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Acquisition of similar properties 
by filters in the same stream of a 
multistream convolutional neural 
network
Hiroshi Tamura1,2,3

Functional modular organization is observed in a variety of cortical areas in the brain. In the visual 
cortex of primates, adjacent neurons often respond to the same visual submodality, such as color 
or orientation, and have a similar preferred orientation or preferred color. However, it remains 
unclear why functional modular organization emerges in the cerebral cortex. In the present study, I 
constructed and trained a multistream convolutional neural network to examine whether filters in 
the same stream acquire similar properties. Although filters in the same stream were able to develop 
any structures, they acquired similar degrees of orientation and color selectivity and preferred similar 
orientations and colors. The deletion of filters in a single stream that had similar degrees of stimulus 
selectivity resulted in larger decreases in classification accuracy than the deletion of those that did not. 
By contrast, the deletion of filters in a single stream that shared a preferred stimulus resulted in similar 
decreases in classification accuracy to the deletion of those that did not. Together, these findings 
suggest that filters with similar degrees of stimulus selectivity in the same stream are required for 
optimal task performance of the multistream convolutional neural network, and probably of the brain.

In the cerebral cortex, adjacent neurons often share response properties, and clusters of neurons that share 
response properties are elongated vertically and form functional columns1. In the primary visual cortex of 
primates, neighboring neurons often encode similar types of visual submodality and form orientation or color 
modules2–4. In addition, neighboring neurons often share stimulus preferences, such as preferred orientation 
and preferred color4,5.

One possible reason for the appearance of functional modular organization involves an anatomical constraint. 
Because adjacent neurons are likely to receive inputs from the same axons6, they are likely to share response 
properties and form functional modular organizations. However, in the rodent visual cortex, adjacent neurons 
are tuned to a variety of stimulus parameters7, suggesting that such an anatomical constraint may not explain the 
appearance of functional modular organization.

Another possible reason for the appearance of functional modular organization involves computational 
requirements, because modular design has several computational advantages8. However, the importance of 
functional modular organization in the brain remains unclear9–11. For example, the finding from a comparison 
of animals with and without ocular dominance columns questioned the importance of functional modular 
organization based on stimulus preference10. Furthermore, the importance of modular organization based on 
visual submodality, such as orientation or color modules, also remains unclear.

In the present study, I constructed a multistream convolutional neural network (CNN) to explore whether 
filters in the same stream of the first convolutional layer (c1) acquire similar properties. The underlying rationale 
was as follows: if c1 filters in the same stream acquire similar properties in a multistream CNN, then the presence 
of similar types of filters in the same stream of c1 is required for information processing. CNNs are hierarchically 
organized feed-forward networks that consist of multiple sets of layers. Each set of layers undergoes convolution, 
thresholding, and pooling12. The filter weights for convolution were initially set to random values and modified 
during training. In the present study, because no constraints were placed on inputs to c1 filters in the same 
stream of multistream CNN, these filters were—in principle—able to develop any structures. Nonetheless, c1 
filters in the same stream tended to encode similar types of visual submodality and preferred similar stimulus 
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parameters. Moreover, the deletion of c1 filters in the same stream that shared visual submodality types resulted 
in a larger decrease in classification accuracy than the deletion of those that did not. By contrast, the deletion of 
c1 filters in the same stream that preferred similar stimulus parameters resulted in a similar degree of decrease 
in classification accuracy to the deletion of those that did not. These results suggest that c1 filters with a similar 
degree of stimulus selectivity in the same stream are required for the optimal task performance of multistream 
CNN.

Results
A multistream CNN with convergence (mcAlexNet; Fig. 1) was constructed based on AlexNet12. mcAlexNet 
consisted of five hierarchically organized convolutional layers (c1–c5) and three pooling layers (Max-pool). c1 
contained 32 parallel streams (s0–s31), each equipped with two filters. c2 contained 16 parallel streams (s0–s15), 
each equipped with 12 filters. Each c2 filter received converging inputs that came exclusively from four filters 
in two streams of c1. c3 contained eight parallel streams (s0–s7), each equipped with 48 filters. Each c3 filter 
received converging inputs that came exclusively from 24 filters in two streams of c2. c4 contained four parallel 
streams (s0–s3), each equipped with 64 filters. Each c4 filter received converging inputs that came exclusively 
from 96 filters in two streams of c3. Finally, c5 contained two parallel streams (s0 and s1), each equipped with 
128 filters. Each c5 filter received converging inputs that came exclusively from 128 filters in two streams of c4. 

