

Title	The dual knots of doubly primitive knots
Author(s)	Saito, Toshio
Citation	Osaka Journal of Mathematics. 2008, 45(2), p. 403-421
Version Type	VoR
URL	https://doi.org/10.18910/9952
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

THE DUAL KNOTS OF DOUBLY PRIMITIVE KNOTS

TOSHIO SAITO

(Received October 19, 2006, revised April 4, 2007)

Abstract

For certain (1, 1)-knots in lens spaces with a longitudinal surgery yielding the 3-sphere, we determine a non-negative integer derived from its (1, 1)-splitting. The value will be an invariant for such knots. Roughly, it corresponds to a 'minimal' self-intersection number when one consider projections of a knot on a Heegaard torus. As an application, we give a necessary and sufficient condition for such knots to be hyperbolic.

1. Introduction

A lens space L(p,q) is a 3-manifold obtained by the p/q-surgery on a trivial knot in the 3-sphere S^3 and is homeomorphic neither to S^3 nor to $S^2 \times S^1$. Throughout this paper, -L(p,q) denotes the same manifold as L(p,q) with reversed orientation.

A knot K in a closed orientable 3-manifold M is called a (1, 1)-knot if $(M, K) = (V_1, t_1) \cup_P (V_2, t_2)$, where $(V_1, V_2; P)$ is a genus one Heegaard splitting and t_i is a trivial arc in V_i (i = 1 and 2). (An arc t properly embedded in a solid torus V is said to be trivial if there is a disk D in V with $t \subset \partial D$ and $\partial D \setminus_t \subset \partial V$.) Set $W_i = (V_i, t_i)$ (i = 1 and 2). We call the triplet $(W_1, W_2; P)$ a (1, 1)-splitting of (M, K). We regard P as a torus with two specified points $P \cap K$. Let E_1 (E_2 resp.) be a meridian disk of V_1 (V_2 resp.) disjoint from t_1 (t_2 resp.). It is known that such a disk is unique up to isotopy on $V_1 \setminus_t V_2 \setminus_t V_2$ resp.) (cf. [13, Lemma 3.4]). A (1, 1)-splitting $(W_1, W_2; P)$ is said to be monotone if the signed intersection points of ∂E_1 and ∂E_2 have the same sign for some orientations of ∂E_1 and ∂E_2 .

Berge's work [1] indicates that it is very important to study (1, 1)-knots. Which knots in S^3 admit Dehn surgeries yielding lens spaces? This problem is still open. In [1], Berge introduced the concept of doubly primitive knots and gave an integral surgery to obtain a lens space from any doubly primitive knot. In this paper, we call such a surgery *Berge's surgery*. He also gave a list of doubly primitive knots in S^3 (cf. Section 6). It is expected that Berge's list would be complete.

If a lens space M comes from a Dehn surgery on a knot K in S^3 , then there is the dual knot K^* in M such that a Dehn surgery on K^* yields S^3 . It has been proved in [1] that when Berge's surgery on a doubly primitive knot yields a lens space, its

²⁰⁰⁰ Mathematics Subject Classification. Primary 57N10; Secondary 57M25. The author is partially supported by JSPS Research Fellowships for Young Scientists.

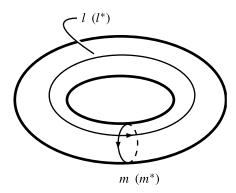


Fig. 1.

dual knot is isotopic to a (1, 1)-knot defined as follows.

DEFINITION 1.1. Let V_1 be a standard solid torus in S^3 , m a meridian of V_1 and l a longitude of V_1 such that l bounds a disk in $\operatorname{cl}(S^3 \setminus V_1)$. We fix an orientation of m and l as illustrated in Fig. 1. By attaching a solid torus V_2 to V_1 so that $[\bar{m}] = p[l] + q[m]$ (p>0) in $H_1(\partial V_1;\mathbb{Z})$, we obtain a lens space L(p,q), where \bar{m} is a meridian of V_2 . The intersection points of m and \bar{m} are labelled P_0,\ldots,P_{p-1} successively along the positive direction of m. For an integer u with 0 < u < p, let t_i^u be a simple arc in D_i joining P_0 to P_u (i=1,2). Then the notation K(L(p,q);u) denotes the knot $t_1^u \cup t_2^u$ in L(p,q).

Set $W_i = (V_i, t_i^u)$ (i = 1, 2), where V_i and t_i^u are those in Definition 1.1. Then the pair of W_1 and W_2 gives a (1, 1)-splitting of K = K(L(p, q); u) which is monotone. We will prove that any (1, 1)-splitting of (L(p, q), K) is monotone if K admits a longitudinal surgery yielding S^3 (see Lemma 4.1).

In this paper, we prepare the following notations.

DEFINITION 1.2. Let p and q be coprime integers with p > 0. Let $\{u_j\}_{1 \le j \le p}$ be the finite sequence such that $0 \le u_j < p$ and $u_j \equiv q \cdot j \pmod{p}$. For an integer u with 0 < u < p, $\Psi_{p,q}(u)$ denotes the integer j with $u_j = u$, and $\Phi_{p,q}(u)$ denotes the number of elements of the following set:

$$\{u_i \mid 1 \le j < \Psi_{p,q}(u), u_i < u\}.$$

Also, $\tilde{\Phi}_{p,q}(u)$ denotes the following:

$$\begin{split} \tilde{\Phi}_{p,q}(u) &= \min \{ \Phi_{p,q}(u), \ \Phi_{p,q}(u) - \Psi_{p,q}(u) + p - u, \\ \Psi_{p,q}(u) - \Phi_{p,q}(u) - 1, \ u - \Phi_{p,q}(u) - 1 \}. \end{split}$$

In Definition 1.1, let t_1'''' (t_2'''' resp.) be a projection of t_1''' (t_2'''' resp.) on P with $t_1'''' \subset \partial D_1$ ($t_2'''' \subset \partial D_2$ resp.). Set $t_1''''' = \operatorname{cl}(\partial D_1 \setminus t_1''')$ and $t_2''''' = \operatorname{cl}(\partial D_2 \setminus t_2''')$. Each of t_1'''' and t_2'''''' resp.) are called *monotone projections* of t_1'''' (t_2'''''' resp.). There are four projections of K = K(L(p,q);u): $t_1''' \cup t_2''''', t_1'''' \cup t_2'''', t_1''''' \cup t_2'''', t_2'''''', t_2'''''', t_2'''''', t_2'''''', t_2'''''', t_2''''', t_2'''''', t_2''''', t_2''''', t_2''''', t_2''''', t_2'''''', t_2''''', t_2''''', t_2''''', t_2''''', t_2''''', t_2''''''', t_2''''', t_2'''''', t_2''''', t_2''''', t_2'''', t_2''''', t_2''''', t_2'''', t_2''''', t_2'''', t_2''''', t_2'''', t_2''''', t_2''''', t_2'''', t_2''''', t_2'''', t_2'''', t_2'''', t_2''''', t_2'''', t_2''''', t_2'''', t_2'''', t_2'''', t_2'''', t_2'''', t_2'''', t_2'''''', t_2'''', t_2''''', t_2''''', t_2''''', t_2'''', t_2''''', t_2''''', t_2'''', t_2'''', t_2'''$

The following is our main result.

Theorem 1.3. Set K = K(L(p, q); u). Suppose that K admits a longitudinal surgery yielding S^3 . Then we have the following:

- (1) $\Phi(K) = 0$ if and only if K is a torus knot.
- (2) $\Phi(K) = 1$ if and only if K contains an essential torus in its exterior.
- (3) $\Phi(K) \ge 2$ if and only if K is a hyperbolic knot.

In Section 5, we will give formulae to obtain representations of dual knots of Berge's examples. We remark that the arguments in Section 5 are almost restatements of those by Berge [1].

