Title	The dual knots of doubly primitive knots
Author(s)	Saito, Toshio
Citation	Osaka Journal of Mathematics. 2008, 45(2), p. $403-421$
Version Type	VoR
URL	https://doi.org/10.18910/9952
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. library.osaka-u.ac.jp/

THE DUAL KNOTS OF DOUBLY PRIMITIVE KNOTS

Toshio SAITO

(Received October 19, 2006, revised April 4, 2007)

Abstract

For certain $(1,1)$-knots in lens spaces with a longitudinal surgery yielding the 3 -sphere, we determine a non-negative integer derived from its (1,1)-splitting. The value will be an invariant for such knots. Roughly, it corresponds to a 'minimal' self-intersection number when one consider projections of a knot on a Heegaard torus. As an application, we give a necessary and sufficient condition for such knots to be hyperbolic.

1. Introduction

A lens space $L(p, q)$ is a 3-manifold obtained by the p / q-surgery on a trivial knot in the 3 -sphere S^{3} and is homeomorphic neither to S^{3} nor to $S^{2} \times S^{1}$. Throughout this paper, $-L(p, q)$ denotes the same manifold as $L(p, q)$ with reversed orientation.

A knot K in a closed orientable 3-manifold M is called a (1, 1)-knot if $(M, K)=$ $\left(V_{1}, t_{1}\right) \cup_{P}\left(V_{2}, t_{2}\right)$, where $\left(V_{1}, V_{2} ; P\right)$ is a genus one Heegaard splitting and t_{i} is a trivial arc in $V_{i}(i=1$ and 2). (An arc t properly embedded in a solid torus V is said to be trivial if there is a disk D in V with $t \subset \partial D$ and $\partial D \backslash t \subset \partial V$.) Set $W_{i}=\left(V_{i}, t_{i}\right)(i=1$ and 2). We call the triplet $\left(W_{1}, W_{2} ; P\right)$ a (1, 1)-splitting of (M, K). We regard P as a torus with two specified points $P \cap K$. Let E_{1} (E_{2} resp.) be a meridian disk of $V_{1}\left(V_{2}\right.$ resp.) disjoint from t_{1} (t_{2} resp.). It is known that such a disk is unique up to isotopy on $V_{1} \backslash t_{1}\left(V_{2} \backslash t_{2}\right.$ resp.) (cf. [13, Lemma 3.4]). A (1,1)-splitting ($W_{1}, W_{2} ; P$) is said to be monotone if the signed intersection points of ∂E_{1} and ∂E_{2} have the same sign for some orientations of ∂E_{1} and ∂E_{2}.

Berge's work [1] indicates that it is very important to study (1,1)-knots. Which knots in S^{3} admit Dehn surgeries yielding lens spaces? This problem is still open. In [1], Berge introduced the concept of doubly primitive knots and gave an integral surgery to obtain a lens space from any doubly primitive knot. In this paper, we call such a surgery Berge's surgery. He also gave a list of doubly primitive knots in S^{3} (cf. Section 6). It is expected that Berge's list would be complete.

If a lens space M comes from a Dehn surgery on a knot K in S^{3}, then there is the dual knot K^{*} in M such that a Dehn surgery on K^{*} yields S^{3}. It has been proved in [1] that when Berge's surgery on a doubly primitive knot yields a lens space, its

Fig. 1.
dual knot is isotopic to a $(1,1)$-knot defined as follows.

DEFINITION 1.1. Let V_{1} be a standard solid torus in S^{3}, m a meridian of V_{1} and l a longitude of V_{1} such that l bounds a disk in $\operatorname{cl}\left(S^{3} \backslash V_{1}\right)$. We fix an orientation of m and l as illustrated in Fig. 1. By attaching a solid torus V_{2} to V_{1} so that $[\bar{m}]=p[l]+$ $q[m](p>0)$ in $H_{1}\left(\partial V_{1} ; \mathbb{Z}\right)$, we obtain a lens space $L(p, q)$, where \bar{m} is a meridian of V_{2}. The intersection points of m and \bar{m} are labelled P_{0}, \ldots, P_{p-1} successively along the positive direction of m. For an integer u with $0<u<p$, let t_{i}^{u} be a simple arc in D_{i} joining P_{0} to $P_{u}(i=1,2)$. Then the notation $K(L(p, q) ; u)$ denotes the knot $t_{1}^{u} \cup t_{2}^{u}$ in $L(p, q)$.

Set $W_{i}=\left(V_{i}, t_{i}^{u}\right)(i=1,2)$, where V_{i} and t_{i}^{u} are those in Definition 1.1. Then the pair of W_{1} and W_{2} gives a $(1,1)$-splitting of $K=K(L(p, q) ; u)$ which is monotone. We will prove that any $(1,1)$-splitting of $(L(p, q), K)$ is monotone if K admits a longitudinal surgery yielding S^{3} (see Lemma 4.1).

In this paper, we prepare the following notations.

DEFINITION 1.2. Let p and q be coprime integers with $p>0$. Let $\left\{u_{j}\right\}_{1 \leq j \leq p}$ be the finite sequence such that $0 \leq u_{j}<p$ and $u_{j} \equiv q \cdot j(\bmod p)$. For an integer u with $0<u<p, \Psi_{p, q}(u)$ denotes the integer j with $u_{j}=u$, and $\Phi_{p, q}(u)$ denotes the number of elements of the following set:

$$
\left\{u_{j} \mid 1 \leq j<\Psi_{p, q}(u), u_{j}<u\right\}
$$

Also, $\tilde{\Phi}_{p, q}(u)$ denotes the following:

$$
\begin{aligned}
\tilde{\Phi}_{p, q}(u)=\min & \left\{\Phi_{p, q}(u), \Phi_{p, q}(u)-\Psi_{p, q}(u)+p-u\right. \\
& \left.\Psi_{p, q}(u)-\Phi_{p, q}(u)-1, u-\Phi_{p, q}(u)-1\right\} .
\end{aligned}
$$

In Definition 1.1, let $t_{1}^{\prime \prime}$ ($t_{2}^{\prime \prime}$ resp.) be a projection of t_{1}^{u} (t_{2}^{u} resp.) on P with $t^{\prime \prime}{ }_{1} \subset \partial D_{1}\left(t_{2}^{\prime \prime} \subset \partial D_{2}\right.$ resp. $)$. Set $t^{\prime \prime \prime}{ }_{1}=\operatorname{cl}\left(\partial D_{1} \backslash t_{1}^{\prime u}\right)$ and $t^{\prime \prime \prime}{ }_{2}=\operatorname{cl}\left(\partial D_{2} \backslash t^{\prime \prime}{ }_{2}\right)$. Each of $t^{\prime \prime}{ }_{1}$ and $t^{\prime \prime \prime}{ }_{1}^{\prime \prime}\left(t_{2}^{\prime \prime}\right.$ and $t^{\prime \prime \prime}{ }_{2}^{\prime}$ resp.) are called monotone projections of t_{1}^{u} (t_{2}^{u} resp.). There are four projections of $K=K(L(p, q) ; u): t^{\prime \prime} \cup t^{\prime \prime}{ }_{2}, t^{\prime \prime \prime} \cup t^{\prime \prime \prime}{ }_{2}, t^{\prime \prime \prime}{ }_{1} \cup t^{\prime \prime}{ }_{2}$ and $t^{\prime \prime u} \cup t^{\prime \prime \prime}{ }_{2}$. These are called monotone projections of K on P. We remark that $\tilde{\Phi}_{p, q}(u)$ corresponds to a self-intersection number of a monotone projection of K on P which is minimal among the four monotone projections. We will show that $\tilde{\Phi}_{p, q}(u)$ is an invariant for K if K admits a longitudinal surgery yielding S^{3} (see Corollary 4.6). Hence, in this case $\tilde{\Phi}_{p, q}(u)$ will be denoted by $\Phi(K)$.

The following is our main result.

Theorem 1.3. Set $K=K(L(p, q) ; u)$. Suppose that K admits a longitudinal surgery yielding S^{3}. Then we have the following:
(1) $\Phi(K)=0$ if and only if K is a torus knot.
(2) $\Phi(K)=1$ if and only if K contains an essential torus in its exterior.
(3) $\Phi(K) \geq 2$ if and only if K is a hyperbolic knot.

In Section 5, we will give formulae to obtain representations of dual knots of Berge's examples. We remark that the arguments in Section 5 are almost restatements of those by Berge [1].

2. Preliminaries

Let B be a sub-manifold of a manifold A. The notation $\eta(B ; A)$ denotes a regular neighborhood of B in A. By $E(B ; A)$, we mean the exterior of B in A, i.e., $E(B ; A)=$ $\operatorname{cl}(A \backslash \eta(B ; A))$.

For two curves x and y in a surface (i.e., connected compact 2-manifold), the notation $\sharp(x, y)$ denotes the number of transverse intersection points and the notation $\#_{G}(x, y)$ denotes a (minimal) geometric intersection number relative to the endpoints of x and y. We say that x and y intersect essentially if $\sharp(x, y)=\sharp_{G}(x, y)$.

A triplet $\left(H_{1}, H_{2} ; S\right)$ is a genus g Heegaard splitting of a closed orientable 3-manifold N if $H_{i}\left(i=1\right.$ and 2) are genus g handlebodies with $N=H_{1} \cup H_{2}$ and $H_{1} \cap H_{2}=$ $\partial H_{1} \cap \partial H_{2}=S$. The surface S is called a Heegaard surface. A properly embedded disk D in a genus g handlebody H is called a meridian disk of H if a 3-manifold obtained by cutting H along D is a genus $g-1$ handlebody. The boundary of a meridian disk of H is called a meridian of H. A collection of mutually disjoint g meridians $\left\{x_{1}, \ldots, x_{g}\right\}$ of H is called a complete meridian system of H if $\left\{x_{1}, \ldots, x_{g}\right\}$ bounds mutually disjoint meridian disks of H which cuts H into a 3-ball.

