

Title	Doubly transitive groups of even degree whose one-point stabilizer has a normal subgroup isomorphic to PSL(3,2 ⁿ)
Author(s)	Hiramine, Yutaka
Citation	Osaka Journal of Mathematics. 1979, 16(3), p. 817-830
Version Type	VoR
URL	https://doi.org/10.18910/9948
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

DOUBLY TRANSITIVE GROUPS OF EVEN DEGREE WHOSE ONE POINT STABILIZER HAS A NORMAL SUBGROUP ISOMORPHIC TO PSL(3,2")

YUTAKA HIRAMINE

(Received October 16, 1978)

1. Introduction

Let G be a doubly transitive permutation group on a finite set Ω and $\alpha \in \Omega$. By [4], the product of all minimal normal subgroups of G_{α} is the direct product $A \times N$, where A is an abelian group and N is 1 or a nonabelian simple group.

In this paper we consider the case $N \simeq PSL(3,q)$ with q even and prove the following:

Theorem. Let G be a doubly transitive permutation group on Ω of even degree and let α , $\beta \in \Omega$ ($\alpha \neq \beta$). If G_{α} has a normal subgroup N^{α} isomorphic to PSL(3,q), $q=2^n$, then N^{α} is transitive on $\Omega - \{\alpha\}$ and one of the following holds:

- (i) G has a regular normal subgroup E of order $q^3=2^{3n}$, where n is odd and G_{ω} is isomorphic to a subgroup of $\Gamma L(3,q)$. Moreover there exists an element g in $Sym(\Omega)$ such that $\alpha^g=\alpha$, $(G_{\omega})^g$ normalizes E and $A\Gamma L(3,q)\geq (G_{\omega})^gE\geq ASL(3,q)$ in their natural doubly transitive permutation representation.
 - (ii) $|\Omega| = 22$, $G^{\Omega} = M_{22}$ and $N^{\omega} \simeq PSL(3,4)$.
 - (iii) $|\Omega| = 22$, $G^{\Omega} = Aut(M_{22})$ and $N^{\infty} \simeq PSL(3,4)$.

We introduce some notations.

V(n,q): a vector space of dimension n over GF(q)

 $\Gamma L(n,q)$: the group of all semilinear automorphism of V(n,q)

 $A\Gamma L(n,q)$: the semidirect product of V(n,q) by $\Gamma L(n,q)$ in its natural

action

ASL(n,q): the semidirect product of V(n,q) by SL(n,q) in its natural

action

F(X): the set of fixed points of a nonempty subset X of G

 $X(\Delta)$: the global stabilizer of a subset Δ ($\subseteq \Omega$) in X

 X_{Δ} : the pointwise stabilizer of Δ in X

 X^{Δ} : the restriction of X on Δ Sym(Δ): the symmetric group on Δ

 X^{H} : the set of *H*-conjugates of *X*

 $|X|_{p}$: the maximal power of a prime p dividing the order of X

I(X): the set of involutions contained in X: an elementary abelian group of order m

Other notations are standard and taken from [1].

2. Preliminaries

Lemma 2.1 Let G be a doubly transitive permutation group on Ω of even degree, $\alpha \in \Omega$ and N^* a normal subgroup of G_{α} isomorphic to PSL(2,q), Sz(q) or PSU(3,q) with q(>2) even. Then $N^* \simeq PSL(2,q)$, $N^* \neq Sz(q)$, PSU(3,q), N^* is transitive on $\Omega - \{\alpha\}$ and one of the following holds:

- (i) G has a regular normal subgroup E of order q^2 , $N_{\beta}^{\alpha} = N^{\alpha} \cap N^{\beta} \cong E_q$ and G_{α} is isomorphic to a subgroup of $\Gamma L(2,q)$. Moreover there exists an element g in $Sym(\Omega)$ such that $\alpha^g = \alpha$, $(G_{\alpha})^g$ normalizes E and $A\Gamma L(2,q) \geq (G_{\alpha})^g E \geq ASL(2,q)$ in their natural doubly transitive permutation representation.
 - (ii) $|\Omega| = 6$ and $G^{\Omega} = A_6$ or S_6 .

Proof. By Theorem 2 of [2], it suffices to consider the case that $N^{\alpha}_{\beta} = N^{\alpha} \cap N^{\beta} \simeq E_q$ and G has a regular normal subgroup of order q^2 . Since $|N^{\alpha}| = q^2 - 1$, N^{α} is transitive on $\Omega - \{\alpha\}$.

Let E be the regular normal subgroup of G. Then we may assume $\Omega = E$, $\alpha = 0 \in E$ and the semidirect product GL(E)E is a subgroup of $Sym(\Omega)$. There is a subgroup H of GL(E) such that $H \simeq \Gamma L(2,q)$ and $HE \simeq A\Gamma L(2,q)$. Let L be the normal subgroup of H isomorphic to SL(2,q). Then $L_{\beta} \simeq E_q$ for $\beta \in \Omega - \{\alpha\}$. Hence $(N^{\alpha})^{\Omega - (\alpha)} \simeq L^{\Omega - (\alpha)}$ and so there are an automorphism f from N^{α} to L and $g \in Sym(\Omega)$ satisfying $\alpha^g = \alpha$ and $(\beta^x)^g = (\beta^g)^{f(x)}$ for each $\beta \in \Omega - \{\alpha\}$ and $x \in N^{\alpha}$. From this, $(\beta^g)^{g^{-1}xg} = (\beta^x)^g = (\beta^g)^{f(x)}$, so that $g^{-1}xg = f(x)$. Hence $g^{-1}N^{\alpha}g = L$.

Set $S=L_{\beta}$, $X=Sym(\Omega)\cap N(L)$, $D=C_{X}(L)$ and $Y=N_{L}(S)$. By the properties of $A\Gamma L(2,q)$, L is transitive on $\Omega-\{\alpha\}$, |F(S)|=q and $Y/S\cong Z_{q-1}$. Hence D is semi-regular on $\Omega-\{\alpha\}$ and $Y^{F(S)}$ is regular on $F(S)-\{\alpha\}$ and so $D\cong D^{F(S)}\leq Y^{F(S)}$ because $[D,N^{\alpha}]=1$. Therefore $D\leq Z_{q-1}$. Since X/DL is isomorphic to a subgroup of the outer automorphism group of SL(2,q), we have $|X|\leq |\Gamma L(2,q)|$, while $\Gamma L(2,q)\cong H\leq X$. Hence X=H and X normalizes E. Therefore, as $(G_{\alpha})^{g} \geq (N^{\alpha})^{g} = L$, we have $(G_{\alpha})^{g} \leq H$. Thus Lemma 2.1 is proved.

Lemma 2.2 Let G be a doubly transitive permutation group on Ω of even degree and N^{α} a nonabelian simple normal subgroup of G_{α} , $\alpha \in \Omega$. If $C_{G}(N^{\alpha}) \pm 1$, then $N^{\alpha}_{\beta} = N^{\alpha} \cap N^{\beta}$ for $\alpha \pm \beta \in \Omega$ and $C_{G}(N^{\alpha})$ is semi-regular on $\Omega - \{\alpha\}$. Moreover $C_{G}(N^{\alpha}) = 0(N^{\alpha})$.

Proof. See Lemma 2.1 of [2].

Lemma 2.3 Let G be a transitive permutation group on a finite set Ω , H a stabilizer of a point of Ω and M a nonempty subset of G. Then

$$|F(M)| = |N_G(M)| \times |\{M^g | M^g \subseteq H, g \in G\}|/|H|$$
.