Fig. 1.  Architecture of the multistream convolutional neural network with convergence (mcAlexNet). The 
numbers of filters in the convolutional layers are indicated in parentheses.
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Outputs from the two streams of c5 were concatenated and fed into fully connected layers (FCs), and then fed 
to the output layer for classification. Converging architecture was introduced to define distances between the 
filters without constraining inputs, and was based on the anatomical organization of the cerebral cortex in which 
outputs from adjacent neurons tend to converge onto common targets6,13–15.

mcAlexNet was trained for the classification of 1000 object-image categories using the ImageNet database16. 
The present study was based on 16 model instances of mcAlexNet. Each model instance was trained using 
randomly initialized parameters. After training, the top-5 accuracy of mcAlexNet was 0.442 to 0.455 using the 
validation set. This performance was lower than that of both the original AlexNet12 and my previous study 
using two-stream fully parallel AlexNet17; however, the filters were considered well trained and matured for the 
present purpose.

Similarities in the properties of filters in the same stream of c1 in mcAlexNet
After training, the c1 filters in mcAlexNet acquired a variety of kernels. Figure 2A shows that many filters in 
s0–s15 of c1 were orientation selective, whereas those in s16–s31 were color selective, suggesting the segregation 
of information based on the visual submodality in c1 of mcAlexNet (i.e., orientation information was processed 
by filters in one group of 16 streams, whereas color information was processed by filters in the other group of 16 
streams). This result is consistent with that of my previous study17.

Another salient feature of Fig. 2A involves the similarities in kernel structures of filters in the same stream 
of c1 in mcAlexNet. For example, both filters in stream 2 (s2-0 and s2-1; Fig. 2A) were orientation selective. 
Orientation selectivity was quantified using the orientation index (OI), which was calculated using circular 
variance18. The OI had a value between zero and one, and a larger OI reflected stronger orientation selectivity. 
The OI of the two filters in s2 was high (s2-0, 0.842; s2-1, 0.853; Fig. 2B, top left) and the absolute difference in 
OI (∆OI) between them was small (0.011). Both filters preferred a vertical orientation (preferred orientation 
(pO): s2-0, 1.24°; s2-1, 1.69°; Fig. 2B, top center) and the absolute difference in pO (∆pO) between them was 
small (0.45°). Color selectivity of the two filters was low. Color selectivity was evaluated using the color index 
(CI), which was calculated using the correlation coefficient (r) of filter weights among the red (R), green (G), 
and blue (B) channels17. The CI had a value between zero and one, and a larger value reflected greater color 
selectivity. The two filters had low CI (s2-0, 0.0030; s2-1, 0.0028; Fig. 2B, top right) and the absolute difference 
in CI (∆CI) between them was small (0.0002). Because the two filters were not color selective, preferred color 
was not examined.

To further quantify similarities between two filters of c1 in mcAlexNet, a set of responses of filters to 1,000 
images was calculated, and a distance measure (dR) between filters in the set of responses was obtained. The 
dR had a value between zero and one. If the responses to the 1,000 images were similar to each other, dR was 
zero. The dR was examined using filters that had receptive field at the center. For the two filters (s2-0 and S2-1), 
Pearson’s r was − 0.621 and dR was 0.811 (Fig. 2B, bottom left). Thus, their responses to stimulus sets differed 
significantly despite the similarities in OI, CI and pO of the two filters.

Filter weight structure was quantified using three measures, and the distance was calculated for each 
measure to quantify similarities between two filters of c1 in mcAlexNet. One measure was based on the pixel-
by-pixel filter weights (W). Another measure was based on the amplitude spectrum of a filter weight after 
two-dimensional discrete Fourier transform (Was). A third measure was based on the pixel histogram of filter 
weight (Whist). From these measures, the distances (dW, dWas, and dWhist) between filters were calculated. 
dW quantified the overall similarity in filter structure, whereas dWas quantified the similarity in filter shape, 
ignoring the spatial phase. Furthermore, dWhist quantified the similarity in the frequency distribution of pixel 
values, ignoring the filter shape. Distances had a value between zero and one. If two filters were similar to each 
other, distance was zero. The dW between the two filters (s2-0 and S2-1) was 0.843 (Fig. 2B, bottom center-left), 
suggesting a low similarity in overall filter structure. By contrast, both dWas and dWhist between the two filters 
were small (dWas, 0.002, Fig. 2B, bottom center-right; dWhist, 0.020, Fig. 2B, bottom right), suggesting a high 
similarity in filter shape between the two filters, ignoring the spatial phase. Indeed, the absolute difference in 
preferred spatial phase (∆pP) between them—a value between 0° (in-phase) and 180° (anti-phase)—was 153.8° 
(see Supplementary Table 1 for details). Together, these analyses suggest that the two filters (s2-0 and s2-1) 
have similar degrees of orientation and color indices and prefer similar orientations but encode different spatial 
phases.