Let $\left(H_{1}, H_{2} ; S\right)$ be a genus two Heegaard splitting of S^{3}. Let $\left\{x_{1}, x_{2}\right\}$ and $\left\{y_{1}, y_{2}\right\}$ be complete meridian systems of H_{1} and H_{2} respectively. A Heegaard diagram of S^{3} is ($S ;\left\{x_{1}, x_{2}\right\},\left\{y_{1}, y_{2}\right\}$). If x_{1}, x_{2}, y_{1} and y_{2} are isotoped on S so that they intersect essentially, then we call ($S ;\left\{x_{1}, x_{2}\right\},\left\{y_{1}, y_{2}\right\}$) a normalized Heegaard diagram. If
$\sharp\left(x_{1}, y_{1}\right)=1, \sharp\left(x_{2}, y_{2}\right)=1, x_{2} \cap y_{1}=\emptyset$ and $x_{1} \cap y_{2}=\emptyset$, then the Heegaard diagram is said to be standard. Let Σ_{x} (Σ_{y} resp.) be the 2 -sphere with four holes obtained by cutting S along x_{1} and x_{2} (y_{1} and y_{2} resp.), and let x_{i}^{+}and x_{i}^{-}(y_{i}^{+}and y_{i}^{-}resp.) $(i=1,2)$ be the copies of x_{i} (y_{i} resp.) in Σ_{x} (Σ_{y} resp.). A wave w associated with $x_{i}(i=1$ or 2) is a properly embedded arc in Σ_{x} such that w is disjoint from $\left(y_{1} \cup y_{2}\right) \cap \Sigma_{x}$, w joins x_{i}^{+}or x_{i}^{-}to itself and w does not cut off a disk from Σ_{x}. Similarly, a wave w associated with $y_{i}(i=1$ or 2$)$ is a properly embedded arc in Σ_{y} such that w is disjoint from $\left(x_{1} \cup x_{2}\right) \cap \Sigma_{y}$, w joins y_{i}^{+}or y_{i}^{-}to itself and w does not cut off a disk from Σ_{y}. A Heegaard diagram $\left(S ;\left\{x_{1}, x_{2}\right\},\left\{y_{1}, y_{2}\right\}\right)$ contains a wave if there is a wave associated with $x_{i}\left(i=1\right.$ or 2) or $y_{i}(i=1$ or 2$)$. The following has been proved by Homma, Ochiai and Takahashi [8].

Theorem 2.1 ([8, Main Theorem]). A normalized genus two Heegaard diagram of S^{3} is standard, or contains a wave.

Let M be a closed orientable 3-manifold. A trivial knot in M is a loop bounding an embedding disk in M. It is easy to see that a Dehn surgery on a trivial knot in a lens space cannot yield S^{3}. A torus knot in M is a non-trivial knot which can be isotoped on a genus one Heegaard surface of M. The following has been proved in [13].

Theorem 2.2 ([13, Theorems 2.2-2.4]). Let K be a non-trivial (1, 1)-knot in M and $\left(W_{1}, W_{2} ; P\right)$ a $(1,1)$-splitting of (M, K) with $W_{i}=\left(V_{i}, t_{i}\right)(i=1,2)$, where V_{i} is a solid torus and t_{i} is a trivial arc in V_{i}. Suppose that there are projections t_{1}^{\prime} and t_{2}^{\prime} of t_{1} and t_{2} respectively and there is an essential loop z on $P \backslash K$ such that $z \cap\left(t_{1}^{\prime} \cup t_{2}^{\prime}\right)=\emptyset$. Then one of the following holds.
(1) K is a torus knot.
(2) $E(K ; M)$ contains an essential torus.
(3) $K=K(\alpha, \beta ; r)$ for some α, β and r.

Here, $K(\alpha, \beta ; r)$ is a knot obtained by the following construction. Let $K_{1} \cup K_{2}$ be a 2-bridge link of type (α, β). Then $K(\alpha, \beta ; r)$ denotes the knot K_{2} in $K_{1}(r)$, where $K_{1}(r)$ is the manifold obtained by the r-surgery on K_{1} (cf. [12, Chapter 9]). By an argument similar to that in [10, Section 1], we can see that $K(\alpha, \beta ; r)$ is a $(1,1)$-knot in $K_{1}(r)$ for any 2-bridge link and surgery coefficient r.

We remark the following which has been essentially proved in [11].

Lemma 2.3. Set $K=K(\alpha, \beta ; r)$ for some α, β and r. If K admits a Dehn surgery yielding S^{3}, then K is a torus knot.

Proof. Recall that the exterior of K is obtained from the exterior of a 2-bridge link by filling a single solid torus. It has been proved in [11] that any closed 3-manifold obtained by any non-trivial Dehn surgery on a 2-bridge link is not homeomorphic to

Fig. 2.
S^{3} unless the 2-bridge link is a torus link (cf. [11, Theorems 2 and 3]). This implies that if K admits a Dehn surgery yielding S^{3}, then K is a torus knot.

3. Dehn surgeries on $K(L(p, q) ; u)$

We use the notations in Definition 1.1. Let D_{1} (D_{2} resp.) be a meridian disk of $V_{1}\left(V_{2}\right.$ resp.) with $\partial D_{1}=m$ and $\sharp\left(\partial D_{1}, \partial D_{2}\right)=\sharp_{G}\left(\partial D_{1}, \partial D_{2}\right)$. Let $t_{1}^{\prime \prime \prime}\left(t_{2}^{\prime \prime}\right.$ resp.) be the monotone projection of $t_{1}^{u}\left(t_{2}^{u}\right.$ resp.) whose initial point is P_{0} and whose endpoint is P_{u} passing in the positive direction of $m(l$ resp. $)$. Then $t_{1}^{\prime \prime}\left(t_{2}^{\prime \prime}\right.$ resp.) is called the positive projection of $t_{1}^{u}\left(t_{2}^{u}\right.$ resp.). Set $V_{1}^{\prime}=V_{1} \cup \eta\left(t_{2}^{u} ; V_{2}\right), V_{2}^{\prime}=\operatorname{cl}\left(V_{2} \backslash \eta\left(t_{2}^{u} ; V_{2}\right)\right)$ and $S^{\prime}=\partial V_{1}^{\prime}=\partial V_{2}^{\prime}$. Then $\left(V_{1}^{\prime}, V_{2}^{\prime} ; S^{\prime}\right)$ is a genus two Heegaard splitting of $M=L(p, q)$. Let $D_{2}^{\prime} \subset\left(D_{2} \cap V_{2}^{\prime}\right)$ be a meridian disk of V_{2}^{\prime} with $\partial D_{2}^{\prime} \supset\left(t_{2}^{\prime \prime} \cap S^{\prime}\right)$. Let m^{\prime} be a meridian of $K=t_{1}^{u} \cup t_{2}^{u}$ in the annulus $S^{\prime} \cap \partial \eta\left(t_{2}^{u} ; V_{2}\right)$. Let l^{\prime} be an essential loop in S^{\prime} which is a union of $t^{\prime \prime} \cap S^{\prime}$ and an essential arc in the annulus $S^{\prime} \cap \partial \eta\left(t_{2}^{u} ; V_{2}\right)$ disjoint from ∂D_{2}^{\prime} (cf. Fig. 2).

Let m^{*} be a meridian of K in $\partial \eta\left(K ; V_{1}^{\prime}\right)$ and l^{*} a longitude of K in $\partial \eta\left(K ; V_{1}^{\prime}\right)$ such that $l^{\prime} \cup l^{*}$ bounds an annulus in $\operatorname{cl}\left(V_{1}^{\prime} \backslash \eta\left(K ; V_{1}^{\prime}\right)\right)$ and that $l^{*} \supset\left(\delta_{1} \cap \partial \eta\left(K ; V_{1}^{\prime}\right)\right)$, where δ_{1} is the disk in V_{1} bounded by $t_{1}^{u} \cup t^{\prime \prime}{ }_{1}$. Note that m^{*} and l^{*} are oriented as illustrated in Fig. 1. Then $\left\{\left[m^{*}\right],\left[l^{*}\right]\right\}$ is a basis of $H_{1}\left(\partial \eta\left(K ; V_{1}^{\prime}\right) ; \mathbb{Z}\right)$. Let $V_{1}^{\prime \prime}$ be a genus two handlebody obtained from $\mathrm{cl}\left(V_{1}^{\prime} \backslash \eta\left(K ; V_{1}^{\prime}\right)\right)$ by attaching a solid torus \bar{V} so that the boundary of a meridian disk \bar{D} of \bar{V} is identified with a loop represented by $r\left[m^{*}\right]+$ $s\left[l^{*}\right]$. Set $M^{\prime}=V_{1}^{\prime \prime} \cup_{S^{\prime}} V_{2}^{\prime}$. Then we say that M^{\prime} is obtained by the $(r / s)^{*}$-surgery on K. If r / s is an integer, the $(r / s)^{*}$-surgery is called a longitudinal surgery. A core loop of \bar{V} in M^{\prime} is called the dual knot of K in M^{\prime}.