2. Preliminaries

Let *B* be a sub-manifold of a manifold *A*. The notation $\eta(B;A)$ denotes a regular neighborhood of *B* in *A*. By E(B;A), we mean the *exterior* of *B* in *A*, i.e., $E(B;A) = \operatorname{cl}(A \setminus \eta(B;A))$.

For two curves x and y in a *surface* (i.e., connected compact 2-manifold), the notation $\sharp(x, y)$ denotes the number of transverse intersection points and the notation $\sharp_G(x, y)$ denotes a (minimal) geometric intersection number relative to the endpoints of x and y. We say that x and y intersect *essentially* if $\sharp(x, y) = \sharp_G(x, y)$.

A triplet $(H_1, H_2; S)$ is a *genus g Heegaard splitting* of a closed orientable 3-manifold N if H_i (i=1 and 2) are genus g handlebodies with $N=H_1\cup H_2$ and $H_1\cap H_2=\partial H_1\cap\partial H_2=S$. The surface S is called a *Heegaard surface*. A properly embedded disk D in a genus g handlebody H is called a *meridian disk of* H if a 3-manifold obtained by cutting H along D is a genus g-1 handlebody. The boundary of a meridian disk of H is called a *meridian* of H. A collection of mutually disjoint g meridians $\{x_1,\ldots,x_g\}$ of H is called a *complete meridian system* of H if $\{x_1,\ldots,x_g\}$ bounds mutually disjoint meridian disks of H which cuts H into a 3-ball.

Let $(H_1, H_2; S)$ be a genus two Heegaard splitting of S^3 . Let $\{x_1, x_2\}$ and $\{y_1, y_2\}$ be complete meridian systems of H_1 and H_2 respectively. A *Heegaard diagram* of S^3 is $\{S; \{x_1, x_2\}, \{y_1, y_2\}\}$. If x_1, x_2, y_1 and y_2 are isotoped on S so that they intersect essentially, then we call $\{S; \{x_1, x_2\}, \{y_1, y_2\}\}$ a normalized Heegaard diagram. If

 $\sharp(x_1,y_1)=1,\ \sharp(x_2,y_2)=1,\ x_2\cap y_1=\emptyset$ and $x_1\cap y_2=\emptyset$, then the Heegaard diagram is said to be *standard*. Let Σ_x (Σ_y resp.) be the 2-sphere with four holes obtained by cutting S along x_1 and x_2 (y_1 and y_2 resp.), and let x_i^+ and x_i^- (y_i^+ and y_i^- resp.) (i=1,2) be the copies of x_i (y_i resp.) in Σ_x (Σ_y resp.). A wave w associated with x_i (i=1 or 2) is a properly embedded arc in Σ_x such that w is disjoint from ($y_1 \cup y_2 \cap \Sigma_x$, $y_1 \cap y_2 \cap y_3 \cap y_4 \cap y_4 \cap y_5 \cap y_$

Theorem 2.1 ([8, Main Theorem]). A normalized genus two Heegaard diagram of S^3 is standard, or contains a wave.

Let M be a closed orientable 3-manifold. A *trivial knot* in M is a loop bounding an embedding disk in M. It is easy to see that a Dehn surgery on a trivial knot in a lens space cannot yield S^3 . A *torus knot* in M is a non-trivial knot which can be isotoped on a genus one Heegaard surface of M. The following has been proved in [13].

Theorem 2.2 ([13, Theorems 2.2–2.4]). Let K be a non-trivial (1, 1)-knot in M and $(W_1, W_2; P)$ a (1, 1)-splitting of (M, K) with $W_i = (V_i, t_i)$ (i = 1, 2), where V_i is a solid torus and t_i is a trivial arc in V_i . Suppose that there are projections t'_1 and t'_2 of t_1 and t_2 respectively and there is an essential loop z on $P \setminus K$ such that $z \cap (t'_1 \cup t'_2) = \emptyset$. Then one of the following holds.

- (1) K is a torus knot.
- (2) E(K; M) contains an essential torus.
- (3) $K = K(\alpha, \beta; r)$ for some α, β and r.

Here, $K(\alpha, \beta; r)$ is a knot obtained by the following construction. Let $K_1 \cup K_2$ be a 2-bridge link of type (α, β) . Then $K(\alpha, \beta; r)$ denotes the knot K_2 in $K_1(r)$, where $K_1(r)$ is the manifold obtained by the r-surgery on K_1 (cf. [12, Chapter 9]). By an argument similar to that in [10, Section 1], we can see that $K(\alpha, \beta; r)$ is a (1, 1)-knot in $K_1(r)$ for any 2-bridge link and surgery coefficient r.

We remark the following which has been essentially proved in [11].

Lemma 2.3. Set $K = K(\alpha, \beta; r)$ for some α , β and r. If K admits a Dehn surgery yielding S^3 , then K is a torus knot.

Proof. Recall that the exterior of K is obtained from the exterior of a 2-bridge link by filling a single solid torus. It has been proved in [11] that any closed 3-manifold obtained by any non-trivial Dehn surgery on a 2-bridge link is not homeomorphic to

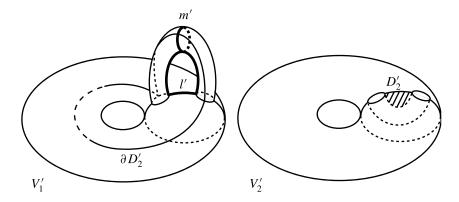


Fig. 2.

 S^3 unless the 2-bridge link is a torus link (cf. [11, Theorems 2 and 3]). This implies that if K admits a Dehn surgery yielding S^3 , then K is a torus knot.

3. Dehn surgeries on K(L(p,q);u)

We use the notations in Definition 1.1. Let D_1 (D_2 resp.) be a meridian disk of V_1 (V_2 resp.) with $\partial D_1 = m$ and $\sharp(\partial D_1, \partial D_2) = \sharp_G(\partial D_1, \partial D_2)$. Let t'_1^u (t'_2^u resp.) be the monotone projection of t_1^u (t_2^u resp.) whose initial point is P_0 and whose endpoint is P_u passing in the positive direction of m (l resp.). Then t'_1^u (t'_2^u resp.) is called the positive projection of t_1^u (t_2^u resp.). Set $V'_1 = V_1 \cup \eta(t_2^u; V_2)$, $V'_2 = \operatorname{cl}(V_2 \setminus \eta(t_2^u; V_2))$ and $S' = \partial V'_1 = \partial V'_2$. Then ($V'_1, V'_2; S'$) is a genus two Heegaard splitting of M = L(p, q). Let $D'_2 \subset (D_2 \cap V'_2)$ be a meridian disk of V'_2 with $\partial D'_2 \supset (t''_2 \cap S')$. Let m' be a meridian of $K = t_1^u \cup t_2^u$ in the annulus $S' \cap \partial \eta(t_2^u; V_2)$. Let l' be an essential loop in S' which is a union of $t''_1 \cap S'$ and an essential arc in the annulus $S' \cap \partial \eta(t_2^u; V_2)$ disjoint from $\partial D'_2$ (cf. Fig. 2).

Let m^* be a meridian of K in $\partial \eta(K; V_1')$ and l^* a longitude of K in $\partial \eta(K; V_1')$ such that $l' \cup l^*$ bounds an annulus in $\operatorname{cl}(V_1' \setminus \eta(K; V_1'))$ and that $l^* \supset (\delta_1 \cap \partial \eta(K; V_1'))$, where δ_1 is the disk in V_1 bounded by $t_1^u \cup t_1'^u$. Note that m^* and l^* are oriented as illustrated in Fig. 1. Then $\{[m^*], [l^*]\}$ is a basis of $H_1(\partial \eta(K; V_1'); \mathbb{Z})$. Let V_1'' be a genus two handlebody obtained from $\operatorname{cl}(V_1' \setminus \eta(K; V_1'))$ by attaching a solid torus \bar{V} so that the boundary of a meridian disk \bar{D} of \bar{V} is identified with a loop represented by $r[m^*] + s[l^*]$. Set $M' = V_1'' \cup_{S'} V_2'$. Then we say that M' is obtained by the $(r/s)^*$ -surgery on K. If r/s is an integer, the $(r/s)^*$ -surgery is called a *longitudinal surgery*. A core loop of \bar{V} in M' is called the *dual knot* of K in M'.

