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Abstract
Let T. be the lifespan of solutions to the initial value problem fhe one
dimensional, derivative nonlinear Sélainger equations with small initial data of
size O(¢). If the nonlinear term is cubic and gauge invariant, it is \knothat
liminf._.oe?log T, is positive. In this paper we obtain a sharp estimate of thiget
limit, which is explicity computed from the initial data drthe nonlinear term.

1. Introduction

We consider the initial value problem for the nonlinear ®cdmger equation of
the following type:

1
igu+=02u=F(u, o), t>0, xeR,
(L.1) U+ S%U=FU g, =0 xe

u(o, x) = ep(x), X € R,

whereu is a complex-valued unknown function df, k) € R+ xR, i = /=1, 8 = 9/dt,

dx = d/0%, ¢ € ]0,1] and ¢ is a complex-valued smooth function which decays suf-
ficiently fast as|x| — oo. We will occasionally writeuy for dsu, andu denotes the
complex conjugate ofi. The nonlinear termF(u, uy) is a cubic homogeneous poly-
nomial in (U, U, uy, Uyx) with complex coefficients, and it satisfies so-called gairge
variance, that is,

F(€’u.é’q) =€’F(u,q) for ugeC and 6€R.

This paper is devoted to the study of the lifespan of solstitm (1.1). Roughly
speaking, lifespan is the maximal existence time of sohgtidPrecise estimates of the
lifespan sometimes enable us to know how the nonlinearfgctf large time behavior
of solutions to nonlinear evolution equations. As is welbwm, for quasilinear wave
equations, there are surprising connections between fibgpdéin and the “null condi-
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772 H. SUNAGAWA

tion” (see [1], [2], [3], [4], [5], [8], [11], [19], [20], [2], [22], [23], [24], [28], etc.).
What we intend to do for (1.1) is an analogue of them.

Now, let us give a precise definition of the lifespan= T.(¢, F) which we dis-
cuss. T, is the supremum of alll > O such that there exists a unigue solutiore
C([0, T[; H®) of (1.1), whereH™ denotes the standard Sobolev space of onleBince
the local existence is well known far® data (see e.g., [26], [6], [18] and Appendix
of [25]), we see thafl, > 0 for anye > 0. In [25], S. Katayama and Y. Tsutsumi
proved thatT, > exp(C/e?) with some positive constar€@ which is independent of
e, provided thate is small enough (see also Section 5 of [12]). In other words, w
know that

liminf e2log T, > 0.
e—+0
Note that in the case of higher space dimensions, small dabmalgexistence (i.eT, =
oo for sufficiently smalle) was established by H. Chihara [7].
The aim of this paper is to obtain a more precise estimate efldwer bound

of the lifespan, which is explicity computed frog and F. Before stating our main
result, let us defineA € R U {+o0} by

12) & = SUH2P(E) I F(Li9)

(we associate A =0 with A=+00), where ¢(¢) denotes the Fourier transform
of ¢(x):

1 o0
Ver J-oo

Remark thatA is strictly positive or vo if ¢(x) is sufficiently smooth (equivalently,
if (&) decays sufficiently fast al§| — o0). The main result is as follows:

p() = e Yo(y)dy.

Theorem 1.1. Let F be a cubic homogeneous polynomial(in U, uy, Uyx) with
gauge invariance and lep € L? such that) ;.|| X)35¢[ . < oo for sufficiently
large me N. Denote by T the lifespan of solutions t¢l1.1). Then we have

liminf e2logT, > A,
e—+0
where A€ ]0, oo] is given by(1.2).
REMARK 1.1. This is an NLS analogue of F. John and Lorkander’s result

concerning quasilinear wave equations (see Theorem 1 df 488 Theorem 2.4.4
of [19]).
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REMARK 1.2. In the above assertion, ¢f belongs to the Schwartz clask i.e.

supx! 8%p(x)| < oo
xeR

for any j,k € Ng := {0,1,2,...}, then we can show thai(t, -) € S for all t €
[0, e*°[.

REMARK 1.3. It is troublesome to specify the minimal value wf in Theo-
rem 1.1 because our proof is based on construction of an @ppate solution which
requires regularity and decay @f in several steps (see Section 3). Actually, we can
check thatm > 7 is enough for our proof, but it is not our main purpose here.

