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1. Introduction

In this paper we obtain three results concerning laws of the iterated logarithms
(LILs) for certain functionals of some Markov processes.

The first is for symmetric diffusions whose transition densities satisfy upper and
lower bounds similar to those of Aronson for uniformly elliptic divergence form op-
erators in R?. We suppose the transition densities p,(x, y) are symmetric in x and y
and satisfy an estimate of the form
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where d(x, y) is the distance between x and y and ¢y, ¢, c3, ¢4, dg, and d,, are con-
stants. Examples of such processes include ones associated to uniformly elliptic op-
erators in divergence form in R?, of course, but also Brownian motions whose state
space is an affine nested fractal, such as the Sierpinski gasket, and Brownian motions
on Sierpinski carpets. (See the Appendix of this paper and also [14], [6] and [3].)

For such processes we first prove a large deviations principle similar to that of
Schilder for Brownian motion (cf. [24]). When the state space is a fractal, one cannot
prove as much as in the case of Brownian motion; in fact, it can be shown (see [10])
that the direct analog for Schilder’s theorem is not true. Nevertheless, the large devia-
tions principle that we do prove is sufficient to obtain a functional law of the iterated
logarithm similar to that of Strassen; see Theorem 2.11. This is the content of Section
2.

Next in Section 3 we consider arbitrary Markov processes, not necessarily contin-
uous nor symmetric, and look at functionals of the path that are nondecreasing, con-
tinuous, subadditive, and satisfy a uniform scaling property. For these functionals we
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626 R.F. Bass AND T. KUMAGAI

show that one has an upper bound for a LIL. We give several examples to illustrate
the hypotheses of Theorem 3.1.

Finally, for our third result, in Section 4, we restrict attention to Brownian mo-
tion whose state space is an affine nested fractal or a Sierpinski carpet. Such processes
have local times ¢,(x) and one can ask about limsup and liminf LILs for L*(t) =
sup, £;(x). Some results on the limsup LIL were obtained in [16]; we complete these
and then obtain the corresponding liminf LIL. Such processes also have a range that
has nonzero p-measure, where u is the invariant measure for the state space; there
is no analog of this fact for diffusions in R? except for the uninteresting case when
d = 1. It thus makes sense to talk about an LIL for the u-measure of the range, and
this is also obtained in Section 4. We comment that neither L*(¢) nor the p-measure
of the range is a continuous functional of the path, so cannot be handled by the tech-
niques of Section 2.

Section 5 is an appendix recalling a few facts about fractals and diffusions on
fractals.

2. Large deviations and Strassen’s LIL for diffusion processes with Aronson-
type estimates

In this section, we consider diffusion processes on a complete metric space E
whose transition densities satisfy Aronson-type estimates. We show that a functional
type LIL holds for these processes.

2.1. Diffusion processes with Aronson-type estimates and their properties
Let (E, d) be a locally compact complete separable connected metric space which en-
joys the midpoint property, i.e., for each x,y € E there exists z € E such that
d(x,z) =d(z,y) = (1/2)d(x, y). Let u be a o-finite Borel meastire whose support is
E which satisfies

2.1) w(B(x,2r)) < Miu(B(x,r)) forall xe E,r >0,
2.2) u(B(x, 1)) < M, for all x € E,

for some constants M, M, > 0 where B(x,r) ={y € E : d(x,y) < r}. (2.1) is often
called a doubling condition of a measure.

Let (2, F, {P*}, {X(t)}) a diffusion process on E which is symmetric with respect
to u. We assume the following for the process.

AssumpTiON 2.1. There exists a jointly continuous symmetric transition density
p:(x,y) for X(t) with respect to w on E which satisfies the Chapman-Kolmogorov
equations and the following:

o1t 42 exp (—cp2W(d(x, ¥), 1)) < pi(x, ) < 23t /2 exp (—c24W(d(x, ), 1))
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forall 0 <t < 00, x,y € E, where W(z,t) = (z%¢1)/@=D and d; > 1,d, > 1, and
C2.1, €22, C2.3, C2.4 are positive constants.

The setup here is nearly the same as that of the diffusions on fractals studied in
[2]. Note, though, under our setup we only have u(B(x,r)) < M3(r¥ v 1) for some
y > 0 and do not require the lower bound in general.

There are various examples of diffusion processes which have these estimates.
(@) E=R9 {X(t)} is the diffusion whose generator £ is the divergence form elliptc
operator

L= Z a,](x)

where {g;;(x)} is bounded, symmetric, measurable and uniformly elliptic. Assumption
2.1 then holds with d; =d, d,, =2 ([1]).
(b) Brownian motion on a Riemannian manifold M. Suppose there is a single C*
map from R onto M such that with respect to these coordinates the coefficients of the
Riemannian metric are bounded and uniformly elliptic. Then it may be shown that the
infinitesimal generator of Brownian motion on M will be a nondegenerate time change
of an operator such as the one in (a) and that Assumption 2.1 holds.
(c) Diffusions on fractals. Another class of processes which satisfy these conditions
are diffusion processes on fractals. Concrete examples are:

(1) Brownian motion on affine nested fractals ([14])

(2) Brownian motion on Sierpinski carpets ([5], [6])

See the Appendix for the definition of these fractals and of diffusions on them.
Note that (1) contains Brownian motion on nested fractals whose heat kernel estimate
was obtained in [19]; Brownian motion on the Sierpinski gasket ([7]) is a typical case.
As we will discuss in the Appendix, Assumption 2.1 holds for these examples.

We now summarize some facts that may be deduced from our assumptions on
(E,d, ) and Assumption 2.1. For A C E, we set 4 =inf{r > 0: X(¢) € A}.

Proposition 2.2. (1) For each x,y € E, there exists a geodesic path {y(t) :
0 <t < 1} such that y(0) = x,y(1) = y and d(y(s), y(t)) = |t — s|d(x,y) for all
O0<s<l
(2) For each x,y € E,

c24d (e, )M/ D < — lim €/ Dlog pe(x, y) < ea2d(x, y)™/*D.
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(3) There exist ¢35, a6 > 0 which depend only on ty > 0 such that

Adw\ 1/(dy—1)
PX(supd(X,, Xo) = 1) < casexp (—cas(—) ).
s<t
forall » >0,0<t<1t,x¢€kE.
(4) There exist ¢y, c28 > 0 which depend only on ty > 0 such that

X réu\ 1/(dy=1)
P*(0pix,r) <t) < cp7€Xp ( - 02.8(7) )

forallr >0,0<t<ty,xe€kE.
(5) There exist cp9, B > O such that for each x,x’,y € E,t > 0,

[pe(x, ¥) — pi(x', Y)| < coold(x, X'yt =1/ dw)f=ds/2,

Proof. (1) and (2) are straightforward from our assumption. (3) and (4) are
proved in the same way as Lemma 3.9(a) and (3.11) of [2]. (5) follows by the ar-
gument in [13], Section 3. In fact, Assumption 2.1 also implies a parabolic Harnack

inequality; cf. [13], Section 3 or [6], Section 7, although we do not need this fact.
O

In this situation, we can also obtain a 0 — 1 law analogous to the one which was
obtained in [6] Theorem 8.4 for the case of Brownian motion on the Sierpinski carpet.

Proposition 2.3. Suppose A is a tail event: A € No{X, : u > t}. Then, either
P*(A) is 0 for all x or else it is 1 for all x.

Proof. We follow the proof of [6]. Let € > 0 and fix xo € E. By the martingale
convergence theorem, E*[14]|F;] — 14 almost surely as t — oo. Choose fy large
enough so that

(2.3) EX|E®[141F,] — 14l <e.

Write Y for E*[14|F,]. Using Proposition 2.2(3), choose M large so that

P*(supd(X;, xo) > Mity/*

s<to

) <e.

For each ¢, by Proposition 2.2(5) we have the continuity of P, f(x) in x with a mod-
ulus depending only on ¢ and || f|l.c. We choose ?; large so that

2.4) | Py, fx) — P,.f(xo)l < €|l flloos d(x, xg) < Mtol/d"'.
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We note
(2.5) [P™(A) — E*(Y; A)| = |[E™(14; A) — E™(Y;A)| <e.

Since A is a tail event, there exists C such that A = C o0 6,4,. Let f(z) = P*(C). By
the Markov property at time ¢,

(2.6) E“(1c 06,)= EYEX"1¢c = EY f(X,) = P, f(w).

By the Markov property at time fy and (2.6),

(2.7) E™(Y;A)= E®[YEX®(1¢c 06,)] = EX[Y P, f(X,)],
while
2.8) P¥(A)= E®1, = EXEX® (1 06,) = E®[P, f(X,)].

If d(X,,, xo) < M1y/®, then |P, f(X,,) — Pi, f(xo)] < € by (2.4). Since

E®[Y P, f(X,)] = EX[Y P, f(X,); Ay
+EX[Y P, f(X,):d(X,, X0) > M1/ *],

then
IEXO[YP“ f(Xlo)9 AI()] - P[] f(xo)EXO[Y; Ato], f €,
where A, = {d(X,, x0) < M1y/*). Also

E™[Y; Ayl = EXY — E*[Y;d(X,,, x0) > Mty/®].

Hence

(2.9) [E®[Y Py, f(X4,)) = Py f(xQ)E®Y| < 3e.
Similarly

(2.10) |E® Py, f(Xy,) — Py, f(x0)] < 3e.

Combining (2.5), (2.7), (2.8), (2.9), and (2.10),
|[P*(A) — P*(AE™Y| < 7e.
Using this and (2.3),

[P¥(A) — P*(A)P™(A)| < 8e.
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Since € is arbitrary, we deduce P*(A) = [P*(A)]?, or P*(A) is 0 or 1. Since
P*(A) = E*P, f(Xy) = Py(P, f)(x) is continuous in x (by Proposition 2.2(5)) and
E is connected, then P*(A) is either identically O or identically 1. O

Note that invariant events (i.e., an event B which satisfies Bo8, = B for all ¢+ > 0)
are tail events, hence by this proposition they are trivial. It follows that there are no
nonconstant bounded harmonic functions on E.

2.2. Schilder-type large deviations We will now prepare notation and lem-
mas for the results on large deviations of the process. For fixed T > 0, let Q, =
C.([0,T] - E)={¢p € C(I0,T] - E) : ¢(0) = x}, furnished with the uniformly
continuous topology. For ¢ € €, define an /-functional by

d(p(t;), p(t;—1))* )1/("""”

I.(¢) = limsup Z ( 7

[AI=0 ooty <ay=T.

A=ligtp ety )

where I,(¢) = oo if the right hand side is co. Here we set |A| = max <<y (t; — t;_1).

When ¢ € C([0,T] — E) (no restriction on ¢(0)), we denote the corresponding I-

functional as I(¢). Note that if A@(r) = lims_,,0d(¢d(s), P(t))/(s —t) exists for all
0 <t < T and is continuous, then the /-functional can be expressed as

T
Ix(¢)=] (A¢([))dw/(d.,,—1)dt‘
0

For A : 0=t <t <t < t, =T and ¢ € Q,, we set [Ip¢p =
{op(t1), ..., d(tn)}. Also, define ¢pp € Q, by taking points {¢(¢;)} and joining the suc-
cessive ones by geodesic paths. If there is more than one geodesic path between two
such points, it is immaterial which one is chosen. Thus, ¢ is a piecewise geodesic
path and @A (¢;) = ¢(¢;) (0 < j < m). We then have the following.

Lemma 24. (a) On C([0,T] - E) we have

’

o\ 1/(dy—
inf 1(¢)=(M)l/w D

Pla)=a, —
#(B)=h 'B o

where the infimum is attained by the geodesic path on E.
(b) On C.([0,T] > E) we have

m

' B _ d(x;, Xi—g)%\ 1/du=1)
¢£}]r)lf L(¢) = I(pa) = 2—1: (ﬁ)

where A : 0=ty <t <---<t, <T, xo=x,X1,...,%Xm € E and ¢, is a piecewise
geodesic path with ¢a(tj) =x; (0 < j <m).
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Proof. Note that (b) is an obvious extension of (a). For (a), it is enough to
consider the case @« = 0,8 = T, as otherwise the infimum is attained by the path
which does not move in the intervals [0, «] and [B, T]. Now let ¢(¢;) = yi, f(i) =
d(y;, yi-1)/(t; — ti—y) for 1 <i < N and define L(¢) =}, d(yi, yi—1). Then,

d(@(t;), d(ti_1))% \ 1/du=D
Z ( (ti —ti-1) )

0=t <ty <--tNy=T,
A={tg 1], IN)

=Y fO 4 Dd(yi, yimy)

1\ d(y;, o)
L - avi, Yi-y)
(d)),z (f(i)) L(¢)

tp —ti— —1/(dw—1)
1o(X )

L(¢)dw/(dw—1)T—1/(dw—l)

v

> (d(a,Tb)d"J>1/(dw—l).