EXAMPLE 3.1. In Definition 1.2, set p = 18, q = 5 and u = 7. Then we have the finite sequence $\{u_i\}$ determined in Definition 1.2 as follows:

 $\{u_i\}_{1 \le i \le 18}$: 5, 10, 15, 2, 7, 12, 17, 4, 9, 14, 1, 6, 11, 16, 3, 8, 13, 0.

Hence we see that $\Psi_{18,5}(7) = 5$ and $\tilde{\Phi}_{18,5}(7) = \Phi_{18,5}(7) = 2$.

Set K = K(L(p, q); u) = K(L(18, 5); 7). We use the same notations as the above and in Definition 1.1. Then we can regard ∂D_2 as an (18, 5)-curve on ∂V_1 . When one fixes P_0 as an initial point and follows ∂D_2 in the positive direction of l, ∂D_2 intersects ∂D_1 in the following order:

$$(P_0 \to) P_{u_1} \to P_{u_2} \to \cdots \to P_{u_{17}} \to P_{u_{18}} \to P_0.$$

Let E_1 (E_2 resp.) be a meridian disk of V_1 (V_2 resp.) disjoint from t_1^u (t_2^u resp.). Recall that $t_1'^u$ ($t_2'^u$ resp.) is the positive projection of t_1^u (t_2^u resp.). Then $\Psi_{p,q}(u) = \Psi_{18,5}(7)$ represents the number of intersection points of ∂E_1 and $t_2'^u$, and $\Phi_{p,q}(u) = \Phi_{18,5}(7)$ represents the number of intersection points of $t_2'^u$ and the interior of $t_2'^u$.

We next calculate the fundamental group of $\bar{M}=E(K;L(18,5))$. By the argument above, we see that $(S';\{\partial E_1\},\{\partial E_2,\partial D_2'\})$ gives a Heegaard diagram of E(K;L(18,5)). Set $\bar{x}_1=\partial E_1$. Let y_1 and y_2 be loops on S' with $y_1\cap\partial D_2'=\emptyset$, $\sharp(y_1,\partial E_2)=1$, $y_2\cap\partial E_2=\emptyset$, $\sharp(y_2,\partial D_2')=1$. Then we see that $\pi_1(\bar{M})$ has the following representation.

$$\pi_1(\bar{M}) \cong \langle y_1, y_2 \mid \bar{x}_1 = 1 \rangle.$$

By using the sequence $\{u_i\}_{1 \le i \le 18}$, we see

$$\pi_1(\overline{M}) \cong \langle y_1, y_2 \mid \overline{x}_1 = 1 \rangle$$

$$\cong \langle y_1, y_2 \mid y_1 y_2 y_1^3 y_2 y_1^4 y_2 y_1^3 y_2 y_1 y_2 y_1^3 y_2 y_1^3 y_2 = 1 \rangle.$$

In fact, the relation is obtained by changing u_j to y_1y_2 if $u_j < u \ (=7)$ and changing u_j to y_1 otherwise.

We finally consider the 0*-surgery on K. Let M' be a 3-manifold obtained by the 0*-surgery on K^* . Set $\bar{y}_1 = \partial E_2$ and $\bar{y}_2 = \partial D_2'$. Let D_1' be a meridian disk of V_1' with $D_1' \supset \bar{D}$. Let x_1 and x_2 be loops on S' with $x_1 \cap \partial D_1' = \emptyset$, $\sharp(x_1, \partial E_1) = 1$, $x_2 \cap \partial E_1 = \emptyset$, $\sharp(x_2, \partial D_1') = 1$. Then we see

$$\pi_{1}(M') \cong \langle x_{1}, x_{2} \mid \bar{y}_{1} = 1, \ \bar{y}_{2} = 1 \rangle$$

$$\cong \left\langle x_{1}, x_{2} \mid \begin{array}{c} x_{1}x_{2}x_{1}^{3}x_{2}x_{1}^{4}x_{2}x_{1}^{3}x_{2}x_{1}x_{2}x_{1}^{3}x_{2}x_{1}^{3}x_{2} = 1, \\ x_{1}x_{2}x_{1}^{3}x_{2}x_{1} = 1 \end{array} \right\rangle$$

$$\cong \left\langle x_{1}, x_{1}x_{2} \mid x_{1} = 1, \ x_{1}x_{2} = 1 \right\rangle.$$

Since Poincaré conjecture is true for genus two 3-manifolds (cf. [3] and [5]), we see that M' is homeomorphic to S^3 . We remark that $K \subset L(18, 5)$ is the dual knot of the (-2, 3, 7)-pretzel knot.

4. An invariant of K(L(p,q);u) with a longitudinal surgery yielding S^3

We first prove the following.

Lemma 4.1. Set K = K(L(p,q);u). Suppose that K admits a longitudinal surgery yielding S^3 . Then any (1, 1)-splitting of (M, K) is monotone.

Proof. Let $(W_1, W_2; P)$ be a (1, 1)-splitting of (M, K) with $W_i = (V_i, t_i)$ (i = 1, 2). Let E_1 $(E_2$ resp.) be a meridian disk of V_1 $(V_2$ resp.) disjoint from t_1 $(t_2$ resp.). Let D_1 $(D_2$ resp.) be a meridian disk of V_1 $(V_2$ resp.) which contains t_1 $(t_2$ resp.) and is disjoint from E_1 $(E_2$ resp.). We may assume that $\partial D_1 \setminus K$ intersects $\partial D_2 \setminus K$ essentially in $P \setminus K$.

Let t'_1 (t'_2 resp.) be a projection of t_1 (t_2 resp.) with $t'_1 \subset \partial D_1$ ($t'_2 \subset \partial D_2$ resp.). Set $V'_1 = V_1 \cup \eta(t_2; V_2)$, $V'_2 = \operatorname{cl}(V_2 \setminus \eta(t_2; V_2))$ and $S' = \partial V'_1 = \partial V'_2$. Then ($V'_1, V'_2; S'$) is a genus two Heegaard splitting of M. Let $D'_2 \subset (D_2 \cap V'_2)$ be a meridian disk of V'_2 with $\partial D'_2 \supset (t'_2 \cap S')$.

We now consider a longitudinal surgery on K. Let V_1'' be a genus two handlebody obtained from $\operatorname{cl}(V_1' \setminus \eta(K; V_1'))$ by attaching a solid torus \bar{V} so that $\partial \bar{D}$ intersects a meridian of $\eta(K; V_1')$ transversely in a single point, where \bar{D} is a meridian disk of \bar{V} . Let D_1' be a meridian disk of V_1'' with $D_1' \supset \bar{D}$. Since we consider a longitudinal surgery on K, we may assume that $\operatorname{cl}(\partial D_1' \setminus \eta(t_2; V_2))$ is equivalent to $t_1' \cap \partial V_1''$. Then $(S'; \{\partial D_1', \partial E_1\}, \{\partial D_2', \partial E_2\})$ is a Heegaard diagram of the manifold M' obtained by such a surgery on K.

Let S_1' (S_2' resp.) be the torus with two holes obtained by cutting S' along ∂E_1 (∂E_2 resp.). Let ∂E_1^+ and ∂E_1^- (∂E_2^+ and ∂E_2^- resp.) be the boundary components of S_1' (S_2' resp.).

