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Abstract
For certain(1, 1)-knots in lens spaces with a longitudinal surgery yielding the

3-sphere, we determine a non-negative integer derived from its (1, 1)-splitting. The
value will be an invariant for such knots. Roughly, it corresponds to a ‘minimal’
self-intersection number when one consider projections ofa knot on a Heegaard
torus. As an application, we give a necessary and sufficient condition for such knots
to be hyperbolic.

1. Introduction

A lens space L(p, q) is a 3-manifold obtained by thep=q-surgery on a trivial knot
in the 3-sphereS3 and is homeomorphic neither toS3 nor to S2� S1. Throughout this
paper,�L(p, q) denotes the same manifold asL(p, q) with reversed orientation.

A knot K in a closed orientable 3-manifoldM is called a (1, 1)-knot if ( M, K ) =
(V1, t1)[P (V2, t2), where (V1, V2; P) is a genus one Heegaard splitting andti is a trivial
arc in Vi (i = 1 and 2). (An arct properly embedded in a solid torusV is said to be
trivial if there is a diskD in V with t � �D and �Dnt � �V .) Set Wi = (Vi , ti ) (i = 1
and 2). We call the triplet (W1, W2; P) a (1, 1)-splitting of (M, K ). We regardP as a
torus with two specified pointsP\K . Let E1 (E2 resp.) be a meridian disk ofV1 (V2

resp.) disjoint fromt1 (t2 resp.). It is known that such a disk is unique up to isotopy
on V1 n t1 (V2 n t2 resp.) (cf. [13, Lemma 3.4]). A (1, 1)-splitting (W1, W2; P) is said
to be monotoneif the signed intersection points of�E1 and �E2 have the same sign
for some orientations of�E1 and �E2.

Berge’s work [1] indicates that it is very important to study(1, 1)-knots. Which
knots in S3 admit Dehn surgeries yielding lens spaces? This problem is still open.
In [1], Berge introduced the concept of doubly primitive knots and gave an integral
surgery to obtain a lens space from any doubly primitive knot. In this paper, we call
such a surgeryBerge’s surgery. He also gave a list of doubly primitive knots inS3

(cf. Section 6). It is expected that Berge’s list would be complete.
If a lens spaceM comes from a Dehn surgery on a knotK in S3, then there is

the dual knotK � in M such that a Dehn surgery onK � yields S3. It has been proved
in [1] that when Berge’s surgery on a doubly primitive knot yields a lens space, its
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Fig. 1.

dual knot is isotopic to a (1, 1)-knot defined as follows.

DEFINITION 1.1. Let V1 be a standard solid torus inS3, m a meridian ofV1 and
l a longitude ofV1 such thatl bounds a disk in cl(S3nV1). We fix an orientation ofm
and l as illustrated in Fig. 1. By attaching a solid torusV2 to V1 so that [̄m] = p[l ] +
q[m] ( p> 0) in H1(�V1;Z), we obtain a lens spaceL(p, q), wherem̄ is a meridian of
V2. The intersection points ofm and m̄ are labelledP0, : : : , Pp�1 successively along
the positive direction ofm. For an integeru with 0 < u < p, let tu

i be a simple arc
in Di joining P0 to Pu (i = 1, 2). Then the notationK (L(p, q); u) denotes the knot
tu
1 [ tu

2 in L(p, q).

Set Wi = (Vi , tu
i ) (i = 1, 2), whereVi and tu

i are those in Definition 1.1. Then
the pair of W1 and W2 gives a (1, 1)-splitting ofK = K (L(p, q); u) which is mono-
tone. We will prove that any (1, 1)-splitting of (L(p, q), K ) is monotone ifK admits
a longitudinal surgery yieldingS3 (see Lemma 4.1).

In this paper, we prepare the following notations.

DEFINITION 1.2. Let p and q be coprime integers withp > 0. Let fu j g1� j�p

be the finite sequence such that 0� u j < p and u j � q � j (mod p). For an integeru
with 0 < u < p, 9p,q(u) denotes the integerj with u j = u, and8p,q(u) denotes the
number of elements of the following set:

fu j j 1� j < 9p,q(u), u j < ug.
Also, 8̃p,q(u) denotes the following:

8̃p,q(u) = minf8p,q(u), 8p,q(u)�9p,q(u) + p� u,

9p,q(u)�8p,q(u)� 1, u�8p,q(u)� 1g.
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In Definition 1.1, let t 0u1 (t 0u2 resp.) be a projection oftu
1 (tu

2 resp.) on P with
t 0u1 � �D1 (t 0u2 � �D2 resp.). Sett 00u1 = cl(�D1 n t 0u1) and t 00u2 = cl(�D2 n t 0u2). Each oft 0u1
and t 00u1 (t 0u2 and t 00u2 resp.) are calledmonotone projectionsof tu

1 (tu
2 resp.). There are

four projections ofK = K (L(p, q); u): t 0u1[ t 0u2, t 0u1[ t 00u2, t 00u1[ t 0u2 and t 00u1[ t 00u2. These
are calledmonotone projectionsof K on P. We remark that8̃p,q(u) corresponds to a
self-intersection number of a monotone projection ofK on P which is minimal among
the four monotone projections. We will show that8̃p,q(u) is an invariant forK if
K admits a longitudinal surgery yieldingS3 (see Corollary 4.6). Hence, in this case8̃p,q(u) will be denoted by8(K ).

The following is our main result.

Theorem 1.3. Set K= K (L(p, q); u). Suppose that K admits a longitudinal
surgery yielding S3. Then we have the following:
(1) 8(K ) = 0 if and only if K is a torus knot.
(2) 8(K ) = 1 if and only if K contains an essential torus in its exterior.
(3) 8(K ) � 2 if and only if K is a hyperbolic knot.

In Section 5, we will give formulae to obtain representations of dual knots of
Berge’s examples. We remark that the arguments in Section 5 are almost restatements
of those by Berge [1].

2. Preliminaries

Let B be a sub-manifold of a manifoldA. The notation�(B; A) denotes a regular
neighborhood ofB in A. By E(B; A), we mean theexterior of B in A, i.e., E(B; A) =
cl(An�(B; A)).

For two curvesx and y in a surface (i.e., connected compact 2-manifold), the
notation ℄(x, y) denotes the number of transverse intersection points and the notation℄G(x, y) denotes a (minimal) geometric intersection number relative to the endpoints of
x and y. We say thatx and y intersectessentiallyif ℄(x, y) = ℄G(x, y).