Note that some of the measures used to characterize filter properties were correlated with each other 
(Supplementary Fig.  1). However, the degree of correlation differed among model instances. It is therefore 
important to characterize filters using a variety of measures.

Two filters in another stream (s21-0 and s21-1) of Fig. 2A were not orientation selective (OI: s21-0, 0.038; 
s21-1, 0.216; ∆OI, 0.178; Fig. 2C, top, left), but were color selective (CI: s21-0, 0.990; s21-1, 0.992; ∆CI, 0.0025; 
Fig. 2C, top center). Because neither filter was orientation selective, pO was not examined. Color preference was 
evaluated using the direction in a color wheel (preferred hue [pH]). Both filters preferred magenta (pH: s21-0, 
331.7°; s21-1, 317.3°). The absolute difference in pH (∆pH) between the two filters was 14.4° (Fig. 2C, top right). 
The filter-response and filter-weight distances (dR, dW, dWas, and dWhist) were relatively small (0.126–0.425; 
Fig. 2C, bottom), suggesting modest similarities in responses and filter weight structures between the two filters.

In some cases, however, two filters in the same stream of c1 in mcAlexNet showed different structures. For 
example, one filter (s16-0) of Fig. 2A preferred orange (pH, 21.8°), whereas the other filter (s16-1) of the same 
stream preferred cyan (pH, 179.4°; Fig. 2D). Another interesting feature in Fig. 2A is that filters in some of the 
adjacent streams of c1 in mcAlexNet displayed similar structures. For example, all four filters from streams 10 
(s10-0 and s10-1) and 11 (s11-0 and s11-1) preferred near-vertical (0°) orientations (pO, − 22.0–35.2°; Fig. 2E).

Similarities in filter properties were compared between two filters in the same stream (n = 32) and two filters 
from different streams (n = 1,984). The ∆OI of two filters in the same stream was smaller than that from different 
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streams (p = 2.83 × 10−4; Mann–Whitney U test; Fig. 2F, top left), and the ∆CI of two filters in the same stream 
was also smaller than that from different streams (p = 0.0047; Fig. 2F, top center-left). The ∆pO did not differ 
between two filters in the same stream and those from different streams (p = 0.192; Fig. 2F, top center-right), 
whereas the ∆pH of two filters in the same stream was smaller than that from different streams (p = 0.0041; 
Fig. 2F, top right). The dR (p = 0.747; Fig. 2F, bottom left) and dW (p = 0.972; Fig. 2F, bottom center-left) did not 
differ between two filters in the same stream and those from different streams. However, the dWas (p = 0.0054; 
Fig. 2F, bottom center-right) and dWhist (p = 0.0088; Fig. 2F, bottom right) of two filters in the same stream were 
smaller than those from different streams. These results indicate that two filters in the same stream tend to have 
more similar properties than two filters from different streams in this model instance.

To further quantify the similarities in filter properties of the same stream, the relationship between the 
similarities in filter properties and filter-distance of c1 in mcAlexNet was examined. The filter-distance between 
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filters in the same stream was defined as zero. The filter-distance between filters from different streams was 
defined using the following rule, which was based on the anatomical organization of the cerebral cortex6,13–15. 
The filter-distance between two filters from different streams was 1 if their outputs were integrated for the first 
time by filters in c2. For example, the filter-distance between a filter from s0 and a filter from s1 was 1. The filter 
distances between two filters from different streams were 2, 3, 4, or 5 if their outputs were integrated for the 
first time by filters in c3, c4, c5, or FC, respectively. Consequently, the filter-distance between a filter from s0–s1 
and a filter from s2–s3 was 2, that between a filter from s0–s3 and a filter from s4–s7 was 3, that between a filter 
from s0–s7 and a filter from s8–s15 was 4, and that between a filter from s0–s15 and a filter from s16–s31 was 5 
(Supplementary Fig. 2).