To prove Lemma 4.1, we suppose that $(W_1, W_2; P)$ is not monotone. Then there are two arc components, say γ_1 and γ_1' , of $\partial E_1 \cap S_2'$ such that γ_1 (γ_1' resp.) joins ∂E_2^+ (∂E_2^- resp.) to itself. Since

$$\partial E_2^+ \cap (\partial E_1 \cap S_2') = \partial E_2^- \cap (\partial E_1 \cap S_2'),$$

we see that γ_1 (γ_1' resp.) separates the specified points in $P \setminus \partial E_2$. Similarly, there are two arc components, say γ_2 and γ_2' , of $\partial E_2 \cap S_1'$ such that γ_2 (γ_2' resp.) joins ∂E_1^+ (∂E_1^- resp.) to itself and separates the specified points in $P \setminus \partial E_1$.

Let Σ_1 (Σ_2 resp.) be the 2-sphere with four holes obtained by cutting S_1' (S_2' resp.) along $\partial D_1'$ ($\partial D_2'$ resp.). Since γ_1 and γ_1' (γ_2 and γ_2' resp.) separates the specified points in $P \setminus \partial E_2$ ($P \setminus \partial E_1$ resp.), γ_1 and γ_1' (γ_2 and γ_2' resp.) assure that there are no waves in Σ_2 (Σ_1 resp.). Hence it follows from Theorem 2.1 that M' is not homeomorphic to S^3 .

This completes the proof of Lemma 4.1.

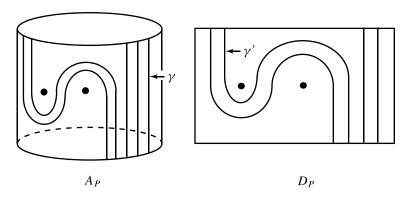


Fig. 3.

Lemma 4.2. Let K be a (1, 1)-knot in a lens space M and $(W_1, W_2; P)$ a (1, 1)-splitting of (M, K). If $(W_1, W_2; P)$ is monotone, then there is a monotone projection of K on P.

Proof. Recall that $W_i = (V_i, t_i)$, where V_i is a solid torus and t_i is a trivial arc in V_i . Let E_1 (E_2 resp.) be a meridian disk of V_1 (V_2 resp.) disjoint from t_1 (t_2 resp.). Let D_1 be a parallel copy of E_1 which contains t_1 . We suppose that $|\partial D_1 \cap \partial E_2|$ is minimal among such all meridian disks of V_1 . We first prove the following.

Claim. If ∂D_1 and ∂E_2 are oriented, then the signed intersection points of ∂D_1 and ∂E_2 have the same sign.

Proof. Suppose that the claim does not hold. Let A_P be the annulus with two specified points $P \cap K$ which is obtained by cutting P along ∂E_1 . Let γ be a component of $\partial E_2 \cap A_P$. Since $(W_1, W_2; P)$ is monotone, we see that γ joins distinct boundary components of A_P . Let D_P be the disk with the specified points which are obtained by cutting A_P along γ .

Suppose that there are no components of $\partial E_2 \cap D_P$ separating the specified points in D_P . Then this implies that each component of $\partial E_2 \cap D_P$ is parallel to γ in $A_P \setminus K$. Hence we can regard D_P as a square $[0,1] \times [0,1]$ such that each component of $\partial E_2 \cap D_P$ is *vertical*, i.e., each component of $\partial E_2 \cap D_P$ corresponds to $\{p\} \times [0,1]$. We may assume that the specified points are in $[0,1] \times \{1/2\}$. Let α be a loop on P such that α corresponds to $[0,1] \times \{1/2\}$ in the square D_P . Then we see that α bounds a meridian disk D_α of V_1 and t_1 is isotoped into D_α relative to the endpoints (cf. [13, Section 3]). Since we suppose that the claim does not hold, we see that $|\partial D_\alpha \cap \partial E_2| < |\partial D_1 \cap \partial E_2|$. This contradicts the minimality of $|\partial D_1 \cap \partial E_2|$. Hence there is a component, say γ' , of $\partial E_2 \cap D_P$ separating the specified points in D_P (cf. Fig. 3).

Let D'_P and D''_P be the disks obtained by cutting D_P along γ' . Note that each of D'_P and D''_P contains exactly one of the specified points. Then we can regard D'_P

 $(D''_P \text{ resp.})$ as a square $[0,1] \times [0,1]$ such that each component of $\partial E_2 \cap D'_P (\partial E_2 \cap D'_P \text{ resp.})$ is vertical and that the specified point is in $[0,1] \times \{1/2\}$. Let α' be a loop on P such that $\alpha' \cap D'_P (\alpha' \cap D''_P \text{ resp.})$ corresponds to $[0,1] \times \{1/2\}$ in the square $D'_P (D''_P \text{ resp.})$. Then we see that α' bounds a meridian disk $D_{\alpha'}$ of V_1 and v_2 is isotoped into $D_{\alpha'}$ relative to the endpoints. Since we suppose that the claim does not hold, we see that $|\partial D_{\alpha'} \cap \partial E_2| < |\partial D_1 \cap \partial E_2|$. This contradicts the minimality of $|\partial D_1 \cap \partial E_2|$. Hence we have the claim.

Let D_2 be a parallel copy of E_2 with $\partial D_2 \supset (P \cap K)$. Then t_2 is isotoped into D_2 relative to the endpoints. Hence D_1 and D_2 imply that there is a monotone projection of K on P.

This completes the proof of Lemma 4.2.

The following is well known.

Lemma 4.3 (cf. [4] and [7]). There is an orientation-preserving homeomorphism between two lens spaces L(p,q) and L(p',q') if and only if one of the following holds.

- (1) p' = p and $q' \equiv q \pmod{p}$, and
- (2) $p' = p \text{ and } q' \equiv q^{-1} \pmod{p}$.

We note that the following is mentioned by Berge [1] (cf. [14, Section 6]).

Lemma 4.4 ([1, Theorem 3]). Set K = K(L(p, q); u) and K' = K(L(p', q'); u') for some integers p, q, u, p', q' and u'. Suppose that L(p, q) is homeomorphic to L(p', q') and that both K and K' admit a longitudinal surgery yielding S^3 . Then K is isotopic to K' if and only if $[K] = \pm [K']$ in $H_1(M; \mathbb{Z})$, where $M \cong L(p, q) \cong L(p', q')$.

By using lemmata above, we show the following.

Proposition 4.5. Set K = K(L(p, q); u) and K' = K(L(p', q'); u') for some integers p, q, u, p', q' and u'. Suppose that there is an orientation-preserving homeomorphism between L(p, q) and L(p', q') and that both K and K' admit a longitudinal surgery yielding S^3 . Then K and K' are isotopic if and only if one of the following holds.

- (1) In case of (1) of Lemma 4.3, u' = u or u' = p u.
- (2) In case of (2) of Lemma 4.3, $u' = \Psi_{p,q}(u)$ or $u' = p \Psi_{p,q}(u)$.

Proof. Note that it is easy to see that K(L(p, q); u) and K(L(p, q); p - u) are isotopic. It follows from Lemma 4.4 that K and K' are isotopic if and only if u' = u or u' = p - u under the assumption q' = q. By Lemma 4.3, we have the following two cases:

412 T. SAITO

Claim 1. $q' \equiv q \pmod{p}$. In this case, K and K' are isotopic if and only if u' = u or u' = p - u.

Proof. Set q' = q + np for some integer n. Let $(V_1, V_2; S)$ be a Heegaard splitting of L(p,q) such that the boundary of a meridian disk of V_2 is a (p,q)-curve in ∂V_1 . Let $(V_1', V_2'; S')$ be a Heegaard splitting of L(p', q') such that the boundary of a meridian disk of V_2' is a (p', q')-curve in $\partial V_1'$. Since genus one Heegaard surfaces of a lens space are isotopic, we may assume that S' = S. Moreover, since q' = q + np, we see that $V_1' = V_1$ and $V_2' = V_2$ (cf. [4] and [7]) and V_1' is obtained by twisting V_1 along a meridian disk of V_1 . Therefore we see that $[K] = \pm [K']$ in $H_1(L(p,q);\mathbb{Z})$ if and only if u' = u or u' = p - u. Hence it follows from Lemma 4.4 that K and K' are isotopic if and only if u' = u or u' = p - u. Hence we have Claim 1.

Claim 2. $q' \equiv q^{-1} \pmod{p}$. In this case, K and K' are isotopic if and only if $u' = \Psi_{p,q}(u)$ or $u' = p - \Psi_{p,q}(u)$.

Proof. Set q'q = np for some integer n. Let $(V_1, V_2; S)$ be a Heegaard splitting of L(p,q) such that the boundary of a meridian disk of V_2 is a (p,q)-curve in ∂V_1 . Let $(V_1', V_2'; S')$ be a Heegaard splitting of L(p', q') such that the boundary of a meridian disk of V_2' is a (p', q')-curve in $\partial V_1'$. Since genus one Heegaard surfaces of a lens space are isotopic, we may assume that S' = S. Moreover, since q'q = np for some integer n, we see that $V_1' = V_2$ and $V_2' = V_1$ (cf. [4] and [7]).

We now isotope K so that $K \cap V_1 = t_1^u$ ($K \cap V_2 = t_2^u$ resp.) is a trivial arc in V_1 (V_2 resp.). Let t_1''' (t_2''' resp.) be a monotone projection of t_1^u (t_2^u resp.). Since $\sharp(t_2''',\partial E_1) = \Psi_{p,q}(u)$ or $p - \Psi_{p,q}(u)$, we see that K is isotopic to $K(L(p',q');\Psi_{p,q}(u)) = K(L(p',q');p - \Psi_{p,q}(u))$. Hence K and K' are isotopic if and only if $u' = \Psi_{p,q}(u)$ or $u' = p - \Psi_{p,q}(u)$. Hence we have Claim 2.

This completes the proof of Proposition 4.5. \Box

As a corollary of Proposition 4.5, we have the following:

Corollary 4.6. Set K = K(L(p,q);u) and K' = K(L(p',q');u') for some integers p, q, u, p', q' and u'. Suppose that there is an orientation-preserving homeomorphism between L(p,q) and L(p',q') and that both K and K' admit a longitudinal surgery yielding S^3 . If K and K' are isotopic, then $\tilde{\Phi}_{p,q}(u) = \tilde{\Phi}_{p',q'}(u')$.

By this corollary we see that $\tilde{\Phi}_{p,q}(u)$ is an invariant for K = K(L(p,q);u) if K admits a longitudinal surgery yielding S^3 . Hence we define the following:

DEFINITION 4.7. Set K = K(L(p, q); u) and suppose that K admits a longitudinal surgery yielding S^3 . Then $\tilde{\Phi}_{p,q}(u)$ is denoted by $\Phi(K)$.

5. Proof of Theorem 1.3

We first remark the following.

Lemma 5.1 ([6, Theorem C] and [9, Theorem 3]). Let K be a torus knot in M and $(W_1, W_2; P)$ a (1, 1)-splitting of (M, K). Then there is a projection \bar{t}_1 (\bar{t}_2 resp.) of t_1 (t_2 resp.) on P such that \bar{t}_1 is disjoint from the interior of \bar{t}_2 .

Proposition 5.2. Set K = K(L(p, q); u). Suppose that K admits a longitudinal surgery yielding S^3 . Then $\Phi(K) = 0$ if and only if K is a torus knot.

Proof. Let $(W_1, W_2; P)$ be a (1, 1)-splitting of (M, K) with $W_i = (V_i, t_i)$ (i = 1, 2), where V_i is a solid torus and t_i is a trivial arc in V_i . Since K admits a longitudinal surgery yielding S^3 , it follows from Lemma 4.1 that $(W_1, W_2; P)$ is monotone. Let t'_1 $(t'_2$ resp.) be a monotone projection of t_1 $(t_2$ resp.) such that $t'_1 \cup t'_2$ gives the value $\Phi(K)$.

If $\Phi(K) = 0$, then t'_1 is disjoint from the interior of t'_2 . Hence we see that K is a torus knot.

Suppose that K is a torus knot. Then it follows from Lemma 5.1 that there is a projection \bar{t}_1 (\bar{t}_2 resp.) of t_1 (t_2 resp.) on P such that \bar{t}_1 is disjoint from the interior of \bar{t}_2 . Let x_1 (y_1 resp.) be the boundary of a meridian disk of V_1 (V_2 resp.) disjoint from t_1 (t_2 resp.). Note that it follows from [13, Lemma 3.4] that x_1 (y_1 resp.) is unique up to isotopy on $P \setminus K$. Note also that we may assume that any projection of t_1 (t_2 resp.) on P is disjoint from x_1 (y_1 resp.). Let Σ_{x_1} (Σ_{y_1} resp.) be the component obtained by cutting P along x_1 (y_1 resp.). We may assume that \bar{t}_1 (\bar{t}_2 resp.) is isotoped so that \bar{t}_1 (\bar{t}_2 resp.) intersects y_1 (x_1 resp.) essentially. Let x_1^+ and x_1^- be the boundary of Σ_{x_1} . Since (W_1 , W_2 ; P) is monotone, we see that each component of $y_1 \cap \Sigma_{x_1}$ is an arc joining x_1^+ to x_1^- .

CASE 1. \bar{t}_2 is not a monotone projection of t_2 .

Then there is a component, say \bar{t}_2^+ , of $\bar{t}_2 \cap \Sigma_{x_1}$ which joins x_1^+ to itself. Then since

$$x_1^+ \cap (\bar{t}_2 \cap \Sigma_{x_1}) = x_1^- \cap (\bar{t}_2 \cap \Sigma_{x_1}),$$

we see that there is also a component, say \bar{t}_2^- , of $\bar{t}_2 \cap \Sigma_{x_1}$ which joins x_1^- to itself. This implies that it is impossible to obtain an arc which joins two specified points $P \cap K$ in Σ_{x_1} and is disjoint from $\bar{t}_2 \cap \Sigma_{x_1}$. Since \bar{t}_1 is contained in A_P , this implies that $\bar{t}_1 \cap \bar{t}_2 \neq \emptyset$, a contradiction.

CASE 2. \bar{t}_2 is a monotone projection of t_2 .

To obtain the conclusion $\Phi(K) = 0$, we further suppose that $\Phi(K) \neq 0$. Then there is a component, say \bar{t}_2' , of $\bar{t}_2 \cap \Sigma_{x_1}$ which joins x_1^+ to x_1^- and intersects t_1' transversely in a single point. Also, there is a component, say \bar{t}_2'' , of $\bar{t}_2 \cap \Sigma_{x_1}$ which joins x_1^+ to x_1^- and is disjoint from t_1''' . This implies that $\bar{t}_2' \cup \bar{t}_2''$ separates two specified points $P \cap K$ in Σ_{x_1} . Since \bar{t}_1 is contained in A_P , this implies that $\bar{t}_1 \cap \bar{t}_2 \neq \emptyset$, a contradiction.

This completes the proof of Proposition 5.2.

Dehn surgeries on satellite knots in S^3 yielding lens spaces have been completely classified as the follows (cf. [2, 15, 16]).

Lemma 5.3 ([2, Theorem 1]). Let K be a satellite knot in S^3 which admits a Dehn surgery yielding a lens space M. Then K is the $(2pq \pm 1, 2)$ -cable on the (p, q)-torus knot and $M = L(4pq \pm 1, 4q^2)$.

Here, a knot $K \subset S^3$ is called the (r, s)-cable on a knot $K_0 \subset S^3$ if K is isotoped into $\partial \eta(K_0; S^3)$ and is homologous to $r[l_0] + s[m_0]$ in $\partial \eta(K_0; S^3)$, where (l_0, m_0) is a standard meridian-longitude system of K_0 on $\partial \eta(K_0; S^3)$.

REMARK 5.4. (1) Let K be the $(2pq \pm 1, 2)$ -cable on the (p, q)-torus knot and K' be the $(2pq \pm 1, 2)$ -cable on the (q, p)-torus knot. Then K and K' are isotopic. (2) Let p and q be coprime integers. Then we see that the following are equivalent:

$$(4pq + 1)(4pq - 1) \equiv 0 \pmod{4pq \pm 1},$$

 $16p^2q^2 - 1 \equiv 0 \pmod{4pq \pm 1},$
 $(4p^2)(4q^2) \equiv 1 \pmod{4pq \pm 1}.$

Hence we see that $(4q^2)^{-1} \equiv 4p^2 \pmod{4pq \pm 1}$ and therefore

$$L(4pq \pm 1, 4q^2) = -L(4pq \pm 1, -4q^2)$$
$$= -L(4pq \pm 1, -4p^2) = L(4pq \pm 1, 4p^2).$$

Lemma 5.5. Let p and q be coprime integers. Suppose that p > 1 and $q \ne 0, \pm 1$. Set $K = K(L(|4pq \pm 1|, \pm 4q^2); 2|q|)$. Then K admits a longitudinal surgery yielding S^3 and $\Phi(K) = 1$.

Proof. Since the argument is similar (cf. Remark 5.6), we give a proof in case of 1 < q < p and $K = K(L(4pq - 1, 4q^2); 2q)$.

Claim 1.
$$\tilde{\Phi}_{4pq-1,4q^2}(2q) = 1$$
.

Proof. For a pair of 4pq-1 and $4q^2$, we consider the finite sequence $\{u_j\}$ determined in Definition 1.2. Since $4q^2 \cdot p - q \equiv 0 \pmod{4pq-1}$, we see that $u_p = q$. Suppose that there are integers p' and q' with 0 < p' < p, 0 < q' < 2q and $u_{p'} = q'$. Then there is a non-negative integer n such that $4q^2 \cdot p' = n \cdot 4pq^2 + q'$. This indicates that $4q^2(p'-n\cdot p) = q'$. Since 0 < p' < p and q' > 0, we see that n = 0 and hence $4p'q^2 = q'$. However, this contradicts that 0 < q' < 2q. This implies that for each integer j with $1 \le j \le p-1$, we see that $u_j > 2q$. Similarly, we see that $u_{2p} = 2q$

and $u_j > 2q$ for each integer j with $p + 1 \le j \le 2p - 1$. Hence $\Phi_{4pq-1,4q^2}(2q) = 1$. Note that

$$\tilde{\Phi}_{p,q}(u) = \min\{1, 4pq - 2p - 2q, 2p - 2, 2q - 2\}.$$

Since we assume that 1 < q < p, we see that $\tilde{\Phi}_{4pq-1,4q^2}(2q) = 1$. Therefore we have Claim 1.

Claim 2. The 0^* -surgery on K yields S^3 .

Proof. We use an argument similar to that in Example 3.1 and hence we use the same notations as those in Example 3.1. Let M' be a 3-manifold obtained by the 0*-surgery on K^* . Recall that x_1 and x_2 are loops on S' with $x_1 \cap \partial D'_1 = \emptyset$, $\sharp(x_1, \partial E_1) = 1$, $x_2 \cap \partial E_1 = \emptyset$, $\sharp(x_2, \partial D'_1) = 1$. Recall also that $\bar{y}_1 = \partial E_2$ and $\bar{y}_2 = \partial D'_2$. Then we see

$$\pi_1(M') \cong \langle x_1, x_2 \mid \bar{y}_1 = 1, \ \bar{y}_2 = 1 \rangle$$

 $\cong \langle x_1, x_2' \mid \bar{y}_1 = 1, \ \bar{y}_2 = 1 \rangle \quad (x_2' := x_1 x_2).$

It follows from the argument in the proof of Claim 1 that $y_2 = x_1^p x_2 x_1^p = x_1^{p-1} x_2' x_1^p$. Since $y_2 = 1$, we see that $x_2' = x_1^{1-2p}$. This implies that x_1 and x_2' are commutative with each other and hence $\pi_1(M') \cong H_1(M'; \mathbb{Z})$. We note that

$$H_1(M'; \mathbb{Z}) \cong \left\langle x_1, x_2' \middle| \frac{((4pq - 1) - 2q) \cdot x_1 + 2q \cdot x_2' = 0,}{(2p - 1) \cdot x_1 + x_2' = 0} \right\rangle$$

This implies that $H_1(M'; \mathbb{Z})$ is trivial and hence $\pi_1(M')$ is trivial. Since Poincaré conjecture is true for genus two 3-manifolds (cf. [3] and [5]), we see that M' is homeomorphic to S^3 and hence we have Claim 2.

The conclusion of Lemma 5.5 follows from Claims 1 and 2. \Box

REMARK 5.6. To prove Lemma 5.5 in other certain cases, we need to consider the sequence obtained by reversing the order of the sequence $\{u_i\}$.

Lemma 5.7. Let K be the $(2pq \pm 1, 2)$ -cable on the (p,q)-torus knot with p > 1 and $q \neq 0, \pm 1$. Then the following holds.

(1) If q > 1, then $K^* = K(L(4pq\pm 1, 4q^2); 2q)$ is the dual knot of K in $L(4pq\pm 1, 4q^2)$. (2) If q < -1, then $K^* = K(L(|4pq\pm 1|, -4q^2); 2|q|)$ is the dual knot of K in $L(|4pq\pm 1|, -4q^2)$.

Let A_1 (A_2 resp.) be an annulus obtained by pushing the interior of $E(z_1; \partial V_1)$ ($E(z_2; \partial V_2)$ resp.) into the interior of V_1 (V_2 resp.) so that A_1 (A_2 resp.) is disjoint from t_1 (t_2 resp.). Then $A_1 \cup A_2$ cuts ($L(4pq-1,4q^2),K^*$) into (M_1,K^*) and (M_2,\emptyset). Note that M_1 is a solid torus containing K^* . Since $\sharp_G(z_1,\partial E_1)=p$ and $\sharp_G(z_1,\partial E_2)=q$, we see that M_2 is homeomorphic to the exterior of the (p,q)-torus knot in S^3 . Hence $A_1 \cup A_2$ is an essential torus in $E(K^*;L(4pq-1,4q^2))$. Since K^* admits a longitudinal surgery yielding S^3 (cf. Lemma 5.5), we see that K^* is the dual knot of a cable of the (p,q)-torus knot in S^3 . Hence it follows from Lemma 5.3 that K^* is the dual knot of K.

Corollary 5.8. Set K = K(L(p, q); u). Suppose that K admits a longitudinal surgery yielding S^3 . Then $\Phi(K) = 1$ if and only if E(K; M) contains an essential torus.

Proof. Suppose first that $\Phi(K) = 1$. Then by an argument similar to that in the proof of Lemma 5.7, we see that there exists a loop z_1 as in the proof of Lemma 5.7. This implies that a (1, 1)-splitting of (M, K) satisfies the assumption of Theorem 2.2. Hence it follows from Theorem 2.2 and Lemma 2.3 that K is a torus knot or E(K; M) contains an essential torus. Since $\Phi(K) = 1$, K is not a torus knot (cf. Proposition 5.2) and hence E(K; M) contains an essential torus.

Suppose next that E(K; M) contains an essential torus. Then K is the dual knot of the $(2pq \pm 1, 2)$ -cable on the (p, q)-torus knot for some integers p and q. Hence it follows from Lemmata 5.5 and 5.7 that $\Phi(K) = 1$.