A triplet (H1, H2; S) is agenus g Heegaard splittingof a closed orientable 3-manifold
N if Hi (i = 1 and 2) are genusg handlebodies withN = H1 [ H2 and H1 \ H2 =�H1\�H2 = S. The surfaceS is called aHeegaard surface. A properly embedded disk
D in a genusg handlebodyH is called ameridian disk of Hif a 3-manifold obtained
by cutting H along D is a genusg�1 handlebody. The boundary of a meridian disk of
H is called ameridianof H . A collection of mutually disjointg meridiansfx1, : : : , xgg
of H is called acomplete meridian systemof H if fx1,: : : , xgg bounds mutually disjoint
meridian disks ofH which cuts H into a 3-ball.

Let (H1, H2; S) be a genus two Heegaard splitting ofS3. Let fx1, x2g and fy1, y2g
be complete meridian systems ofH1 and H2 respectively. AHeegaard diagramof S3

is (S; fx1, x2g, fy1, y2g). If x1, x2, y1 and y2 are isotoped onS so that they inter-
sect essentially, then we call (S; fx1, x2g, fy1, y2g) a normalized Heegaard diagram. If
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℄(x1, y1) = 1, ℄(x2, y2) = 1, x2\y1 = ; andx1\y2 = ;, then the Heegaard diagram is said
to be standard. Let 6x (6y resp.) be the 2-sphere with four holes obtained by cutting
S along x1 and x2 (y1 and y2 resp.), and letx+

i and x�i (y+
i and y�i resp.) (i = 1, 2)

be the copies ofxi (yi resp.) in6x (6y resp.). A wavew associated with xi (i = 1
or 2) is a properly embedded arc in6x such thatw is disjoint from (y1 [ y2) \ 6x,w joins x+

i or x�i to itself andw does not cut off a disk from6x. Similarly, a wavew associated with yi (i = 1 or 2) is a properly embedded arc in6y such thatw is
disjoint from (x1 [ x2) \6y, w joins y+

i or y�i to itself andw does not cut off a disk
from 6y. A Heegaard diagram (S; fx1, x2g, fy1, y2g) contains a waveif there is a wave
associated withxi (i = 1 or 2) or yi (i = 1 or 2). The following has been proved by
Homma, Ochiai and Takahashi [8].

Theorem 2.1 ([8, Main Theorem]). A normalized genus two Heegaard diagram
of S3 is standard, or contains a wave.

Let M be a closed orientable 3-manifold. Atrivial knot in M is a loop bounding
an embedding disk inM. It is easy to see that a Dehn surgery on a trivial knot in a lens
space cannot yieldS3. A torus knot in M is a non-trivial knot which can be isotoped
on a genus one Heegaard surface ofM. The following has been proved in [13].

Theorem 2.2 ([13, Theorems 2.2–2.4]). Let K be a non-trivial(1, 1)-knot in M
and (W1, W2; P) a (1, 1)-splitting of (M, K ) with Wi = (Vi , ti ) (i = 1, 2), where Vi is a
solid torus and ti is a trivial arc in Vi . Suppose that there are projections t0

1 and t02 of
t1 and t2 respectively and there is an essential loop z on PnK such that z\(t 01[t 02) = ;.
Then one of the following holds.
(1) K is a torus knot.
(2) E(K ; M) contains an essential torus.
(3) K = K (�, �; r ) for some�, � and r.

Here, K (�, �; r ) is a knot obtained by the following construction. LetK1[ K2 be
a 2-bridge link of type (�, �). Then K (�, �; r ) denotes the knotK2 in K1(r ), where
K1(r ) is the manifold obtained by ther -surgery onK1 (cf. [12, Chapter 9]). By an
argument similar to that in [10, Section 1], we can see thatK (�, �; r ) is a (1, 1)-knot
in K1(r ) for any 2-bridge link and surgery coefficientr .

We remark the following which has been essentially proved in[11].

Lemma 2.3. Set K = K (�, �; r ) for some�, � and r. If K admits a Dehn
surgery yielding S3, then K is a torus knot.

Proof. Recall that the exterior ofK is obtained from the exterior of a 2-bridge link
by filling a single solid torus. It has been proved in [11] thatany closed 3-manifold
obtained by any non-trivial Dehn surgery on a 2-bridge link is not homeomorphic to
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Fig. 2.

S3 unless the 2-bridge link is a torus link (cf. [11, Theorems 2 and 3]). This implies
that if K admits a Dehn surgery yieldingS3, then K is a torus knot.

3. Dehn surgeries onK (L(p, q); u)

We use the notations in Definition 1.1. LetD1 (D2 resp.) be a meridian disk of
V1 (V2 resp.) with�D1 = m and ℄(�D1, �D2) = ℄G(�D1, �D2). Let t 0u1 (t 0u2 resp.) be
the monotone projection oftu

1 (tu
2 resp.) whose initial point isP0 and whose endpoint

is Pu passing in the positive direction ofm (l resp.). Thent 0u1 (t 0u2 resp.) is called the
positive projectionof tu

1 (tu
2 resp.). SetV 0

1 = V1 [ �(tu
2 ; V2), V 0

2 = cl(V2 n �(tu
2 ; V2)) and

S0 = �V 0
1 = �V 0

2. Then (V 0
1, V 0

2; S0) is a genus two Heegaard splitting ofM = L(p, q).
Let D0

2 � (D2 \ V 0
2) be a meridian disk ofV 0

2 with �D0
2 � (t 0u2 \ S0). Let m0 be a

meridian of K = tu
1 [ tu

2 in the annulusS0 \ ��(tu
2 ; V2). Let l 0 be an essential loop inS0

which is a union oft 0u1 \ S0 and an essential arc in the annulusS0 \ ��(tu
2 ; V2) disjoint

from �D0
2 (cf. Fig. 2).

Let m� be a meridian ofK in ��(K ; V 0
1) and l � a longitude ofK in ��(K ; V 0

1)
such thatl 0 [ l � bounds an annulus in cl(V 0

1 n �(K ; V 0
1)) and thatl � � (Æ1 \ ��(K ; V 0

1)),
where Æ1 is the disk inV1 bounded bytu

1 [ t 0u1. Note thatm� and l � are oriented as
illustrated in Fig. 1. Thenf[m�], [l �]g is a basis ofH1(��(K ;V 0

1);Z). Let V 00
1 be a genus

two handlebody obtained from cl(V 0
1n�(K ;V 0

1)) by attaching a solid torus̄V so that the
boundary of a meridian disk̄D of V̄ is identified with a loop represented byr [m�] +
s[l �]. Set M 0 = V 00

1 [S0 V 0
2. Then we say thatM 0 is obtained by the (r =s)�-surgeryon

K . If r =s is an integer, the (r =s)�-surgery is called alongitudinal surgery. A core
loop of V̄ in M 0 is called thedual knot of K in M 0.

EXAMPLE 3.1. In Definition 1.2, setp = 18, q = 5 and u = 7. Then we have
the finite sequencefu j g determined in Definition 1.2 as follows:

fu j g1� j�18 : 5, 10, 15, 2, 7, 12, 17, 4, 9, 14, 1, 6, 11, 16, 3, 8, 13, 0.
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Hence we see that918,5(7) = 5 and8̃18,5(7) =818,5(7) = 2.
Set K = K (L(p, q); u) = K (L(18, 5); 7). We use the same notations as the above

and in Definition 1.1. Then we can regard�D2 as an (18, 5)-curve on�V1. When
one fixes P0 as an initial point and follows�D2 in the positive direction ofl , �D2

intersects�D1 in the following order:

(P0 !) Pu1 ! Pu2 ! � � � ! Pu17 ! Pu18 ! P0.

Let E1 (E2 resp.) be a meridian disk ofV1 (V2 resp.) disjoint fromtu
1 (tu

2 resp.).
Recall thatt 0u1 (t 0u2 resp.) is the positive projection oftu

1 (tu
2 resp.). Then9p,q(u) =918,5(7) represents the number of intersection points of�E1 and t 0u2, and8p,q(u) =818,5(7) represents the number of intersection points oft 0u1 and the interior oft 0u2.

We next calculate the fundamental group ofM̄ = E(K ; L(18, 5)). By the argument
above, we see that (S0; f�E1g, f�E2, �D0

2g) gives a Heegaard diagram ofE(K ; L(18, 5)).
Set x̄1 = �E1. Let y1 and y2 be loops onS0 with y1 \ �D0

2 = ;, ℄(y1, �E2) = 1, y2 \�E2 = ;, ℄(y2, �D0
2) = 1. Then we see that�1(M̄) has the following representation.

�1(M̄) �= hy1, y2 j x̄1 = 1i.
By using the sequencefu j g1� j�18, we see

�1(M̄) �= hy1, y2 j x̄1 = 1i
�= hy1, y2 j y1y2y3

1 y2y4
1 y2y3

1 y2y1y2y3
1 y2y3

1 y2 = 1i.
In fact, the relation is obtained by changingu j to y1y2 if u j < u (= 7) and chang-

ing u j to y1 otherwise.
We finally consider the 0�-surgery onK . Let M 0 be a 3-manifold obtained by the

0�-surgery onK �. Set ȳ1 = �E2 and ȳ2 = �D0
2. Let D0

1 be a meridian disk ofV 0
1 with

D0
1 � D̄. Let x1 and x2 be loops onS0 with x1\�D0

1 = ;, ℄(x1, �E1) = 1, x2\�E1 = ;,℄(x2, �D0
1) = 1. Then we see

�1(M 0) �= hx1, x2 j ȳ1 = 1, ȳ2 = 1i
�=
*

x1, x2

x1x2x3
1x2x4

1x2x3
1x2x1x2x3

1x2x3
1x2 = 1,

x1x2x3
1x2x1 = 1

+

�= hx1, x1x2 j x1 = 1, x1x2 = 1i.
Since Poincaré conjecture is true for genus two 3-manifolds(cf. [3] and [5]), we

see thatM 0 is homeomorphic toS3. We remark thatK � L(18, 5) is the dual knot of
the (�2, 3, 7)-pretzel knot.
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4. An invariant of K (L(p, q); u) with a longitudinal surgery yielding S3

We first prove the following.

Lemma 4.1. Set K= K (L(p,q);u). Suppose that K admits a longitudinal surgery
yielding S3. Then any(1, 1)-splitting of (M, K ) is monotone.

Proof. Let (W1, W2; P) be a (1, 1)-splitting of (M, K ) with Wi = (Vi , ti ) (i = 1, 2).
Let E1 (E2 resp.) be a meridian disk ofV1 (V2 resp.) disjoint fromt1 (t2 resp.). Let
D1 (D2 resp.) be a meridian disk ofV1 (V2 resp.) which containst1 (t2 resp.) and is
disjoint from E1 (E2 resp.). We may assume that�D1nK intersects�D2nK essentially
in P n K .

Let t 01 (t 02 resp.) be a projection oft1 (t2 resp.) witht 01 � �D1 (t 02 � �D2 resp.).
Set V 0

1 = V1 [ �(t2; V2), V 0
2 = cl(V2 n �(t2; V2)) and S0 = �V 0

1 = �V 0
2. Then (V 0

1, V 0
2; S0) is

a genus two Heegaard splitting ofM. Let D0
2 � (D2 \ V 0

2) be a meridian disk ofV 0
2

with �D0
2 � (t 02 \ S0).

We now consider a longitudinal surgery onK . Let V 00
1 be a genus two handlebody

obtained from cl(V 0
1 n �(K ; V 0

1)) by attaching a solid torus̄V so that� D̄ intersects a
meridian of �(K ; V 0

1) transversely in a single point, wherēD is a meridian disk of
V̄ . Let D0

1 be a meridian disk ofV 00
1 with D0

1 � D̄. Since we consider a longitudinal
surgery onK , we may assume that cl(�D0

1 n �(t2; V2)) is equivalent tot 01\ �V 00
1 . Then

(S0; f�D0
1, �E1g, f�D0

2, �E2g) is a Heegaard diagram of the manifoldM 0 obtained by
such a surgery onK .

Let S01 (S02 resp.) be the torus with two holes obtained by cuttingS0 along �E1

(�E2 resp.). Let�E+
1 and �E�

1 (�E+
2 and �E�

2 resp.) be the boundary components of
S01 (S02 resp.).

To prove Lemma 4.1, we suppose that (W1, W2; P) is not monotone. Then there
are two arc components, say
1 and 
 01, of �E1\ S02 such that
1 (
 01 resp.) joins�E+

2

(�E�
2 resp.) to itself. Since

�E+
2 \ (�E1 \ S02) = �E�

2 \ (�E1 \ S02),

we see that
1 (
 01 resp.) separates the specified points inP n �E2. Similarly, there
are two arc components, say
2 and 
 02, of �E2\ S01 such that
2 (
 02 resp.) joins�E+

1

(�E�
1 resp.) to itself and separates the specified points inP n �E1.
Let 61 (62 resp.) be the 2-sphere with four holes obtained by cuttingS01 (S02 resp.)

along�D0
1 (�D0

2 resp.). Since
1 and
 01 (
2 and
 02 resp.) separates the specified points
in P n �E2 (P n �E1 resp.),
1 and 
 01 (
2 and 
 02 resp.) assure that there are no waves
in 62 (61 resp.). Hence it follows from Theorem 2.1 thatM 0 is not homeomorphic
to S3.

This completes the proof of Lemma 4.1.
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Fig. 3.

Lemma 4.2. Let K be a(1, 1)-knot in a lens space M and(W1, W2; P) a (1, 1)-
splitting of (M, K ). If (W1, W2; P) is monotone, then there is a monotone projection
of K on P.

Proof. Recall thatWi = (Vi , ti ), whereVi is a solid torus andti is a trivial arc in
Vi . Let E1 (E2 resp.) be a meridian disk ofV1 (V2 resp.) disjoint fromt1 (t2 resp.).
Let D1 be a parallel copy ofE1 which containst1. We suppose thatj�D1 \ �E2j is
minimal among such all meridian disks ofV1. We first prove the following.

Claim. If �D1 and �E2 are oriented, then the signed intersection points of�D1

and �E2 have the same sign.

Proof. Suppose that the claim does not hold. LetAP be the annulus with two
specified pointsP \ K which is obtained by cuttingP along �E1. Let 
 be a com-
ponent of �E2 \ AP. Since (W1, W2; P) is monotone, we see that
 joins distinct
boundary components ofAP. Let DP be the disk with the specified points which are
obtained by cuttingAP along 
 .

Suppose that there are no components of�E2\ DP separating the specified points
in DP. Then this implies that each component of�E2\DP is parallel to
 in AP nK .
Hence we can regardDP as a square [0, 1]� [0, 1] such that each component of�E2\
DP is vertical, i.e., each component of�E2\DP corresponds tofpg� [0, 1]. We may
assume that the specified points are in [0, 1]�f1=2g. Let � be a loop onP such that�
corresponds to [0, 1]�f1=2g in the squareDP. Then we see that� bounds a meridian
disk D� of V1 and t1 is isotoped intoD� relative to the endpoints (cf. [13, Section 3]).
Since we suppose that the claim does not hold, we see thatj�D�\�E2j < j�D1\�E2j.
This contradicts the minimality ofj�D1 \ �E2j. Hence there is a component, say
 0,
of �E2 \ DP separating the specified points inDP (cf. Fig. 3).

Let D0
P and D00

P be the disks obtained by cuttingDP along 
 0. Note that each
of D0

P and D00
P contains exactly one of the specified points. Then we can regard D0

P
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(D00
P resp.) as a square [0, 1]� [0, 1] such that each component of�E2\D0

P (�E2\D00
P

resp.) is vertical and that the specified point is in [0, 1]� f1=2g. Let �0 be a loop on
P such that�0 \ D0

P (�0 \ D00
P resp.) corresponds to [0, 1]� f1=2g in the squareD0

P
(D00

P resp.). Then we see that�0 bounds a meridian diskD�0 of V1 and t1 is isotoped
into D�0 relative to the endpoints. Since we suppose that the claim does not hold, we
see thatj�D�0 \ �E2j < j�D1 \ �E2j. This contradicts the minimality ofj�D1 \ �E2j.

Hence we have the claim.

Let D2 be a parallel copy ofE2 with �D2 � (P\ K ). Then t2 is isotoped intoD2

relative to the endpoints. HenceD1 and D2 imply that there is a monotone projection
of K on P.

This completes the proof of Lemma 4.2.

The following is well known.

Lemma 4.3 (cf. [4] and [7]). There is an orientation-preserving homeomorphism
between two lens spaces L(p, q) and L(p0, q0) if and only if one of the following holds.
(1) p0 = p and q0 � q (mod p), and
(2) p0 = p and q0 � q�1 (mod p).

We note that the following is mentioned by Berge [1] (cf. [14,Section 6]).

Lemma 4.4 ([1, Theorem 3]). Set K = K (L(p, q); u) and K0 = K (L(p0, q0); u0)
for some integers p, q, u, p0, q0 and u0. Suppose that L(p, q) is homeomorphic to
L(p0, q0) and that both K and K0 admit a longitudinal surgery yielding S3. Then K is
isotopic to K0 if and only if [K ] = �[K 0] in H1(M;Z), where M�= L(p, q) �= L(p0, q0).

By using lemmata above, we show the following.

Proposition 4.5. Set K= K (L(p, q); u) and K0 = K (L(p0, q0); u0) for some inte-
gers p, q, u, p0, q0 and u0. Suppose that there is an orientation-preserving homeo-
morphism between L(p, q) and L(p0, q0) and that both K and K0 admit a longitudinal
surgery yielding S3. Then K and K0 are isotopic if and only if one of the following
holds.
(1) In case of (1) of Lemma 4.3,u0 = u or u0 = p� u.
(2) In case of (2) of Lemma 4.3,u0 = 9p,q(u) or u0 = p�9p,q(u).

Proof. Note that it is easy to see thatK (L(p, q); u) and K (L(p, q); p � u) are
isotopic. It follows from Lemma 4.4 thatK and K 0 are isotopic if and only ifu0 = u
or u0 = p � u under the assumptionq0 = q. By Lemma 4.3, we have the following
two cases:
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Claim 1. q0 � q (mod p). In this case, K and K0 are isotopic if and only if
u0 = u or u0 = p� u.

Proof. Setq0 = q + np for some integern. Let (V1, V2; S) be a Heegaard splitting
of L(p,q) such that the boundary of a meridian disk ofV2 is a (p,q)-curve in�V1. Let
(V 0

1, V 0
2; S0) be a Heegaard splitting ofL(p0, q0) such that the boundary of a meridian

disk of V 0
2 is a (p0, q0)-curve in �V 0

1. Since genus one Heegaard surfaces of a lens
space are isotopic, we may assume thatS0 = S. Moreover, sinceq0 = q + np, we see
that V 0

1 = V1 and V 0
2 = V2 (cf. [4] and [7]) andV 0

1 is obtained by twistingV1 along a
meridian disk ofV1. Therefore we see that [K ] = �[K 0] in H1(L(p, q); Z) if and only
if u0 = u or u0 = p� u. Hence it follows from Lemma 4.4 thatK and K 0 are isotopic
if and only if u0 = u or u0 = p� u. Hence we have Claim 1.

Claim 2. q0 � q�1 (mod p). In this case, K and K0 are isotopic if and only if
u0 = 9p,q(u) or u0 = p�9p,q(u).

Proof. Setq0q = np for some integern. Let (V1, V2; S) be a Heegaard splitting of
L(p, q) such that the boundary of a meridian disk ofV2 is a (p, q)-curve in �V1. Let
(V 0

1, V 0
2; S0) be a Heegaard splitting ofL(p0, q0) such that the boundary of a meridian

disk of V 0
2 is a (p0, q0)-curve in �V 0

1. Since genus one Heegaard surfaces of a lens
space are isotopic, we may assume thatS0 = S. Moreover, sinceq0q = np for some
integern, we see thatV 0

1 = V2 and V 0
2 = V1 (cf. [4] and [7]).

We now isotopeK so that K \ V1 = tu
1 (K \ V2 = tu

2 resp.) is a trivial arc in
V1 (V2 resp.). Let t 0u1 (t 0u2 resp.) be a monotone projection oftu

1 (tu
2 resp.). Since℄(t 0u2,�E1) =9p,q(u) or p�9p,q(u), we see thatK is isotopic toK (L(p0,q0);9p,q(u)) =

K (L(p0, q0); p�9p,q(u)). HenceK and K 0 are isotopic if and only ifu0 = 9p,q(u) or
u0 = p�9p,q(u). Hence we have Claim 2.

This completes the proof of Proposition 4.5.

As a corollary of Proposition 4.5, we have the following:

Corollary 4.6. Set K= K (L(p, q); u) and K0 = K (L(p0, q0); u0) for some integers
p, q, u, p0, q0 and u0. Suppose that there is an orientation-preserving homeomorphism
between L(p, q) and L(p0, q0) and that both K and K0 admit a longitudinal surgery
yielding S3. If K and K0 are isotopic, then 8̃p,q(u) = 8̃p0,q0 (u0).

By this corollary we see that̃8p,q(u) is an invariant forK = K (L(p, q); u) if K
admits a longitudinal surgery yieldingS3. Hence we define the following:

DEFINITION 4.7. SetK = K (L(p, q); u) and suppose thatK admits a longitudi-
nal surgery yieldingS3. Then 8̃p,q(u) is denoted by8(K ).
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5. Proof of Theorem 1.3

We first remark the following.

Lemma 5.1 ([6, Theorem C] and [9, Theorem 3]).Let K be a torus knot in M
and (W1, W2; P) a (1, 1)-splitting of (M, K ). Then there is a projection̄t1 (t̄2 resp.)
of t1 (t2 resp.) on P such that̄t1 is disjoint from the interior oft̄2.

Proposition 5.2. Set K = K (L(p, q); u). Suppose that K admits a longitudinal
surgery yielding S3. Then8(K ) = 0 if and only if K is a torus knot.

Proof. Let (W1, W2; P) be a (1, 1)-splitting of (M, K ) with Wi = (Vi , ti ) (i = 1, 2),
where Vi is a solid torus andti is a trivial arc in Vi . Since K admits a longitudinal
surgery yieldingS3, it follows from Lemma 4.1 that (W1, W2; P) is monotone. Lett 01
(t 02 resp.) be a monotone projection oft1 (t2 resp.) such thatt 01 [ t 02 gives the value8(K ).

If 8(K ) = 0, thent 01 is disjoint from the interior oft 02. Hence we see thatK is a
torus knot.

Suppose thatK is a torus knot. Then it follows from Lemma 5.1 that there is a
projection t̄1 (t̄2 resp.) oft1 (t2 resp.) onP such that̄t1 is disjoint from the interior of
t̄2. Let x1 (y1 resp.) be the boundary of a meridian disk ofV1 (V2 resp.) disjoint from
t1 (t2 resp.). Note that it follows from [13, Lemma 3.4] thatx1 (y1 resp.) is unique up
to isotopy onP n K . Note also that we may assume that any projection oft1 (t2 resp.)
on P is disjoint from x1 (y1 resp.). Let6x1 (6y1 resp.) be the component obtained
by cutting P along x1 (y1 resp.). We may assume thatt̄1 (t̄2 resp.) is isotoped so that
t̄1 (t̄2 resp.) intersectsy1 (x1 resp.) essentially. Letx+

1 and x�1 be the boundary of6x1. Since (W1, W2; P) is monotone, we see that each component ofy1 \ 6x1 is an
arc joining x+

1 to x�1 .
CASE 1. t̄2 is not a monotone projection oft2.
Then there is a component, sayt̄+

2 , of t̄2\6x1 which joins x+
1 to itself. Then since

x+
1 \ (t̄2 \6x1) = x�1 \ (t̄2 \6x1),

we see that there is also a component, sayt̄�2 , of t̄2\6x1 which joins x�1 to itself. This
implies that it is impossible to obtain an arc which joins twospecified pointsP \ K
in 6x1 and is disjoint fromt̄2 \ 6x1. Since t̄1 is contained inAP, this implies that
t̄1 \ t̄2 6= ;, a contradiction.

CASE 2. t̄2 is a monotone projection oft2.
To obtain the conclusion8(K ) = 0, we further suppose that8(K ) 6= 0. Then there

is a component, saȳt 02, of t̄2 \6x1 which joins x+
1 to x�1 and intersectst 01 transversely

in a single point. Also, there is a component, sayt̄ 002 , of t̄2\6x1 which joins x+
1 to x�1

and is disjoint fromt 0u1. This implies that̄t 02 [ t̄ 002 separates two specified pointsP \ K
in 6x1. Since t̄1 is contained inAP, this implies that̄t1 \ t̄2 6= ;, a contradiction.
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This completes the proof of Proposition 5.2.

Dehn surgeries on satellite knots inS3 yielding lens spaces have been completely
classified as the follows (cf. [2, 15, 16]).

Lemma 5.3 ([2, Theorem 1]). Let K be a satellite knot in S3 which admits a
Dehn surgery yielding a lens space M. Then K is the(2pq�1, 2)-cable on the(p, q)-
torus knot and M= L(4pq� 1, 4q2).

Here, a knotK � S3 is called the (r , s)-cable on a knot K0 � S3 if K is isotoped
into ��(K0; S3) and is homologous tor [l0] + s[m0] in ��(K0; S3), where (l0, m0) is a
standard meridian-longitude system ofK0 on ��(K0; S3).

REMARK 5.4. (1) Let K be the (2pq� 1, 2)-cable on the (p, q)-torus knot and
K 0 be the (2pq� 1, 2)-cable on the (q, p)-torus knot. ThenK and K 0 are isotopic.
(2) Let p and q be coprime integers. Then we see that the following are equivalent:

(4pq + 1)(4pq� 1)� 0 (mod 4pq� 1),

16p2q2 � 1� 0 (mod 4pq� 1),

(4p2)(4q2) � 1 (mod 4pq� 1).

Hence we see that (4q2)�1 � 4p2 (mod 4pq� 1) and therefore

L(4pq� 1, 4q2) = �L(4pq� 1,�4q2)

= �L(4pq� 1,�4p2) = L(4pq� 1, 4p2).

Lemma 5.5. Let p and q be coprime integers. Suppose that p> 1 and q 6=
0,�1. Set K = K (L(j4pq � 1j, �4q2); 2jqj). Then K admits a longitudinal surgery
yielding S3 and8(K ) = 1.

Proof. Since the argument is similar (cf. Remark 5.6), we give a proof in case of
1< q < p and K = K (L(4pq� 1, 4q2); 2q).

Claim 1. 8̃4pq�1,4q2(2q) = 1.

Proof. For a pair of 4pq� 1 and 4q2, we consider the finite sequencefu j g de-
termined in Definition 1.2. Since 4q2 � p� q � 0 (mod 4pq� 1), we see thatup = q.
Suppose that there are integersp0 and q0 with 0< p0 < p, 0< q0 < 2q and up0 = q0.
Then there is a non-negative integern such that 4q2 � p0 = n � 4pq2 + q0. This indicates
that 4q2(p0 � n � p) = q0. Since 0< p0 < p and q0 > 0, we see thatn = 0 and hence
4p0q2 = q0. However, this contradicts that 0< q0 < 2q. This implies that for each
integer j with 1 � j � p� 1, we see thatu j > 2q. Similarly, we see thatu2p = 2q
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and u j > 2q for each integerj with p + 1 � j � 2p� 1. Hence84pq�1,4q2(2q) = 1.
Note that

8̃p,q(u) = minf1, 4pq� 2p� 2q, 2p� 2, 2q � 2g.
Since we assume that 1< q < p, we see that8̃4pq�1,4q2(2q) = 1. Therefore we

have Claim 1.

Claim 2. The 0�-surgery on K yields S3.

Proof. We use an argument similar to that in Example 3.1 and hence we use
the same notations as those in Example 3.1. LetM 0 be a 3-manifold obtained by
the 0�-surgery onK �. Recall thatx1 and x2 are loops onS0 with x1 \ �D0

1 = ;,℄(x1, �E1) = 1, x2 \ �E1 = ;, ℄(x2, �D0
1) = 1. Recall also that̄y1 = �E2 and ȳ2 = �D0

2.
Then we see

�1(M 0) �= hx1, x2 j ȳ1 = 1, ȳ2 = 1i
�= hx1, x02 j ȳ1 = 1, ȳ2 = 1i (x02 := x1x2).

It follows from the argument in the proof of Claim 1 thaty2 = xp
1 x2xp

1 = xp�1
1 x02xp

1 .

Sincey2 = 1, we see thatx02 = x1�2p
1 . This implies thatx1 and x02 are commutative with

each other and hence�1(M 0) �= H1(M 0; Z). We note that

H1(M 0; Z) �=
*

x1, x02 ((4pq� 1)� 2q) � x1 + 2q � x02 = 0,

(2p� 1) � x1 + x02 = 0

+

This implies thatH1(M 0; Z) is trivial and hence�1(M 0) is trivial. Since Poincaré
conjecture is true for genus two 3-manifolds (cf. [3] and [5]), we see thatM 0 is home-
omorphic toS3 and hence we have Claim 2.

The conclusion of Lemma 5.5 follows from Claims 1 and 2.

REMARK 5.6. To prove Lemma 5.5 in other certain cases, we need to consider
the sequence obtained by reversing the order of the sequencefu j g.

Lemma 5.7. Let K be the(2pq�1, 2)-cable on the(p, q)-torus knot with p> 1
and q 6= 0,�1. Then the following holds.
(1) If q > 1, then K� = K (L(4pq�1, 4q2); 2q) is the dual knot of K in L(4pq�1, 4q2).
(2) If q <�1, then K� = K (L(j4pq�1j,�4q2);2jqj) is the dual knot of K in L(j4pq�1j,�4q2).
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Proof. First we prove the case whenK is the (2pq�1,2)-cable on the (p,q)-torus
knot. The case whenK is the (2pq+1, 2)-cable on the (p, q)-torus knot will be proved
similarly. Set K � = K (L(4pq� 1, 4q2); 2q). Let (W1, W2; P) be a (1, 1)-splitting of
(L(4pq�1, 4q2), K �). Recall thatWi = (Vi , ti ) (i = 1, 2), whereV1 (V2 resp.) is a solid
torus andt1 (t2 resp.) is a trivial arc inV1 (V2 resp.). LetE1 (E2 resp.) be a meridian
disk of V1 (V2 resp.) disjoint fromt1 (t2 resp.). SinceK � admits a longitudinal surgery
yielding S3 (cf. Lemma 5.5), we see that (W1, W2; P) is monotone (cf. Lemma 4.1).
Hence we may assume that�E2 is a (4pq � 1, 4q2)-curve on�V1 (cf. Lemma 4.2).
Let t 01 (t 02 resp.) be a monotone projection oft1 (t2 resp.) such thatt 01 [ t 02 gives the
value8(K ). It follows from Lemma 5.5 that8(K ) = 1. Let v be the self-intersection
point of t 01[ t 02. Let t̄ 01 (t̄ 02 resp.) be the subarc oft 01 (t 02 resp.) which joinsP0 to v. Let
z1 be a loop onP obtained by movinḡt 01 [ t̄ 02 slightly so thatt̄ 01 [ t̄ 02 is disjoint from
t 01 [ t 02. Then it follows from Claim 1 in the proof of Lemma 5.5 that℄G(z1, �E1) = p
and ℄G(z1, �E2) = q.

Let A1 (A2 resp.) be an annulus obtained by pushing the interior ofE(z1; �V1)
(E(z2; �V2) resp.) into the interior ofV1 (V2 resp.) so thatA1 (A2 resp.) is disjoint
from t1 (t2 resp.). ThenA1[ A2 cuts (L(4pq�1, 4q2), K �) into (M1, K �) and (M2, ;).
Note thatM1 is a solid torus containingK �. Since℄G(z1,�E1) = p and℄G(z1,�E2) = q,
we see thatM2 is homeomorphic to the exterior of the (p, q)-torus knot inS3. Hence
A1[A2 is an essential torus inE(K �; L(4pq�1, 4q2)). SinceK � admits a longitudinal
surgery yieldingS3 (cf. Lemma 5.5), we see thatK � is the dual knot of a cable of
the (p, q)-torus knot in S3. Hence it follows from Lemma 5.3 thatK � is the dual
knot of K .

Corollary 5.8. Set K = K (L(p, q); u). Suppose that K admits a longitudinal
surgery yielding S3. Then8(K ) = 1 if and only if E(K ; M) contains an essential torus.

Proof. Suppose first that8(K ) = 1. Then by an argument similar to that in the
proof of Lemma 5.7, we see that there exists a loopz1 as in the proof of Lemma 5.7.
This implies that a (1, 1)-splitting of (M, K ) satisfies the assumption of Theorem 2.2.
Hence it follows from Theorem 2.2 and Lemma 2.3 thatK is a torus knot orE(K ; M)
contains an essential torus. Since8(K ) = 1, K is not a torus knot (cf. Proposition 5.2)
and henceE(K ; M) contains an essential torus.

Suppose next thatE(K ; M) contains an essential torus. ThenK is the dual knot
of the (2pq� 1, 2)-cable on the (p, q)-torus knot for some integersp and q. Hence
it follows from Lemmata 5.5 and 5.7 that8(K ) = 1.

Theorem 1.3 immediately follows from Proposition 5.2 and Corollary 5.8.

6. Appendix

Here, we will recall Berge’s argument [1] to obtain a relationship between Berge’s
examples and their dual knots. We first recall Berge’s surgery on doubly primitive
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Fig. 4.

knots. Let (H , H 0; S) be a genus two Heegaard splitting ofS3. A knot K � S is
a doubly primitive knotif K represents a free generator both of�1(H ) and of�1(H 0).
If K is doubly primitive, then there are meridian disksD and E (D0 and E0 resp.) of
H (H 0 resp.) with℄(�D, K ) = 1 and�E\K = ; (℄(�D0, K ) = 1 and�E0\K = ; resp.).
Then it follows from [1, Theorem 1] that a Heegaard diagram (S; f�D, �Eg, fK , �E0g)
represents a lens space. We call such a surgeryBerge’s surgeryon K . We remark that�D0 corresponds to the dual knot ofK .

Let (H , H 0; S) be a genus two Heegaard splitting ofS3 and (S; fx1, x2g, fy1, y2g) its
standard Heegaard diagram with℄(x1, y1) = 1, ℄(x2, y2) = 1, x2\ y1 = ; and x1\ y2 = ;.
We fix orientation ofx1, x2, y1 and y2 as in Fig. 4.

Then f[x1], [x2], [ y1], [ y2]g is a basis ofH1(�H ; Z). Let K be an oriented doubly
primitive knot on S with [K ] = a[x1] + b[x2] + c[y1] + d[y2] in H1(�H ; Z). Let h be
an orientation-preserving homeomorphism ofH 0 with h(x1) = K . Then h induces a
symplectic transformation� on H1(�H 0; Z) which satisfies the following:

�(x1) = a[x1] + b[x2] + c[y1] + d[y2],

�(x2) = s[x1] + t [x2] + u[y1] + v[y2],

�(y1) = t [y1] � s[y2],

�(y2) = � b[y1] + a[y2]

where, s, t , u and v are integers withat�bs = 1 and (au+bv)� (cs+dt) = 0. Recall
that sinceK is doubly primitive, [K ] is a free generator ofH1(H ; Z). Let [K 0] be
the other generator ofH1(H ; Z). We now consider a projection' onto [K 0]. Then
we have:

'(x2) = (cv � du)[K 0],
'(y1) = (�cs� dt)[K 0],
'(y2) = (ac+ bd)[K 0]

where, we remark that'(x1) = 0. Let M = L(p, q) be a lens space obtained by Berge’s
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surgery onK and K � = K (L(p, q); u) the dual knot ofK . Let V be a 3-manifold ob-
tained from H by attaching a 2-handle alongK . Since K is doubly primitive, we
see thatV is a solid torus and thatV and V 0 = E(V ; M) give a genus one Heegaard
splitting of M. Note that a core ofV corresponds to a generator [K 0] of H1(H ; Z), a
meridian of V 0 corresponds to�(y2), a core ofV 0 corresponds to�(x2) and K � cor-
responds to�(y1). Hence p of K (L(p, q); u) satisfies thatp = ac+ bd.

We divide the rest of the arguments into the following three cases.
CASE 1. Knots of types (I)–(VI).
Each knots of types (I)–(VI) in Berge’s examples satisfies that a =�1. Sinceat�

bs = 1, we see thats and t are coprime and hence we haves = �1 + aj and t =
a(1� b) + bj , where j is an integer. Hence we havecs+ dt = �c + ad(1� b). Also,
it follows from (au + bv)� (cs+ dt) = 0 that au = (cs+ dt � bv).

Let mV be a meridian ofV . Recall that℄A(mV ,�(y2)) = p = ac+bd, where℄A(�, �)
means an algebraic intersection number. Note thatq of K (L(p, q); u) corresponds to℄A(mV , �(x2)). Hence we need to calculate the valuecv � du. Since we assumea =�1, we have:

q = cv � du

= cv � d(cs+ dt � bv)

= (c� bd)v � d(cs+ dt)

� �ad(cs+ dt) (mod p = ac+ bd)

� ad(c + ad(b� 1)) (mod p = ac+ bd).

We remark thatmV is a (p, q)-curve on�V 0. HenceV (V 0 resp.) corresponds to
V2 (V1 resp.), whereV1 and V2 are those in Definition 1.1. SinceK � corresponds to�(y1), we see that [K �] = (�cs�dt)[K 0]. Hence we see thatu of K (L(p, q); u) satis-
fies thatu � c+ ad(b+ 1) (mod p = ac+ bd) (cf. Claim 2 in the proof of Lemma 4.5).
Therefore we have the following.

Theorem 6.1. Let K be a doubly primitive knot with[K ] = a[x1] + b[x2] + c[y1] +
d[y2] in H1(�H ; Z). Let L(p, q) be the lens space obtained by Berge’s surgery on K and
K � the dual knot of K. If a = �1, then K� admits a representation K(L(p, q); u) with

p = ac+ bd,

q � ad(c + ad(b� 1)) (mod p = ac+ bd),

u � c + ad(b� 1) (mod p = ac+ bd).

CASE 2. Knots on Seifert surfaces of genus one knots.
Let g1 and g2 be oriented loops on�H illustrated in (a) or (b) of Fig. 5. Set

K0 = ��(g1 [ g2; �H ). Then K0 is the right-hand trefoil knot in case of (a) and is the
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Fig. 5.

figure-eight knot in case of (b), and�(g1 [ g2; �H ) is a genus one Seifert surface of
K0. Let K be a knot in�(g1 [ g2; �H ) with [K ] = a[g1] + b[g2], where a and b are
coprime integers.

Suppose first thatK0 is the right-hand trefoil knot. Since [g1] = �[x1] + [ y1] and
[g2] = �[x1]� [x2] + [ y2] in H1(�H ; Z), we see that [K ] = �(a +b)[x1]�b[x2] + a[y1] +
b[y2] in H1(�H ; Z). In this case, we have�(a + b)t + bs = 1 and (�(a + b)u� bv)�
(as+ bt) = 0, wheres, t , u and v are integers of�(x2) = s[x1] + t [x2] + u[y1] + v[y2].
Hence we see thatp of K (L(p, q); u) satisfies thatp = �a2 � ab� b2. Recall that
u of K (L(p, q); u) corresponds to the value�as� bt and thatq of K (L(p, q); u)
corresponds to the valueav�bu. Since�a(a +b) � b2 (mod p = �a2�ab�b2), we
have�(a + b)(�as� bt) � �b(�(a + b)t + bs) (mod p = �a2 � ab� b2). Hence we
have�(a + b)(�as� bt) � �b (mod p = �a2 � ab� b2), because�(a + b)t + bs = 1.
Therefore we see thatu � �as� bt � b(a + b)�1 (mod p = �a2 � ab� b2). For q
of K (L(p, q); u), we see thatq � �u2 (mod p = �a2 � ab� b2) by the following.
(Recall that�a(a + b) � b2 (mod p = �a2 � ab� b2).)

(�(a + b)u� bv) = (as+ bt),

b(�(a + b)u� bv) � �bu (mod p = �a2 � ab� b2),

(a + b)(av � bu) � �bu (mod p = �a2 � ab� b2),

av � bu� �u2 (mod p = �a2 � ab� b2).

Suppose next thatK0 is the figure-eight knot. Since [g1] = �[x1] + [ y1] and [g2] =�[x1] + [x2] + [ y2] in H1(�H ; Z), we see that [K ] = �(a + b)[x1] + b[x2] + a[y1] + b[y2]
in H1(�H ;Z). By an argument similar to the above, we have the conclusion(2) of the
following Theorem 6.2.

Theorem 6.2. Let K be a doubly primitive knot and L(p, q) a lens space ob-
tained by Berge’s surgery on K. Let K� be the dual knot of K. In the following, a
and b are coprime integers with a> 0 and b> 0.
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(1) If [K ] = �(a + b)[x1] � b[x2] + a[y1] + b[y2] in H1(�H ; Z), then K� admits a
representation K(L(p, q); u) with

p = �a2 � ab� b2,

q � �b2(a + b)�2 (mod p = �a2 � ab� b2),

u � b(a + b)�1 (mod p = �a2 � ab� b2).

(2) If [K ] = �(a + b)[x1] + b[x2] + a[y1] + b[y2] in H1(�H ; Z), then K� admits a rep-
resentation K(L(p, q); u) with

p = �a2 � ab+ b2,

q � �b2(a + b)�2 (mod p = �a2 � ab+ b2),

u � b(a + b)�1 (mod p = �a2 � ab+ b2).

CASE 3. Sporadic cases.
By an argument similar to the above, we have the following.

Theorem 6.3. Let K be a doubly primitive knot and L(p, q) a lens space ob-
tained by Berge’s surgery on K. Let K� be the dual knot of K. In the following, j
is a non-negative integer.
(1) If [K ] = (6 j + 1)[x1] � j [x2] + (4 j + 1)[y1] + (2 j + 1)[y2] in H1(�H ; Z), then K�
admits a representation K(L(p, q); u) with

p = 22j 2 + 9 j + 1,

q � �(22j + 5)2 (mod p = 22j 2 + 9 j + 1),

u � 22j + 5 (mod p = 22j 2 + 9 j + 1).

(2) If [K ] = (4 j + 1)[x1] � j [x2] + (6 j + 2)[y1] + (2 j + 1)[y2] in H1(�H ; Z), then K�
admits a representation K(L(p, q); u) with

p = 22j 2 + 13j + 2,

q � �(22j + 7)2 (mod p = 22j 2 + 13j + 2),

u � 22j + 7 (mod p = 22j 2 + 13j + 2).

(3) If [K ] = (�4 j � 3)[x1] + ( j + 1)[x2] + (6 j + 4)[y1] + (2 j + 1)[y2] in H1(�H ; Z), then
K � admits a representation K(L(p, q); u) with

p = 22j 2 + 31j + 11,

q � �(22j + 15)2 (mod p = 22j 2 + 31j + 11),

u � 22j + 15 (mod p = 22j 2 + 31j + 11).
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(4) If [K ] = (�6 j � 5)[x1] + ( j + 1)[x2] + (4 j + 3)[y1] + (2 j + 1)[y2] in H1(�H ; Z), then
K � admits a representation K(L(p, q); u) with

p = 22j 2 + 13j + 2,

q � �(22j + 17)2 (mod p = 22j 2 + 13j + 2),

u � 22j + 17 (mod p = 22j 2 + 13j + 2).
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