Similarities in OI and CI differed among filter-distance groups in the model instance shown in Fig. 2. The 
∆OI differed among filter-distance groups (p = 1.84 × 10−63; Kruskal–Wallis test; Fig.  3, top left), and that of 
the 0th filter-distance group was smaller than those of the 4th (p = 0.0157; Mann–Whitney U test) and 5th 
(p = 3.05 × 10−8) filter-distance groups. The maximum range of filter-distance in which ∆OI did not differ from 
that of the 0th filter-distance group was defined as the size of the orientation-index module, which was 3 for this 
model instance. The ∆CI also differed among filter-distance groups (p = 5.40 × 10−73; Fig. 3, top center-left), and 
the ∆CI of the 0th filter-distance group was smaller than that of the 5th filter-distance group (p = 1.23 × 10−6). 
The size of the color-index module, which was defined similarly to that of the orientation-index module, was 4.

Similarities in pO and pH also differed among filter-distance groups. The ∆pO differed among filter-distance 
groups (p = 8.13 × 10−6; Kruskal–Wallis test; Fig. 3, top center-right), and that of the 0th filter-distance group was 
smaller than that of the 3rd filter-distance group (p = 0.0330; Mann–Whitney U test). The number of filter pairs 

Fig. 2.  Comparisons of properties between two filters in the same stream in the first convolutional layer (c1) 
of a multistream convolutional neural network with convergence (mcAlexNet) of a representative model 
instance. (A) Visualization of weight for c1 filters. The minimum and maximum weight values are scaled 
for visualization. (B, C) Comparisons of properties between two filters in s2 (B) and in s21 (C). In B, the 
orientation index (OI, top left), preferred orientation (pO, top center), and color index (CI, top right) are 
plotted for the two filters (s2-0 and s2-1), and the absolute differences in OI (∆OI), pO (∆pO), and CI (∆CI) 
between the two filters are provided for each panel. In C, the OI (top left), CI, (top center), and preferred hue 
(pH, top right) are plotted for the two filters (s21-0 and s21-1), and ∆OI, ∆CI, and the absolute difference in 
pH (∆pH) between the two filters are provided for each panel. Both B and C show comparisons between the 
two filters of responses to a set of 1,000 images (R, bottom left), pixel-by-pixel filter weights (W, bottom center-
left), amplitude spectrum of filter weights (Was, bottom center-right), and pixel weight histogram (Whist, 
bottom right). Distances using the R (dR), W (dW), Was (dWas), and Whist (dWhist) are provided for each 
panel. (D) A comparison of pH between two filters in s16. ∆pH is provided. (E) A comparison of pO between 
four filters in s10 and s11. ∆pOs are provided. (F) Comparisons of ∆OI (top left), ∆CI (top center-left), ∆pO 
(top center-right), and ∆pH (top right) between filters in the same stream and those each from different 
streams, and comparisons of dR (bottom left), dW (bottom center-left), dWas (bottom center-left), and dWhist 
(bottom right) between filters in the same stream and those from different streams. Double asterisks indicates 
significant differences between filters in the same stream and those from different streams with p < 0.01. “ns” 
indicates non-significant differences between filters in the same stream and those from different streams.

◂

Fig. 3.  Comparisons of similarities in filter properties in the first convolutional layer (c1) of a multistream 
convolutional neural network with convergence (mcAlexNet) across filter-distance groups for the 
representative model instance in Fig. 2. Comparisons of absolute differences in the orientation index (∆OI, 
top left), color index (∆CI, top center-left), preferred orientation (∆pO, top center-right), and preferred hue 
(∆pH, top right) across filter-distance groups are shown. In addition, comparisons of the distances of set of 
responses (dR, bottom left), pixel-by-pixel filter weights (dW, bottom center-left), amplitude spectrum of 
filter weights (dWas, bottom center-right), and pixel weight histograms (dWhist, bottom right) across the 
filter-distance groups are shown. Double and single asterisks indicate significant differences between the 0th 
and corresponding filter-distance group with p < 0.01 and p < 0.05, respectively. “ns” indicates non-significant 
differences across filter-distance groups.
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in the 5th filter-distance group of ∆pO was zero because neither filter in pairs of the 5th filter-distance group 
showed orientation selectivity. Note that the comparison of ∆pO between two filters in the same stream and 
those from the different streams did not reach the significant difference (see Fig. 2F top center-right), suggesting 
that “different” group included heterogenous filter pairs and analysis using filter-distance group revealed the 
difference in ∆pO. The ∆pH also differed among filter-distance groups (p = 0.00196; Fig. 3, top right), and that of 
the 0th filter-distance group was smaller than those of the 2nd–5th filter-distance groups (p = 0.00211–0.00932). 
The size of the orientation- and color-tuning module were 2 and 1, respectively.