Example 3.1. In Definition 1.2, set $p=18, q=5$ and $u=7$. Then we have the finite sequence $\left\{u_{j}\right\}$ determined in Definition 1.2 as follows:

$$
\left\{u_{j}\right\}_{1 \leq j \leq 18}: 5,10,15,2,7,12,17,4,9,14,1,6,11,16,3,8,13,0 .
$$

Hence we see that $\Psi_{18,5}(7)=5$ and $\tilde{\Phi}_{18,5}(7)=\Phi_{18,5}(7)=2$.
Set $K=K(L(p, q) ; u)=K(L(18,5) ; 7)$. We use the same notations as the above and in Definition 1.1. Then we can regard ∂D_{2} as an $(18,5)$-curve on ∂V_{1}. When one fixes P_{0} as an initial point and follows ∂D_{2} in the positive direction of $l, \partial D_{2}$ intersects ∂D_{1} in the following order:

$$
\left(P_{0} \rightarrow\right) P_{u_{1}} \rightarrow P_{u_{2}} \rightarrow \cdots \rightarrow P_{u_{17}} \rightarrow P_{u_{18}} \rightarrow P_{0}
$$

Let E_{1} (E_{2} resp.) be a meridian disk of V_{1} (V_{2} resp.) disjoint from t_{1}^{u} (t_{2}^{u} resp.). Recall that $t_{1}^{\prime \prime}\left(t_{2}^{\prime \prime}\right.$ resp. $)$ is the positive projection of $t_{1}^{u}\left(t_{2}^{u}\right.$ resp.). Then $\Psi_{p, q}(u)=$ $\Psi_{18,5}(7)$ represents the number of intersection points of ∂E_{1} and $t_{2}^{\prime \prime}$, and $\Phi_{p, q}(u)=$ $\Phi_{18,5}(7)$ represents the number of intersection points of $t^{\prime u}$ and the interior of $t^{\prime \prime}{ }_{2}$.

We next calculate the fundamental group of $\bar{M}=E(K ; L(18,5))$. By the argument above, we see that $\left(S^{\prime} ;\left\{\partial E_{1}\right\},\left\{\partial E_{2}, \partial D_{2}^{\prime}\right\}\right)$ gives a Heegaard diagram of $E(K ; L(18,5))$. Set $\bar{x}_{1}=\partial E_{1}$. Let y_{1} and y_{2} be loops on S^{\prime} with $y_{1} \cap \partial D_{2}^{\prime}=\emptyset, \sharp\left(y_{1}, \partial E_{2}\right)=1, y_{2} \cap$ $\partial E_{2}=\emptyset, \sharp\left(y_{2}, \partial D_{2}^{\prime}\right)=1$. Then we see that $\pi_{1}(\bar{M})$ has the following representation.

$$
\pi_{1}(\bar{M}) \cong\left\langle y_{1}, y_{2} \mid \bar{x}_{1}=1\right\rangle
$$

By using the sequence $\left\{u_{j}\right\}_{1 \leq j \leq 18}$, we see

$$
\begin{aligned}
\pi_{1}(\bar{M}) & \cong\left\langle y_{1}, y_{2} \mid \bar{x}_{1}=1\right\rangle \\
& \cong\left\langle y_{1}, y_{2} \mid y_{1} y_{2} y_{1}^{3} y_{2} y_{1}^{4} y_{2} y_{1}^{3} y_{2} y_{1} y_{2} y_{1}^{3} y_{2} y_{1}^{3} y_{2}=1\right\rangle
\end{aligned}
$$

In fact, the relation is obtained by changing u_{j} to $y_{1} y_{2}$ if $u_{j}<u(=7)$ and changing u_{j} to y_{1} otherwise.

We finally consider the 0^{*}-surgery on K. Let M^{\prime} be a 3 -manifold obtained by the 0^{*}-surgery on K^{*}. Set $\bar{y}_{1}=\partial E_{2}$ and $\bar{y}_{2}=\partial D_{2}^{\prime}$. Let D_{1}^{\prime} be a meridian disk of V_{1}^{\prime} with $D_{1}^{\prime} \supset \bar{D}$. Let x_{1} and x_{2} be loops on S^{\prime} with $x_{1} \cap \partial D_{1}^{\prime}=\emptyset, \sharp\left(x_{1}, \partial E_{1}\right)=1, x_{2} \cap \partial E_{1}=\emptyset$, $\sharp\left(x_{2}, \partial D_{1}^{\prime}\right)=1$. Then we see

$$
\begin{aligned}
\pi_{1}\left(M^{\prime}\right) & \cong\left\langle x_{1}, x_{2} \mid \bar{y}_{1}=1, \bar{y}_{2}=1\right\rangle \\
& \cong\left\langle\begin{array}{l}
x_{1}, x_{2} \left\lvert\, \begin{array}{l}
x_{1} x_{2} x_{1}^{3} x_{2} x_{1}^{4} x_{2} x_{1}^{3} x_{2} x_{1} x_{2} x_{1}^{3} x_{2} x_{1}^{3} x_{2}=1, \\
x_{1} x_{2} x_{1}^{3} x_{2} x_{1}=1
\end{array}\right.
\end{array}\right\rangle \\
& \cong\left\langle x_{1}, x_{1} x_{2} \mid x_{1}=1, x_{1} x_{2}=1\right\rangle
\end{aligned}
$$

Since Poincaré conjecture is true for genus two 3-manifolds (cf. [3] and [5]), we see that M^{\prime} is homeomorphic to S^{3}. We remark that $K \subset L(18,5)$ is the dual knot of the ($-2,3,7$)-pretzel knot.

4. An invariant of $K(L(p, q) ; u)$ with a longitudinal surgery yielding S^{3}

We first prove the following.

Lemma 4.1. Set $K=K(L(p, q) ; u)$. Suppose that K admits a longitudinal surgery yielding S^{3}. Then any $(1,1)$-splitting of (M, K) is monotone.

Proof. Let $\left(W_{1}, W_{2} ; P\right)$ be a $(1,1)$-splitting of (M, K) with $W_{i}=\left(V_{i}, t_{i}\right)(i=1,2)$. Let E_{1} (E_{2} resp.) be a meridian disk of V_{1} (V_{2} resp.) disjoint from t_{1} (t_{2} resp.). Let D_{1} (D_{2} resp.) be a meridian disk of V_{1} (V_{2} resp.) which contains t_{1} (t_{2} resp.) and is disjoint from E_{1} (E_{2} resp.). We may assume that $\partial D_{1} \backslash K$ intersects $\partial D_{2} \backslash K$ essentially in $P \backslash K$.

Let $t^{\prime}{ }_{1}\left(t^{\prime}{ }_{2}\right.$ resp.) be a projection of t_{1} (t_{2} resp.) with $t^{\prime}{ }_{1} \subset \partial D_{1}\left(t^{\prime}{ }_{2} \subset \partial D_{2}\right.$ resp.). Set $V_{1}^{\prime}=V_{1} \cup \eta\left(t_{2} ; V_{2}\right), V_{2}^{\prime}=\operatorname{cl}\left(V_{2} \backslash \eta\left(t_{2} ; V_{2}\right)\right)$ and $S^{\prime}=\partial V_{1}^{\prime}=\partial V_{2}^{\prime}$. Then $\left(V_{1}^{\prime}, V_{2}^{\prime} ; S^{\prime}\right)$ is a genus two Heegaard splitting of M. Let $D_{2}^{\prime} \subset\left(D_{2} \cap V_{2}^{\prime}\right)$ be a meridian disk of V_{2}^{\prime} with $\partial D_{2}^{\prime} \supset\left(t^{\prime}{ }_{2} \cap S^{\prime}\right)$.

We now consider a longitudinal surgery on K. Let $V_{1}^{\prime \prime}$ be a genus two handlebody obtained from $\operatorname{cl}\left(V_{1}^{\prime} \backslash \eta\left(K ; V_{1}^{\prime}\right)\right)$ by attaching a solid torus \bar{V} so that $\partial \bar{D}$ intersects a meridian of $\eta\left(K ; V_{1}^{\prime}\right)$ transversely in a single point, where \bar{D} is a meridian disk of \bar{V}. Let D_{1}^{\prime} be a meridian disk of $V_{1}^{\prime \prime}$ with $D_{1}^{\prime} \supset \bar{D}$. Since we consider a longitudinal surgery on K, we may assume that $\operatorname{cl}\left(\partial D_{1}^{\prime} \backslash \eta\left(t_{2} ; V_{2}\right)\right)$ is equivalent to $t^{\prime}{ }_{1} \cap \partial V_{1}^{\prime \prime}$. Then ($S^{\prime} ;\left\{\partial D_{1}^{\prime}, \partial E_{1}\right\},\left\{\partial D_{2}^{\prime}, \partial E_{2}\right\}$) is a Heegaard diagram of the manifold M^{\prime} obtained by such a surgery on K.

Let $S_{1}^{\prime}\left(S_{2}^{\prime}\right.$ resp.) be the torus with two holes obtained by cutting S^{\prime} along ∂E_{1} (∂E_{2} resp.). Let ∂E_{1}^{+}and $\partial E_{1}^{-}\left(\partial E_{2}^{+}\right.$and ∂E_{2}^{-}resp.) be the boundary components of S_{1}^{\prime} (S_{2}^{\prime} resp.).

To prove Lemma 4.1, we suppose that $\left(W_{1}, W_{2} ; P\right)$ is not monotone. Then there are two arc components, say γ_{1} and γ_{1}^{\prime}, of $\partial E_{1} \cap S_{2}^{\prime}$ such that γ_{1} (γ_{1}^{\prime} resp.) joins ∂E_{2}^{+} (∂E_{2}^{-}resp.) to itself. Since

$$
\partial E_{2}^{+} \cap\left(\partial E_{1} \cap S_{2}^{\prime}\right)=\partial E_{2}^{-} \cap\left(\partial E_{1} \cap S_{2}^{\prime}\right)
$$

we see that $\gamma_{1}\left(\gamma_{1}^{\prime}\right.$ resp.) separates the specified points in $P \backslash \partial E_{2}$. Similarly, there are two arc components, say γ_{2} and γ_{2}^{\prime}, of $\partial E_{2} \cap S_{1}^{\prime}$ such that γ_{2} (γ_{2}^{\prime} resp.) joins ∂E_{1}^{+} (∂E_{1}^{-}resp.) to itself and separates the specified points in $P \backslash \partial E_{1}$.