Theorem 1.3 immediately follows from Proposition 5.2 and Corollary 5.8.

6. Appendix

Here, we will recall Berge's argument [1] to obtain a relationship between Berge's examples and their dual knots. We first recall Berge's surgery on doubly primitive

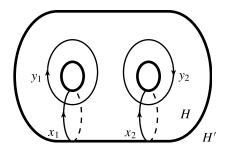


Fig. 4.

knots. Let (H, H'; S) be a genus two Heegaard splitting of S^3 . A knot $K \subset S$ is a *doubly primitive knot* if K represents a free generator both of $\pi_1(H)$ and of $\pi_1(H')$. If K is doubly primitive, then there are meridian disks D and E (D') and E' resp.) of H (H') resp.) with $\#(\partial D, K) = 1$ and $\partial E \cap K = \emptyset$ $\#(\partial D', K) = 1$ and $\partial E' \cap K = \emptyset$ resp.). Then it follows from [1, Theorem 1] that a Heegaard diagram $(S; \{\partial D, \partial E\}, \{K, \partial E'\})$ represents a lens space. We call such a surgery Berge's surgery on K. We remark that $\partial D'$ corresponds to the dual knot of K.

Let (H, H'; S) be a genus two Heegaard splitting of S^3 and $(S; \{x_1, x_2\}, \{y_1, y_2\})$ its standard Heegaard diagram with $\sharp(x_1, y_1) = 1$, $\sharp(x_2, y_2) = 1$, $x_2 \cap y_1 = \emptyset$ and $x_1 \cap y_2 = \emptyset$. We fix orientation of x_1 , x_2 , y_1 and y_2 as in Fig. 4.

Then $\{[x_1], [x_2], [y_1], [y_2]\}$ is a basis of $H_1(\partial H; \mathbb{Z})$. Let K be an oriented doubly primitive knot on S with $[K] = a[x_1] + b[x_2] + c[y_1] + d[y_2]$ in $H_1(\partial H; \mathbb{Z})$. Let h be an orientation-preserving homeomorphism of H' with $h(x_1) = K$. Then h induces a symplectic transformation ϕ on $H_1(\partial H'; \mathbb{Z})$ which satisfies the following:

$$\phi(x_1) = a[x_1] + b[x_2] + c[y_1] + d[y_2],$$

$$\phi(x_2) = s[x_1] + t[x_2] + u[y_1] + v[y_2],$$

$$\phi(y_1) = t[y_1] - s[y_2],$$

$$\phi(y_2) = -b[y_1] + a[y_2]$$

where, s, t, u and v are integers with at - bs = 1 and (au + bv) - (cs + dt) = 0. Recall that since K is doubly primitive, [K] is a free generator of $H_1(H; \mathbb{Z})$. Let [K'] be the other generator of $H_1(H; \mathbb{Z})$. We now consider a projection φ onto [K']. Then we have:

$$\varphi(x_2) = (cv - du)[K'],$$

$$\varphi(y_1) = (-cs - dt)[K'],$$

$$\varphi(y_2) = (ac + bd)[K']$$

where, we remark that $\varphi(x_1) = 0$. Let M = L(p, q) be a lens space obtained by Berge's

surgery on K and $K^* = K(L(p,q);u)$ the dual knot of K. Let V be a 3-manifold obtained from H by attaching a 2-handle along K. Since K is doubly primitive, we see that V is a solid torus and that V and V' = E(V; M) give a genus one Heegaard splitting of M. Note that a core of V corresponds to a generator [K'] of $H_1(H; \mathbb{Z})$, a meridian of V' corresponds to $\phi(y_2)$, a core of V' corresponds to $\phi(x_2)$ and K^* corresponds to $\phi(y_1)$. Hence p of K(L(p,q);u) satisfies that p = ac + bd.

We divide the rest of the arguments into the following three cases.

CASE 1. Knots of types (I)-(VI).

Each knots of types (I)–(VI) in Berge's examples satisfies that $a = \pm 1$. Since at - bs = 1, we see that s and t are coprime and hence we have s = -1 + aj and t = a(1-b)+bj, where j is an integer. Hence we have cs + dt = -c + ad(1-b). Also, it follows from (au + bv) - (cs + dt) = 0 that au = (cs + dt - bv).

Let m_V be a meridian of V. Recall that $\sharp_A(m_V,\phi(y_2))=p=ac+bd$, where $\sharp_A(\cdot,\cdot)$ means an algebraic intersection number. Note that q of K(L(p,q);u) corresponds to $\sharp_A(m_V,\phi(x_2))$. Hence we need to calculate the value cv-du. Since we assume $a=\pm 1$, we have:

$$q = cv - du$$

$$= cv \mp d(cs + dt - bv)$$

$$= (c \pm bd)v \mp d(cs + dt)$$

$$\equiv -ad(cs + dt) \pmod{p = ac + bd}$$

$$\equiv ad(c + ad(b - 1)) \pmod{p = ac + bd}.$$

We remark that m_V is a (p,q)-curve on $\partial V'$. Hence V (V' resp.) corresponds to V_2 (V_1 resp.), where V_1 and V_2 are those in Definition 1.1. Since K^* corresponds to $\phi(y_1)$, we see that $[K^*] = (-cs - dt)[K']$. Hence we see that u of K(L(p,q);u) satisfies that $u \equiv c + ad(b+1)$ (mod p = ac + bd) (cf. Claim 2 in the proof of Lemma 4.5). Therefore we have the following.

Theorem 6.1. Let K be a doubly primitive knot with $[K] = a[x_1] + b[x_2] + c[y_1] + d[y_2]$ in $H_1(\partial H; \mathbb{Z})$. Let L(p, q) be the lens space obtained by Berge's surgery on K and K^* the dual knot of K. If $a = \pm 1$, then K^* admits a representation K(L(p, q); u) with

$$p = ac + bd,$$

$$q \equiv ad(c + ad(b - 1)) \pmod{p = ac + bd},$$

$$u \equiv c + ad(b - 1) \pmod{p = ac + bd}.$$

CASE 2. Knots on Seifert surfaces of genus one knots.

Let g_1 and g_2 be oriented loops on ∂H illustrated in (a) or (b) of Fig. 5. Set $K_0 = \partial \eta(g_1 \cup g_2; \partial H)$. Then K_0 is the right-hand trefoil knot in case of (a) and is the

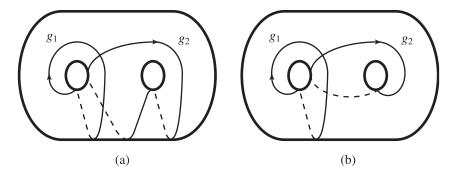


Fig. 5.

figure-eight knot in case of (b), and $\eta(g_1 \cup g_2; \partial H)$ is a genus one Seifert surface of K_0 . Let K be a knot in $\eta(g_1 \cup g_2; \partial H)$ with $[K] = a[g_1] + b[g_2]$, where a and b are coprime integers.

Suppose first that K_0 is the right-hand trefoil knot. Since $[g_1] = -[x_1] + [y_1]$ and $[g_2] = -[x_1] - [x_2] + [y_2]$ in $H_1(\partial H; \mathbb{Z})$, we see that $[K] = -(a+b)[x_1] - b[x_2] + a[y_1] + b[y_2]$ in $H_1(\partial H; \mathbb{Z})$. In this case, we have -(a+b)t + bs = 1 and (-(a+b)u - bv) - (as+bt) = 0, where s, t, u and v are integers of $\phi(x_2) = s[x_1] + t[x_2] + u[y_1] + v[y_2]$. Hence we see that p of K(L(p,q);u) satisfies that $p = -a^2 - ab - b^2$. Recall that u of K(L(p,q);u) corresponds to the value -as - bt and that q of K(L(p,q);u) corresponds to the value av - bu. Since $-a(a+b) \equiv b^2 \pmod{p} = -a^2 - ab - b^2$, we have $-(a+b)(-as-bt) \equiv -b(-(a+b)t + bs) \pmod{p} = -a^2 - ab - b^2$. Hence we have $-(a+b)(-as-bt) \equiv -b \pmod{p} = -a^2 - ab - b^2$, because -(a+b)t + bs = 1. Therefore we see that $u \equiv -as - bt \equiv b(a+b)^{-1} \pmod{p} = -a^2 - ab - b^2$. For q of K(L(p,q);u), we see that $q \equiv -u^2 \pmod{p} = -a^2 - ab - b^2$ by the following. (Recall that $-a(a+b) \equiv b^2 \pmod{p} = -a^2 - ab - b^2$).

$$(-(a+b)u - bv) = (as+bt),$$

 $b(-(a+b)u - bv) \equiv -bu \pmod{p = -a^2 - ab - b^2},$
 $(a+b)(av - bu) \equiv -bu \pmod{p = -a^2 - ab - b^2},$
 $av - bu \equiv -u^2 \pmod{p = -a^2 - ab - b^2}.$

Suppose next that K_0 is the figure-eight knot. Since $[g_1] = -[x_1] + [y_1]$ and $[g_2] = -[x_1] + [x_2] + [y_2]$ in $H_1(\partial H; \mathbb{Z})$, we see that $[K] = -(a+b)[x_1] + b[x_2] + a[y_1] + b[y_2]$ in $H_1(\partial H; \mathbb{Z})$. By an argument similar to the above, we have the conclusion (2) of the following Theorem 6.2.

Theorem 6.2. Let K be a doubly primitive knot and L(p,q) a lens space obtained by Berge's surgery on K. Let K^* be the dual knot of K. In the following, a and b are coprime integers with a > 0 and b > 0.

420 T. SAITO

(1) If $[K] = -(a+b)[x_1] - b[x_2] + a[y_1] + b[y_2]$ in $H_1(\partial H; \mathbb{Z})$, then K^* admits a representation K(L(p,q); u) with

$$p = -a^{2} - ab - b^{2},$$

$$q \equiv -b^{2}(a+b)^{-2} \pmod{p = -a^{2} - ab - b^{2}},$$

$$u \equiv b(a+b)^{-1} \pmod{p = -a^{2} - ab - b^{2}}.$$

(2) If $[K] = -(a+b)[x_1] + b[x_2] + a[y_1] + b[y_2]$ in $H_1(\partial H; \mathbb{Z})$, then K^* admits a representation K(L(p,q);u) with

$$p = -a^{2} - ab + b^{2},$$

$$q \equiv -b^{2}(a+b)^{-2} \pmod{p = -a^{2} - ab + b^{2}},$$

$$u \equiv b(a+b)^{-1} \pmod{p = -a^{2} - ab + b^{2}}.$$

CASE 3. Sporadic cases.

By an argument similar to the above, we have the following.

Theorem 6.3. Let K be a doubly primitive knot and L(p,q) a lens space obtained by Berge's surgery on K. Let K^* be the dual knot of K. In the following, j is a non-negative integer.

(1) If $[K] = (6j + 1)[x_1] - j[x_2] + (4j + 1)[y_1] + (2j + 1)[y_2]$ in $H_1(\partial H; \mathbb{Z})$, then K^* admits a representation K(L(p, q); u) with

$$p = 22j^{2} + 9j + 1,$$

$$q \equiv -(22j + 5)^{2} \pmod{p} = 22j^{2} + 9j + 1,$$

$$u \equiv 22j + 5 \pmod{p} = 22j^{2} + 9j + 1.$$

(2) If $[K] = (4j+1)[x_1] - j[x_2] + (6j+2)[y_1] + (2j+1)[y_2]$ in $H_1(\partial H; \mathbb{Z})$, then K^* admits a representation K(L(p,q);u) with

$$p = 22j^{2} + 13j + 2,$$

$$q \equiv -(22j + 7)^{2} \pmod{p} = 22j^{2} + 13j + 2,$$

$$u \equiv 22j + 7 \pmod{p} = 22j^{2} + 13j + 2.$$

(3) If $[K] = (-4j-3)[x_1] + (j+1)[x_2] + (6j+4)[y_1] + (2j+1)[y_2]$ in $H_1(\partial H; \mathbb{Z})$, then K^* admits a representation K(L(p,q);u) with

$$p = 22j^{2} + 31j + 11,$$

$$q \equiv -(22j + 15)^{2} \pmod{p} = 22j^{2} + 31j + 11,$$

$$u \equiv 22j + 15 \pmod{p} = 22j^{2} + 31j + 11.$$

(4) If $[K] = (-6j - 5)[x_1] + (j + 1)[x_2] + (4j + 3)[y_1] + (2j + 1)[y_2]$ in $H_1(\partial H; \mathbb{Z})$, then K^* admits a representation K(L(p, q); u) with

$$p = 22j^{2} + 13j + 2,$$

$$q \equiv -(22j + 17)^{2} \pmod{p} = 22j^{2} + 13j + 2,$$

$$u \equiv 22j + 17 \pmod{p} = 22j^{2} + 13j + 2.$$

References

- [1] J. Berge: Some knots with surgeries yielding lens spaces, unpublished manuscript.
- [2] S.A. Bleiler and R.A. Litherland: Lens spaces and Dehn surgery, Proc. Amer. Math. Soc. 107 (1989), 1127–1131.
- [3] M. Boileau and J. Porti: Geometrization of 3-orbifolds of cyclic type, Astérisque 272 (2001), 208
- [4] E.J. Brody: The topological classification of the lens spaces, Ann. of Math. (2) 71 (1960), 163–184.
- [5] D. Cooper, C.D. Hodgson and S.P. Kerckhoff: Three-Dimensional Orbifolds and Cone-Manifolds, MSJ Memoirs 5, Math. Soc. Japan, Tokyo, 2000.
- [6] C. Hayashi: Genus one 1-bridge positions for the trivial knot and cabled knots, Math. Proc. Cambridge Philos. Soc. 125 (1999), 53–65.
- [7] J. Hempel: 3-Manifolds, Ann. of Math. Studies 86, Princeton Univ. Press, Princeton, N.J., 1976.
- [8] T. Homma, M. Ochiai and M. Takahashi: An algorithm for recognizing S³ in 3-manifolds with Heegaard splittings of genus two, Osaka J. Math. 17 (1980), 625-648.
- [9] K. Morimoto: On minimum genus Heegaard splittings of some orientable closed 3-manifolds, Tokyo J. Math. 12 (1989), 321–355.
- [10] K. Morimoto and M. Sakuma: On unknotting tunnels for knots, Math. Ann. 289 (1991), 143–167.
- [11] M. Ochiai: Heegaard diagrams of 3-manifolds, Trans. Amer. Math. Soc. 328 (1991), 863-879.
- [12] D. Rolfsen: Knots and Links, Mathematics Lecture Series 7, Publish or Perish, Berkeley, Calif., 1976.
- [13] T. Saito: Genus one 1-bridge knots as viewed from the curve complex, Osaka J. Math. 41 (2004), 427–454
- [14] T. Saito: Dehn surgery and (1, 1)-knots in lens spaces, Topology Appl., to appear.
- [15] S.C. Wang: Cyclic surgery on knots, Proc. Amer. Math. Soc. 107 (1989), 1091–1094.
- [16] Y.Q. Wu: Cyclic surgery and satellite knots, Topology Appl. 36 (1990), 205–208.

Graduate School of Humanities and Sciences Nara Women's University Kita-Uoya Nishimachi, Nara 630–8506 Japan e-mail: tsaito@cc.nara-wu.ac.jp