In contrast to the aforementioned results, the dR (p = 0.896; Kruskal–Wallis test; Fig. 3, bottom left) and 
dW (p = 0.933; Fig.  3, bottom center-left) did not differ among filter-distance groups. However, the dWas 
(p = 1.28 × 10−11; Fig. 3, bottom center-right) and dWhist (p = 0.0010; Fig. 3, bottom right) differed among filter-
distance groups. The dWas and dWhist of the 0th filter-distance group were smaller than those of the 3rd–5th 
filter-distance groups (p = 0.0276–8.10 × 10−4). These results suggest that filters with smaller filter distances tend 
to have more similar shapes in this model instance.

Because analysis of relationship between the similarities in filter properties and filter-distance in the network 
captured similarity in properties of two filters in the same stream well, population analysis was performed using 
this measure. Sixteen model instances, each trained with random initial values, were examined. Significant 
difference in ∆OI among filter-distance groups (p < 0.05, Kruskal–Wallis test) was consistently observed in all 16 
instances. The median ∆OI across filter pairs was calculated for each filter-distance group of an individual model 
instance. The median ∆OI differed among filter-distance groups (p = 2.91 × 10−12, χ2 = 63, n = 16, Friedman test, 
Fig. 4, top left). The median ∆OI of the 0th filter-distance group was smaller than that of the 2nd–5th filter-
distance groups (p = 3.05 × 10−5–6.10 × 10−5, n = 16, Wilcoxon signed-rank test) and increased gradually with 
filter-distance. Significant difference in ∆CI among filter-distance groups was also consistently observed in all 16 
instances. The median ∆CI differed among filter-distance groups (p = 4.97 × 10−11, χ2 = 57.0, Fig. 4, top center-
left). The median ∆CI of the 0th filter-distance group was smaller than those of the 2nd–5th filter-distance 
groups (p = 3.05 × 10−5–4.27 × 10−4), with a rather abrupt increase in the 5th filter-distance group. These results 
indicate that c1 filters in the same stream of mcAlexNet tend to have more similar degrees of selectivity than 
those from different streams with larger filter distances.

Significant differences in ∆pO and ∆pH among filter-distance groups were observed in 11 and eight instances, 
respectively. Both the median ∆pO (p = 3.88 × 10−8; χ2 = 42.9, Fig.  4, top center-right) and ∆pH (p = 0.0027; 
Fig. 4, top right) differed among filter-distance groups. The median ∆pO of the 0th filter-distance group was 
smaller than those of the 3rd–5th filter-distance groups (p = 3.05 × 10−5–2.44 × 10−4), and the median ∆pH of 
the 0th filter-distance group was smaller than those of the 2nd–5th filter-distance groups (p = 0.0017–0.034). 
These results indicate that c1 filters in the same stream of mcAlexNet tend to have more similar preferences to 
orientation and color than those from different streams with larger filter distances.

Significant differences in both dR and dW among filter-distance groups were observed in only one instance. 
The median dR did not differ among filter-distance groups (p = 0.113, χ2 = 8.89; Fig. 4, bottom left); however, 
the median dW differed among filter-distance groups (p = 2.21 × 10−4, χ2 = 24.0; Fig. 4, bottom center-left). The 
dW of the 0th filter-distance group was smaller than those of the 1st–5th filter-distance groups (p = 0.0052–
0.018). By contrast, significant differences in dWas and dWhist among filter-distance groups were consistently 