Let $\Sigma_{1}\left(\Sigma_{2}\right.$ resp.) be the 2 -sphere with four holes obtained by cutting $S_{1}^{\prime}\left(S_{2}^{\prime}\right.$ resp.) along $\partial D_{1}^{\prime}\left(\partial D_{2}^{\prime}\right.$ resp.). Since γ_{1} and $\gamma_{1}^{\prime}\left(\gamma_{2}\right.$ and γ_{2}^{\prime} resp.) separates the specified points in $P \backslash \partial E_{2}\left(P \backslash \partial E_{1}\right.$ resp.), γ_{1} and $\gamma_{1}^{\prime}\left(\gamma_{2}\right.$ and γ_{2}^{\prime} resp.) assure that there are no waves in Σ_{2} (Σ_{1} resp.). Hence it follows from Theorem 2.1 that M^{\prime} is not homeomorphic to S^{3}.

This completes the proof of Lemma 4.1.

Fig. 3.
Lemma 4.2. Let K be a (1, 1)-knot in a lens space M and $\left(W_{1}, W_{2} ; P\right) a(1,1)$ splitting of (M, K). If $\left(W_{1}, W_{2} ; P\right)$ is monotone, then there is a monotone projection of K on P.

Proof. Recall that $W_{i}=\left(V_{i}, t_{i}\right)$, where V_{i} is a solid torus and t_{i} is a trivial arc in V_{i}. Let E_{1} (E_{2} resp.) be a meridian disk of V_{1} (V_{2} resp.) disjoint from t_{1} (t_{2} resp.). Let D_{1} be a parallel copy of E_{1} which contains t_{1}. We suppose that $\left|\partial D_{1} \cap \partial E_{2}\right|$ is minimal among such all meridian disks of V_{1}. We first prove the following.

Claim. If ∂D_{1} and ∂E_{2} are oriented, then the signed intersection points of ∂D_{1} and ∂E_{2} have the same sign.

Proof. Suppose that the claim does not hold. Let A_{P} be the annulus with two specified points $P \cap K$ which is obtained by cutting P along ∂E_{1}. Let γ be a component of $\partial E_{2} \cap A_{P}$. Since $\left(W_{1}, W_{2} ; P\right)$ is monotone, we see that γ joins distinct boundary components of A_{P}. Let D_{P} be the disk with the specified points which are obtained by cutting A_{P} along γ.

Suppose that there are no components of $\partial E_{2} \cap D_{P}$ separating the specified points in D_{P}. Then this implies that each component of $\partial E_{2} \cap D_{P}$ is parallel to γ in $A_{P} \backslash K$. Hence we can regard D_{P} as a square $[0,1] \times[0,1]$ such that each component of $\partial E_{2} \cap$ D_{P} is vertical, i.e., each component of $\partial E_{2} \cap D_{P}$ corresponds to $\{p\} \times[0,1]$. We may assume that the specified points are in $[0,1] \times\{1 / 2\}$. Let α be a loop on P such that α corresponds to $[0,1] \times\{1 / 2\}$ in the square D_{P}. Then we see that α bounds a meridian disk D_{α} of V_{1} and t_{1} is isotoped into D_{α} relative to the endpoints (cf. [13, Section 3]). Since we suppose that the claim does not hold, we see that $\left|\partial D_{\alpha} \cap \partial E_{2}\right|<\left|\partial D_{1} \cap \partial E_{2}\right|$. This contradicts the minimality of $\left|\partial D_{1} \cap \partial E_{2}\right|$. Hence there is a component, say γ^{\prime}, of $\partial E_{2} \cap D_{P}$ separating the specified points in D_{P} (cf. Fig. 3).

Let D_{P}^{\prime} and $D_{P}^{\prime \prime}$ be the disks obtained by cutting D_{P} along γ^{\prime}. Note that each of D_{P}^{\prime} and $D_{P}^{\prime \prime}$ contains exactly one of the specified points. Then we can regard D_{P}^{\prime}
($D_{P}^{\prime \prime}$ resp.) as a square $[0,1] \times[0,1]$ such that each component of $\partial E_{2} \cap D_{P}^{\prime}\left(\partial E_{2} \cap D_{P}^{\prime \prime}\right.$ resp.) is vertical and that the specified point is in $[0,1] \times\{1 / 2\}$. Let α^{\prime} be a loop on P such that $\alpha^{\prime} \cap D_{P}^{\prime}\left(\alpha^{\prime} \cap D_{P}^{\prime \prime}\right.$ resp.) corresponds to $[0,1] \times\{1 / 2\}$ in the square D_{P}^{\prime} ($D_{P}^{\prime \prime}$ resp.). Then we see that α^{\prime} bounds a meridian disk $D_{\alpha^{\prime}}$ of V_{1} and t_{1} is isotoped into $D_{\alpha^{\prime}}$ relative to the endpoints. Since we suppose that the claim does not hold, we see that $\left|\partial D_{\alpha^{\prime}} \cap \partial E_{2}\right|<\left|\partial D_{1} \cap \partial E_{2}\right|$. This contradicts the minimality of $\left|\partial D_{1} \cap \partial E_{2}\right|$.

Hence we have the claim.

Let D_{2} be a parallel copy of E_{2} with $\partial D_{2} \supset(P \cap K)$. Then t_{2} is isotoped into D_{2} relative to the endpoints. Hence D_{1} and D_{2} imply that there is a monotone projection of K on P.

This completes the proof of Lemma 4.2.
The following is well known.
Lemma 4.3 (cf. [4] and [7]). There is an orientation-preserving homeomorphism between two lens spaces $L(p, q)$ and $L\left(p^{\prime}, q^{\prime}\right)$ if and only if one of the following holds.
(1) $p^{\prime}=p$ and $q^{\prime} \equiv q(\bmod p)$, and
(2) $p^{\prime}=p$ and $q^{\prime} \equiv q^{-1}(\bmod p)$.

We note that the following is mentioned by Berge [1] (cf. [14, Section 6]).
Lemma 4.4 ([1, Theorem 3]). Set $K=K(L(p, q) ; u)$ and $K^{\prime}=K\left(L\left(p^{\prime}, q^{\prime}\right) ; u^{\prime}\right)$ for some integers $p, q, u, p^{\prime}, q^{\prime}$ and u^{\prime}. Suppose that $L(p, q)$ is homeomorphic to $L\left(p^{\prime}, q^{\prime}\right)$ and that both K and K^{\prime} admit a longitudinal surgery yielding S^{3}. Then K is isotopic to K^{\prime} if and only if $[K]= \pm\left[K^{\prime}\right]$ in $H_{1}(M ; \mathbb{Z})$, where $M \cong L(p, q) \cong L\left(p^{\prime}, q^{\prime}\right)$.

By using lemmata above, we show the following.
Proposition 4.5. Set $K=K(L(p, q) ; u)$ and $K^{\prime}=K\left(L\left(p^{\prime}, q^{\prime}\right) ; u^{\prime}\right)$ for some integers $p, q, u, p^{\prime}, q^{\prime}$ and u^{\prime}. Suppose that there is an orientation-preserving homeomorphism between $L(p, q)$ and $L\left(p^{\prime}, q^{\prime}\right)$ and that both K and K^{\prime} admit a longitudinal surgery yielding S^{3}. Then K and K^{\prime} are isotopic if and only if one of the following holds.
(1) In case of (1) of Lemma 4.3, $u^{\prime}=u$ or $u^{\prime}=p-u$.
(2) In case of (2) of Lemma 4.3, $u^{\prime}=\Psi_{p, q}(u)$ or $u^{\prime}=p-\Psi_{p, q}(u)$.

Proof. Note that it is easy to see that $K(L(p, q) ; u)$ and $K(L(p, q) ; p-u)$ are isotopic. It follows from Lemma 4.4 that K and K^{\prime} are isotopic if and only if $u^{\prime}=u$ or $u^{\prime}=p-u$ under the assumption $q^{\prime}=q$. By Lemma 4.3, we have the following two cases:

Claim 1. $q^{\prime} \equiv q(\bmod p)$. In this case, K and K^{\prime} are isotopic if and only if $u^{\prime}=u$ or $u^{\prime}=p-u$.

Proof. Set $q^{\prime}=q+n p$ for some integer n. Let $\left(V_{1}, V_{2} ; S\right)$ be a Heegaard splitting of $L(p, q)$ such that the boundary of a meridian disk of V_{2} is a (p, q)-curve in ∂V_{1}. Let $\left(V_{1}^{\prime}, V_{2}^{\prime} ; S^{\prime}\right)$ be a Heegaard splitting of $L\left(p^{\prime}, q^{\prime}\right)$ such that the boundary of a meridian disk of V_{2}^{\prime} is a $\left(p^{\prime}, q^{\prime}\right)$-curve in ∂V_{1}^{\prime}. Since genus one Heegaard surfaces of a lens space are isotopic, we may assume that $S^{\prime}=S$. Moreover, since $q^{\prime}=q+n p$, we see that $V_{1}^{\prime}=V_{1}$ and $V_{2}^{\prime}=V_{2}$ (cf. [4] and [7]) and V_{1}^{\prime} is obtained by twisting V_{1} along a meridian disk of V_{1}. Therefore we see that $[K]= \pm\left[K^{\prime}\right]$ in $H_{1}(L(p, q) ; \mathbb{Z})$ if and only if $u^{\prime}=u$ or $u^{\prime}=p-u$. Hence it follows from Lemma 4.4 that K and K^{\prime} are isotopic if and only if $u^{\prime}=u$ or $u^{\prime}=p-u$. Hence we have Claim 1 .

Claim 2. $q^{\prime} \equiv q^{-1}(\bmod p)$. In this case, K and K^{\prime} are isotopic if and only if $u^{\prime}=\Psi_{p, q}(u)$ or $u^{\prime}=p-\Psi_{p, q}(u)$.

Proof. Set $q^{\prime} q=n p$ for some integer n. Let $\left(V_{1}, V_{2} ; S\right)$ be a Heegaard splitting of $L(p, q)$ such that the boundary of a meridian disk of V_{2} is a (p, q)-curve in ∂V_{1}. Let ($V_{1}^{\prime}, V_{2}^{\prime} ; S^{\prime}$) be a Heegaard splitting of $L\left(p^{\prime}, q^{\prime}\right)$ such that the boundary of a meridian disk of V_{2}^{\prime} is a $\left(p^{\prime}, q^{\prime}\right)$-curve in ∂V_{1}^{\prime}. Since genus one Heegaard surfaces of a lens space are isotopic, we may assume that $S^{\prime}=S$. Moreover, since $q^{\prime} q=n p$ for some integer n, we see that $V_{1}^{\prime}=V_{2}$ and $V_{2}^{\prime}=V_{1}$ (cf. [4] and [7]).

We now isotope K so that $K \cap V_{1}=t_{1}^{u}$ ($K \cap V_{2}=t_{2}^{u}$ resp.) is a trivial arc in V_{1} (V_{2} resp.). Let $t_{1}^{\prime \prime}\left(t_{2}^{\prime \prime}\right.$ resp.) be a monotone projection of t_{1}^{u} (t_{2}^{u} resp.). Since $\sharp\left(t^{\prime \prime \mu}, \partial E_{1}\right)=\Psi_{p, q}(u)$ or $p-\Psi_{p, q}(u)$, we see that K is isotopic to $K\left(L\left(p^{\prime}, q^{\prime}\right) ; \Psi_{p, q}(u)\right)=$ $K\left(L\left(p^{\prime}, q^{\prime}\right) ; p-\Psi_{p, q}(u)\right)$. Hence K and K^{\prime} are isotopic if and only if $u^{\prime}=\Psi_{p, q}(u)$ or $u^{\prime}=p-\Psi_{p, q}(u)$. Hence we have Claim 2.

This completes the proof of Proposition 4.5.
As a corollary of Proposition 4.5, we have the following:
Corollary 4.6. Set $K=K(L(p, q) ; u)$ and $K^{\prime}=K\left(L\left(p^{\prime}, q^{\prime}\right) ; u^{\prime}\right)$ for some integers $p, q, u, p^{\prime}, q^{\prime}$ and u^{\prime}. Suppose that there is an orientation-preserving homeomorphism between $L(p, q)$ and $L\left(p^{\prime}, q^{\prime}\right)$ and that both K and K^{\prime} admit a longitudinal surgery yielding S^{3}. If K and K^{\prime} are isotopic, then $\tilde{\Phi}_{p, q}(u)=\tilde{\Phi}_{p^{\prime}, q^{\prime}}\left(u^{\prime}\right)$.

By this corollary we see that $\tilde{\Phi}_{p, q}(u)$ is an invariant for $K=K(L(p, q) ; u)$ if K admits a longitudinal surgery yielding S^{3}. Hence we define the following:

Definition 4.7. Set $K=K(L(p, q) ; u)$ and suppose that K admits a longitudinal surgery yielding S^{3}. Then $\tilde{\Phi}_{p, q}(u)$ is denoted by $\Phi(K)$.

5. Proof of Theorem 1.3

We first remark the following.
Lemma 5.1 ([6, Theorem C] and [9, Theorem 3]). Let K be a torus knot in M and $\left(W_{1}, W_{2} ; P\right) a(1,1)$-splitting of (M, K). Then there is a projection $\bar{t}_{1}\left(\bar{t}_{2}\right.$ resp.) of $t_{1}\left(t_{2}\right.$ resp.) on P such that \bar{t}_{1} is disjoint from the interior of \bar{t}_{2}.

Proposition 5.2. Set $K=K(L(p, q) ; u)$. Suppose that K admits a longitudinal surgery yielding S^{3}. Then $\Phi(K)=0$ if and only if K is a torus knot.

Proof. Let $\left(W_{1}, W_{2} ; P\right)$ be a $(1,1)$-splitting of (M, K) with $W_{i}=\left(V_{i}, t_{i}\right)(i=1,2)$, where V_{i} is a solid torus and t_{i} is a trivial arc in V_{i}. Since K admits a longitudinal surgery yielding S^{3}, it follows from Lemma 4.1 that $\left(W_{1}, W_{2} ; P\right)$ is monotone. Let t_{1}^{\prime} (t_{2}^{\prime} resp.) be a monotone projection of $t_{1}\left(t_{2}\right.$ resp.) such that $t_{1}^{\prime} \cup t_{2}^{\prime}$ gives the value $\Phi(K)$.

If $\Phi(K)=0$, then t_{1}^{\prime} is disjoint from the interior of t_{2}^{\prime}. Hence we see that K is a torus knot.

Suppose that K is a torus knot. Then it follows from Lemma 5.1 that there is a projection $\bar{t}_{1}\left(\bar{t}_{2}\right.$ resp.) of t_{1} (t_{2} resp.) on P such that \bar{t}_{1} is disjoint from the interior of \bar{t}_{2}. Let x_{1} (y_{1} resp.) be the boundary of a meridian disk of V_{1} (V_{2} resp.) disjoint from t_{1} (t_{2} resp.). Note that it follows from [13, Lemma 3.4] that x_{1} (y_{1} resp.) is unique up to isotopy on $P \backslash K$. Note also that we may assume that any projection of t_{1} (t_{2} resp.) on P is disjoint from x_{1} (y_{1} resp.). Let $\Sigma_{x_{1}}\left(\Sigma_{y_{1}}\right.$ resp.) be the component obtained by cutting P along x_{1} (y_{1} resp.). We may assume that \bar{t}_{1} (\bar{t}_{2} resp.) is isotoped so that \bar{t}_{1} (\bar{t}_{2} resp.) intersects y_{1} (x_{1} resp.) essentially. Let x_{1}^{+}and x_{1}^{-}be the boundary of $\Sigma_{x_{1}}$. Since ($W_{1}, W_{2} ; P$) is monotone, we see that each component of $y_{1} \cap \Sigma_{x_{1}}$ is an arc joining x_{1}^{+}to x_{1}^{-}.

CASE $1 . \bar{t}_{2}$ is not a monotone projection of t_{2}.
Then there is a component, say \bar{t}_{2}^{+}, of $\bar{t}_{2} \cap \Sigma_{x_{1}}$ which joins x_{1}^{+}to itself. Then since

$$
x_{1}^{+} \cap\left(\bar{t}_{2} \cap \Sigma_{x_{1}}\right)=x_{1}^{-} \cap\left(\bar{t}_{2} \cap \Sigma_{x_{1}}\right),
$$

we see that there is also a component, say \bar{t}_{2}^{-}, of $\bar{t}_{2} \cap \Sigma_{x_{1}}$ which joins x_{1}^{-}to itself. This implies that it is impossible to obtain an arc which joins two specified points $P \cap K$ in $\Sigma_{x_{1}}$ and is disjoint from $\bar{t}_{2} \cap \Sigma_{x_{1}}$. Since \bar{t}_{1} is contained in A_{P}, this implies that $\bar{t}_{1} \cap \bar{t}_{2} \neq \emptyset$, a contradiction.

CASE 2. \bar{t}_{2} is a monotone projection of t_{2}.
To obtain the conclusion $\Phi(K)=0$, we further suppose that $\Phi(K) \neq 0$. Then there is a component, say \bar{t}_{2}^{\prime}, of $\bar{t}_{2} \cap \Sigma_{x_{1}}$ which joins x_{1}^{+}to x_{1}^{-}and intersects t_{1}^{\prime} transversely in a single point. Also, there is a component, say $\bar{t}_{2}^{\prime \prime}$, of $\bar{t}_{2} \cap \Sigma_{x_{1}}$ which joins x_{1}^{+}to x_{1}^{-} and is disjoint from $t_{1}^{\prime \prime}$. This implies that $\bar{t}_{2}^{\prime} \cup \bar{t}_{2}^{\prime \prime}$ separates two specified points $P \cap K$ in $\Sigma_{x_{1}}$. Since \bar{t}_{1} is contained in A_{P}, this implies that $\bar{t}_{1} \cap \bar{t}_{2} \neq \emptyset$, a contradiction.

This completes the proof of Proposition 5.2.
Dehn surgeries on satellite knots in S^{3} yielding lens spaces have been completely classified as the follows (cf. [2, 15, 16]).

Lemma 5.3 ([2, Theorem 1]). Let K be a satellite knot in S^{3} which admits a Dehn surgery yielding a lens space M. Then K is the ($2 p q \pm 1,2$)-cable on the (p, q) torus knot and $M=L\left(4 p q \pm 1,4 q^{2}\right)$.

Here, a knot $K \subset S^{3}$ is called the (r, s)-cable on a knot $K_{0} \subset S^{3}$ if K is isotoped into $\partial \eta\left(K_{0} ; S^{3}\right)$ and is homologous to $r\left[l_{0}\right]+s\left[m_{0}\right]$ in $\partial \eta\left(K_{0} ; S^{3}\right)$, where $\left(l_{0}, m_{0}\right)$ is a standard meridian-longitude system of K_{0} on $\partial \eta\left(K_{0} ; S^{3}\right)$.

Remark 5.4. (1) Let K be the ($2 p q \pm 1,2$)-cable on the (p, q)-torus knot and K^{\prime} be the $(2 p q \pm 1,2)$-cable on the (q, p)-torus knot. Then K and K^{\prime} are isotopic.
(2) Let p and q be coprime integers. Then we see that the following are equivalent:

$$
\begin{aligned}
&(4 p q+1)(4 p q-1) \equiv 0 \quad(\bmod 4 p q \pm 1), \\
& 16 p^{2} q^{2}-1 \equiv 0 \quad(\bmod 4 p q \pm 1), \\
&\left(4 p^{2}\right)\left(4 q^{2}\right) \equiv 1 \quad(\bmod 4 p q \pm 1) .
\end{aligned}
$$

Hence we see that $\left(4 q^{2}\right)^{-1} \equiv 4 p^{2}(\bmod 4 p q \pm 1)$ and therefore

$$
\begin{aligned}
L\left(4 p q \pm 1,4 q^{2}\right) & =-L\left(4 p q \pm 1,-4 q^{2}\right) \\
& =-L\left(4 p q \pm 1,-4 p^{2}\right)=L\left(4 p q \pm 1,4 p^{2}\right)
\end{aligned}
$$

Lemma 5.5. Let p and q be coprime integers. Suppose that $p>1$ and $q \neq$ $0, \pm 1$. Set $K=K\left(L\left(|4 p q \pm 1|, \pm 4 q^{2}\right) ; 2|q|\right)$. Then K admits a longitudinal surgery yielding S^{3} and $\Phi(K)=1$.

Proof. Since the argument is similar (cf. Remark 5.6), we give a proof in case of $1<q<p$ and $K=K\left(L\left(4 p q-1,4 q^{2}\right) ; 2 q\right)$.

Claim 1. $\quad \tilde{\Phi}_{4 p q-1,4 q^{2}}(2 q)=1$.
Proof. For a pair of $4 p q-1$ and $4 q^{2}$, we consider the finite sequence $\left\{u_{j}\right\}$ determined in Definition 1.2. Since $4 q^{2} \cdot p-q \equiv 0(\bmod 4 p q-1)$, we see that $u_{p}=q$. Suppose that there are integers p^{\prime} and q^{\prime} with $0<p^{\prime}<p, 0<q^{\prime}<2 q$ and $u_{p^{\prime}}=q^{\prime}$. Then there is a non-negative integer n such that $4 q^{2} \cdot p^{\prime}=n \cdot 4 p q^{2}+q^{\prime}$. This indicates that $4 q^{2}\left(p^{\prime}-n \cdot p\right)=q^{\prime}$. Since $0<p^{\prime}<p$ and $q^{\prime}>0$, we see that $n=0$ and hence $4 p^{\prime} q^{2}=q^{\prime}$. However, this contradicts that $0<q^{\prime}<2 q$. This implies that for each integer j with $1 \leq j \leq p-1$, we see that $u_{j}>2 q$. Similarly, we see that $u_{2 p}=2 q$
and $u_{j}>2 q$ for each integer j with $p+1 \leq j \leq 2 p-1$. Hence $\Phi_{4 p q-1,4 q^{2}}(2 q)=1$. Note that

$$
\tilde{\Phi}_{p, q}(u)=\min \{1,4 p q-2 p-2 q, 2 p-2,2 q-2\} .
$$

Since we assume that $1<q<p$, we see that $\tilde{\Phi}_{4 p q-1,4 q^{2}}(2 q)=1$. Therefore we have Claim 1.

Claim 2. The 0^{*}-surgery on K yields S^{3}.
Proof. We use an argument similar to that in Example 3.1 and hence we use the same notations as those in Example 3.1. Let M^{\prime} be a 3-manifold obtained by the 0^{*}-surgery on K^{*}. Recall that x_{1} and x_{2} are loops on S^{\prime} with $x_{1} \cap \partial D_{1}^{\prime}=\emptyset$, $\sharp\left(x_{1}, \partial E_{1}\right)=1, x_{2} \cap \partial E_{1}=\emptyset, \sharp\left(x_{2}, \partial D_{1}^{\prime}\right)=1$. Recall also that $\bar{y}_{1}=\partial E_{2}$ and $\bar{y}_{2}=\partial D_{2}^{\prime}$. Then we see

$$
\begin{aligned}
\pi_{1}\left(M^{\prime}\right) & \cong\left\langle x_{1}, x_{2} \mid \bar{y}_{1}=1, \quad \bar{y}_{2}=1\right\rangle \\
& \cong\left\langle x_{1}, x_{2}^{\prime} \mid \bar{y}_{1}=1, \quad \bar{y}_{2}=1\right\rangle \quad\left(x_{2}^{\prime}:=x_{1} x_{2}\right) .
\end{aligned}
$$

It follows from the argument in the proof of Claim 1 that $y_{2}=x_{1}^{p} x_{2} x_{1}^{p}=x_{1}^{p-1} x_{2}^{\prime} x_{1}^{p}$. Since $y_{2}=1$, we see that $x_{2}^{\prime}=x_{1}^{1-2 p}$. This implies that x_{1} and x_{2}^{\prime} are commutative with each other and hence $\pi_{1}\left(M^{\prime}\right) \cong H_{1}\left(M^{\prime} ; \mathbb{Z}\right)$. We note that

$$
H_{1}\left(M^{\prime} ; \mathbb{Z}\right) \cong\left\langle x_{1}, x_{2}^{\prime} \left\lvert\, \begin{array}{l}
((4 p q-1)-2 q) \cdot x_{1}+2 q \cdot x_{2}^{\prime}=0, \\
(2 p-1) \cdot x_{1}+x_{2}^{\prime}=0
\end{array}\right.\right\rangle
$$

This implies that $H_{1}\left(M^{\prime} ; \mathbb{Z}\right)$ is trivial and hence $\pi_{1}\left(M^{\prime}\right)$ is trivial. Since Poincaré conjecture is true for genus two 3-manifolds (cf. [3] and [5]), we see that M^{\prime} is homeomorphic to S^{3} and hence we have Claim 2.

The conclusion of Lemma 5.5 follows from Claims 1 and 2.

REmARK 5.6. To prove Lemma 5.5 in other certain cases, we need to consider the sequence obtained by reversing the order of the sequence $\left\{u_{j}\right\}$.

Lemma 5.7. Let K be the $(2 p q \pm 1,2)$-cable on the (p, q)-torus knot with $p>1$ and $q \neq 0, \pm 1$. Then the following holds.
(1) If $q>1$, then $K^{*}=K\left(L\left(4 p q \pm 1,4 q^{2}\right) ; 2 q\right)$ is the dual knot of K in $L\left(4 p q \pm 1,4 q^{2}\right)$.
(2) If $q<-1$, then $K^{*}=K\left(L\left(|4 p q \pm 1|,-4 q^{2}\right) ; 2|q|\right)$ is the dual knot of K in $L(|4 p q \pm 1|$, $-4 q^{2}$).

Proof. First we prove the case when K is the $(2 p q-1,2)$-cable on the (p, q)-torus knot. The case when K is the $(2 p q+1,2)$-cable on the (p, q)-torus knot will be proved similarly. Set $K^{*}=K\left(L\left(4 p q-1,4 q^{2}\right) ; 2 q\right)$. Let $\left(W_{1}, W_{2} ; P\right)$ be a (1,1)-splitting of $\left(L\left(4 p q-1,4 q^{2}\right), K^{*}\right)$. Recall that $W_{i}=\left(V_{i}, t_{i}\right)(i=1,2)$, where $V_{1}\left(V_{2}\right.$ resp.) is a solid torus and $t_{1}\left(t_{2}\right.$ resp.) is a trivial arc in V_{1} (V_{2} resp.). Let E_{1} (E_{2} resp.) be a meridian disk of V_{1} (V_{2} resp.) disjoint from t_{1} (t_{2} resp.). Since K^{*} admits a longitudinal surgery yielding S^{3} (cf. Lemma 5.5), we see that ($W_{1}, W_{2} ; P$) is monotone (cf. Lemma 4.1). Hence we may assume that ∂E_{2} is a $\left(4 p q-1,4 q^{2}\right)$-curve on ∂V_{1} (cf. Lemma 4.2). Let t_{1}^{\prime} (t_{2}^{\prime} resp.) be a monotone projection of t_{1} (t_{2} resp.) such that $t_{1}^{\prime} \cup t_{2}^{\prime}$ gives the value $\Phi(K)$. It follows from Lemma 5.5 that $\Phi(K)=1$. Let v be the self-intersection point of $t_{1}^{\prime} \cup t_{2}^{\prime}$. Let \bar{t}_{1}^{\prime} (\bar{t}_{2}^{\prime} resp.) be the subarc of $t_{1}^{\prime}\left(t_{2}^{\prime}\right.$ resp.) which joins P_{0} to v. Let z_{1} be a loop on P obtained by moving $\bar{t}_{1}^{\prime} \cup \bar{t}_{2}^{\prime}$ slightly so that $\bar{t}_{1}^{\prime} \cup \bar{t}_{2}^{\prime}$ is disjoint from $t_{1}^{\prime} \cup t_{2}^{\prime}$. Then it follows from Claim 1 in the proof of Lemma 5.5 that $\sharp_{G}\left(z_{1}, \partial E_{1}\right)=p$ and $\sharp_{G}\left(z_{1}, \partial E_{2}\right)=q$.

Let A_{1} (A_{2} resp.) be an annulus obtained by pushing the interior of $E\left(z_{1} ; \partial V_{1}\right)$ ($E\left(z_{2} ; \partial V_{2}\right)$ resp.) into the interior of V_{1} (V_{2} resp.) so that A_{1} (A_{2} resp.) is disjoint from $t_{1}\left(t_{2}\right.$ resp.). Then $A_{1} \cup A_{2}$ cuts ($\left.L\left(4 p q-1,4 q^{2}\right), K^{*}\right)$ into $\left(M_{1}, K^{*}\right)$ and ($\left.M_{2}, \emptyset\right)$. Note that M_{1} is a solid torus containing K^{*}. Since $\sharp_{G}\left(z_{1}, \partial E_{1}\right)=p$ and $\sharp_{G}\left(z_{1}, \partial E_{2}\right)=q$, we see that M_{2} is homeomorphic to the exterior of the (p, q)-torus knot in S^{3}. Hence $A_{1} \cup A_{2}$ is an essential torus in $E\left(K^{*} ; L\left(4 p q-1,4 q^{2}\right)\right)$. Since K^{*} admits a longitudinal surgery yielding S^{3} (cf. Lemma 5.5), we see that K^{*} is the dual knot of a cable of the (p, q)-torus knot in S^{3}. Hence it follows from Lemma 5.3 that K^{*} is the dual knot of K.

Corollary 5.8. Set $K=K(L(p, q) ; u)$. Suppose that K admits a longitudinal surgery yielding S^{3}. Then $\Phi(K)=1$ if and only if $E(K ; M)$ contains an essential torus.

Proof. Suppose first that $\Phi(K)=1$. Then by an argument similar to that in the proof of Lemma 5.7, we see that there exists a loop z_{1} as in the proof of Lemma 5.7. This implies that a $(1,1)$-splitting of (M, K) satisfies the assumption of Theorem 2.2. Hence it follows from Theorem 2.2 and Lemma 2.3 that K is a torus knot or $E(K ; M)$ contains an essential torus. Since $\Phi(K)=1, K$ is not a torus knot (cf. Proposition 5.2) and hence $E(K ; M)$ contains an essential torus.

Suppose next that $E(K ; M)$ contains an essential torus. Then K is the dual knot of the $(2 p q \pm 1,2)$-cable on the (p, q)-torus knot for some integers p and q. Hence it follows from Lemmata 5.5 and 5.7 that $\Phi(K)=1$.

Theorem 1.3 immediately follows from Proposition 5.2 and Corollary 5.8.

6. Appendix

Here, we will recall Berge's argument [1] to obtain a relationship between Berge's examples and their dual knots. We first recall Berge's surgery on doubly primitive

Fig. 4.
knots. Let $\left(H, H^{\prime} ; S\right)$ be a genus two Heegaard splitting of S^{3}. A knot $K \subset S$ is a doubly primitive knot if K represents a free generator both of $\pi_{1}(H)$ and of $\pi_{1}\left(H^{\prime}\right)$. If K is doubly primitive, then there are meridian disks D and $E\left(D^{\prime}\right.$ and E^{\prime} resp.) of $H\left(H^{\prime}\right.$ resp.) with $\sharp(\partial D, K)=1$ and $\partial E \cap K=\emptyset\left(\sharp\left(\partial D^{\prime}, K\right)=1\right.$ and $\partial E^{\prime} \cap K=\emptyset$ resp. $)$. Then it follows from [1, Theorem 1] that a Heegaard diagram ($S ;\{\partial D, \partial E\},\left\{K, \partial E^{\prime}\right\}$) represents a lens space. We call such a surgery Berge's surgery on K. We remark that ∂D^{\prime} corresponds to the dual knot of K.

Let $\left(H, H^{\prime} ; S\right)$ be a genus two Heegaard splitting of S^{3} and $\left(S ;\left\{x_{1}, x_{2}\right\},\left\{y_{1}, y_{2}\right\}\right)$ its standard Heegaard diagram with $\sharp\left(x_{1}, y_{1}\right)=1, \sharp\left(x_{2}, y_{2}\right)=1, x_{2} \cap y_{1}=\emptyset$ and $x_{1} \cap y_{2}=\emptyset$. We fix orientation of x_{1}, x_{2}, y_{1} and y_{2} as in Fig. 4.

Then $\left\{\left[x_{1}\right],\left[x_{2}\right],\left[y_{1}\right],\left[y_{2}\right]\right\}$ is a basis of $H_{1}(\partial H ; \mathbb{Z})$. Let K be an oriented doubly primitive knot on S with $[K]=a\left[x_{1}\right]+b\left[x_{2}\right]+c\left[y_{1}\right]+d\left[y_{2}\right]$ in $H_{1}(\partial H ; \mathbb{Z})$. Let h be an orientation-preserving homeomorphism of H^{\prime} with $h\left(x_{1}\right)=K$. Then h induces a symplectic transformation ϕ on $H_{1}\left(\partial H^{\prime} ; \mathbb{Z}\right)$ which satisfies the following:

$$
\begin{array}{lr}
\phi\left(x_{1}\right)=a\left[x_{1}\right]+b\left[x_{2}\right]+c\left[y_{1}\right]+d\left[y_{2}\right] \\
\phi\left(x_{2}\right)=s\left[x_{1}\right]+t\left[x_{2}\right]+u\left[y_{1}\right]+v\left[y_{2}\right] \\
\phi\left(y_{1}\right)= & t\left[y_{1}\right]-s\left[y_{2}\right] \\
\phi\left(y_{2}\right)= & -b\left[y_{1}\right]+a\left[y_{2}\right]
\end{array}
$$

where, s, t, u and v are integers with $a t-b s=1$ and $(a u+b v)-(c s+d t)=0$. Recall that since K is doubly primitive, $[K]$ is a free generator of $H_{1}(H ; \mathbb{Z})$. Let [K^{\prime}] be the other generator of $H_{1}(H ; \mathbb{Z})$. We now consider a projection φ onto [K^{\prime}]. Then we have:

$$
\begin{aligned}
& \varphi\left(x_{2}\right)=(c v-d u)\left[K^{\prime}\right] \\
& \varphi\left(y_{1}\right)=(-c s-d t)\left[K^{\prime}\right] \\
& \varphi\left(y_{2}\right)=(a c+b d)\left[K^{\prime}\right]
\end{aligned}
$$

where, we remark that $\varphi\left(x_{1}\right)=0$. Let $M=L(p, q)$ be a lens space obtained by Berge's
surgery on K and $K^{*}=K(L(p, q) ; u)$ the dual knot of K. Let V be a 3-manifold obtained from H by attaching a 2 -handle along K. Since K is doubly primitive, we see that V is a solid torus and that V and $V^{\prime}=E(V ; M)$ give a genus one Heegaard splitting of M. Note that a core of V corresponds to a generator $\left[K^{\prime}\right]$ of $H_{1}(H ; \mathbb{Z})$, a meridian of V^{\prime} corresponds to $\phi\left(y_{2}\right)$, a core of V^{\prime} corresponds to $\phi\left(x_{2}\right)$ and K^{*} corresponds to $\phi\left(y_{1}\right)$. Hence p of $K(L(p, q) ; u)$ satisfies that $p=a c+b d$.

We divide the rest of the arguments into the following three cases.
Case 1. Knots of types (I)-(VI).
Each knots of types (I)-(VI) in Berge's examples satisfies that $a= \pm 1$. Since at $b s=1$, we see that s and t are coprime and hence we have $s=-1+a j$ and $t=$ $a(1-b)+b j$, where j is an integer. Hence we have $c s+d t=-c+a d(1-b)$. Also, it follows from $(a u+b v)-(c s+d t)=0$ that $a u=(c s+d t-b v)$.

Let m_{V} be a meridian of V. Recall that $\sharp_{A}\left(m_{V}, \phi\left(y_{2}\right)\right)=p=a c+b d$, where $\sharp_{A}(\cdot, \cdot)$ means an algebraic intersection number. Note that q of $K(L(p, q) ; u)$ corresponds to $\sharp_{A}\left(m_{V}, \phi\left(x_{2}\right)\right)$. Hence we need to calculate the value $c v-d u$. Since we assume $a=$ ± 1, we have:

$$
\begin{aligned}
q & =c v-d u \\
& =c v \mp d(c s+d t-b v) \\
& =(c \pm b d) v \mp d(c s+d t) \\
& \equiv-a d(c s+d t) \quad(\bmod p=a c+b d) \\
& \equiv a d(c+a d(b-1)) \quad(\bmod p=a c+b d) .
\end{aligned}
$$

We remark that m_{V} is a (p, q)-curve on ∂V^{\prime}. Hence $V\left(V^{\prime}\right.$ resp.) corresponds to V_{2} (V_{1} resp.), where V_{1} and V_{2} are those in Definition 1.1. Since K^{*} corresponds to $\phi\left(y_{1}\right)$, we see that $\left[K^{*}\right]=(-c s-d t)\left[K^{\prime}\right]$. Hence we see that u of $K(L(p, q) ; u)$ satisfies that $u \equiv c+a d(b+1)(\bmod p=a c+b d)(c f$. Claim 2 in the proof of Lemma 4.5). Therefore we have the following.

Theorem 6.1. Let K be a doubly primitive knot with $[K]=a\left[x_{1}\right]+b\left[x_{2}\right]+c\left[y_{1}\right]+$ $d\left[y_{2}\right]$ in $H_{1}(\partial H ; \mathbb{Z})$. Let $L(p, q)$ be the lens space obtained by Berge's surgery on K and K^{*} the dual knot of K. If $a= \pm 1$, then K^{*} admits a representation $K(L(p, q) ; u)$ with

$$
\begin{aligned}
& p=a c+b d \\
& q \equiv a d(c+a d(b-1)) \quad(\bmod p=a c+b d) \\
& u \equiv c+a d(b-1) \quad(\bmod p=a c+b d)
\end{aligned}
$$

Case 2. Knots on Seifert surfaces of genus one knots.
Let g_{1} and g_{2} be oriented loops on ∂H illustrated in (a) or (b) of Fig. 5. Set $K_{0}=\partial \eta\left(g_{1} \cup g_{2} ; \partial H\right)$. Then K_{0} is the right-hand trefoil knot in case of (a) and is the

Fig. 5.
figure-eight knot in case of (b), and $\eta\left(g_{1} \cup g_{2} ; \partial H\right)$ is a genus one Seifert surface of K_{0}. Let K be a knot in $\eta\left(g_{1} \cup g_{2} ; \partial H\right)$ with $[K]=a\left[g_{1}\right]+b\left[g_{2}\right]$, where a and b are coprime integers.

Suppose first that K_{0} is the right-hand trefoil knot. Since $\left[g_{1}\right]=-\left[x_{1}\right]+\left[y_{1}\right]$ and $\left[g_{2}\right]=-\left[x_{1}\right]-\left[x_{2}\right]+\left[y_{2}\right]$ in $H_{1}(\partial H ; \mathbb{Z})$, we see that $[K]=-(a+b)\left[x_{1}\right]-b\left[x_{2}\right]+a\left[y_{1}\right]+$ $b\left[y_{2}\right]$ in $H_{1}(\partial H ; \mathbb{Z})$. In this case, we have $-(a+b) t+b s=1$ and $(-(a+b) u-b v)-$ $(a s+b t)=0$, where s, t, u and v are integers of $\phi\left(x_{2}\right)=s\left[x_{1}\right]+t\left[x_{2}\right]+u\left[y_{1}\right]+v\left[y_{2}\right]$. Hence we see that p of $K(L(p, q) ; u)$ satisfies that $p=-a^{2}-a b-b^{2}$. Recall that u of $K(L(p, q) ; u)$ corresponds to the value $-a s-b t$ and that q of $K(L(p, q) ; u)$ corresponds to the value $a v-b u$. Since $-a(a+b) \equiv b^{2}\left(\bmod p=-a^{2}-a b-b^{2}\right)$, we have $-(a+b)(-a s-b t) \equiv-b(-(a+b) t+b s)\left(\bmod p=-a^{2}-a b-b^{2}\right)$. Hence we have $-(a+b)(-a s-b t) \equiv-b\left(\bmod p=-a^{2}-a b-b^{2}\right)$, because $-(a+b) t+b s=1$. Therefore we see that $u \equiv-a s-b t \equiv b(a+b)^{-1}\left(\bmod p=-a^{2}-a b-b^{2}\right)$. For q of $K(L(p, q) ; u)$, we see that $q \equiv-u^{2}\left(\bmod p=-a^{2}-a b-b^{2}\right)$ by the following. (Recall that $-a(a+b) \equiv b^{2}\left(\bmod p=-a^{2}-a b-b^{2}\right)$.)

$$
\begin{aligned}
(-(a+b) u-b v) & =(a s+b t), \\
b(-(a+b) u-b v) & \equiv-b u \quad\left(\bmod p=-a^{2}-a b-b^{2}\right), \\
(a+b)(a v-b u) & \equiv-b u \quad\left(\bmod p=-a^{2}-a b-b^{2}\right), \\
a v-b u & \equiv-u^{2} \quad\left(\bmod p=-a^{2}-a b-b^{2}\right) .
\end{aligned}
$$

Suppose next that K_{0} is the figure-eight knot. Since $\left[g_{1}\right]=-\left[x_{1}\right]+\left[y_{1}\right]$ and $\left[g_{2}\right]=$ $-\left[x_{1}\right]+\left[x_{2}\right]+\left[y_{2}\right]$ in $H_{1}(\partial H ; \mathbb{Z})$, we see that $[K]=-(a+b)\left[x_{1}\right]+b\left[x_{2}\right]+a\left[y_{1}\right]+b\left[y_{2}\right]$ in $H_{1}(\partial H ; \mathbb{Z})$. By an argument similar to the above, we have the conclusion (2) of the following Theorem 6.2.

Theorem 6.2. Let K be a doubly primitive knot and $L(p, q)$ a lens space obtained by Berge's surgery on K. Let K^{*} be the dual knot of K. In the following, a and b are coprime integers with $a>0$ and $b>0$.
(1) If $[K]=-(a+b)\left[x_{1}\right]-b\left[x_{2}\right]+a\left[y_{1}\right]+b\left[y_{2}\right]$ in $H_{1}(\partial H ; \mathbb{Z})$, then K^{*} admits a representation $K(L(p, q) ; u)$ with

$$
\begin{aligned}
p & =-a^{2}-a b-b^{2} \\
q & \equiv-b^{2}(a+b)^{-2} \quad\left(\bmod p=-a^{2}-a b-b^{2}\right) \\
u & \equiv b(a+b)^{-1} \quad\left(\bmod p=-a^{2}-a b-b^{2}\right)
\end{aligned}
$$

(2) If $[K]=-(a+b)\left[x_{1}\right]+b\left[x_{2}\right]+a\left[y_{1}\right]+b\left[y_{2}\right]$ in $H_{1}(\partial H ; \mathbb{Z})$, then K^{*} admits a representation $K(L(p, q) ; u)$ with

$$
\begin{aligned}
p & =-a^{2}-a b+b^{2} \\
q & \equiv-b^{2}(a+b)^{-2} \quad\left(\bmod p=-a^{2}-a b+b^{2}\right) \\
u & \equiv b(a+b)^{-1} \quad\left(\bmod p=-a^{2}-a b+b^{2}\right)
\end{aligned}
$$

CASE 3. Sporadic cases.
By an argument similar to the above, we have the following.
Theorem 6.3. Let K be a doubly primitive knot and $L(p, q)$ a lens space obtained by Berge's surgery on K. Let K^{*} be the dual knot of K. In the following, j is a non-negative integer.
(1) If $[K]=(6 j+1)\left[x_{1}\right]-j\left[x_{2}\right]+(4 j+1)\left[y_{1}\right]+(2 j+1)\left[y_{2}\right]$ in $H_{1}(\partial H ; \mathbb{Z})$, then K^{*} admits a representation $K(L(p, q) ; u)$ with

$$
\begin{aligned}
& p=22 j^{2}+9 j+1 \\
& q \equiv-(22 j+5)^{2} \quad\left(\bmod p=22 j^{2}+9 j+1\right) \\
& u \equiv 22 j+5 \quad\left(\bmod p=22 j^{2}+9 j+1\right)
\end{aligned}
$$

(2) If $[K]=(4 j+1)\left[x_{1}\right]-j\left[x_{2}\right]+(6 j+2)\left[y_{1}\right]+(2 j+1)\left[y_{2}\right]$ in $H_{1}(\partial H ; \mathbb{Z})$, then K^{*} admits a representation $K(L(p, q) ; u)$ with

$$
\begin{aligned}
& p=22 j^{2}+13 j+2 \\
& q \equiv-(22 j+7)^{2} \quad\left(\bmod p=22 j^{2}+13 j+2\right) \\
& u \equiv 22 j+7 \quad\left(\bmod p=22 j^{2}+13 j+2\right)
\end{aligned}
$$

(3) If $[K]=(-4 j-3)\left[x_{1}\right]+(j+1)\left[x_{2}\right]+(6 j+4)\left[y_{1}\right]+(2 j+1)\left[y_{2}\right]$ in $H_{1}(\partial H ; \mathbb{Z})$, then K^{*} admits a representation $K(L(p, q) ; u)$ with

$$
\begin{aligned}
& p=22 j^{2}+31 j+11 \\
& q \equiv-(22 j+15)^{2} \quad\left(\bmod p=22 j^{2}+31 j+11\right) \\
& u \equiv 22 j+15 \quad\left(\bmod p=22 j^{2}+31 j+11\right)
\end{aligned}
$$

(4) If $[K]=(-6 j-5)\left[x_{1}\right]+(j+1)\left[x_{2}\right]+(4 j+3)\left[y_{1}\right]+(2 j+1)\left[y_{2}\right]$ in $H_{1}(\partial H ; \mathbb{Z})$, then K^{*} admits a representation $K(L(p, q) ; u)$ with

$$
\begin{aligned}
& p=22 j^{2}+13 j+2, \\
& q \equiv-(22 j+17)^{2} \quad\left(\bmod p=22 j^{2}+13 j+2\right), \\
& u \equiv 22 j+17 \quad\left(\bmod p=22 j^{2}+13 j+2\right) .
\end{aligned}
$$

References

[1] J. Berge: Some knots with surgeries yielding lens spaces, unpublished manuscript.
[2] S.A. Bleiler and R.A. Litherland: Lens spaces and Dehn surgery, Proc. Amer. Math. Soc. 107 (1989), 1127-1131.
[3] M. Boileau and J. Porti: Geometrization of 3-orbifolds of cyclic type, Astérisque 272 (2001), 208.
[4] E.J. Brody: The topological classification of the lens spaces, Ann. of Math. (2) 71 (1960), 163-184.
[5] D. Cooper, C.D. Hodgson and S.P. Kerckhoff: Three-Dimensional Orbifolds and Cone-Manifolds, MSJ Memoirs 5, Math. Soc. Japan, Tokyo, 2000.
[6] C. Hayashi: Genus one 1-bridge positions for the trivial knot and cabled knots, Math. Proc. Cambridge Philos. Soc. 125 (1999), 53-65.
[7] J. Hempel: 3-Manifolds, Ann. of Math. Studies 86, Princeton Univ. Press, Princeton, N.J., 1976.
[8] T. Homma, M. Ochiai and M. Takahashi: An algorithm for recognizing S^{3} in 3-manifolds with Heegaard splittings of genus two, Osaka J. Math. 17 (1980), 625-648.
[9] K. Morimoto: On minimum genus Heegaard splittings of some orientable closed 3-manifolds, Tokyo J. Math. 12 (1989), 321-355.
[10] K. Morimoto and M. Sakuma: On unknotting tunnels for knots, Math. Ann. 289 (1991), 143-167.
[11] M. Ochiai: Heegaard diagrams of 3-manifolds, Trans. Amer. Math. Soc. 328 (1991), 863-879.
[12] D. Rolfsen: Knots and Links, Mathematics Lecture Series 7, Publish or Perish, Berkeley, Calif., 1976.
[13] T. Saito: Genus one 1-bridge knots as viewed from the curve complex, Osaka J. Math. 41 (2004), 427-454
[14] T. Saito: Dehn surgery and (1, 1)-knots in lens spaces, Topology Appl., to appear.
[15] S.C. Wang: Cyclic surgery on knots, Proc. Amer. Math. Soc. 107 (1989), 1091-1094.
[16] Y.Q. Wu: Cyclic surgery and satellite knots, Topology Appl. 36 (1990), 205-208.

Graduate School of Humanities and Sciences Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506 Japan
e-mail: tsaito@cc.nara-wu.ac.jp