As a consequence of Theorem 1.1 we see that, iF(fyi&) vanishes identically,
the lifespan must be much longer than that we can expect iergerHere we focus
our attentions on this case. Without loss of generality, agganvariant cubic tern¥
can be written as

(1.3) F(u, 6) = A1]ul?u + 22]uf’q + A3u%q + 2aulq|® + AsTG* + A6l |’q
with constants\q, ..., Ag € C. For this F, it holds that
F(L &)= A1 +i(ha — A3)§ + (ha — As)E2 +iAgE>,
whence
IMF(L,i€) = Imi;+ReQs — A3)€ + Im(hs — As)E2 + Regs’
and
ReF(1,i£) = ReA;s — Im(ha — A3)€ + Refu — As)E2 — Im g’

for &€ € R. We see from this expression that F{l,i&) vanishes identically if and
only if

(1.4) A, i(h2 —A3),(Aa—A5) and iAg are real

It should be remarkable that the same condition as (1.4) imdoin the work of
N. Hayashi, P.I. Naumkin and H. Uchida [16]. Under the assionp(1.4), they proved
that the small amplitude solution exists globally in timedahbehaves like

%W (%) exp(% +iA (%) ‘W (%) ‘zlogt> +o(t1?)

ast — oo unifomly in x € R, where A(§) = —ReF(1,i§) and W € L™ (see also
[29], [17], [30], [13], [15], etc.).
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We also note that the “null gauge condition of order 3” stddie [25], [34] is
equivalent to

F(,i&)=0 for any & eR.
Indeed,F(1, &) vanishes identically if and only if
)"1:)\6:07)"2 :)\.3 and )\.4:)\.5,

which is nothing but the condition tha(u, dxu) is of the form fu + udxu)dy(Jul?),
where A, u € C. Remark that

(AU + wdu)dx (Jul?) = %(Au +pdcu)(TJu—uJu),

where J = x+itdy. Using this extra time-decay property, S. Katayama and Yitstani
[25] succeeded in proving the small solution exists glgbalhd it behaves like a free
solution.

It will be also interesting to consider what happens afterexp(A/e?) if A < oo,
whose typical example is the case whd¥e= A|uj?u with ImA > 0 and¢ does not
identically vanish. Some remarks on this case will be giverSéction 5.

We close this section by summarizing our strategy. We firststoact a suitable
approximate solution and get an a priori estimate for théedifice between exact and
approximate solutions instead of the solution itself. ThastantA, our lower bound,
comes from the blow-up time of the approximate solution Whig obtained by solv-
ing a simple ODE (se€3.2). Such an approach is originated byrhhander [19] and
John [22] cited before (see also [1], [9], [20], [23], etc.).

2. Preliminaries

In this section, we prepare several lemmas which are useftiié proof of Theo-
rem 1.1. In what follows, we will denote several positive stamts byC, which may
be different line by line. If we want to emphasize tf@tdepends on some parameter
v, we may write itC,.

Lemma 2.1. Let P: C?> — C. If P satisfies

P(rz,rw) =r®P(z,w) and P(€7z é’w)=€"P(z, w)
forany zw € C, r > 0 and ¢ € R, then we have

P(z, zw) = P(1, w)|z/z

for any z w € C.
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Proof. Forz e C\{0}, we putz=re'’ (r > 0, # € R). Then

P(z zw) = P(re'’, re'w)
= P(r,rw)e’
= P(1, w)r3e’
= P(1, w)|z|*z

When z = 0, the conclusion is trivial sinc®(0, 0) = 0. Ul
Lemma 2.2. Let J=x+itdy. We have
— H 1 2 —
(2.1) [ox,J1=1 and |[io; + Eax’ J|=0,

where[ -, -] denotes the commutatore. [L, M] = LM — ML for linear operators L
and M. Also we have

C
(2.2) I, )~ < ﬁuf(t, D23, I
(2.3) It ) <CVI+t Y ol f(t, )] .
j+k<1
and
(2.4) J(fgﬁ) = (Jf)gﬁ+ f(Jg)ﬁ— fg(ﬁ)

for smooth functions (, x), g(t, x) and ht, x).

Proof. We prove only (2.3) since others are standard (see [@%], [34]). We
observe that

—~+| X

. 1
=—I3X+{J,

which leads to

6= ([ o) <||f(t, M+ (<8 1) )

<t f(t, - )Ze +2ntl|dx F (L, )IZe + 22 IF(E, -))1E

2
LOQ

for t > 1. Whent € [0, 1], use the relatiorx = J — itdy instead. U
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REMARK 2.1. Using (2.2) and the standard Gagliardo-Nirenberge&obinequal-
ity | fllie < CIIfIIL 18« 11,7, we have
C j 1k
== D [0 )

j+k<1

(2.5) I, e~ <

REMARK 2.2. The identity (2.4) is the Leibniz rule for the operatbracting on
cubic gauge-invariant terms. This should be compared with

3(19) = S1ING+ 1)+ (g + T(3h)),

which implies action of J causes loss of time-decay in general (cf. [12], [14],
[15], etc.).

Lemma 2.3 (Energy inequality). Let ¢(t, X) be a smooth function satisfying

oy + %afrp + by (t, X)ox ¥ + by(t, X)axyr = f(t, X)

for (t,x) € [0, T] x R with some smooth functiong (b, x), by(t, x), f(t,x) and some
T > 0. Then we have

d
Gl Ol = CAOLP . L+ [T )l

for t € [0, T], where

(2.6) p(t. ) = f Rebi(t, y)dy.

00
2

27) B =Y (I9xbj(t )il +IIbj(t, -)lIf=) +sup

=1 XeR

X
at / Rebu(t, y)dy‘ .

o0

Proof of Lemma 2.3 can be found in Section 2 of [25] (see aldcaf@l [18]).

Lemma 2.4. Let y(t, X), ¥»(t, X) be smooth functions decaying sufficiently fast
as |x| - oo. Then we have

sup
XeR

o / vt y)Pty) dy

C < .
=E DI LA 1
1=1

j+k<2
. 1
<| o +58X2> i, )

+C(é|l¢|(t,-)llu> <é

)
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Proof. Lemma 2.4 follows from the identity
i S — . . 1., — . 1,
0 (Y1v2) = 50k (V20x¥1 — Yadxviz) +iva(i0e + 5% | Yo — iz (10 + 505 ) v
combined with (2.5) (cf. Lemma 2.6 of [25]) . ]

3. Construction of an approximate solution

In what follows, we shall use the following notation&: = (dx, J), Z* = 9g*J*?
for a multi-indexa = (a1, @) € N3. Also, we suppose € S for simplicity. The goal
of this section is to construct a smooth functiag(t, x) defined on|0, eA/sz[ x R,
which satisfies

(31) Ua(o, X) = S(P(X)a
(3.2) sup [|Z%Ua(t, - ).z < Cy.e
te[0,eB/s?]
and
eB/e2
(33) [ 1zeRe et = Coee?
0

for any « € N3 and B € ]0, A[, where

. 1
R(t, x) = <| & + 585) Ua — F(Ua, 8xUg).
The construction is divided into three steps.

REMARK 3.1. In view of (2.3) and (2.5), we see that (3.2) is equivalen

(3.4) sup V1+t[Z%alt, )L~ < Cqe

te[0,e8/+2]
for any « € N5 and B € ]0, A[.

REMARK 3.2. As we shall see below, our approximate solutiog(t, xX) is
equal to

e@(x/t)  expx?/2t +iG(s?logt, x/1))

(3.5) Vit /1-2ImF(1,ix/t)|g(x/t)|2e2logt

when ¢ <t < exp(A/e?), where

do
1-2ImF(L,i§)|p(E)1%0

(3.6) G(s.£) = — ReF(L i£)|p(6)? /0
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Note that (3.5) blows up as — exp(A/e?) if A < oco. That is the reason whw is
given by (1.2). We also remark that, if IF(1,i&) vanishes identically, (3.5) reduces

e (e +ia () w () eat).
where A(§) = —ReF(1,i&) and W(¢) = e(§).

3.1. First step: free evolution. First we consider the free Sdidinger
equation:

1
(i & + Eaf) Up=0, (t,x)e][0, o] xR,
uo(0, X) = ep(X), x e R.

It follows from the commutation relations (2.1) and-conservation that

|89 uo(t, )2 = el aix“e] -

for any j, k € Ng. Also, sinceug(t, x) is explicitly written as

ﬂ% / &0V 2 g (y)dy

89ix2/2t 00

C V2rit

uo(t, X) =

e 1TV g (y)dy,

we see that

€éx2/2tA Xy|
Uo(t, X) — N §0<?) =

[ e - ey

[e¢]

2nt

=<

€ 0o y2
Nz o leIdy
< Cst’3/2,
which implies the free solutiomig(t, X) behaves like
iy 2
O ety (%)
Jt t
in the large time. Similarly we have
ix2/2t
KL _e s (2
ax‘] uo(tvx) ﬁ ‘P]k(t>

for any j, k € No, where g «(£) = i1*E1 3£ (8).

< Cj,katis/z
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3.2. Second step: nonlinear correction in the large time. Let V(s, &) be the
solution of

@7 {iasv =F(Li&)|VI2V, (s &)el0, AxR,
' V(0,&) = e 4pE), EeR
and set
8eix2/2t

U(t, x) =

2 X
\/ (8 logt, t) ,
Qtt.x) = (19 + 53 U, ) - FUG 0, BUG 0)
for (t, x) € [1,e"*°[ x R. Note that (3.7) is solved explicitly fos e [0, A[:
exp(G(s,§) —in/4)

\/1_ 2IMF(L,i8)|&)[*s

where G(s, &) is given by (3.6). In particular, we can check that

V(s.§) = o),

sup  |§10KV (s, £)] < o0
(s.€)€[0,B] xR

for any B € ]0, Al and |, k € Ny, while

sugV(s, &) > o0 as s— A
£eR

if A < oo. Also, since

. geix2/2t. ) 1 J
BiJkU(t, X) = 7| i+k (é‘ + Eag) 3§V|(s.é)=(azlogt,x/t)v
we have

sup V1+t[Z°U(t, - )L~ < Cu e

te[1,e8/¢2]

for any B € |0, A[ and « € NZ. Moreover, it follows from (2.3) that

sup [|Z7U(t, -)llLe = Cq,ge.

te[1,e8/¢7]

Next we calculate

1 X2/ ix2 1 x 2 X
<|at+§a>%)u(t,x):|8—<—————t—235+8T35>V(82|Og'[,?)

N

1eeX¥/2 /1 x2 |  2ix 1 X
+ 2 (4o + 2+ =02V (2o t, -
2ﬁ<t2t t”t“) (#100t.7)
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3e|x2/2t X edX 2/2t
_ 2 X 2 X
T ———1 05V (5 logt, t) 5 8§V<s logt, )
and
3e|x2/2t X 3gix?/2t X
2 === i 2
bV ( Iogt,t> 2 F(1,|t>|V| y,
_ - X 2
—F(l,lt)|U| u
. X
= F (u,u?u)

[
=F <U,BXU +EJU)'

Here we have used Lemma 2.1. Substituting them into the defindf Q, we have

Eéx /2t

Qt, x) = {F (u, aU + It—JU) ~F(U, 8XU)} o

X
— 02V ( 2logt, ?> ,
whence
@ £ \2 ¢ & € B/e?
1Z°QC, )le~ = Cue (i173) 157 *Cadies < Cubiay te[Le®]
for any B € ]0, Al and o € N2.

3.3. Final step: piecing together. Let x € C*(R) be a decreasing function sat-
isfying x =1 on }-o0,1] and x =0 on [2 oo[. With this cut-off function x, we set

Ua(t, X) = x (et)uo(t, X) + (1 — x (e))U (¢, X).

Then it is easy to check that (3.1) and (3.2) hold. To verify3)3it suffices to
show that
5/2

e
(3.8) IZ“R(t, )L~ < Cq

€ 2
1 +t1{at<2 Ca,8@1{£t>l}, te [O, eB/e ]

for any B €10, A[ and « € N2, where

|1, tesS
Loes =14 t¢Ss

Indeed, (2.3) and (3.8) leads to

J

eB/e?

2/e G52 © ¢
1Z*R(t, ')”LZdtSCa,B/(; mdt"'ca,B/;/g t_zdt

= Ca.Bgz-
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The rest part of this section is devoted to the proof of (3Mj)st we consider
the case where & t < 1/e or 2/ <t < exp(B/¢?). In this case it is easy to see
that (3.8) holds sinceR = —x(et)F(up, dxUg) or R = Q. Next let Ve <t < 2/e.
Noting that

: 1 . . 1
(I o + Eaf) Ua(t, X) = iex (et)ug + x(et) (I o + 583) Uo

—iex/(e)U + (1L — x(et)) (i o + %af) U
=iex'(st)(uo — U) + (1 — x (e){F (U, 3U) + Q},
we have
R=iex'(et)(uo — U) + (1 — x(st)){F(U, 3U) — F(Ua, dxUa)}
— x(et)F(Ua, dxUa) + (1 — x (1)) Q.

The last two terms in the right hand side can be handled in @heesway as the pre-
vious cases. To estimate the first two terms, we observe that

Uo(t, X) — U(t, X) = 8{;? [v (o, %) _v (82 logt, %)]

ix2/2t  poo i
' SeIZnit e P (@Y — 1)g(y) dy
ee/2 ! 2 X 2 3
= — — -3/2
v { /0 a5V (6e2logt, t)dé)}e logt + O (et=%2).

Then, sincet ~ ¢~1, we have

3
) e’logt ¢

1Z%{iex (et)(ug — U)}IL~ < Cy.ge ( 112 * @)
-c £B-1/2) log(1/¢) . gltl2
= Lo,BE t1/2+1/2 t3/2-1/2

5/2
&

< [
= COt.B 1+t .

Similarly, when we note that
U(tv X) - ua(t’ X) = X(St)(u (t7 X) - uo(tv X))v

we obtain

2 (e3log(1
122 = x(eO)F(U. %U) = F(ua. dxUa)} i~ = Cure (775) (%f/‘g) + ts%)

£5/2

=< Ca,Bm-
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Summing up, we arrive at (3.8). U

4. Proof of the main theorem

This section is devoted to the proof of Theorem 1.1. For thisppse, let us
define

En®)= Y 1Z%(U - ua)(t, -)l2

ler|<m
for the solutionu of (1.1) and the approximate solutian, obtained in the previous
section. First we shall see that Theorem 1.1 is reduced tdollmving lemma:

Lemma 4.1. Let Be]0, Al and let me N with m > 3. There existsg € ]0, 1],
which depends only on B and,much that the following holds trudJnder the as-
sumptions

0<T <min{T, eB/Ez} and  sup En(t) <&,
O<t<T

we have

sup Em(t) < 5
o<t<T

for any ¢ € ]0, gq].

Proof of Theorem 1.1 via Lemma 4.1. FR& € 10, A[, m > 3 ande € ]0, go]
arbitrarily. SinceEp,(0) = 0, we can choose somE* > 0 such that

sup Em(t) <e.
0<t<T*

If T* > expB/e?), then we see thal, > exp(B/e?) because of the estimate

sup D IIZ°u(t. iz < sup > 1Z7Ua(t. )2+ Sup Em(t)

O<t<eB/s? lej<m O<t<eB/s? la|<m O=<t=T

<Cgmete

combined with the local existence theorem. In the other ,cHse exists some &
T* < min{T,, €®*’} such that

(4.1) Em(t) <e for 0<t<T* and En(T*)=¢.
Then it follows from Lemma 4.1 that

Em(T**) = % <E§g,
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which contradicts (4.1). Therefore we must have> exp(B/s?) i.e. e?log T, > B for
any ¢ €10, go]. Since B €10, A[ is arbitrary, the proof is completed. ]

We turn to the proof of Lemma 4.1. In what follows, we use thdofeing
notations:

[w(t, X)m= > 1Z°w(t, X)|

le|<m
and
lwt)lm2 = |||w(t, ~)|mH|_2, lw(t)lIm,oc = |||w(t, ~)|m||Loo

for smooth functionw(t, xX) decaying fast agx| — oo. Note thatEn(t) is equivalent
to [|(u — ua)(t)llm.2-

From now on, we fix O< B < A, 0 < T < min{T,, €8¢’} and putv = u — u, for
t € [0, T]. Then we see that satisfies

1
(i B + 583) Z%v=Z%P,—R), (t,x)e€[0,T] xR,

Z%v(0,x) =0, X € R,
where Pi(t, X) = F(ua + v, 9¢Uq + 0xv) — F(Ug, 0xUs). Note thatP; can be rewritten as
LaF LaF _
P = —(Ug +0v, dxUy +00xv) dO ) v+ —(Ua +0v, dxua +00xv) dO ) v
0 au 0 ou
LoF LoF
+ (/ — (Ug +0v, AUy +604V) dG) oyv+ (/ — (Ua +0v, AUy +60yV) d9) Ox U,
o 99 o 9q
wheredF/dou, oF/ou, 0F /0q and aF /3q are of the form
oF 2 _ _ 2
E(“’ ) = 201|ul + A2UQ + 243U0 + A4l
oF
=)= AU% + 20U + 2507,
oF 2 = P 2
E(U, q) = A2lu|® + A4uq + 205UQ + 2h¢|q|

and

oF
E(U, q) = Asu? + Asuq + 16Q?
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when F is given by (1.3). In particular, we have

[ZPu(t, )2 < Ca(”U(t)”ﬁa\/ZHl.oo + ||Ua(t)||ﬁa|/2]+1_oo)||U(t)|||a|+1.2
+ Co (Ilv(t) lal/21+1.00 *+ NUa®)llfa/21+1.00)
X (Iv®lar/211 00 V) 1.2 + TUa®) e+ 1,00 [V la/2141.2)

< Cr (IO _1y/201.00 + 1Ua I o0) [0(O)lm.2
2

3
=< CB.mm”U(t)”m.z

for |@| < m— 1, provided that [fh — 1)/2] +2 < m, i.e. m > 2. Here p] denotes the
largest integer which does not exceeds R. Therefore the standard energy inequality
yields

3ozt e < Y 12l

le]=m—-1 la]=m—1

t
4.2) . fo||Z“P1(r,-)||Lz+||Z“R(r,-)andr

loe|l=m—1

t
E
< CB,m82/ m(®) dt + Cg me?
0 1 +7

fort € [0, T].
Next we consider the case whekgl = m. Set

oF oF
by (t, X) = ——(u, U by(t, X) = —(—=1)*?—(u, dxu
1(’) aq(vX)’ 2(’) ( )Bﬁ(’X)
and
a oF o ., OF -
Po(t,x)=Z Pl—ﬁ(uaﬂ;, OxUa+0x )0y (Z%v) — (—1) Zﬁ(uaﬂ), dxUa +0yxv)dy ( Z%v)
so thatZ%v satisfies
1 -
i10((Z%v) + EBf(Z"‘v) +b104(Z%0) + bzax( Zav) =P, - Z*R
(remember thati = u, + v). Then we can apply Lemma 2.3 with = Z*v to obtain
d
G 1e7Z7u(t, )2 = CAO ™Iz (t, ). + [P — Z7R)] .,

where p(t, X) and g(t) are given by (2.6) and (2.7) with abo¥g, b,. Note that

(4.3) g Cee® < gPtx) < gCee?
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because

squl p(t, X)| < Clu®llZ: < C(lua(t)liZ: + v(t)lI%,.) < Cge’.
Xe

To estimategs(t), we shall use Lemma 2.4 to obtain

x X aF
sup|a; / Rebi(t, y)dy‘ = sup)o / Re (U, B Y) dy‘
xeR —00 o)
1 X .
<C Zsupat/ 8'1u(t,y)8'x2u(t,y)dy‘
.l OXER —
C
1—||U(t)|| + Cllut) Il F(u, axu)|l g2
g2 &t
=Cery *Cerayr

Also we have

2
Y (loxbi(t, )l +Ibi(t, )IE~) < CIu®I5 . + Iu®1 )
1=1

Iu)3, = llu)s,
SC< 1+t * (1L+1)2
2 4

&
+C .
1+t B(1+t)2

<Csg

Therefore we have
&2
B(t) < CBl s
As for the estimate oP;(t, x), in the same way as that d¥(t, x), we have

IPa(t, )z = Con(I0OI 100 * 1UalO 1zt 00) WDl
+ Cm(“U(t)” [m/2+Loc + lUa(t)]] m/2]+1.oo)||Ua(t)||m+1.oo||U(t)||[m/2]+1.2

=< Cm(”U(t)“ m/2]+Lo0 T ||Ua(t)||m+1 oo)””(t)”m.z
2
&
< CB.mm”U(t)”m.Z,

provided that fn/2] +2 < m, i.e. m > 3. Summing up, we have

d . o o
aHe"“')Z u(t, )] _cBm ||v(t)||m2+cBm||z RIl 2,
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which leads to

t
E
(4.9) > ePtIzeut, +)| . < Come® /0 1”1(? dr +Cpg me?

la|=m

fort € [0, T].
From (4.2), (4.3) and (4.4), it follows that

Em®) < > 1Z(t, )llie +€%n ™ [ePIZo0(t, )|

loaj<m—1 la|=m
< Cgmé? /t IimT(T) dr + Cg me?.
0 T
Therefore the Gronwall lemma implies
Em(t) < CB_meCB'mSZ log(14) 2 < Cp  eComBe2
for t € [0, T]. Finally, choosingeg € 10, 1] so that Zg ,e%8mBey < 1, we obtain

sup Em(t) <
te[0,T]

NI ™

for ¢ €10, gg]. This completes the proof of Lemma 4.1. ]

REMARK 4.1. Roughly speaking, what we can expect without using pycx-
imate solution is

D 1Z7u(t, il < Ke + f(e?logt)e

la|=m

under the assumption that the left hand side is dominatedKay, 2vhereK is a pos-
itive constant depending (less explicitly) @n and f: R, — R, is a continuous, in-
creasing function satisfying (0) = 0 (see [25] for detail). On the other hand, the above
argument yields

D IIZEU— Ut -)llee = O

la|=m

as long ag < exp(B/¢?), B €10, A[. This is the main difference between the previous
approach and ours.

5. Concluding remarks

We conclude this paper with the following three remarks:
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REMARK 5.1. In the case ofA < oo, the fact thatu,(t, X) blows up ast —
exp(A/e?) suggests the upper bound gflog T, cannot be larger tham. However, as
far as the author knows, there are no resultssorall datablow-up (which lead to up-
per bounds ofT,) nor global existence results (which implly = oo) when A < .
Concerning quasilinear wave equations, the correspongimglems have been stud-
ied extensively by S. Alinhac [1]-[5], etc. Note that analag problems for nonlinear
Klein-Gordon equations are also left unsolved (see [9]],[183] for recent progress
on NLKG).

REMARK 5.2. If R is replaced byT = R/27Z in (1.1), we can find the follow-
ing example on small data blow-up:

. 1
idu+ Eafu =Aul’u, t>0, xeT,

u(0, x) = ¢(x), x eT,

wherei € C, Imi > 0 andg € L%(T), ¢ #0. Indeed, from the equality

d
SO 2y = 21MA U

and the Cauchy-Schwarz inequality, we deduce that

d 2 Ima 4
a ”U(t) ” L2(T) > T ” U(t)” L2(T)

with Ju(O)ll 2y = ll@llLzery > O, which imply L2(T)-norm of the solution goes to infin-
ity beforet = n/(ImA||<p||f2(T)). (Related observation may be found in [31], [27], etc.)
Unfortunately, however, this argument fails in the caseRdbecause/, 1dx = co.

REMARK 5.3. In the case of sypz ImF(1,i§) < 0, we can easily check that
1/A = 0, whence Theorem 1.1 leads to Jimge?logT, = +oo. This suggests that
the restriction (1.4) in the result of Hayashi—-Naumkin—ldehmay be weakened when
we consider thdorward Cauchy problem (i.e. evolution in thgositivetime direction).
Moreover, in view of the approximate solutian(t, x), it would be quite natural to
expect the solution decays lik®(t~*?(logt)~%?) ast — +oo uniformly in x € R
if sup;cg IMF(L,i&) < 0. However, we do not have any proof except A.Shimomura’s
recent work [32]. He considered the case whEre A|u|?u with A € C, ImA < 0 and
found that the solution does decay lik&(t~/?(logt)~Y/?) ast — +oo uniformly in
x € R, but his method does not seem to be directly applicable ferdirivative non-
linear Schodinger equations. Finally we mention that the author [38% Isucceeded
in obtaining this kind of additional time-decay result forckass of nonlinear Klein-
Gordon equations.
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