Fig. 4.  Comparisons of similarities in filter properties in the first convolutional layer (c1) of a multistream 
convolutional neural network with convergence (mcAlexNet) across filter-distance groups. Comparisons 
of median absolute differences in the orientation index (∆OI, top left), color index (∆CI, top center-left), 
preferred orientation (∆pO, top center-right), and preferred hue (∆pH, top right) across filter-distance groups 
are shown. In addition, comparisons of the median distance of set of responses (dR, bottom left), pixel-by-
pixel filter weights (dW, bottom center-left), amplitude spectrum of filter weights (dWas, bottom center-right), 
and pixel weight histograms (dWhist, bottom right) across the filter-distance groups are shown. Each line 
represents a model instance; the results from 16 model instances are plotted. Other conventions are as in Fig. 3.
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observed in all 16 instances. The median dWas (p = 4.61 × 10−13, χ2 = 66.9; Fig.  4, bottom center-right) and 
dWhist (p = 9.09 × 10−14, χ2 = 70.3; Fig. 4, bottom right) differed among filter-distance groups, and those of the 
0th filter-distance group were smaller than those of the 2nd–5th filter-distance groups (p = 3.05 × 10−5–0.0021). 
Both median dWas and dWhist increased gradually with filter-distance. These results indicate that c1 filters in 
the same stream of mcAlexNet tend to have more similar shapes than those from different streams with larger 
filter distances.

The size of the index module, which was the combination of the orientation- and color-index modules, was 
compared with that of the tuning module, which was the combination of the orientation- and color-tuning 
modules. Because the size of the orientation-index module (2.31 ± 1.01, mean ± standard deviation [SD], n = 16) 
did not differ from that of the color-index module (2.81 ± 1.17, n = 16; p = 0.210, Mann–Whitney U test), the two 
were combined as the index module. Similarly, because the size of the orientation-tuning module (1.89 ± 0.93, 
n = 9) did not differ from that of the color-tuning module (1.6 ± 0.89, n = 5; p = 0.480), the two were combined 
as the tuning module. The size of the index module (2.56 ± 1.09) was larger than that of the tuning module 
(1.79 ± 0.89, p = 0.041; Fig. 5).

Similarities in properties of filters in the same stream of c1 in a fully parallel multistream 
AlexNet
In the first analysis, I examined mcAlexNet, which has multistream architecture with convergence. Converging 
connectivity was introduced to define the distances between filters in the network, to analyze relationships 
between similarities in filter properties and filter-distance. Next, to clarify whether converging connectivity 
contributed to the appearance of similar properties in two filters of the same stream, I constructed another 
multistream CNN, this time with multistream architecture without convergence (mAlexNet; see Supplementary 
Fig. 3). In mAlexNet, 32 streams were organized in a fully parallel manner from the first convolutional layer (c1) 
to the last convolutional layer (c5) without convergence. Outputs from the 32 streams of c5 were concatenated 

Fig. 5.  Comparisons of module sizes between the index and tuning modules in the first convolutional 
layer (c1) of a multistream convolutional neural network with convergence (mcAlexNet). Top, Frequency 
distribution of the size of the index module (black columns, orientation-index module; green columns, color-
index module). Bottom, Frequency distribution of the size of the tuning module (black columns, orientation-
tuning module; green columns, color-tuning module). The analysis was limited to model instances with 
significant differences in similarity measures among filter-distance groups (p < 0.05, Kruskal–Wallis test).
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and fed into FCs, and then fed to the output layer for classification. In the present study, eight model instances 
of mAlexNet, each trained with random initial values, were examined. After training, the top-5 accuracy of 
mAlexNet was 0.348 to 0.362 using the validation set.

Similar to the results obtained with mcAlexNet, c1 filters in the same stream of mAlexNet displayed kernel 
structures that were similar to each other (Supplementary Fig. 3). Significant differences between two filters in the 
same stream and two filters from different streams (p < 0.05, Kruskal–Wallis test) in ∆OI and ∆CI were observed 
in four and eight instances, respectively. Moreover, significant differences in ∆pO and ∆pH were observed in four 
and three instances, respectively. The median ∆OI, ∆CI, ∆pO, and ∆pH of two filters in the same stream were 
smaller than those from different streams (p = 0.0078 for the four measures, Wilcoxon signed-rank test; Fig. 6, 
top). In mAlexNet, significant differences in dR and dW were observed in eight and six instances, respectively, 
and significant differences in dWas and dWhist were observed in three and eight instances, respectively. The 
median dR, dW, dWas, and dWhist of two filters in the same stream were smaller than those from different 
streams (p = 0.0078–0.015; Fig. 6, bottom). These results suggest that converging connectivity is not important 
for the appearance of similar properties in filters in the same stream.

In mcAlexNet, significant differences in dR and dW among the filter-distance groups were observed in only 
one instance, suggesting that the presence/absence of convergence in the networks results in the differences in 
similarities of dR and dW among filter-distance groups. