supseteq B \simeq E_{q^2}$ and the lemma holds.

If $\alpha^H = \Delta$, by (2.5) (iv), $N_H(A)^{F(A)}$ is transitive and so $|H|$ is divisible by $q+1$. Since $(q^2+q+1, q+1)=1$, $|H_\alpha|$ is divisible by $q+1$. By (2.5) (vi) and by the structure of $PSL(2, q)$, $Z_m \times PSL(2, q) \simeq H_\alpha / A \leq N_N(A)/A$, where m is a divisor of $(n-1)/(3, n-1)$. Therefore $|N: H| \leq q-1$. We now consider the action of N on the coset $\Gamma = N/H$. As $|\Gamma| \neq 1$ and N is a simple group, N^Γ is faithful. But N has a cyclic subgroup of order $q+1$ and so $|\Gamma| > q+1$, which implies $|N: H| > q+1$, a contradiction.

Lemma 2.9 *Let $N = PSL(3, q)$, where $q = 2^{2m}$ and t a field automorphism of N of order 2. Let S be a t -invariant Sylow 2-subgroup of N . Then the following hold.*

- (i) $Z(\langle t \rangle S) \simeq E_{\sqrt{q}}$.
- (ii) *If S_1 is a subgroup of $\langle t \rangle S$ isomorphic to S , then $S_1 = S$.*

Proof. Since $C_S(t)$ is isomorphic to a Sylow 2-subgroup of $PSL(3, \sqrt{q})$, $Z(C_S(t)) \simeq E_{\sqrt{q}}$ and $Z(C_S(t)) \leq Z(S)$ by (2.5) (ii). Hence $Z(\langle t \rangle S) = Z(\langle t \rangle S) \cap \langle t \rangle C_S(t) \cap C(Z(S)) = Z(\langle t \rangle S) \cap C_S(t) = Z(C_S(t)) \simeq E_{\sqrt{q}}$. Thus we have (i).

Suppose $S_1 \neq S$. Then $\langle t \rangle S = S_1 S \supseteq S_1$ and $[\langle t \rangle S: S] = [S_1: S_1 \cap S] = 2$. If $Z(S_1) \not\leq S$, we have $S_1 = \langle z \rangle \times (S_1 \cap S)$ for an involution z in $Z(S_1) - S$. By (2.5) (ii), $z \in \Phi(S_1)$ and so $S_1 = \langle z, S_1 \cap S \rangle = S_1 \cap S$, a contradiction. Hence $Z(S_1) \leq S$.

If $Z(S_1) = Z(S)$, $E_q \simeq Z(S) \leq Z(S_1 S) = Z(\langle t \rangle S) \simeq E_{\sqrt{q}}$ by (i), which is a contradiction. Hence $Z(S_1) \neq Z(S)$.

Let z be an involution in $Z(S_1) - Z(S)$. Then $C_S(z) \simeq E_{q^2}$ by (2.5) (iii). On the other hand, $S_1 \leq C_{\langle t \rangle S}(z)$ and $[C_{\langle t \rangle S}(z): C_S(z)] = 1$ or 2. From this S_1 has an elementary abelian subgroup of index 2. Hence $q = 2$, a contradiction. Thus we have (ii).

3. Proof of the theorem

Throughout the rest of the paper, G^Ω always denote a doubly transitive permutation group satisfying the hypotheses of the theorem.

Since $G_\alpha \supseteq N^\alpha$, $|\beta^{N^\alpha}| = |\gamma^{N^\alpha}|$ for $\beta, \gamma \in \Omega - \{\alpha\}$ and so $|\Omega| = 1 + r|\beta^{N^\alpha}|$, where r is the number of N^α -orbits on $\Omega - \{\alpha\}$. Hence r is odd and N_β^α is a proper subgroup of N^α of odd index for $\alpha \neq \beta \in \Omega$. Therefore, by Lemma 2.8 $N_\beta^\alpha \supseteq A$ for some elementary abelian subgroup A of order q^2 . Let S be a Sylow 2-subgroup of N_β^α . Then, by (2.5) (iii) there exists a unique elementary abelian 2-subgroup B of S such that $A \simeq B \simeq E_{q^2}$ and $A \neq B$. Set $M_1 = A^{N^\alpha}$, $M_2 = B^{N^\alpha}$ and $K = G_\alpha(M_1) = G_\alpha(M_2)$. By (2.5) (iv), $M_1 \cup M_2$ is the set of all elementary abelian 2-subgroup of N^α of order q^2 and G_α acts on $\{M_1, M_2\}$, so that $G_\alpha/K \leq Z_2$. Hence K is transitive on $\Omega - \{\alpha\}$.

- (3.1) *Let $E = A$ or B . Then $N_{G_\alpha}(E)$ is transitive on $F(E) - \{\alpha\}$.*

Proof. If $E^h \leq K_\beta$ for some $h \in K$, $E^h \leq N^\alpha \cap K_\beta = N_\beta^\alpha$. Since $E^{N^\alpha} = E^K$ and $A^K \neq B^K$, E^h is conjugate to E in N_β^α . By a Witt's theorem $N_K(E)$ is transitive on $F(E) - \{\alpha\}$. Thus $N_{G_\alpha}(E)$ is transitive on $F(E) - \{\alpha\}$.

(3.2) *If $q=2$, G^α is of type (i) of the theorem.*

Proof. Assume $q=2$. We note that $PSL(3,2)$ is isomorphic to $PSL(2,7)$. It follows from [3] that G has a regular normal subgroup R .

Since K is transitive on $\Omega - \{\alpha\}$, by Lemmas 2.3 and 2.4

$$|F(A)| = 1 + \frac{|N^\alpha \cap N(A)|}{|N_\beta^\alpha|} r = \frac{24r}{|N_\beta^\alpha|} + 1 \quad \text{and}$$

$$|F(B)| = 1 + \frac{|N^\alpha \cap N(B)| |N_\beta^\alpha : N_\beta^\alpha \cap N(B)|}{|N_\beta^\alpha|} r = \frac{24r}{|N_\beta^\alpha \cap N(B)|} + 1.$$

Let $E=A$ or B . As $N_R(E) \neq 1$, $N_G(E)^{F(E)}$ is doubly transitive by (3.1). Hence $E \leq N^\beta$ and $|F(A)| = 2^a$, $|F(B)| = 2^b$ for some integers a, b . From this $S = \langle A, B \rangle \leq N^\alpha \cap N^\beta$ and $|N_\beta^\alpha : N_\beta^\alpha \cap N^\beta|$ is odd. Hence, if $S^g \leq G_{\alpha\beta}$, $S^g \leq N_\beta^\gamma \cap N_\beta^\gamma$, where $\gamma = \alpha^g$ and so $S^g \leq N^\alpha \cap N^\beta$. Since S and S^g are Sylow 2-subgroups of $N^\alpha \cap N^\beta$, S^g is conjugate to S in $N^\alpha \cap N^\beta$. By a Witt's theorem $N_G(S)^{F(S)}$ is a doubly transitive permutation group with a regular normal subgroup $N_R(S)$. Hence $|F(S)| = 2^c$ for an integer c . By Lemmas 2.3 and 2.4,

$$|F(S)| = 1 + \frac{8 \times |N_\beta^\alpha : S|}{|N_\beta^\alpha|} r = r + 1 = 2^c.$$

Let z be an involution of $Z(S)$ and assume $z^g \in G_\alpha$ for some $g \in G$. Then $z^g \in N_\alpha^\gamma$, where $\gamma = \alpha^g$. Since $|N_\alpha^\gamma : N_\beta^\gamma \cap N^\alpha|$ is odd, z^g is contained in N^α . By (2.5) (v), z^g is conjugate to z in N^α . Hence $C_G(z)$ is transitive on $F(z)$ and by Lemmas 2.3 and 2.4,

$$|F(z)| = 1 + \frac{8 \times |I(N_\beta^\alpha)|}{|N_\beta^\alpha|} r.$$

Suppose $N_\beta^\alpha = S$. Then $|F(A)| = 3r + 1 = 2^a = 2^c + 2r$ and $|F(z)| = 5r + 1$. Hence $r = 1$. Since $N_R(A) = C_R(A) \leq C_G(z)$ and $N_R(A) \simeq E_4$, $|F(z)|$ is divisible by 4. But $|F(z)| = 5r + 1 = 6$. This is a contradiction.

Suppose $N_\beta^\alpha \neq S$. Then $N_\beta^\alpha = N_{N^\alpha}(A)$ as $N_{N^\alpha}(A) \simeq S_4$. From this, $|F(B)| = 2^b = 2^c + 2r$ and so $r = 1$. Hence $|\Omega| = 1 + |N^\alpha : N_\beta^\alpha| = 8$. Thus $|R| = 8$ and $G_\alpha \simeq GL(3,2)$, hence $G \simeq AL(2,3)$.

By (3.2), it suffices to consider the case $q > 2$ to prove the theorem. From now on we assume the following.

Hypothesis (*): $q = 2^n \geq 4$

(3.3) *The following hold.*

- (i) $|N_\beta^a/N^a \cap N^s|$ is odd.
- (ii) Let $\gamma \in \Omega$ and S_0 a 2-subgroup of N^s . Then $F(S_0) = \{\delta \in \Omega \mid S_0 \leq N^\delta\}$.

Proof. Suppose false and let T be a Sylow 2-subgroup of $N_\beta^a N_\beta^s$ such that $T \geq S$. Then $T \neq S$. Set $S_1 = T \cap N_\beta^a$ and $S_2 = T \cap N^a \cap N^s$. Then S_1 is a Sylow 2-subgroup of N_β^a , $S_1 \neq S$ and S_1, S_2 and S are normal subgroups of T . By Lemma 2.2, $S_1 N^a / N^a$ is isomorphic to a subgroup of the outer automorphism group of N^a . It follows from Lemma 2.6 that $S_1 N^a / N^a$ is abelian of 2-rank at most 2. Since $S_1 N^a / N^a \simeq S_1 / S_2$ and $S_1 \simeq S$, we have $S_1 / S_2 \leq E_4$ by (2.5) (ii).

Let A_1, B_1 be the subgroups of S_1 such that $A_1 \simeq B_1 \simeq E_{q^2}$ and $A_1 \cap S_2 \leq A, B_1 \cap S_2 \leq B$. Since $A_1 / A_1 \cap S_2 \simeq A_1 S_2 / S_2 \leq S_1 / S_1 \leq E_4$ and by the hypothesis (*), $q \geq 4$, we have $|A_1 \cap S_2| \geq q^2/4$. Therefore, if $A_1 \cap S_2 \leq Z(S)$, then $q=4$, $A_1 \cap S_2 = Z(S)$ and $T = A_1 S$ and so $Z(S) \leq Z(T)$, contrary to Lemma 2.9. Hence $A_1 \cap S_2 \not\leq Z(S)$. Similarly $B_1 \cap S_2 \not\leq Z(S)$.

Let $x \in A_1 \cap S_2 - Z(S)$. Then $x \in A^s \leq S$ for each $y \in A_1$ and so A_1 normalizes A . Hence A_1 normalizes B . Similarly B_1 normalizes A and B . From this $T = \langle A_1, B_1 \rangle S \geq A, B$ and so $S_1 N^a \leq K$. Hence $S_1 N^a / N^a \simeq S_1 / S_2 \simeq Z_2$, so that there exists a field automorphism t of order 2 such that $T = \langle t \rangle S \triangleright S$. Since $S_1 \leq T$ and $S_1 \simeq S$, we have $S_1 = S$ by Lemma 2.9, a contradiction. Thus (i) holds.

Let $\delta \in F(S_0) - \{\gamma\}$. Then $S_0 \leq N_\delta^s$. Since $N_\delta^s \geq N^s \cap N^s$ and $|N_\delta^s / N^s \cap N^s|$ is odd by (i), $S_0 \leq N^s \cap N^s \leq N^s$. Hence $F(S_0) \subseteq \{\delta \in \Omega \mid S_0 \leq N^\delta\}$. The converse implication is clear. Thus (ii) holds.

(3.4) *The following hold.*

- (i) $N_G(B)^{F(B)}$ is doubly transitive.
- (ii) If $F(A) \neq \{\alpha, \beta\}$, $N_G(A)^{F(A)}$ is doubly transitive.

Proof. Let $E = A$ or B . By (3.3) (i), S is a Sylow 2-subgroup of N_β^a . Therefore, by a similar argument as in (3.1), $N_{G_\beta}(E)$ is transitive on $F(E) - \{\beta\}$. Suppose $N_G(E)^{F(E)}$ is not doubly transitive. Then, $F(E) = \{\alpha, \beta\}$ by (3.1) and (3.3). Since $N_{N^a}(E)$ acts on $F(E)$ and fixes $\{\alpha\}$, we have $N_{N^a}(E) \leq N_\beta^a$. On the other hand $N_{N^a}(E)$ is a maximal subgroup of N^a by (2.5) (vi). Hence $N_{N^a}(E) = N_\beta^a$. If $E = B$, then $N_\beta^a \not\geq A$, a contradiction. Thus $E = A$ and (3.4) follows.

(3.5) *The following hold.*

- (i) Put $M = (N_{N^a}(A))'$. Then $F(M) = F(A)$.
- (ii) $N_\beta^a = N_\gamma^a$ for each $\gamma \in F(A) - \{\alpha\}$.

Proof. Suppose $F(M) \neq F(A)$. Then $M \not\leq N_G(A)^{F(A)}$. It follows from (3.4) that $F(A) \neq \{\alpha, \beta\}$ and $N_G(A)^{F(A)}$ is doubly transitive. Moreover by (2.5) (vii) $N_{G_\alpha}(A)^{F(A)} \geq M^{F(A)} \simeq PSL(2, q)$ as $q > 2$. By Lemma 2.1, $r=1$ and either (1) $q=$

4 and $N_G(A)^{F(A)} = A_6$ or S_6 or (2) $|F(A)| = q^2$.

If (1) holds, $|F(A)| = 1 + |N_{N^\alpha}(A):N_\beta^\alpha| = 1 + 2^6 \cdot 3 \cdot 5 / |N_\beta^\alpha| = 6$ and so $|N_\beta^\alpha| = 2^6 \cdot 3$. Hence $|\Omega| = 1 + |N^\alpha: N_\beta^\alpha| = 1 + 2^6 \cdot 3^2 \cdot 5 \cdot 7 / 2^6 \cdot 3 = 2 \cdot 53$. Let z be an involution of $N^\alpha \cap N^\beta$. Then, by (2.5) (v) and (3.3), $z^G \cap G_\alpha = z^{G_\alpha}$, so that $C_G(z)^{F(z)}$ is transitive by a Witt's theorem. On the other hand $|F(z)| = 1 + |C_{N^\alpha}(z)| \times |I(N_\beta^\alpha)| = 1 + 2^6 \cdot 3^3 / 2^6 \cdot 3 = 10$. In particular $|C_G(z)|$ is divisible by $|N_\beta^\alpha|$.

5. Let R be a Sylow 5-subgroup of $C_G(z)$. Then $|\Omega|$, $|G_\alpha: N^\alpha|$ and $|N_\beta^\alpha|$ are not divisible by 5 and so $F(R) = \{\gamma\}$ and $R \leq N^\gamma$ for some $\gamma \in \Omega$. Therefore $\langle z \rangle \times R \leq N^\gamma$ by (3.3) (ii). But $|C_{N^\gamma}(z)| = 2^6$ by (2.5) (v). This is a contradiction.

If (2) holds, $q^2 = |F(A)| = 1 + |N_{N^\alpha}(A):N_\beta^\alpha|$, hence $|N_\beta^\alpha| = (q-1)q^3 / (3, q-1)$. From this $|\Omega| = 1 + |N^\alpha: N_\beta^\alpha| = 1 + (q-1)(q+1)(q^2+q+1) = q(q^3+q^2-1)$. Hence $|G|_2 = |\Omega|_2 \times |G_\alpha|_2 = q \times |G_\alpha: K| \times |K|_2$. On the other hand $|N_G(A)|_2 = |F(A)| \times |N_{G_\alpha}(A)|_2 = q^2 |K|_2$ because $K = N_{G_\alpha}(A)N^\alpha$. Therefore $q^2 |K|_2 = |N_G(A)|_2 \leq |G|_2 = q \times |G_\alpha: K| \times |K|_2 \leq 2q |K|_2$ and we obtain $q = 2$, contrary to the hypothesis (*). Thus we have (i).

Let $\gamma \in F(A) - \{\alpha\}$. By (i) and (3.4) (ii), $N_\gamma^\alpha \trianglerighteq A$ and $M \leq N_\gamma^\alpha$. Since $N_{N^\alpha}(A)/M \cong Z_k$, where $k = (q-1)/(3, q-1)$ and $|N_\beta^\alpha/M| = |N_\gamma^\alpha/M|$, we have $N_\beta^\alpha = N_\gamma^\alpha$. Thus (ii) holds.

(3.6) $B \not\in A^G$ and $G_\alpha = K$.

Proof If $B \in A^G$, by (3.4) (i), there is an element $g \in G_{\alpha\beta}$ such that $B = A^g$. Hence $N_\beta^\alpha = g^{-1}N_\beta^\alpha g \trianglerighteq g^{-1}Ag = B$ and so M normalizes $\langle A, B \rangle = S$, a contradiction.

(3.7) Set $L = (N_{N^\alpha}(B))'$. Then $r = 1$, $L_{F(B)} = B$, $L^{F(B)} = L/B \cong PSL(2, q)$, $L_\beta = S$ and one of the following holds.

- (i) $C_G(N^\alpha) = 1$, $|F(B)| = 6$, $q = 4$ and $N_G(B)^{F(B)} = A_6$ or S_6 .
- (ii) $C_G(N^\alpha) \leq Z_{q-1}$, $|F(B)| = q^2$ and $N_G(B)^{F(B)}$ has a regular normal subgroup.

Proof. By (3.4) (i), $N_G(B)^{F(B)}$ is doubly transitive. If $L \leq G_{\alpha\beta}$, then $L \leq N_\beta^\alpha$ and so $B \trianglelefteq L = L' \leq (N_\beta^\alpha)' = M$. Therefore $L = M$ and $M \trianglerighteq \langle A, B \rangle = S$, a contradiction. Hence $L \not\leq G_{\alpha\beta}$. From this $N_{G_\alpha}(B)^{F(B)} \trianglerighteq L^{F(B)} \cong PSL(2, q)$ and (3.7) follows from Lemmas 2.1 and 2.2.

(3.8) If (i) of (3.7) occurs, then we have (ii) or (iii) of the theorem.

Proof. Since $|F(B)| = 1 + |N_{N^\alpha}(B):N_{N_\beta^\alpha}(B)| = 6$ and $|N_\beta^\alpha:N_{N_\beta^\alpha}(B)| = |N_\beta^\alpha:N_{N_\beta^\alpha}(S)| = 5$, we have $|N_\beta^\alpha| = 2^6 \cdot 3 \cdot 5$. Hence $N_\beta^\alpha = N_{N^\alpha}(A)$ and so $|\Omega - \{\alpha\}| = |N^\alpha: N_\beta^\alpha| = 21$. By (3.6), $PSL(3, 4) \leq (G_\alpha)^{\Omega - \{\alpha\}} \leq PGL(3, 4)$ in their natural doubly transitive permutation representation and hence (3.8) follows from Satz 7 of [7].

In the rest of this paper, we consider the case (ii) of (3.7). From now on

we assume the following.

Hypothesis (**): $r=1$, $q=2^n > 2$, $|F(B)|=q^2$ and $N_G(B)^{F(B)}$ is a doubly transitive permutation group with a regular normal subgroup.

(3.9) *The following hold.*

- (i) $N_\beta^\alpha = N^\alpha \cap N^\beta = M$ and $|N_\beta^\alpha| = (q-1)(q+1)q^3$.
- (ii) n is odd.
- (iii) $|F(A)| = q$.

Proof. Since $q^2 = |F(B)| = 1 + |N_{N^\alpha}(B):N_{N^\alpha_\beta}(B)|$ by (3.7), we have $|N_{N^\alpha_\beta}(B)| = |N_{N^\alpha}(B)|/(q^2-1) = (q-1)q^3/(3, q-1)$. As $N_\beta^\alpha \trianglerighteq A$, $N_{N^\alpha_\beta}(B) = N_{N^\alpha_\beta}(\langle A, B \rangle) = N_{N^\alpha_\beta}(S)$. On the other hand, from (2.5) (vi) $|N_{N^\alpha_\beta}(S)| = |N_\beta^\alpha: M| \times |N_M(S)| = |N_\beta^\alpha: M| \times (q-1)q^3$. Therefore $(3, q-1) = 1$ and $|N_\beta^\alpha: M| = 1$. Hence $N_\beta^\alpha = M$ and n is odd. By (3.3) (i) and (2.5) (vii), $N_\beta^\alpha = N^\alpha \cap N^\beta$. Hence $F(A) = 1 + |N_{N^\alpha}(A)|/|N^\alpha| = q$. Thus we have (3.9).

(3.10) *Put $m = |G_\alpha: N^\alpha|$. Then the following hold.*

- (i) m is odd and S is a Sylow 2-subgroup of G_α .
- (ii) $|\Omega| = q^3$ and $|G| = q^6(q-1)^2(q+1)(q^2+q+1)m$.

Proof. Set $C^\alpha = C_G(N^\alpha)$. By (3.6), (3.9) (ii) and Lemma 2.6, $|G_\alpha/C^\alpha N^\alpha|$ is odd. Since $C^\alpha \cap N^\alpha = 1$, $m = |G_\alpha/C^\alpha N^\alpha| \cdot |C^\alpha|$ and so m is odd by Lemma 2.2. Therefore S is a Sylow 2-subgroup of G_α and so (i) holds.

Since $|\Omega| = 1 + |N^\alpha: N_\beta^\alpha|$, $|\Omega| = q^3$ by (3.9). From this $|G| = |\Omega| \times |G_\alpha| = q^3m|N^\alpha| = q^6(q-1)^2(q+1)(q^2+q+1)m$. Thus (ii) holds.

(3.11) *Let z be an involution of G_α . Then $|F(z)| = q^2$. In particular B is semi-regular on $\Omega - F(B)$.*

Proof. By (3.10) (ii), z is contained in N^α . By (2.5) (vii) and (3.9) (ii), $|I(N_\beta^\alpha)| = |N_\beta^\alpha: N_{N^\alpha_\beta}(S)| \times (q^2-q) + q^2 - 1 = (q+1)(q^2-q) + q^2 - 1 = (q-1)(q+1)^2$, hence $|F(z)| = 1 + q^3(q-1) \times (q-1)(q+1)^2/q^3(q-1)(q+1) = q^2$ by Lemma 2.3. As $|F(B)| = q^2$, B is semi-regular on $\Omega - F(B)$.

(3.12) *Set $\Delta = F(B)$. Then the following hold.*

- (i) $G_\Delta \trianglerighteq B$ and B is a Sylow 2-subgroup of G_Δ .
- (ii) $G(\Delta) = N_G(B)$ and $|N_G(B)| = q^5(q-1)^2(q+1)m$.

Proof. Since $N_{N^\alpha}(B) \leq N^\alpha(\Delta) \neq N^\alpha$ and $N_{N^\alpha}(B)$ is a maximal subgroup of N^α , we have $N_{N^\alpha}(B) = N^\alpha(\Delta)$. By (3.7), B is a normal Sylow 2-subgroup of $(N^\alpha)_\Delta$ and (i) follows immediately from (3.10) (i).

Since $G(\Delta) \trianglerighteq G_\Delta$ and B is a characteristic subgroup of G_Δ by (i), we have $G(\Delta) \leq N_G(B)$. The converse implication is clear. Thus $G(\Delta) = N_G(B)$. By (3.6), $G_\alpha = N_{G_\alpha}(B)N^\alpha$ and so $|N_{G_\alpha}(B):N_{N^\alpha}(B)| = |G_\alpha: N^\alpha| = m$. Hence $|N_G(B)|$

$=|F(B)| \times |N_{G_\alpha}(B)| = q^2m \times |N_{N^\alpha}(B)| = q^5(q-1)^2(q+1)m$. Thus we have (ii).

(3.13) Let T_1 be a Sylow 2-subgroup of $N_G(B)$ and T_2 a Sylow 2-subgroup of $N_G(T_1)$. Then $T_1 \neq T_2$. Let x be an element of $T_2 - T_1$ and set $U = BB^x$. Then $U \simeq E_{q^4}$ and for each $\gamma \in \Omega$, $U_\gamma \simeq E_{q^2}$, $U_\gamma \in B^G$, $\gamma^U = F(U_\gamma)$ and $|\gamma^U| = q^2$. Moreover $U_\gamma = U_\delta$ for all $\delta \in \gamma^U$.

Proof. If $B \cap B^x \neq 1$, by (3.11) and (3.12) (i), we have $B = B^x$ and so $x \in T_1$, contrary to the choice of x . Hence $B \cap B^x = 1$. As $T_1 \trianglelefteq B$ and $T_1 = T_1^x \trianglelefteq B^x$, $U = B \times B^x$ and $U \simeq E_{q^4}$.

Let $\gamma \in \Omega$ and put $D = U_\gamma$. Then $F(D) \supseteq \gamma^U$ as U is abelian. Therefore $|U:D| = |\gamma^U| \leq q^2$ by (3.11), while $|D| \leq q^2$ because D is an elementary abelian subgroup of N^γ . Hence $D \simeq E_{q^2}$ and $|F(D)| = |\gamma^U| = q^2$. By (3.6) and (3.9) (iii), $D \in B^G$. Since $U_\gamma \leq U_\delta \simeq E_{q^2}$ for each $\delta \in \gamma^U$, we have $U_\gamma = U_\delta$.

(3.14) Let U be as in (3.13). Let $\Gamma = \{X_i \mid 1 \leq i \leq s\}$ be the set of U -orbits on Ω and set $B_i = U_\gamma$ for $\gamma \in X_i$ with $1 \leq i \leq s$. Then the following hold.

(i) $s = q$, $\Omega = \bigcup_{i=1}^q X_i$ and $|X_i| = q^2$.

(ii) B_i is semi-regular on $\Omega - X_i$ and $B_i \cap B_j = 1$ for each i, j with $i \neq j$.

Proof. By (3.10) (ii) and (3.13), $|X_i| = q^2$ and $|\Omega| = q^3$, hence $s = q$. Cleary $\Omega = \bigcup_{i=1}^q X_i$. Thus we have (i).

By (3.13) (ii), B_i is conjugate to B for each i . Hence B_i is semi-regular on $\Omega - X_i$ by (3.11). Therefore, if $B_i \cap B_j \neq 1$, then $X_i = F(B_i) = F(B_j) = X_j$, so that $i = j$. Thus we have (ii).

(3.15) Set $Y = \{B_i \mid 1 \leq i \leq q\}$ and let $D \in Y$. Then $N_G(D) \leq N_G(U)$ and U is a unique Sylow 2-subgroup of $C_G(D)$.

Proof. Suppose $N_G(D) \not\leq N_G(U)$. Since $[N_G(D), U] \not\leq U$, there exist $g \in N_G(D)$ and $B_i \in Y - \{D\}$ such that $(B_i)^g \not\leq U$. Set $D_1 = (B_i)^g$. Since $[D_1, D] = [B_i, D]^g = 1$, it follows from (3.10) (i) that $F(D_1) \cap F(D) = \phi$ and so D is regular on $F(D_1)$ by (3.11). Hence $F(D_1) = \gamma^D = \gamma^U$ for $\gamma \in F(D_1)$. By (3.14), $F(D_1) = F(B_j)$ for some $B_j \in Y$. By (3.12) (i), $D_1 = B_j$, so that $D_1 \leq U$, a contradiction. Thus we have $N_G(D) \leq N_G(U)$. Hence $U \leq 0_2(C_G(D))$. Since $U \leq C_G(B)$, $C_G(B)$ is transitive on $F(B)$. Hence $|C_G(B)|_2 = |F(B)| \times |C_{G_\alpha}(B)|_2 = q^4$ by (3.10) (i). Therefore $|C_G(D)|_2 = q^4$ as $D \in B^G$ and so U is a unique Sylow 2-subgroup of $C_G(D)$.

(3.16) $|N_G(U)| = q^6(q-1)^2(q+1)m$.

Proof. Let S_1 be a Sylow 2-subgroup of $N_G(U)$ and S_2 be a Sylow 2-subgroup of $N_G(S_1)$. Suppose $S_1 \neq S_2$ and let w be an element of $S_2 - S_1$.

Set $\gamma=\alpha^{w^{-1}}$. Then $(U_\gamma)^w \in B^G$ by (3.13) and $(U_\gamma)^w \leq (G_\gamma)^w = G_\alpha$. Since U and U^w are normal subgroups of S_1 , $\langle B, (U_\gamma)^w \rangle$ is 2-subgroup of $G_\alpha \cap S_1 = S$. Hence $B = (U_\gamma)^w$ by (2.5) (iii) and (3.6). Therefore $U, U^w \leq C_G(B)$, so that $U = U^w$ by (3.15) and $w \in S_2 \cap N_G(U) = S_1$, contrary to the choice of w . Hence $S_1 = S_2$ and S_1 is a Sylow 2-subgroup of G . It follows from (3.10) that $|S_1| = q^6$.

We now consider the action of $N_G(U)$ on $\Gamma = \{X_i \mid 1 \leq i \leq q\}$. Set $\Delta = F(B)$. By (3.12), $S_1(\Delta) \leq G(\Delta) = N_G(B)$ and $|N_G(B)|_2 = q^5$ and so $|S_1 : S_1(\Delta)|$ is divisible by q . Hence S_1 is transitive on Γ and so $N_G(U)$ is transitive on Γ . Therefore $|N_G(U)| = q \times |N_G(U) \cap N_G(B)| = q \times |N_G(B)| = q^6(q-1)^2(q+1)m$ by (3.12) (ii) and (3.15).

(3.17) *Let R be a cyclic subgroup of N_β^a of order $q+1$. Then $|F(R)| = q$ and R is semi-regular on $\Omega - F(R)$.*

Proof. Since $N_\beta^a/A \cong PSL(2, q)$, there exists a cyclic subgroup R of N_β^a of order $q+1$. Let $Q \neq 1$ be a subgroup of R . Then, by Lemma 2.7 $|F(Q)| = 1 + \frac{|N_{N_\beta^a}(Q)| \times |N_\beta^a : N_{N_\beta^a}(Q)|}{|N_\beta^a|} = 1 + \frac{2(q-1)(q+1)}{2(q+1)} = q$. Thus (3.17) holds.

(3.18) *Let $V \in U^G$. If $V \neq U$, then $|F(U_\gamma) \cap F(V_\gamma)| = 1$ or q for $\gamma \in \Omega$.*

Proof. Suppose $\gamma \neq \delta \in F(U_\gamma) \cap F(V_\gamma)$. By (3.13), $U_\gamma, V_\gamma \in B^G$ and so by (3.3) (ii), $U_\gamma, V_\gamma \leq N_\gamma \cap N_\delta$. Set $H = 0_2(N_\delta^\gamma)$. Then, by (3.6) and (3.9) (i), $U_\gamma H$ and $V_\gamma H$ are Sylow 2-subgroups of N_δ^γ . If $U_\gamma H = V_\gamma H$, then $U_\gamma = V_\gamma$ and $U, V \leq C_G(U_\gamma)$. By (3.15) we have $U = V$, a contradiction. Therefore $U_\gamma H \neq V_\gamma H$. Set $X = \langle U_\gamma, V_\gamma \rangle$. Then $XH = N_\delta^\gamma$ because $N_\delta^\gamma / H \cong PSL(2, q)$, $q = 2^n$, and $PSL(2, q)$ is generated by its two distinct Sylow 2-subgroups. Hence $N_\delta^\gamma \triangleright X \cap H$. By (2.5) (iii), $E_\gamma \cong U_\gamma \cap H \leq X \cap H$. Since N_δ^γ acts irreducibly on H by (2.5) (vii), $X \cap H = H$ and hence $H \leq X$. From this $X = N_\delta^\gamma$. Thus, by (3.5)(i) and (3.9), $|F(U_\gamma) \cap F(V_\gamma)| = |F(X)| = |F(N_\delta^\gamma)| = q$.

(3.19) *Let Q be a cyclic subgroup of $N_{N^a}(B)$ of order $q+1$, $V \in U^G$ and set $P = N_Q(V)$. Then the following hold.*

- (i) Q is semi-regular on $\Omega - F(Q)$ and $|F(Q)| = q$.
- (ii) If $P \neq 1$ and $V \geq D \in B^G$, then P normalizes D and $|F(P) \cap F(D)| = 1$.

Proof. Since $N_{N^a}(B)/B \cong PSL(2, q)$, there exists a cyclic subgroup Q of $N_{N^a}(B)$ of order $q+1$. Clearly Q is a cyclic Hall subgroup of N^a , hence Q is conjugate to R defined in (3.17). By (3.17), Q is semi-regular on $\Omega - F(Q)$ and $|F(Q)| = q$. Thus (i) holds.

Suppose $P \neq 1$ and let $\gamma \in F(P)$. Then, by (3.9) (i), $P \leq N_\gamma$ and hence P normalizes $N_\gamma \cap V$. By (3.10) (i) and (3.13), $N_\gamma \cap V = V_\gamma$ and $V_\gamma \in B^G$ and so $P \leq N_{N^a}(V_\gamma)$ and $N_G(V_\gamma)^{F(V_\gamma)} \cong N_G(B)^{F(B)}$. Hence we have $F(P) \cap F(V_\gamma) = \{\gamma\}$ by (3.7). As $|F(P)| = q$ by (i), (ii) holds.

(3.20) *Let $V \in U^G - \{U\}$ and let Q be a cyclic subgroup of $N_{N^a}(B)$ of order $q+1$. Then $N_Q(V)=1$.*

Proof. Set $P=N_Q(V)$ and assume $P \neq 1$. Let $\gamma \in \Omega - F(Q)$ and set $B_1=U_\gamma$, $B_2=V_\gamma$. By (3.15), Q normalizes U and so by (3.19) Q normalizes B_1 . Similarly P normalizes B_2 . Therefore $F(B_1) \cap F(B_2) \geq \gamma^P \neq \{\gamma\}$ as $P \neq 1$ and P is semi-regular on $\Omega - F(Q)$. By (3.18), we have $|F(B_1) \cap F(B_2)|=q$. Since P acts on $F(B_1) \cap F(B_2)$ and $|P|$ divides $q+1$, P fixes at least two points of $F(B_1) \cap F(B_2)$, which contradicts to (3.19).

(3.21) *Let T be a Sylow 2-subgroup of $N_G(U)$. Then, for each $V \in U^G - \{U\}$, $|T: N_T(V)|$ is divisible by q .*

Proof. Suppose $|T: N_T(V)| < q$ and set $T_1=N_T(V)$. Then $|T_1| > q^5$ as $|T|=q^6$ by (3.16). Hence $q > |T_1V: T_1|=|V: V \cap T_1|$ and so $|V \cap T_1| > q^3$. Therefore, for each $B_1 \in B^G$ such that $B_1 \leq V$, $q > |B_1(V \cap T_1): V \cap T_1|=|B_1: B_1 \cap T_1|=|B_1: B_1 \cap T|$. Hence $|B_1 \cap T| > q$. Let $\gamma \in F(B_1 \cap T)$ and set $B_2=U_\gamma$. Then $\langle B_1 \cap T, B_2 \rangle \leq N^a \cap T$. As $|B_1 \cap T| > q$ by (2.5) (iii), $B_1 \cap T \cap B_2 \neq 1$. By (3.11), $\langle B_1 \cap T, B_2 \rangle \leq G_{F(B_2)}$. By (3.12) (i), we have $B_1 \cap T \leq B_2$, so that $F(B_1)=F(B_1 \cap T)=F(B_2)$. Again, by (3.12) (i), $B_1=B_2$ and so $U, V \leq C_G(B_2)$. Therefore $U=V$ by (3.15), a contradiction.

(3.22) *Put $W=U^G$. Then $|W|=q^2+q+1$ and G^W is doubly transitive.*

Proof. Set $H=N_G(U)$. By (3.10) (ii) and (3.16), $|W|=|G: H|=q^2+q+1$. Let $V \in W - \{U\}$ and let Q be as defined in (3.20). By (3.15), $Q \leq H$ and by (3.20), Q acts semi-regularly on $W - \{U\}$. Hence $|V^H|$ is divisible by $q+1$. On the other hand, by (3.21), $|V^H|$ is divisible by q and so we have $|V^H|=q(q+1)$. Thus (3.22) holds.

(3.23) *$G_W \cap U \neq 1$.*

Proof. Suppose $G_W \cap U=1$. Since $G \geq G_W$ and $H \geq U$, $[G_W, U] \leq G_W \cap U=1$. Hence $G_W \leq C_G(U)$. By (3.15), U is a unique Sylow 2-subgroup of $C_G(U)$ and so $G_W \leq 0(G)$. On the other hand, as $|\Omega|$ is even and G is doubly transitive on Ω , we have $0(G)=1$. Therefore $G_W=1$ and hence G acts faithfully on W . Since U is not semi-regular on $W - \{U\}$, by [4], $PSL(n_1, q_1) \leq G \leq PGL(n_1, q_1)$ for some $n_1 \geq 3$ and q_1 with q_1 even. As $|W|=q^2+q+1=q_1^{n_1-1}+\cdots+q_1+1$, $q(q+1)=q_1(q_1^{n_1-2}+\cdots+1)$ and so $q=q_1$ and $n_1=3$. Therefore $PSL(3, q) \leq G \leq PGL(3, q)$. But $|PGL(3, q)|_2=q^3$ by (3.9) (ii) and Lemma 2.6. Hence $q^3=q^6$ by (3.10) (ii). This is a contradiction. Thus $G_W \cap U \neq 1$.

(3.24) *G^a has a regular normal subgroup.*

Proof. Since $G_W \leq N_G(U)$, $G_W \cap U$ is a normal subgroup of G_W . As $G_W \cap$

$U \leq 0_2(G_w)$ and $G \geq G_w$, $0_2(G_w)$ is a normal subgroup of G . Let E be a minimal normal subgroup of G contained in $0_2(G_w)$. Then E is an elementary abelian 2-subgroup of G and acts regularly on Ω .

(3.25) *If (ii) of (3.7) occurs, we have (i) of the theorem.*

Proof. By (3.9), (3.10) and (3.24), G has a regular normal subgroup E of order q^3 , where $q=2^n$ and $n \equiv 1 \pmod{2}$ and N^α is transitive on $\Omega - \{\alpha\}$. Moreover $G = G_\alpha E$ and G_α is isomorphic to a subgroup of $GL(E)$. As in the proof of Lemma 2.1, we may assume $\Omega = E$, $\alpha = 0 \in E$ and $GL(E)E \leq \text{Sym}(\Omega)$. There exists a subgroup H of $GL(E)$ such that $H = \Gamma L(3, q)$ and $HE \simeq A\Gamma L(3, q)$. Let L be a normal subgroup of H isomorphic to $SL(3, q)$. Since $q=2^n$ and $n \equiv 1 \pmod{2}$, L is isomorphic to $PSL(3, q)$.

By (3.9) (i) and by the structure of $A\Gamma L(3, q)$, there exist an automorphism f from N^α to L and $g \in \text{Sym}(\Omega)$ such that $\alpha^g = \alpha$ and $(\beta^x)^g = (\beta^x)^{f(x)}$ for each $\beta \in \Omega - \{\alpha\}$ and $x \in N^\alpha$. From this $(\beta^x)^{g^{-1}xg} = (\beta^x) = (\beta^x)^{f(x)}$ for each $\beta \in \Omega - \{\alpha\}$ and so $g^{-1}xg = f(x)$. Hence $g^{-1}N^\alpha g = L$.

Set $X = N(L) \cap \text{Sym}(\Omega)$ and $D = C_x(L)$. Then D is semi-regular on $\Omega - \{\alpha\}$ as L is transitive on $\Omega - \{\alpha\}$. Put $T = f(A)$. Then $N_L(T)^{F(T)} \simeq Z_{q-1}$ and it is semi-regular on $F(T) - \{\alpha\}$ by (3.5) (i) and (3.9) (i), (iii). It follows that $D \leq Z_{q-1}$. Since X/DL is isomorphic to a subgroup of the outer automorphism group of $PSL(3, q)$ and $f(A)$ and $f(B)$ are not conjugate in $\text{Sym}(\Omega)$ by the hypothesis (**) and (3.9) (ii), it follows from Lemma 2.6 (i) that $|X/DL| \leq n$. Hence $|X| \leq n(q-1)|L| = |\Gamma L(3, q)|$. On the other hand $\Gamma L(3, q) \simeq H < X$ and so $X = H$. Therefore $g^{-1}G_\alpha g \geq g^{-1}N^\alpha g = L$ and $g^{-1}G_\alpha \leq X = H$. Thus we have (3.25).

The conclusion of the theorem now follows immediately from steps (3.2), (3.7), (3.8) and (3.25).

OSAKA KYOIKU UNIVERSITY

References

- [1] D. Gorenstein: *Finite groups*, Harper and Row, New York, 1968.
- [2] Y. Hiramine: *On doubly transitive permutation groups*, Osaka J. Math. **15** (1978), 613–631.
- [3] Y. Hiramine: *On some doubly transitive permutation group in which socle(G_α) is nonsolvable*, Osaka J. Math. **16** (1979), 797–816.
- [4] M. O’Nan: *A characterization of $L_n(q)$ as a permutation group*, Math. Z. **127** (1972), 301–314.
- [5] M. O’Nan: *Normal structure of one-point stabilizer of a doubly transitive permutation group II*, Trans. Amer. Math. Soc. **214** (1975), 43–74.
- [6] R. Steinberg: *Automorphism of finite linear groups*, Canad. J. Math. **12** (1960),

606–615.

[7] H. Zassenhaus: *Über transitive Erweiterungen gewisser Gruppen aus Automorphismen endlicher mehrdimensionaler Geometrien*, Math. Ann. **111** (1935), 748–759.