Here we use Jensen’s inequality for the first inequality and the second inequality holds
because L(¢) > d(a, b). As x~ /@1 js strictly convex, the equalities hold if and only
if f(i) is constant and L(¢) = d(a, b). In this case we have the geodesic with the
natural parameterization. We thus obtain the result. U

Using the results, we see for ¢ € Q, and 0 <a < B <T

d X))\ /du=1)  /d , dw \ 1/(dy—1)
L(6) > ( (¢(02 x) ) +( (#(B), ¢()) )

B—«
> (W)'“"w—‘{
B—«
Thus,
21D d(p(@), $(B)) < L(@) ™"/ (B — o)/,

For ¢, ¢ € Q,, define ||y — @| = supy,r d(Y (1), p(1)).

Lemma 2.5. (1) The function 1,(¢) is lower semi-continuous. Further, for ev-
ery N >0, {¢: I.(¢p) < N} is compact.
) If C C Q2 is closed in S2,, then

}1_% ¢1ng5 L,(p) = (;relg I(9),
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where Cs ={¢p € Qy : | — Y|l <8 for some ¢ € C}.

Proof. For the lower semi-continuity, it is enough to show that if I,(¢,) < N
and ||¢, — || = O, then I,(¢) < N. But this can be easily proved. Next, (2.11) shows
that the elements of F = {¢ : I,(¢) < N} are equicontinuous and {¢(t) : ¢ € F} is
relative compact for each ¢t € [0, T] (note that E is locally compact). As F is closed
by the lower semi-continuity of I, (1) follows from Ascoli’s theorem. Using (2.11)
and (1), (2) can be proved in the same way as in [28], p. 159. O

Let P} be the law for X*(et) where X* is the process starting at x. We now state
our large deviation theorem.

Theorem 2.6. There exist cy.10,c2.11 > 0 such that for each A C C([0,T] —
E),

IA

_ - imi 1/(dy—1) x
€2.10 ¢é?n{A 1.(®) llgllélfe log P (A)

IA

limsup e!/“@=Vlog PX(A) < —cpy; inf L.(¢).
¢eClA

e—0

RemMARK. There are cases where one can not choose ¢, 19 = ¢211. In these cases
Schilder’s large deviation theorem does not hold with its original form. Indeed, the fol-
lowing holds for Brownian motion on the Sierpinski gasket ([10]):

For each z € [2/5,1), A C C,([0,T] — E),

n 1/(dw—1)
(2 .
AT @) = 'm;'.}f((s) Z) 108 F/sp(4)

n 1/(dw—1)
<l — log P} /s, (A) < — inf I¥(¢),
= Ty ((5) Z) 08 Piysy(A) = = Inf, 1(0)
where {I%};er2/5,1) is a family of (different) /-functions whose ratios are bounded from
above and below by some positive constants.

Theorem 2.6 can now be proved following the argument of the corresponding
proof of [27] (see also [10]). Although the strategy is the same, we state the key lem-
mas of the proof for the reader’s convenience.

Lemma 2.7. Let C C Q, be a closed set of the form T1,'A, where A € E™ is
closed. Then

limsup €'/ ~Dlog PX(C) < —cy.y éng I3 ().
€

€e—0
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Proof. Using Proposition 2.2(2) and Lemma 2.4, this can be proved in the same
way as Lemma 3.1 of [27]. O

FormeN,let A, : 0=t <t <t--- <t, =T be an equally spaced partition,
ie, tj=jT/m (0 < j <m).

Lemma 2.8. For every § > 0,
lim sup limsup €/~ log P*(||¢p — ¢, || = 8)) = —oo.

m— 00 e—>0

Proof. Using Proposition 2.2(4), the proof is the same as Lemma 3.2 of [27].
|

From these lemmas, we can prove the third inequality of Theorem 2.6. Indeed, it
is enough to prove the inequality when A is closed. Let If(w) = infyjw—w)<s Ix(@")
and define T; = inf,ec, I (w). If w € C then [ 8(w) > Ts and therefore

PX[C] < PI[I}(w) > T3] < PX[llw — wa, | > 81+ PX[L(wa,) > Ts).
From Lemma 2.8,

lim sup lim sup € /@=Y Jog Pillw — wa, |l = 8] = —o0.
m— 00 e—>0

As the set {I,(wa,) = Ts} is equal to

[w: :] (d(w(tt,-i),_a;iz_,-l_l))dw)1/<dw-|> . Ts],

we see from Lemma 2.7 that

lim sup lim sup €/~ log PX[I.(wa,) > T3] < —con Ts.
m— 00 e—>0

Combining these facts with lims_,o7s = infgeq I:(¢), which comes from Lemma
2.5(2), we obtain the third inequality of Theorem 2.6.

Next comes the lemma for the lower bound.
Lemma 2.9. Let feQ, V={peQ,:|¢— fll <8} where § > 0. Then

liminfe!/“=Dlog PX(V) > —cy10L:(f).

e—0
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Proof. Using Proposition 2.2(2), Lemma 2.4 and the third inequality of Theorem
2.6, this can be proved in the same way as Lemma 3.4 of [27]. O

Using this lemma, we can prove the first inequality of Theorem 2.6. Indeed, it is
enough to prove the inequality when A is open. For f € A, take a sphere V around
f contained in A. Then, by the above lemma,

li?l)igfe”(d"'“” log P*(A) > liiri)iélfe'/(d"’_l) log PX(V) > —ca10L:(f).

As this is true for all f € A, we have the result. This concludes the proof of Theorem
2.6.

2.3. Strassen’s law We now study the Strassen-type law of the iterated loga-
rithm. From now on, we assume the following additional condition on E:

There exists a continuous map F : E — E such that
(2.12) d(F(x), F(y))=n~"'d(x, y) for all x,y € E where 1 < 7.

Clearly, the examples in Subsection 2.1 satisfy this condition. Denote by O a fixed
point of F in E. For the process starting at 0 € E, set

E.(t, ) = F"(X (1" (logn)' =1, w)),

where F" = Fo---o F. Then, we can prove the following proposition using Theorem
e —

n times

2.6 by a simple modification of the proof of Theorem 1.17 in [25].

Proposition 2.10. For P°-almost all w, the sequence {&,(-, w)}5° has the follow-
ing propetrties:
() {&.(, @)}5° is precompact in Co([0, T] — E).
(2)  If (50 (-, w)}5° is a convergent subsequence of {£,(-, w)}5° and  is its limit, then
cnl@) <L
B) Ify € Co([0,T] — E) with ca0lo(¥) < 1, then there is a subsequence of
{£,(-, @)}5° which converges to .
In particular, if ® : Co([0, T) > E) > R is a continuous functional, then

1 1
PO(— sup ®(¥) < limsup ®(§,(-)) < — sup d)(t/f)) =1,
C2.10 yekK n—00 C2.11 yeK

where K ={¢ € Co([0, T] — E) : Ip(¢p) < 1}.

With the help of Proposition 2.3, we can obtain the following functional-type law
of the iterated logarithm.
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Theorem 2.11. Let ® : C,([0,T) — E) — R be a continuous functional
such that limsup,_, ., ®(,(-)) is measurable with respect to the the tail o-field. Then
there exists a constant C(®P) € [—o0, o0] with (l/cz,lo)supll,e,( dY) < C(P) <
(1/c211) supycx ®(Y) which depends only on @ such that

(2.13) P*(limsup ®(£,(1)) =C(P))=1 VxeE.
n—>00
Proof. By the assumption on ®, {limsup,_, ., ®(,(-)) = C(P)} is a tail event.

Thus, by Proposition 2.3, the probability of the event is either 0 for all x € E or else
1 for all x € E. By Proposition 2.10, the latter occurs for some C(W). O

Taking ®() = supy,,d(§(9),0) in the above theorem and noting that d(&,(s,w),0)
= n7"d(X(n"%(logn)'~%s),0) and n* ~ t%(loglog?)'~"/4 if and only if r ~
n"% (logn)'~%, we have the following classical law of iterated logarithm. Note that
by (2.11) it is easy to see 0 < sup,cx P(Y¥) < 0o

Corollary 2.12. There exists c;.12 > 0 such that

. SUP0<S<, d(Xs’ XO)
2.14 1 ==
(2.14) l:r_l,il:p t1/dv(log log t)!=1/dw

=C.12 P*-a.s., x € E.

We remark that (2.14) may be proved directly via hitting time estimates.

3. Upper bounds for LILs

In this section we prove that the limsup result for an LIL for a functional F will
follow if F is subadditive and has a uniform scaling property. Here we do not require
that our Markov process have continuous paths or satisfy Aronson-type estimates. See
[8] for other properties of functionals of this type.

Theorem 3.1. Let {X(t)};>0 be any strong Markov process on a topological
space E. Suppose {F:};>0 is a continuous adapted non-decreasing functional of
{X(@®)}i>0 satisfying the following:
€)) (Uniform scaling near oo)  There exists a constant B > 0 such that

sup P*(Fyp > b)) > 0 as b — oo.
X,A

2) (Subadditivity) F, — Fy < F,_; 06 forall 0 <s <t.

Then, there exists a constant 0 < K < 00 such that,

Fy
lim su <K Pr-as o, YVx€e€E.
I,qoopt'/ﬁ(loglogt)l‘l/ﬁ - @S @ T
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Proof. We use ££ to abbreviate loglog. For 1 < i < [££¢], set A; = Fi;jpeen —
Fi—1yieen and define B; = A;/(¢/[€£t])!/P. We first prove that there exists a > 0 such
that

3.1 M = sup E* exp(aBy) < o0.

x,t

In fact, this can be obtained by the following routine argument using subadditivity (2)
(cf. [9]). For 0 <5 < 1, set By = Fy5/q0en)/(ts/[££2])"/#. We will show that there exists
b > 0 so that

1
3.2) P*(By >bn)_<_2—n VineN,t>0,x€cE.

n =1 is easily obtained by our uniform scaling assumption (1). Now, set 7, = inf{s >
0: B; > bn}. Then

P*(By > b(n + 1))

P*(By > b(n+1), T, <1)= P*(By— By, > b, T, < 1)

IA

1
E*[EX™(Bi_1, > b); T, < 1] < 5 Sup PY(B; > bn),
y

for all x € E, where we use the continuity of F; for the second equality. We thus
obtain (3.2) by induction. From this, we obtain P*(B; > 1) < c;exp(—cyX) for all
x € E,t > 0, which is sufficient for (3.1).

Now define ¢(r) = (¢/[£€t])"/#[£€r]. Noting that F,/¢(t) < 1/[££:] Y "4 B; and
using Chebyshev’s inequality, we have

[€£r]

[e€r]
(3.3) P*(F, = ¢(1)A) < P* ( > B > k[(ﬁt]) < exp(—aA[££t])E* exp (a > B,-),

i=1 i=1

for all A > 0. As

E*[exp(aBi)| Fi-iyjeen] < EX[EX-"1[exp(aBy)]] < sup E”[exp(aB))],
y

by iterating the conditioning, we have E*exp(a Y1/ B;) < M. Thus, taking A
large so that —aA +logM < —p for some p > 1, we have by (3.3),

P*(Fy = ¢(1)A) < exp (—p [€€1]) < c(logt)™P.

Taking t = e* and using Borel-Cantelli lemma, we have P*-as., Vx € E,

. Fu
lim sup

k— 00 ¢(ek)

=<
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For ¢ <t < &', we have

Fi _ Faw ¢ _ Fus el/ﬂ([log(k+1)])l_1/’5
¢() ~ ¢le) pek)  plek) [log k] ’

which completes the proof. O

Here are some examples of upper bounds that can be obtained by means of this
theorem. In each case, of course, the bounds are already in the literature.
(1) Let X, be a diffusion on RY associated to a uniformly elliptic operator in either
nondivergence or divergence form and let F; = sup,, |X; — Xo|. It is easy to check
that the conditions of Theorem 3.1 are met, so the upper bound for a LIL holds.
(2) Let X, be a symmetric stable process on the line with index o € (1,2]. Let
£:(x) be the local times for X, and let L*(¢) = sup, £,(x). Then F(t) = L*(¢) satisfies
the hypotheses, and so the upper bound for a LIL for L*(¢) follows.
(3) Let X, be a symmetric stable process of index o € (1,2] and let F, be the
Lebesgue measure of the range of X,. Again the hypotheses in Theorem 3.1 hold, and
consequently an upper bound for the LIL for the range.

4. LIL for local times and the range for Brownian motion on fractals

In this section, we will prove laws of the iterated logarithm for the local time
and the range of Brownian motion on fractals. The base space E and diffusion pro-
cess {X(¢)} (or the corresponding Dirichlet form (£, 7)) we will treat in this section
is either of the following (see the Appendix for the definitions):

(1) Brownian motion on affine nested fractals
(2) Brownian motion on Sierpinski carpets with d; < 2
As mentioned, the process enjoys Assumption 2.1.

Here we list some other properties of the processes. See [15], [21], [19], [14],

[16], [4], [5], [22], [6] for the proof.

Proposition 4.1. (E,d, u) and {X(t)}, (£, F) have the following properties.
(a)  There exist constants dy > 1 and c4.1, cap > 0 such that

(4.1) carr® < w(B(x,r)) < caar®, Vr>0.

(b) FCC(E,R)andforallueF, x,y€E,

(4.2) lu(x) — u(y)* < R(x, »)E, u),
where R(-,-) is the resistance metric defined by

R(p,q) "' =inflE(f, f): feF, f(p)=1,f(g=0} Vps#qeE
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and R(p, p) = 0. Further, this metric is comparable to d, i.e.,
4.3) cazd(x, y)* < R(x,y) < caad(x, )* Vx,y € E,
for some positive constants c43, c44 and d..
() {X@)} is point recurrent, and each-one-point set of E has positive capacity.
(d ForallneN,t>0and x € E,
4.4) X(t{'t) under P, is equal in law to of X(¢) under Pyry-

() {X@®)} admits a local time £,(w, y) which is jointly continuous in t,y and satis-

fies
4.5) /Bﬁr(w, y)u(dy)=/ 1p(Xs(w))ds VB C B(E).
0

(f)  There exist p, 0, c45,c46 > 0 such that for all a > 0,0 <68 <1 and x € E,

P*( sup  [&(w, y1) — L@, y2)| = a) < cq 5t 87 exp(—cqpt' Pars ).
d(y1,y2)<8

Remark. 1. It is proved that the dy in (a) is the Hausdorff dimension of
(E,d, n). It is expressed as dy =log(1/u1)/logn.
2. (b) is usually mentioned only for the compact fractal E ([14), [16], [18]), but by
an easy argument, one can also show it for the unbounded fractal E.
3. The process constructed in [5], [6] might not have (4.4) because of the lack of
uniqueness. But using the averaging method in [22] one can construct a process which
satisfies (4.4). Alternately, we may in place of (4.4) use the fact that o;"X(t]'t) is
again a process on the Sierpinski carpet satisfying all the same estimates that X(z)
does; this is all that will be needed.

4.1. Results of Fukushima-Shima-Takeda ([16]) Under the above framework,
Donsker-Varadhan’s large deviation theory for Markov processes can be applied and
the results of [16] hold exactly in the same way. In this subsection, we list the main

theorems we use.

Define the occupation time distribution L, for {X(z)} as
1 t
(4.6) L,(w, B) = ?/ 13(Xs(w))ds, VB C B(E).
0

For each w, L;(w, +) is an element of the space M of subprobability measures on E.
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Note that
1
L, (w, B) = ?/ £(w, y)u(dy).
B

By definition and by Proposition 4.1(d), L, and ¢, enjoys the following self-similarity
property for all n e N,t >0 and x,y € E:

4.7 L/(»,af) under Py ~ L. (w, ) under Py,

(4.8) €(w, y) under Py ~ (t141)" €, (@, ay"y) under Py,

where ‘~’ means ‘is equal in law to.” Define the /-functional on the space M of sub-
probability measures on E in terms of the Dirichlet form by

_ 48
4.9) Ie(B) = 5(«/7,x/7)ﬂ<ﬂ,\/_f€ff0rf—m feM.

0 otherwise

Denote the distribution of the occupation time distribution with respect to P, by

Ql,x:
0:x(A) = P(Li(w, ) € A), A CBM).

M is endowed with the vague topology. We also consider the space M of all prob-
ability measures on E endowed with the weak topology. Then the following large de-
viation principle holds:

Theorem 4.2. (i) For any closed subset K of M,

1
4.10) limsup — sup log O, ,(K) < —ﬁinlf( Is(B).
€

t-o0o I xeE

(i) Let B be a probability measure on E with B(G) = 1 for a bounded connected
open set G C E. Let O be a neighborhood of B in M, and G' be a bounded con-
nected open set with G' O G. Then

1
4.11) liminf — log inf P, (L,(w,-) € O,t < og) > —Ig(B).
t—oo f xeG

Now, define a sequence {t,, m =1,2,...} of times by

Im

4.12 — =
4.12) loglog t,, o

)

and set

(4.13) L, (w,B)=L, (w,a"B), B e B(E).
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Then, the following holds:

Proposition 4.3. (1) For P,-a.e. w, x € E,

(4.14) ULy @ ) ={B e M: Ig(B) < 1(= C).

N m>N

(2) If ® is a continuous functional on M in the vague topology, then, for Py-a.e.
w, x € E,

(4.15) lim sup (L, (@, -)) = sup D(B).

m— 00 peC

From this, the authors in [16] deduced Chung’s law of the iterated logarithm with
the help of Proposition 2.3. Using the distance d, the result can be expressed as fol-
lows.

Proposition 4.4. There exist c47 > 0 such that

sup d(Xs, Xg) =c47 Py -ae. w, x € E.

0<s<t

loglog 1\ "/
4.16)  lim inf( 08 08 )
11— 00

Next, set

. 1
L (w,y) = e 4, (o, af'y).

mr]

Let A be the totality of non-negative uniformly continuous functions f on E with
/] g fdu < 1. The space A is equipped with the topology of uniform convergence on
compact subsets of E. For f € A, we denote I¢(fdu) by I¢(f).

Proposition 4.5. (1) For Py-a.e., x € E,

N U@ N ={feA: Ie(f)<1).

N m>N

(2)  For a continuous functional ® on A,

lim sup <I>(@,m(a), ) = sup O(f), P.-ae w, x € E.
m—>00 felfeA:ls(f)<1}

From this the authors in [16] derived the result that

“4.17) lim sup

¢ dy/2
(—’"—— —4, (0,0)=by P, -ae. w, x € E,
m—ooo \loglogt, tm
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where by = sup{f(0) : f € A, J/f € F,EW/F,/f) < 1}, which was shown to be
positive and bounded. By using Proposition 2.3 again, they derived

Proposition 4.6. There exist c43 > 0 such that

—>00

di/2 |
(4.18) lim sup( ) ?E,(w, 0)=c48 P, -ae. w, x € E.

loglogt

4.2. LIL for the supremum of local times Set L*(t) = sup, . £(t, x). Note
that by (4.8) we have

(4.19) L*(¢) under P, ~ (typ1)"L*(¢/7]") under Pyory.
Our first assertion in this subsection is a kind of extension of Proposition 4.6.

Proposition 4.7. There exists c49 > 0 such that

lim sup Lo =c P*-ae. w, Vx € E
t—00 l‘l_d"’/z(log logt)d.v/z 4.9 e w, .

Proof. Take W(f) = sup,.g f(x) in Proposition 4.5(2), which is obviously con-
tinuous. Then one has the corresponding result to (4.17) for L*(¢), so the proof is
completed in the same way as above once we prove

b. = sup(sup f(y): f € A, VIeF.ENF VP <1} < oo
ye

Suppose b, = co. Then there is a sequence f,, x, such that f,(x,) > n. As /f, € F
and E(/fr, v/ fn) < 1, using (4.2) and (4.3) we have

W) = VD < R EW fus v/ ) < caad(x, y)*

so that | f,(y)| > (/n — /c,4)* for all y € B(x,, 1). Taking n large, this contradicts
the fact f, € A, ie., [p fidu <1. O

We next prove a liminf estimate of L*(¢). The proof is based on the proof of the
corresponding results for symmetric stable processes due to P.S. Griffin ([17]). As be-

fore, we sometimes abbreviate ££ for loglog.

Proposition 4.8. There exists c410 > O such that

L*(t
liminf @

= P*-ae. w, Vx € E.
Bad =42 (loglog 1) 1772 410 ae @, VX €
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Proof. With the help of Proposition 2.3, it is enough to prove that there exists
¢y, ¢ > 0 such that the following holds P*-a.e. w, Vx € E.
L*(1)

< liminf <.
¢ = hmimn 11=4:72(log log 1)-1#4./2 = 2

We will first prove the upper estimate. Note that it is enough to show that there exist
constants £,¢c >0, 1/e < 8 < 1 (the choice 1/e < B is for (4.22)) such that

(4.20) p* (L*(t) < s(ﬁ)l_‘w) > cpl vy e E.

Indeed, we can then apply the Borel-Cantelli lemma. Let p € (1, (log8~")~!) and set
t, = expk?. Define

' 1-d;/2
Ck = [Sup(etkn(w’ )C) - Kt“ (w’ X)) = n([zekt;l l]> ]

Then, the C; are independent events and using (4.20),

Z P*(Cy) = Z PX(L*(tk.‘_,) < r)([e;ktﬁ)l_d‘(/z) > czk—plogﬂ‘] = oo,
+

Thus,
(4.21) P*(Cy 1i.0.)=1.

On the other hand, by Proposition 4.7 and by the choice of {#},

. L*(1)
4.22) lim su =0.
ooy, (et /[€Ltgp 1)1 =472

Since L*(t+1) < L*(tx) + sup, (¢, (w, x) — £, (w, x)), by (4.21) and (4.22), we have

lim inf A— < limsup L)
100 (t/LL)'=%/2 T o0 (that [ [€L8gsr 1)1 7972
I4 ,x)— 4 ,
+ liminfsup( 1 (0, X) = by (@, X))

N Uy 1277% e

which prove the upper bound. Thus, we will prove (4.20).
For this, we first choose B’,¢ > 0 and K € N so that the following is satisfied.

(4.23) P*(X(s) € {AX, ..., AFKY) > B+ 2¢
Vs €[t 1, Vx € (A1 AR vk e N

Here {A}}2, is a sequence of 1-complexes which satisfies 0 € A, A N A #@ (Vi)
and there exists L € N such that {x : d(A},x) < p} N A{ =@, VYj > i+ L,Vi.
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See the Appendix for the definitions. An example of {Af.‘ } is a sequence of connected
1-complexes along a shortest path from O to infinity. In the case of the standard Sier-
pinski gasket (carpet), they are the intersections of the Sierpinski gasket (carpet) with
the unit triangles (squares) bordering the x axis. Then, (4.23) are easily verified using
the lower estimate of Assumption 2.1.

Now, take m € N such that (8")'/M > 1/e where M = t]". We set B = (8")'/M.
Then, by (4.4), we have, by defining A¥ = a7 A% for each n € N,k > 0,

(4.24) PX(X(Ms) € {AF, ..., AKKY) > B/ 4+ 2¢
CWs e[r ' 1, Vx e (AT AR vk e N

Further, we can take A, p, € > 0 so that the following are satisfied.

(4.25) PX*(L*(M) < (tii1)™'0) > 1 —€ Vx € E,
(4.26) PX((X(0), X(M))* > n7'p) < € Vx € E.
Here we define (X(s), X(s'))* = sup,, ., d(X(s), X(¢)) for each 0 < s < s'. Indeed,
(4.26) is easily verified using Proposition 2.2(3). To show (4.25), assume this does not
hold. Then for each € > 0, there exist {x,,} C E such that P*(L*(M) > m) > e.

Let y,, = ym(w) € E be such that [y (w, yn) > L*(M) — € and choose a > 0 large in
Proposition 4.1(f) so that

P* sup  |€y(w, y1) —Lu(w, y2)| > a) <€/2 Vx €E.
d(y1,y2)<1/2

Then, by (4.1) and (4.5),

€/2

IA

P™(L*(M)>m, sup |y, y1)—Ey(w, )| < a)
d(y1,y2)<1/2

P(Uy(w,x)=m —a—e€, VYx € B(ym, 1/2))

M
me(/ 1y, 1/2(Xs)ds = (m —a — E)C4A1(1/2)d’),
0

IA

IA

which contradicts fOM 1B(y,,1/2(Xs)ds < M when m large. Thus (4.25) is verified.
Let y(t) = (¢/[£€t])%/?, take n = n(t) € N such that 7} < ¢/[€¢t] < *!. For
k=1,2,...,[[£€t]/M] + 1, set

1—d; /2
Ey = { sup{lipjreen(@, x) — Lg—vyimypeen(@, )} S A —— ,
x [€41]

(x (o)} ¥(Fag ) < v,

ktM k KK
X(ﬁm) € {AGurims -+ Arim]) -
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We will show

ktM /
X( ) =_x> > ﬂ Vx € {Aﬁn-(-l)'n’ RN Af:ﬁ)m}

4.27) P(Ek+1 i

First, observe that by (4.19) and (4.25),

P(S‘;P{e(kﬂ)w/[w](wv x) = Lramyieen(w, x)} < A( ! )1—4\/2 ‘ X(ktM) = x)

[eer) [ee]
1—d, /2
= P (v () =) )

P M) < (mpn) A = 1 — .

Y

Next, by (4.4) and (4.26),

P((X<(k+ l)tM>’ X(ktM))* < py(0)s

(i) =)

[eet] [e€t]
. to\/du
=P <oss§,‘i{}[a,ld(x“)’ X(0)) < p(%) )

P sup d(X(s), XO0) <n”'p) = 1 —e.
0<s<M

A%

Finally, by (4.4) and (4.24),

(k+ 1M k+1 k+14K ) kiMy _
P((X(Tet]_) € Awrim > Ay} X([eer]> =)
tM k+1 k+1+K
= P* (X(w) € {A(;H)m’ cees A(;+1+)m})
= PTTE(X(Ms) € (AR AREY) [ for some s € [ 1]]
> B+ 2e.

We thus obtain (4.27). Set F; = ﬂA;ﬂEk and denote F, = o{X(s) : s < t}. Noting that
X(eM/[eer]-[[eer]/ M) e (AL AL MIKY o Eew a, We have by (4.27),

(n+l)m > (n+1)m

([etr])/M]

eI e[ 57 )

k=1
B’ P* (Fireeny/my) -

P*(Fireerymy+1)

v

Iterating this, we obtain

(4.28) P*(Fieenymn) = (B)HEEVMIFL > o glttr],
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Observing that
([eer)/Mi+1 ,

Fireen/me C [L*(I)S sup Z Tmyreen(@, x) = Lg—1yemypeen(o, x)} < S<%> 1—4\./2},
X k=1

where & = (K +2L)A, we obtain (4.20).
We next prove the lower estimate. Fix p > 1 and choose A small enough so that

(4.29) PYL*() < timr) <e? VxekE.

To prove this, assume (4.29) does not hold. Then, there exist {x,} C E so that
P*(L*(1) < 1/n) > e~P. Then, by (4.1) and (4.5),

1
P (UB(X,,,U < 04‘2/'1) > Px”(f 1B(x,, 1)(Xs)ds < C4.2/n) >e P
0

This contradicts Proposition 2.2(4) when n is large so that (4.29) is verified.
Now, for k=1,2,...,[€L4t], let

to\1-d/2
Dy = {Sl;p(lkt/[em(w, X) = lk—1y/peen(@, x)) < )\<[£Tt]) ]

As the D, are independent events, we have by (4.19) and (4.29)

E* (PX(kAl)l/lwl (L* (ﬁ) < )L([;Tt]) l—ds/2))

P*(Dy)

< PY(L*(D) < Atipy) < e P.
Thus
pe (L ) < A([ezt])l—dx/z) (lﬁl Dk) oLt
Taking #;, = 2F,
P"(L (1) <270~ 4/2)A<[€2t]>1 2 for some ¢t € [tk,tk+1)>

whose sum converges since p > 1. Thus, by the Borel-Cantelli lemma, we obtain the
result. g

4.3. LIL for range Define R(t) = u({x : X(s) =x, for some s <1t}). In this
subsection, we will show a LIL for R(¢). First, note that from (4.4), R(t) enjoys the
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following self-similarity property for all n € N, t > 0 and x € E:
(4.30) R(t{'t) under P, ~ j7"R(¢) under Py
The limsup result of R(z) can be deduced from Theorem 3.1.

Proposition 4.9. There exists c411 > 0 such that the following holds,

lim sup R® =c411 Pr-ae o, Vx € E
>0 1%/2(loglogt)!=/2 ~ 7% e o, .

Proof. Using Proposition 2.2(3),

PX(R(1) > b) < P*(supd(X;, x0) > b'/) < ¢35 exp(—c eb™ /@ %~ D).

s<l1

Combining this with (4.30), R(¢) satisfies Theorem 3.1(1) with 8 = 2/d,. It is clear
that R(t) satisfies Theorem 3.1(2) so that the upper estimate is obtained by Theorem
3.1.

Now, note that defining Z(t) ={y € E : X(s) =y for some s < t}, we have

4.31) t =/ I(t, x)u(dx) < L*()R(®).
{xeZ(®)

Combining this with Proposition 4.8 we have the lower estimate. O
The liminf estimate is rather simple.

Proposition 4.10. There exists c412 > 0 such that the following holds.

. R(t) x
llrIEclgf 72 (log log 1)~ 72 =c412 P*-ae w, Vx € E.

Proof. By Proposition 4.4, P*-a.e. there exists t, — oo so that

¢ 1/dy
sup d(X;, Xo) < C| (~——) i.o.
0<s<t, log log t,

As R(t) < (sup,, d(X,, Xo))", we have P*-ae.

ds/d,
R(t,) < C I & i.o.
- loglog t,

Noting dy/d,, = d;/2, we obtain the upper estimate.
Combining (4.31) with Proposition 4.7, we have the lower estimate. U
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REMARK. As we have seen in (2.14) and (4.16), the following holds P*-a.e. w,
Vx € E.

Sup; <, d(X;, Xo) SUp; < d(Xs, Xo)

h,n_l,il:p t1/dw(loglog t)!—1/dw - htIEcgvlf tV/du (log log t)=1/dw =T
If
(4.32) R(t) = (supd(X,, Xo)¥

s<t

held, then the loglog order of the limsup of R(¢) would be df — d,;/2 instead of 1 —
d;/2. On the other hand, the order of loglog for the liminf of R(?) is —d;/2, which is
what one would expect if (4.32) held. This suggests that the trajectory of the process
is essentially 1-dimensional at times when the limsup of R(¢) is attained whereas it is
more like a uniform covering at times when the liminf of R(¢) is attained.

5. Appendix

In this appendix, we will briefly explain about affine nested fractals, Sierpinski
carpets and diffusion processes (or Dirichlet forms) on them.

Let {W;}Y, be similitude maps on R?, ie., W;x = o 'Uix + B;,x € R? for some
unitary maps U;, o; > 1, B; € R%. We also assume the open set condition for {W;}Y,
i.e., there is a non-empty, bounded open set V such that {¥;(V)} are disjoint and
UM, W;(V) C V. As {¥;}¥, is a family of contraction maps, there exists a unique non-
void compact set £ such that £ = U, W;(E). Assume further that £ is connected. We
now give the definition of affine nested fractals and Sierpinski carpets following [14]
and [6].

1.  Affine nested fractals

Let F be the set of fixed points of the W;’s, 1 < i < N. A point x € F is
called an essential fixed point if there exist i,j € {1,...,N}, i # jand y € F
such that W;(x) = ¥;(y). We write F© for the set of essential fixed points. Denote
v, W (FO) an n-cell and ;,_; (E)

,,,,,,,,,,

..........

nested fractal if the following holds in addition to the above conditions:

(AN1) (symmetry) If x, y € F©, then reflection in the hyperplane H,, = {z : |z — x| =
|z — y|} maps F™ to itself.

(AN2) (nesting) If {iy, ..., i}, {j1,..., jn} are distinct sequences, then

We say ¥;(E) and W ,-(ff ) are the same size if they can be mapped to each other by
the composition of the reflection maps which appear in (AN1). In that case, the con-
traction rates of two maps are the same. When all the contraction rates are the same,



648 R.F. Bass AND T. KUMAGAI

E is called a nested fractal ([23]).

2. Sierpinski carpets

Letd > 2, Fy=[0,1]%, and let / € N, [ > 3 be fixed. Set S = {]‘[il[(ki -1/ ki /1
1 <k <1 (1 <i<d)}. We assume that each ¥; maps Fy onto some element of S.
Set F| = Ui";,\lli(Fo). Then, E is called a (compact) Sierpinski carpet if the following
holds in addition to the conditions mentioned above:

(SC1) (Symmetry) F) is preserved by all the isometries of the unit cube Fp.

(SC2) (Non-diagonality) Let B be a cube in F, which is the union of 2¢ distinct el-
ements of S. (So B has side length 2/7'.) Then if Int(F; N B) is non-empty, it is
connected.

(SC3) (Borders included) F; contains the line segment {x : 0 <x; <1, x;=---=x4 =
0}.

The assumptions (SC2) and (SC3) are included for technical reasons which are not es-
sential. We will denote / = «; to unify the notation, although each 1-complex is the
same size in this framework.

Note that the biggest difference between the two examples is whether the fractal
is finitely ramified or not, i.e., whether it can be disconnected by removing a certain
finite number of points or not (affine nested is finitely ramified due to (AF2)). We also
note that both of the examples have strong symmetry with respect to reflections.

Let £ be a Bernoulli probability measure on E such that A(V;(E)) = p; > 0,
where > . u; =1 and p; = wjoif \Ili(f:") and \Ilj(f?) are the same size. (Thus, for the
case of nested fractals and for the case of Sierpinski carpets, u; = 1/N Vi.) Then we
can construct a local regular Dirichlet form (£, ) on L2(E, ) such that

N
Ef.e)=Y uPE(foWw,gow) VigeF,
i=l

where S € [—o0, —1) U (0, oc] is determined during the procedure of the construction
(here we use the convention 1/ 4+ oo = 0). Set 1; = p,i—]_l/ S, ;! is the time scaling
factor for W;(E). Denoting by {X(1)} the corresponding diffusion process, the law of
{X(#)} is invariant under reflections with respect to E.

Now assume without loss of generality that W,(x) = oel_'x. Then, the affine nested
fractal or the Sierpinski carpet E is constructed as E = UX a'E. The local regu-
lar Dirichlet form (£, F) on E, whose restriction to E is é‘, can be constructed on
L2(E, u) (where p is a Bernoulli measure on E so that il =) and has the follow-

ing scaling property:
E(f.g)=n PE(foWigoW) VgeF.

There is also a metric (called shortest path metric) on E which has the following scal-
ing: d(ay1x, a;y) = nd(x, y) for all x,y € E by some constant n > 1. For the case of
the Sierpinski carpet, n = oy =/ and this metric is equivalent to the Euclidean metric,
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but for the case of affine nested fractals, there is in general no relation (although they
induce the same topology) between the two metrics. For these examples, Assumption
2.1 holds with d; = 2log(1/u)/logt; = 2S8/(S + 1), dy = logt;/logn. For the case
of affine nested fractals, 0 < § < co so that d; < 2, but for the Sierpinski carpets, S
could be less than —1, in which case d; could be greater than 2, when d is large.
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