Proof. See Lemma 2.2 of [2].

Lemma 2.4 Let H be a transitive permutation group on a finite set Δ and N a normal subgroup of H. Assume that a subgroup X of N satisfies $X^H = X^N$. Then

- (i) $|F(X) \cap \beta^N| = |F(X) \cap \gamma^N|$ for $\beta, \gamma \in \Delta$.
- (ii) $|F(X)| = |F(X) \cap \beta^N| \times r$, where r is the number of N-orbits on Δ .

Proof. By the same argument as in the proof of Lemma 2.4 of [3], we obtain Lemma 2.4.

2.5 Properties of PSL(3,q), $q=2^n$.

Let
$$N_1 = SL(3,q)$$
, $S_1 = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \middle| a, b, c \in GF(q) \right\}$, $A_1 = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \middle| a, b \in GF(q) \right\}$

$$GF(q)$$
, $B_1 = \left\{ \begin{pmatrix} 1 & 0 & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \middle| b, c \in GF(q) \right\}$ and $Z = \left\{ \begin{pmatrix} d & 0 & 0 \\ 0 & d & 0 \\ 0 & 0 & d \end{pmatrix} \middle| d \in GF(q), d^3 = 1 \right\}.$

Then |Z| = (3, q-1) and $\bar{N}_1 = N_1/Z$ is isomorphic to PSL(3, q). Set $N = \bar{N}_1$, $S = \bar{S}_1$, $A = \bar{A}_1$ and $B = \bar{B}_1$. Then the following hold.

- (i) N is a nonabelian simple group of order $q^3(q-1)^3(q+1)(q^2+q+1)/(3,q-1)$.
- (ii) $|S| = q^3$, $S' = \Phi(S) = Z(S) = \{x^2 | x \in S\} = \left\{ \begin{pmatrix} 1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \middle| b \in GF(q) \right\} \simeq E_q$, $S/S' \simeq E_{g^2}$ and S is a Sylow 2-subgroup of N.
- (iii) $S = \langle A, B \rangle$, $A \cap B = Z(S)$, $I(S) \subseteq A \cup B$ and each elementary abelian subgroup of S is contained in A or B. Let $z \in I(S) Z(S)$. Then $C_S(z) = A$ or B.
- (iv) Set $M_1=A^N$, $M_2=B^N$. Then $M_1 \neq M_2$ and $M_1 \cup M_2$ is the set of all subgroup of N isomorphic to E_{a^2} .
- (v) Let z be an involution of N. Then $I(N)=z^N$ and $|C_N(z)|=(q-1)q^3/(3,q-1)$.
- (vi) Let E denote A or B. Then $|N_N(E)| = (q-1)^2(q+1)q^3/(3,q-1)$, $N_N(E)/E \simeq Z_k \times PSL(2,q)$, where k = (q-1)/(3,q-1) and $N_N(E)$ is a maximal subgroup of N.
- (vii) Set $M=(N_N(E))'$. If q>2, then M=M', $M \ge E$, $M/E \cong PSL(2,q)$ and M acts irreducibly on E.
- (viii) Set $\Delta = E^N$. Then $|\Delta| = q^2 + q + 1$ and by conjugation N is doubly transitive on Δ , which is an usual doubly transitive permuation representation

of N. If $C \in \{A, B\} - \{E\}$, |F(C)| = q+1, C is a Sylow 2-subgroup of $N_{F(C)}$ and C is semi-regular on $\Delta - F(C)$.

Lemma 2.6 ([6]). Let notations be as in (2.5) and set G=Aut(N). Then the following hold.

(i) There exist in G a diagonal automorphism d, a field automorphism f and a graph automorphism g and satisfy the following:

$$G = \langle g, f, d \rangle N \trianglerighteq H_1 = \langle f, d \rangle N \trianglerighteq H_2 = \langle d \rangle N, H_1 = P\Gamma L(3, q), H_2 = PGL(3, q)$$

 $H_2/N \cong Z_r$, where $r = (3, q-1), G/H_1 \cong Z_2, H_1/H_2 \cong Z_n$ and $G/H_2 \cong Z_2 \times Z_n$.

(ii) $M_1 = A^{H_1}, M_2 = B^{H_1} \text{ and } A^g = B.$

Lemma 2.7 Let N=PSL(3,q), where $q=2^n$. Let R be a cyclic subgroup of N of order q+1 and Q a nontrivial subgroup of R. Then $N_N(Q)=N_N(R)\simeq Z_k\times D_{2(q+1)}$, where k=(q-1)/(3,q-1) and $D_{2(q+1)}$ is a dihedral group of order 2(q+1).

Proof. We consider the group N as a doubly transitive permutation group on $\Delta = PG(2,q)$ with q^2+q+1 points. By (2.5) (i), R is a cyclic Hall

subgroup of N and so we may assume $R \le N_{\alpha}$, where $\alpha = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \in PG(2,q)$. Since

 $|N_{\alpha\beta}| = (q-1)^2 q^2/(3,q+1)$ for $\alpha \neq \beta \in \Delta$ and $(q+1,(q-1)^2 q^2) = 1$, R is semiregular on $\Delta - \{\alpha\}$. Hence $N_N(Q) \leq N_{\alpha}$. Put $E = 0_2(N_{\alpha})$. Then $N_{\alpha} = N_N(E)$ by (2.5) (viii) and $N_N(Q)E/E \simeq Z_k \times D_{2(q+1)}$ by (2.5) (vi). Since $N_N(Q) \cap E = C_E(Q) = 1$ by (2.5) (v). Hence $N_N(Q) \simeq Z_k \times D_{2(q+1)}$. As R is cyclic, $N_N(R) \leq N_N(Q)$. Thus $N_N(Q) = N_N(R) \simeq Z_k \times D_{2(q+1)}$.

Lemma 2.8 Let N=PSL(3,q), $q=2^n$ and let $H(\pm N)$ be a subgroup of N of odd index. Then $H \le N_N(E)$ for an elementary abelian subgroup E of N of order q^2 .

Proof. Let S, A and B be as in (2.5) and let Δ be as in Lemma 2.7. Since |N:H| is odd, H contains a Sylow 2-subgroup of N and so we may assume

$$S \le H$$
. Set $\alpha = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\beta = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\gamma = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. Then $S \le N_{\alpha} = N_{N}(A)$, $S_{\beta} = B$, $S_{\gamma} = N_{N}(A)$

$$\left\{ \begin{pmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \middle| a \in GF(q) \right\} \simeq E_q \text{ and hence } |\alpha^s| = 1, |\beta^s| = q \text{ and } |\gamma^s| = q^2.$$

If $\alpha^H = \{\alpha\}$, $H \le N_\alpha = N_N(A)$ and the lemma holds. By (2.5) (i), $(q^2 + 1, |N|) = 1$. Hence $\alpha^H = \{\alpha\} \cup \gamma^S$, so that we may assume either $\alpha^H = \{\alpha\} \cup \beta^H$ or $\alpha^H = \Delta$.

If $\alpha^H = \{\alpha\} \cup \beta^H$, $\alpha^H = F(B)$ and B is a unique Sylow 2-subgroup of $H_{F(B)}$ by (2.5) (viii). Hence $H \trianglerighteq B \simeq E_{q^2}$ and the lemma holds.

If $\alpha^H = \Delta$, by (2.5) (iv), $N_H(A)^{F(A)}$ is transitive and so |H| is divisible by q+1. Since $(q^2+q+1,q+1)=1$, $|H_{\alpha}|$ is divisible by q+1. By (2.5) (vi) and by the structure of PSL(2,q), $Z_m \times PSL(2,q) \simeq H_{\alpha}/A \leq N_N(A)/A$, where m is a divisor of (n-1)/(3,n-1). Therefore $|N:H| \leq q-1$. We now consider the action of N on the coset $\Gamma = N/H$. As $|\Gamma| \neq 1$ and N is a simple group, N^{Γ} is faithful. But N has a cyclic subgroup of order q+1 and so $|\Gamma| > q+1$, which implies |N:H| > q+1, a contradiction.

Lemma 2.9 Let N=PSL(3,q), where $q=2^{2m}$ and t a field automorphism of N of order 2. Let S be a t-invariant Sylow 2-subgroup of N. Then the following hold.

- (i) $Z(\langle t \rangle S) \simeq E_{\sqrt{q}}$.
- (ii) If S_1 is a subgroup of $\langle t \rangle S$ isomorphic to S, then $S_1 = S$.

Proof. Since $C_s(t)$ is isomorphic to a Sylow 2-subgroup of $PSL(3, \sqrt{q})$, $Z(C_s(t)) \simeq E_{\sqrt{q}}$ and $Z(C_s(t)) \leq Z(S)$ by (2.5) (ii). Hence $Z(\langle t \rangle S) = Z(\langle t \rangle S) \cap \langle t \rangle C_s(t) \cap C(Z(S)) = Z(\langle t \rangle S) \cap C_s(t) = Z(C_s(t)) \simeq E_{\sqrt{q}}$. Thus we have (i).

Suppose $S_1 \neq S$. Then $\langle t \rangle S = S_1 S \trianglerighteq S_1$ and $[\langle t \rangle S : S] = [S_1 : S_1 \cap S] = 2$. If $Z(S_1) \not \leq S$, we have $S_1 = \langle z \rangle \times (S_1 \cap S)$ for an involution z in $Z(S_1) - S$. By (2.5) (ii), $z \in \Phi(S_1)$ and so $S_1 = \langle z, S_1 \cap S \rangle = S_1 \cap S$, a contradiction. Hence $Z(S_1) \leq S$.

If $Z(S_1)=Z(S)$, $E_q\simeq Z(S)\leq Z(S_1S)=Z(\langle t\rangle S)\simeq E_{\sqrt{q}}$ by (i), which is a contradiction. Hence $Z(S_1)\pm Z(S)$.

Let z be an involution in $Z(S_1)-Z(S)$. Then $C_S(z)\simeq E_{q^2}$ by (2.5) (iii). On the other hand, $S_1\leq C_{\langle t\rangle S}(z)$ and $[C_{\langle t\rangle S}(z)\colon C_S(z)]=1$ or 2. From this S_1 has an elementary abelian subgroup of index 2. Hence q=2, a contradiction. Thus we have (ii).

3. Proof of the theorem

Throughout the rest of the paper, G^{Ω} always denote a doubly transitive permutation group satisfying the hypotheses of the theorem.

Since $G_{\alpha} \succeq N^{\alpha}$, $|\beta^{N^{\alpha}}| = |\gamma^{N^{\alpha}}|$ for β , $\gamma \in \Omega - \{\alpha\}$ and so $|\Omega| = 1 + r |\beta^{N^{\alpha}}|$, where r is the number of N^{α} -orbits on $\Omega - \{\alpha\}$. Hence r is odd and N^{α}_{β} is a proper subgroup of N^{α} of odd index for $\alpha + \beta \in \Omega$. Therefore, by Lemma 2.8 $N^{\alpha}_{\beta} \succeq A$ for some elementary abelian subgroup A of order q^2 . Let S be a Sylow 2-subgroup of N^{α}_{β} . Then, by (2.5) (iii) there exists a unique elementary abelian 2-subgroup B of S such that $A \cong B \cong E_{q^2}$ and $A \neq B$. Set $M_1 = A^{N^{\alpha}}$, $M_2 = B^{N^{\alpha}}$ and $K = G_{\alpha}(M_1) = G_{\alpha}(M_2)$. By (2.5) (iv), $M_1 \cup M_2$ is the set of all elementary abelian 2-subgroup of N^{α} of order q^2 and G_{α} acts on $\{M_1, M_2\}$, so that $G_{\alpha}/K \leq Z_2$. Hence K is transitive on $\Omega - \{\alpha\}$.

(3.1) Let E=A or B. Then $N_{G_{\alpha}}(E)$ is transitive on $F(E)-\{\alpha\}$.

822 Y. Hiramine

Proof. If $E^h \leq K_{\beta}$ for some $h \in K$, $E^h \leq N^{\alpha} \cap K_{\beta} = N^{\alpha}_{\beta}$. Since $E^{N^{\alpha}} = E^K$ and $A^K \neq B^K$, E^h is conjugate to E in N^{α}_{β} . By a Witt's theorem $N_K(E)$ is transitive on $F(E) = \{\alpha\}$. Thus $N_{G_{\alpha}}(E)$ is transitive on $F(E) = \{\alpha\}$.

(3.2) If
$$q=2$$
, G^{Ω} is of type (i) of the theorem.

Proof. Assume q=2. We note that PSL(3,2) is isomorphic to PSL(2,7). It follows from [3] that G has a regular normal subgroup R.

Since K is transitive on $\Omega - \{\alpha\}$, by Lemmas 2.3 and 2.4

$$\begin{split} |F(A)| &= 1 + \frac{|N^{\alpha} \cap N(A)|}{|N^{\alpha}_{\beta}|} r = \frac{24r}{|N^{\alpha}_{\beta}|} + 1 \quad \text{and} \\ |F(B)| &= 1 + \frac{|N^{\alpha} \cap N(B)|}{|N^{\alpha}_{\beta}|} \frac{|N^{\alpha}_{\beta} \cap N(B)|}{|N^{\alpha}_{\beta}|} r = \frac{24r}{|N^{\alpha}_{\beta} \cap N(B)|} + 1. \end{split}$$

Let E=A or B. As $N_R(E) \neq 1$, $N_G(E)^{F(E)}$ is doubly transitive by (3.1). Hence $E \leq N^{\beta}$ and $|F(A)| = 2^a$, $|F(B)| = 2^b$ for some integers a, b. From this $S = \langle A, B \rangle \leq N^{\alpha} \cap N^{\beta}$ and $|N^{\alpha}_{\beta}: N^{\alpha} \cap N^{\beta}|$ is odd. Hence, if $S^g \leq G_{\alpha\beta}$, $S^g \leq N^{\gamma}_{\beta} \cap N^{\gamma}_{\beta}$, where $\gamma = \alpha^g$ and so $S^g \leq N^{\alpha} \cap N^{\beta}$. Since S and S^g are Sylow 2-subgroups of $N^{\alpha} \cap N^{\beta}$, S^g is conjugate to S in $N^{\alpha} \cap N^{\beta}$. By a Witt's theorem $N_G(S)^{F(S)}$ is a doubly transitive permutation group with a regular normal subgroup $N_R(S)$. Hence $|F(S)| = 2^c$ for an integer c. By Lemmas 2.3 and 2.4,

$$|F(S)| = 1 + \frac{8 \times |N_{\beta}^{\alpha}: S|}{|N_{\beta}^{\alpha}|} r = r + 1 = 2^{c}.$$

Let z be an involution of Z(S) and assume $z^g \in G_{\alpha}$ for some $g \in G$. Then $z^g \in N_{\alpha}^{\gamma}$, where $\gamma = \alpha^g$. Since $|N_{\alpha}^{\gamma}: N^{\gamma} \cap N^{\alpha}|$ is odd, z^g is contained in N^{α} . By (2.5) (v), z^g is conjugate to z in N^{α} . Hence $C_G(z)$ is transitive on F(z) and by Lemmas 2.3 and 2.4,

$$|F(z)| = 1 + \frac{8 \times |I(N_{\beta}^{\alpha})|}{|N_{\beta}^{\alpha}|} r.$$

Suppose $N_{\beta}^{\alpha} = S$. Then $|F(A)| = 3r + 1 = 2^a = 2^c + 2r$ and |F(z)| = 5r + 1. Hence r = 1. Since $N_R(A) = C_R(A) \le C_G(z)$ and $N_R(A) = E_4$, |F(z)| is divisible by 4. But |F(z)| = 5r + 1 = 6. This is a contradiction.

Suppose $N^{\alpha}_{\beta} = S$. Then $N^{\alpha}_{\beta} = N_{N^{\alpha}}(A)$ as $N_{N^{\alpha}}(A) \simeq S_4$. From this, $|F(B)| = 2^b = 2^c + 2r$ and so r = 1. Hence $|\Omega| = 1 + |N^{\alpha}| : N^{\alpha}_{\beta} = 8$. Thus |R| = 8 and $G_{\alpha} \simeq GL(3,2)$, hence $G \simeq AL(2,3)$.

By (3.2), it suffices to consider the case q>2 to prove the theorem. From now on we assume the following.

Hypothesis (*): $q=2^n \ge 4$

(3.3) The following hold.

- (i) $|N_{\beta}^{\alpha}/N^{\alpha} \cap N^{\beta}|$ is odd.
- (ii) Let $\gamma \in \Omega$ and S_0 a 2-subgroup of N^{γ} . Then $F(S_0) = \{\delta \in \Omega \mid S_0 \leq N^{\delta}\}$.

Proof. Suppose false and let T be a Sylow 2-subgroup of $N^{\beta}_{\alpha}N^{\alpha}_{\beta}$ such that $T \geq S$. Then $T \neq S$. Set $S_1 = T \cap N^{\alpha}_{\beta}$ and $S_2 = T \cap N^{\alpha} \cap N^{\beta}$. Then S_1 is a Syow 2-subgroup of N^{β}_{α} , $S_1 \neq S$ and S_1 , S_2 and S are normal subgroups of T. By Lemma 2.2, S_1N^{α}/N^{α} is isomorphic to a subgroup of the outer automorphism group of N^{α} . It follows from Lemma 2.6 that S_1N^{α}/N^{α} is abelian of 2-rank at most 2. Since $S_1N^{\alpha}/N^{\alpha} \simeq S_1/S_2$ and $S_1 \simeq S$, we have $S_1/S_2 \leq E_4$ by (2.5) (ii).

Let A_1 , B_1 be the subgroups of S_1 such that $A_1 \cong B_1 \cong E_{q^2}$ and $A_1 \cap S_2 \leq A$, $B_1 \cap S_2 \leq B$. Since $A_1/A_1 \cap S_2 \cong A_1S_2/S_2 \leq S_1/S_1 \leq E_4$ and by the hypothesis (*), $q \geq 4$, we have $|A_1 \cap S_2| \geq q^2/4$. Therefore, if $A_1 \cap S_2 \leq Z(S)$, then q=4, $A_1 \cap S_2 = Z(S)$ and $T = A_1S$ and so $Z(S) \leq Z(T)$, contrary to Lemma 2.9. Hence $A_1 \cap S_2 \nleq Z(S)$. Similarly $B_1 \cap S_2 \nleq Z(S)$.

Let $x \in A_1 \cap S_2 - Z(S)$. Then $x \in A^y \leq S$ for each $y \in A_1$ and so A_1 normalizes A. Hence A_1 normalizes B. Similarly B_1 normalizes A and B. From this $T = \langle A_1, B_1 \rangle S \trianglerighteq A$, B and so $S_1 N^\omega \leq K$. Hence $S_1 N^\omega / N^\omega \cong S_1 / S_2 \cong Z_2$, so that there exists a field automorphism t of order 2 such that $T = \langle t \rangle S \trianglerighteq S$. Since $S_1 \leq T$ and $S_1 \cong S$, we have $S_1 = S$ by Lemma 2.9, a contradiction. Thus (i) holds.

Let $\delta \in F(S_0) - \{\gamma\}$. Then $S_0 \leq N_\delta^{\gamma}$. Since $N_\delta^{\gamma} \geq N^{\gamma} \cap N^{\delta}$ and $|N_\delta^{\gamma}/N^{\gamma} \cap N^{\delta}|$ is odd by (i), $S_0 \leq N^{\gamma} \cap N^{\delta} \leq N^{\delta}$. Hence $F(S_0) \subseteq \{\delta \in \Omega \mid S_0 \leq N^{\delta}\}$. The converse implication is clear. Thus (ii) holds.

- (3.4) The following hold.
- (i) $N_G(B)^{F(B)}$ is doubly transitive.
- (ii) If $F(A) \neq \{\alpha, \beta\}$, $N_G(A)^{F(A)}$ is doubly transitive.

Proof. Let E=A or B. By (3.3) (i), S is a Sylow 2-subgroup of N_{β}^{ω} . Therefore, by a similar argument as in (3.1), $N_{G_{\beta}}(E)$ is transitive on $F(E)-\{\beta\}$. Suppose $N_G(E)^{F(E)}$ is not doubly transitive. Then, $F(E)=\{\alpha,\beta\}$ by (3.1) and (3.3). Since $N_{N^{\omega}}(E)$ acts on F(E) and fixes $\{\alpha\}$, we have $N_{N^{\omega}}(E) \leq N_{\beta}^{\omega}$. On the other hand $N_{N^{\omega}}(E)$ is a maximal subgroup of N^{ω} by (2.5) (vi). Hence $N_{N^{\omega}}(E)=N_{\beta}^{\omega}$. If E=B, then $N_{\beta}^{\omega} \trianglerighteq A$, a contradiction. Thus E=A and (3.4) follows.

- (3.5) The following hold.
- (i) Put $M=(N_N\alpha(A))'$. Then F(M)=F(A).
- (ii) $N_{\beta}^{\alpha} = N_{\gamma}^{\alpha}$ for each $\gamma \in F(A) \{\alpha\}$.

Proof. Suppose $F(M) \neq F(A)$. Then $M \nleq N_G(A)_{F(A)}$. It follows from (3.4) that $F(A) \neq \{\alpha, \beta\}$ and $N_G(A)^{F(A)}$ is doubly transitive. Moreover by (2.5) (vii) $N_{G_{CM}}(A)^{F(A)} \geq M^{F(A)} \simeq PSL(2,q)$ as q > 2. By Lemma 2.1, r = 1 and either (1) q = 1

4 and $N_G(A)^{F(A)} = A_6$ or S_6 or (2) $|F(A)| = q^2$.

If (1) holds, $|F(A)|=1+|N_{N^{\alpha}}(A)$: $N_{\beta}^{\alpha}|=1+2^{6}\cdot 3\cdot 5/|N_{\beta}^{\alpha}|=6$ and so $|N_{\beta}^{\alpha}|=2^{6}3$. Hence $|\Omega|=1+|N^{\alpha}$: $N_{\beta}^{\alpha}|=1+2^{6}\cdot 3^{2}\cdot 5\cdot 7/2^{6}\cdot 3=2\cdot 53$. Let z be an involution of $N^{\alpha}\cap N^{\beta}$. Then, by (2.5) (v) and (3.3), $z^{G}\cap G_{\alpha}=z^{G_{\alpha}}$, so that $C_{G}(z)^{F(z)}$ is transitive by a Witt's theorem. On the other hand $|F(z)|=1+\frac{|C_{N^{\alpha}}(z)|\times |I(N_{\beta}^{\alpha})|}{|N_{\beta}^{\alpha}|}=1+2^{6}\cdot 3^{3}/2^{6}\cdot 3=10$. In particular $|C_{G}(z)|$ is divisible by

5. Let R be a Sylow 5-subgroup of $C_G(z)$. Then $|\Omega|$, $|G_{\alpha}: N^{\alpha}|$ and $|N_{\beta}^{\alpha}|$ are not divisible by 5 and so $F(R) = \{\gamma\}$ and $R \leq N^{\gamma}$ for some $\gamma \in \Omega$. Therefore $\langle z \rangle \times R \leq N^{\gamma}$ by (3.3) (ii). But $|C_N^{\gamma}(z)| = 2^6$ by (2.5) (v). This is a contradiction.

If (2) holds, $q^2 = |F(A)| = 1 + |N_{N^{\alpha}}(A) : N_{\beta}^{\alpha}|$, hence $|N_{\beta}^{\alpha}| = (q-1)q^3/(3,q-1)$. From this $|\Omega| = 1 + |N^{\alpha} : N_{\beta}^{\alpha}| = 1 + (q-1)(q+1)(q^2+q+1) = q(q^3+q^2-1)$. Hence $|G|_2 = |\Omega|_2 \times |G_{\alpha}|_2 = q \times |G_{\alpha} : K| \times |K|_2$. On the other hand $|N_G(A)|_2 = |F(A)| \times |N_{G_{\alpha}}(A)|_2 = q^2|K|_2$ because $K = N_{G_{\alpha}}(A)N^{\alpha}$. Therefore $q^2|K|_2 = |N_G(A)|_2 \le |G|_2 = q \times |G_{\alpha} : K| \times |K|_2 \le 2q|K|_2$ and we obtain q = 2, contrary to the hypothesis (*). Thus we have (i).

Let $\gamma \in F(A) - \{\alpha\}$. By (i) and (3.4) (ii), $N_{\gamma}^{\alpha} \succeq A$ and $M \leq N_{\gamma}^{\alpha}$. Since $N_{N^{\alpha}}(A)/M \simeq Z_k$, where k = (q-1)/(3,q-1) and $|N_{\beta}^{\alpha}/M| = |N_{\gamma}^{\alpha}/M|$, we have $N_{\beta}^{\alpha} = N_{\gamma}^{\alpha}$. Thus (ii) holds.

(3.6) $B \notin A^G$ and $G_{\alpha} = K$.

Proof If $B \in A^c$, by (3.4) (i), there is an element $g \in G_{\alpha\beta}$ such that $B = A^g$. Hence $N_{\beta}^{\alpha} = g^{-1}N_{\beta}^{\alpha}g \geq g^{-1}Ag = B$ and so M normalizes $\langle A, B \rangle = S$, a contradiction.

- (3.7) Set $L=(N_N\alpha(B))'$. Then r=1, $L_{F(B)}=B$, $L^{F(B)}=L/B \simeq PSL(2,q)$, $L_B=S$ and one of the following holds.
 - (i) $C_G(N^{\omega})=1$, |F(B)|=6, q=4 and $N_G(B)^{F(B)}=A_6$ or S_6 .
 - (ii) $C_G(N^{\omega}) \leq Z_{q-1}$, $|F(B)| = q^2$ and $N_G(B)^{F(B)}$ has a regular normal subgroup.

Proof. By (3.4) (i), $N_G(B)^{F(B)}$ is doubly transitive. If $L \leq G_{\alpha\beta}$, then $L \leq N_{\beta}^{\alpha}$ and so $B \leq L = L' \leq (N_{\beta}^{\alpha})' = M$. Therefore L = M and $M \geq \langle A, B \rangle = S$, a contradiction. Hence $L \nleq G_{\alpha\beta}$. From this $N_{G\alpha}(B)^{F(B)} \geq L^{F(B)} \simeq PSL(2,q)$ and (3.7) follows from Lemmas 2.1 and 2.2.

(3.8) If (i) of (3.7) occurs, then we have (ii) or (iii) of the theorem.

Proof. Since $|F(B)| = 1 + |N_{N^{\alpha}}(B): N_{N^{\alpha}_{\beta}}(B)| = 6$ and $|N^{\alpha}_{\beta}: N_{N^{\alpha}_{\beta}}(B)| = |N^{\alpha}_{\beta}: N_{N^{\alpha}_{\beta}}(B)| = |N^{\alpha}_{\beta}: N_{N^{\alpha}_{\beta}}(B)| = |N^{\alpha}_{\beta}: N_{N^{\alpha}_{\beta}}(B)| = |N^{\alpha}: N^{\alpha}_{\beta}| = 26 \cdot 3 \cdot 5$. Hence $N^{\alpha}_{\beta} = N_{N^{\alpha}}(A)$ and so $|\Omega - \{\alpha\}| = |N^{\alpha}: N^{\alpha}_{\beta}| = 21$. By (3.6), $PSL(3,4) \leq (G_{\alpha})^{\Omega - \{\alpha\}} \leq P\Gamma L(3,4)$ in their natural doubly transitive permutation representation and hence (3.8) follows from Satz 7 of [7].

In the rest of this paper, we consider the case (ii) of (3.7). From now on

we assume the following.

Hypothesis (**): r=1, $q=2^n>2$, $|F(B)|=q^2$ and $N_G(B)^{F(B)}$ is a doubly transitive permutation group with a regular normal subgroup.

- (3.9) The following hold.
- (i) $N_{\beta}^{\alpha} = N^{\alpha} \cap N^{\beta} = M \text{ and } |N_{\beta}^{\alpha}| = (q-1)(q+1)q^3$.
- (ii) n is odd.
- (iii) |F(A)| = q.

Proof. Since $q^2 = |F(B)| = 1 + |N_{N^{\alpha}}(B) \colon N_{N^{\alpha}_{\beta}}(B)|$ by (3.7), we have $|N_{N^{\alpha}_{\beta}}(B)| = |N_{N^{\alpha}}(B)|/(q^2-1) = (q-1)q^3/(3,q-1)$. As $N^{\alpha}_{\beta} \trianglerighteq A$, $N_{N^{\alpha}_{\beta}}(B) = N_{N^{\alpha}_{\beta}}(\langle A,B \rangle) = N_{N^{\alpha}_{\beta}}(S)$. On the other hand, from (2.5) (vi) $|N_{N^{\alpha}_{\beta}}(S)| = |N^{\alpha}_{\beta} \colon M| \times |N_{M}(S)| = |N^{\alpha}_{\beta} \colon M| \times (q-1)q^3$. Therefore (3, q-1)=1 and $|N^{\alpha}_{\beta} \colon M| = 1$. Hence $N^{\alpha}_{\beta} = M$ and n is odd. By (3.3) (i) and (2.5) (vii), $N^{\alpha}_{\beta} = N^{\alpha} \cap N^{\beta}$. Hence $F(A) = 1 + |N_{N^{\alpha}}(A)|/|N^{\alpha}| = q$. Thus we have (3.9).

- (3.10) Put $m = |G_{\alpha}: N^{\alpha}|$. Then the following hold.
- (i) m is odd and S is a Sylow 2-subgroup of G_{α} .
- (ii) $|\Omega| = q^3$ and $|G| = q^6(q-1)^2(q+1)(q^2+q+1)m$.

Proof. Set $C^{\alpha} = C_G(N^{\alpha})$. By (3.6), (3.9) (ii) and Lemma 2.6, $|G_{\alpha}/C^{\alpha}N^{\alpha}|$ is odd. Since $C^{\alpha} \cap N^{\alpha} = 1$, $m = |G_{\alpha}/C^{\alpha}N^{\alpha}| \cdot |C^{\alpha}|$ and so m is odd by Lemma 2.2. Therefore S is a Sylow 2-subgroup of G_{α} and so (i) holds.

Since $|\Omega| = 1 + |N^{\alpha}|$; $N_{\beta}^{\alpha}|$, $|\Omega| = q^{3}$ by (3.9). From this $|G| = |\Omega| \times |G_{\alpha}|$ $= q^{3}m|N^{\alpha}| = q^{6}(q-1)^{2}(q+1)(q^{2}+q+1)m$. Thus (ii) holds.

(3.11) Let z be an involution of G_{ω} . Then $|F(z)| = q^2$. In particular B is semi-regular on $\Omega - F(B)$.

Proof. By (3.10) (ii), z is contained in N^{α} . By (2.5) (vii) and (3.9) (ii), $|I(N^{\alpha}_{\beta})| = |N^{\alpha}_{\beta}: N_{N^{\alpha}_{\beta}}(S)| \times (q^2 - q) + q^2 - 1 = (q + 1) (q^2 - q) + q^2 - 1 = (q - 1) (q + 1)^2$, hence $|F(z)| = 1 + q^3(q - 1) \times (q - 1) (q + 1)^2/q^3(q - 1) (q + 1) = q^2$ by Lemma 2.3. As $|F(B)| = q^2$, B is semi-regular on $\Omega - F(B)$.

- (3.12) Set $\Delta = F(B)$. Then the following hold.
- (i) $G_{\Delta} \triangleright B$ and B is a Sylow 2-subgroup of G_{Δ} .
- (ii) $G(\Delta) = N_G(B)$ and $|N_G(B)| = q^5(q-1)^2(q+1)m$.

Proof. Since $N_{N^{\alpha}}(B) \leq N^{\alpha}(\Delta) \neq N^{\alpha}$ and $N_{N^{\alpha}}(B)$ is a maximal subgroup of N^{α} , we have $N_{N^{\alpha}}(B) = N^{\alpha}(\Delta)$. By (3.7), B is a normal Sylow 2-subgroup of $(N^{\alpha})_{\Delta}$ and (i) follows immediately from (3.10) (i).

Since $G(\Delta) \trianglerighteq G_{\Delta}$ and B is a characteristic subgroup of G_{Δ} by (i), we have $G(\Delta) \le N_G(B)$. The converse implication is clear. Thus $G(\Delta) = N_G(B)$. By (3.6), $G_{\alpha} = N_{G\alpha}(B)N^{\alpha}$ and so $|N_{G\alpha}(B):N_{N\alpha}(B)| = |G_{\alpha}:N^{\alpha}| = m$. Hence $|N_G(B)|$

- $= |F(B)| \times |N_{Ga}(B)| = q^2 m \times |N_{Na}(B)| = q^5 (q-1)^2 (q+1) m$. Thus we have (ii).
- (3.13) Let T_1 be a Sylow 2-subgroup of $N_G(B)$ and T_2 a Sylow 2-subgroup of $N_G(T_1)$. Then $T_1 \neq T_2$. Let x be an element of $T_2 T_1$ and set $U = BB^x$. Then $U = E_{q^4}$ and for each $\gamma \in \Omega$, $U_{\gamma} = E_{q^2}$, $U_{\gamma} \in B^G$, $\gamma^U = F(U_{\gamma})$ and $|\gamma^U| = q^2$. Moreover $U_{\gamma} = U_{\delta}$ for all $\delta \in \gamma^U$.

Proof. If $B \cap B^x \neq 1$, by (3.11) and (3.12) (i), we have $B = B^x$ and so $x \in T_1$, contrary to the choice of x. Hence $B \cap B^x = 1$. As $T_1 \triangleright B$ and $T_1 = T_1^x \triangleright B^x$, $U = B \times B^x$ and $U \simeq E_a^a$.

Let $\gamma \in \Omega$ and put $D = U_{\gamma}$. Then $F(D) \supseteq \gamma^{U}$ as U is abelian. Therefore $|U:D| = |\gamma^{U}| \le q^{2}$ by (3.11), while $|D| \le q^{2}$ because D is an elementary abelian subgroup of N^{γ} . Hence $D \cong E_{q^{2}}$ and $|F(D)| = |\gamma^{U}| = q^{2}$. By (3.6) and (3.9) (iii), $D \in B^{G}$. Since $U_{\gamma} \le U_{\delta} \cong E_{q^{2}}$ for each $\delta \in \gamma^{U}$, we have $U_{\gamma} = U_{\delta}$.

- (3.14) Let U be as in (3.13). Let $\Gamma = \{X_i | 1 \le i \le s\}$ be the set of U-orbits on Ω and set $B_i = U_{\gamma}$ for $\gamma \in X_i$ with $1 \le i \le s$. Then the following hold.
 - (i) $s=q, \Omega = \bigcup_{i=1}^{q} X_i$ and $|X_i| = q^2$.
 - (ii) B_i is semi-regular on ΩX_i and $B_i \cap B_j = 1$ for each i, j with $i \neq j$.

Proof. By (3.10) (ii) and (3.13), $|X_i| = q^2$ and $|\Omega| = q^3$, hence s = q. Cleary $\Omega = \bigcup_{i=1}^{q} X_i$. Thus we have (i).

By (3.13) (ii), B_i is conjugate to B for each i. Hence B_i is semi-regular on $\Omega - X_i$ by (3.11). Therefore, if $B_i \cap B_j \neq 1$, then $X_i = F(B_i) = F(B_j) = X_j$, so that i = j. Thus we have (ii).

(3.15) Set $Y = \{B_i | 1 \le i \le q\}$ and let $D \in Y$. Then $N_G(D) \le N_G(U)$ and U is a unique Sylow 2-subgroup of $C_G(D)$.

Proof. Suppose $N_G(D) \leq N_G(U)$. Since $[N_G(D), U] \leq U$, there exist $g \in N_G(D)$ and $B_i \in Y - \{D\}$ such that $(B_i)^g \leq U$. Set $D_1 = (B_i)^g$. Since $[D_1, D] = [B_i, D]^g = 1$, it follows from (3.10) (i) that $F(D_1) \cap F(D) = \phi$ and so D is regular on $F(D_1)$ by (3.11). Hence $F(D_1) = \gamma^D = \gamma^U$ for $\gamma \in F(D_1)$. By (3.14), $F(D_1) = F(B_j)$ for some $B_j \in Y$. By (3.12) (i), $D_1 = B_j$, so that $D_1 \leq U$, a contradiction. Thus we have $N_G(D) \leq N_G(U)$. Hence $U \leq 0_2(C_G(D))$. Since $U \leq C_G(B)$, $C_G(B)$ is transitive on F(B). Hence $|C_G(B)|_2 = |F(B)| \times |C_{G_G}(B)|_2 = q^4$ by (3.10) (i). Therefore $|C_G(D)|_2 = q^4$ as $D \in B^G$ and so U is a unique Sylow 2-subgroup of $C_G(D)$.

(3.16)
$$|N_G(U)| = q^6(q-1)^2(q+1)m$$
.

Proof. Let S_1 be a Sylow 2-subgroup of $N_G(U)$ and S_2 be a Sylow 2-subgroup of $N_G(S_1)$. Suppose $S_1 \neq S_2$ and let w be an element of $S_2 - S_1$.

Set $\gamma = \alpha^{w^{-1}}$. Then $(U_{\gamma})^w \in B^c$ by (3.13) and $(U_{\gamma})^w \leq (G_{\gamma})^w = G_{\alpha}$. Since U and U^w are normal subgroups of S_1 , $\langle B, (U_{\gamma})^w \rangle$ is 2-subgroup of $G_{\alpha} \cap S_1 = S$. Hence $B = (U_{\gamma})^w$ by (2.5) (iii) and (3.6). Therefore $U, U^w \leq C_G(B)$, so that $U = U^w$ by (3.15) and $w \in S_2 \cap N_G(U) = S_1$, contrary to the choice of w. Hence $S_1 = S_2$ and S_1 is a Sylow 2-subgroup of G. It follows from (3.10) that $|S_1| = q^6$.

We now consider the action of $N_G(U)$ on $\Gamma = \{X_i | 1 \le i \le q\}$. Set $\Delta = F(B)$. By (3.12), $S_1(\Delta) \le G(\Delta) = N_G(B)$ and $|N_G(B)|_2 = q^5$ and so $|S_1: S_1(\Delta)|$ is divisible by q. Hence S_1 is transitive on Γ and so $N_G(U)$ is transitive on Γ . Therefore $|N_G(U)| = q \times |N_G(U) \cap N_G(B)| = q \times |N_G(B)| = q^6(q-1)^2(q+1)m$ by (3.12) (ii) and (3.15).

(3.17) Let R be a cyclic subgroup of N_{β}^{α} of order q+1. Then |F(R)|=q and R is semi-regular on $\Omega - F(R)$.

Proof. Since $N_{\beta}^{\alpha}/A \simeq PSL(2,q)$, there exists a cyclic subgroup R of N_{β}^{α} of order q+1. Let $Q \neq 1$ be a subgroup of R. Then, by Lemma 2.7 $|F(Q)| = 1 + \frac{|N_{N}^{\alpha}(Q)| \times |N_{\beta}^{\alpha}|}{|N_{\beta}^{\alpha}|} = 1 + \frac{2(q-1)(q+1)}{2(q+1)} = q$. Thus (3.17) holds.

(3.18) Let
$$V \in U^G$$
. If $V \neq U$, then $|F(U_\gamma) \cap F(V_\gamma)| = 1$ or q for $\gamma \in \Omega$.

Proof. Suppose $\gamma \neq \delta \in F(U_{\gamma}) \cap F(V_{\gamma})$. By (3.13), $U_{\gamma}, V_{\gamma} \in B^{c}$ and so by (3.3) (ii), $U_{\gamma}, V_{\gamma} \leq N^{\gamma} \cap N^{\delta}$. Set $H = 0_{2}(N_{\delta}^{\gamma})$. Then, by (3.6) and (3.9) (i), $U_{\gamma}H$ and $V_{\gamma}H$ are Sylow 2-subgroups of N_{δ}^{γ} . If $U_{\gamma}H = V_{\gamma}H$, then $U_{\gamma} = V_{\gamma}$ and $U, V \leq C_{G}(U_{\gamma})$. By (3.15) we have U = V, a contradiction. Therefore $U_{\gamma}H \neq V_{\gamma}H$. Set $X = \langle U_{\gamma}, V_{\gamma} \rangle$. Then $XH = N_{\delta}^{\gamma}$ because $N_{\delta}^{\gamma}/H \approx PSL(2,q)$, $q = 2^{n}$, and PSL(2,q) is generated by its two distinct Sylow 2-subgroups. Hence $N_{\delta}^{\gamma} \geq X \cap H$. By (2.5) (iii), $E_{q} \approx U_{\gamma} \cap H \leq X \cap H$. Since N_{δ}^{γ} acts irreducibly on H by (2.5) (vii), $X \cap H = H$ and hence $H \leq X$. From this $X = N_{\delta}^{\gamma}$. Thus, by (3.5)(i) and (3.9), $|F(U_{\gamma}) \cap F(V_{\gamma})| = |F(X)| = |F(N_{\delta}^{\gamma})| = q$.

- (3.19) Let Q be a cyclic subgroup of $N_{N^{\alpha}}(B)$ of order q+1, $V \in U^{G}$ and set $P=N_{Q}(V)$. Then the following hold.
 - (i) Q is semi-regular on $\Omega F(Q)$ and |F(Q)| = q.
 - (ii) If $P \neq 1$ and $V \geq D \in B^c$, then P normalizes D and $|F(P) \cap F(D)| = 1$.

Proof. Since $N_{N^{\alpha}}(B)/B \cong PSL(2,q)$, there exists a cyclic subgroup Q of $N_{N^{\alpha}}(B)$ of order q+1. Clearly Q is a cyclic Hall subgroup of N^{α} , hence Q is conjugate to R defined in (3.17). By (3.17), Q is semi-regular on $\Omega - F(Q)$ and |F(Q)| = q. Thus (i) holds.

Suppose $P \neq 1$ and let $\gamma \in F(P)$. Then, by (3.9) (i), $P \leq N^{\gamma}$ and hence P normalizes $N^{\gamma} \cap V$. By (3.10) (i) and (3.13), $N^{\gamma} \cap V = V_{\gamma}$ and $V_{\gamma} \in B^{c}$ and so $P \leq N_{N}^{\gamma}(V_{\gamma})$ and $N_{G}(V_{\gamma})^{F(V_{\gamma})} \simeq N_{G}(B)^{F(B)}$. Hence we have $F(P) \cap F(V_{\gamma}) = \{\gamma\}$ by (3.7). As |F(P)| = q by (i), (ii) holds.

(3.20) Let $V \in U^c - \{U\}$ and let Q be a cyclic subgroup of $N_{N^c}(B)$ of order q+1. Then $N_o(V)=1$.

Proof. Set $P=N_Q(V)$ and assume $P \neq 1$. Let $\gamma \in \Omega - F(Q)$ and set $B_1 = U_\gamma$, $B_2 = V_\gamma$. By (3.15), Q normalizes U and so by (3.19) Q normalizes B_1 . Similarly P normalizes B_2 . Therefore $F(B_1) \cap F(B_2) \geq \gamma^P \neq \{\gamma\}$ as $P \neq 1$ and P is semi-regular on $\Omega - F(Q)$. By (3.18), we have $|F(B_1) \cap F(B_2)| = q$. Since P acts on $F(B_1) \cap F(B_2)$ and |P| divides q+1, P fixes at least two points of $F(B_1) \cap F(B_2)$, which contradicts to (3.19).

(3.21) Let T be a Sylow 2-subgroup of $N_G(U)$. Then, for each $V \in U^G - \{U\}$, $|T: N_T(V)|$ is divisible by q.

Proof. Suppose $|T:N_T(V)| < q$ and set $T_1 = N_T(V)$. Then $|T_1| > q^5$ as $|T| = q^6$ by (3.16). Hence $q > |T_1V: T_1| = |V: V \cap T_1|$ and so $|V \cap T_1| > q^3$. Therefore, for each $B_1 \in B^G$ such that $B_1 \le V$, $q > |B_1(V \cap T_1): V \cap T_1| = |B_1: B_1 \cap T_1| = |B_1: B_1 \cap T|$. Hence $|B_1 \cap T| > q$. Let $\gamma \in F(B_1 \cap T)$ and set $B_2 = U_\gamma$. Then $\langle B_1 \cap T, B_2 \rangle \le N^\gamma \cap T$. As $|B_1 \cap T| > q$ by (2.5) (iii), $B_1 \cap T \cap B_2 \ne 1$. By (3.11), $\langle B_1 \cap T, B_2 \rangle \le G_{F(B_2)}$. By (3.12) (i), we have $B_1 \cap T \le B_2$, so that $F(B_1) = F(B_1 \cap T) = F(B_2)$. Again, by (3.12) (i), $B_1 = B_2$ and so $U, V \le C_G(B_2)$. Therefore U = V by (3.15), a contradiction.

(3.22) Put $W=U^{G}$. Then $|W|=q^{2}+q+1$ and G^{W} is doubly transitive.

Proof. Set $H=N_G(U)$. By (3.10) (ii) and (3.16), $|W|=|G:H|=q^2+q+1$. Let $V \in W-\{U\}$ and let Q be as defined in (3.20). By (3.15), $Q \leq H$ and by (3.20), Q acts semi-regularly on $W-\{U\}$. Hence $|V^H|$ is divisible by q+1. On the other hand, by (3.21), $|V^H|$ is divisible by q and so we have $|V^H|=q(q+1)$. Thus (3.22) holds.

(3.23) $G_w \cap U \neq 1$.

Proof. Suppose $G_W \cap U=1$. Since $G \trianglerighteq G_W$ and $H \trianglerighteq U$, $[G_W, U] \le G_W \cap U=1$. Hence $G_W \le C_G(U)$. By (3.15), U is a unique Sylow 2-subgroup of $C_G(U)$ and so $G_W \le 0(G)$. On the other hand, as $|\Omega|$ is even and G is doubly transitive on Ω , we have 0(G)=1. Therefore $G_W=1$ and hence G acts faithfully on W. Since U is not semi-regular on $W-\{U\}$, by [4], $PSL(n_1,q_1) \le G \le P\Gamma L(n_1q_1)$ for some $n_1 \ge 3$ and q_1 with q_1 even. As $|W| = q^2 + q + 1 = q_1^{n_1-1} + \cdots + q_1 + 1$, $q(q+1) = q_1(q_1^{n_1-2} + \cdots + 1)$ and so $q = q_1$ and $n_1 = 3$. Therefore $PSL(3,q) \le G \le P\Gamma L(3,q)$. But $|P\Gamma L(3,q)|_2 = q^3$ by (3.9) (ii) and Lemma 2.6. Hence $q^3 = q^6$ by (3.10) (ii). This is a contradiction. Thus $G_W \cap U \ne 1$.

(3.24) G^{Ω} has a regular normal subgroup.

Proof. Since $G_w \leq N_c(U)$, $G_w \cap U$ is a normal subgroup of G_w . As $G_w \cap U$

 $U \le 0_2(G_W)$ and $G \ge G_W$, $0_2(G_W)$ is a normal subgroup of G. Let E be a minimal normal subgroup of G contained in $0_2(G_W)$. Then E is an elementary abelian 2-subgroup of G and acts regularly on Ω .

(3.25) If (ii) of (3.7) occurs, we have (i) of the theorem.

Proof. By (3.9), (3.10) and (3.24), G has a regular normal subgroup E of order q^3 , where $q=2^n$ and $n\equiv 1\pmod 2$ and N^{α} is transitive on $\Omega-\{\alpha\}$. Moreover $G=G_{\alpha}E$ and G_{α} is isomorphic to a subgroup of GL(E). As in the proof of Lemma 2.1, we may assume $\Omega=E, \alpha=0\in E$ and $GL(E)E\leq \mathrm{Sym}(\Omega)$. There exists a subgroup H of GL(E) such that $H\simeq \Gamma L(3,q)$ and $HE\simeq A\Gamma L(3,q)$. Let L be a normal subgroup of H isomorphic to SL(3,q). Since $q=2^n$ and $n\equiv 1\pmod 2$, L is isomorphic to PSL(3,q).

By (3.9) (i) and by the structure of $A\Gamma L(3,q)$, there exist an automorphism f from N^{σ} to L and $g \in \operatorname{Sym}(\Omega)$ such that $\alpha^g = \alpha$ and $(\beta^x)^g = (\beta^g)^{f(x)}$ for each $\beta \in \Omega - \{\alpha\}$ and $x \in N^{\sigma}$. From this $(\beta^g)^{g^{-1}xg} = (\beta^x) = (\beta^g)^{f(x)}$ for each $\beta \in \Omega - \{\alpha\}$ and so $g^{-1}xg = f(x)$. Hence $g^{-1}N^{\sigma}g = L$.

Set $X=N(L)\cap \operatorname{Sym}(\Omega)$ and $D=C_X(L)$. Then D is semi-regular on $\Omega-\{\alpha\}$ as L is transitive on $\Omega-\{\alpha\}$. Put T=f(A). Then $N_L(T)^{F(T)}\cong Z_{q-1}$ and it is semi-regular on $F(T)-\{\alpha\}$ by (3.5) (i) and (3.9) (i), (iii). It follows that $D\leq Z_{q-1}$. Since X/DL is isomorphic to a subgroup of the outer automorphism group of PSL(3,q) and f(A) and f(B) are not conjugate in $\operatorname{Sym}(\Omega)$ by the hypothesis (**) and (3.9) (ii), it follows from Lemma 2.6 (i) that $|X/DL| \leq n$. Hence $|X| \leq n(q-1)|L| = |\Gamma L(3,q)|$. On the other hand $\Gamma L(3,q) \cong H < X$ and so X=H. Therefore $g^{-1}G_{\alpha}g \trianglerighteq g^{-1}N^{\alpha}g = L$ and $g^{-1}G_{\alpha} \leq X = H$. Thus we have (3.25).

The conclusion of the theorem now follows immediately from steps (3.2), (3.7), (3.8) and (3.25).

OSAKA KYOIKU UNIVERSITY

References

- [1] D. Gorenstein: Finite groups, Harper and Row, New York, 1968.
- [2] Y. Hiramine: On doubly transitive permutation groups, Osaka J. Math. 15 (1978), 613-631.
- [3] Y. Hiramine: On some doubly transitive permutation group in which socle(G_{α}) is nonsolvable, Osaka J. Math. 16 (1979), 797-816.
- [4] M. O'Nan: A characterization of $L_n(q)$ as a permutation group, Math. Z. 127 (1972), 301-314.
- [5] M. O'Nan: Normal structure of one-point stabilizer of a doubly transitive permutation group II, Trans. Amer. Math. Soc. 214 (1975), 43-74.
- [6] R. Steinberg: Automorphism of finite linear groups, Canad. J. Math. 12 (1960),

606-615.

[7] H. Zassenhaus: Über transitive Erweiterungen gewisser Gruppen aus Automorphismen endlicher mehrdimensionaler Geometrien, Math. Ann. 111 (1935), 748-759.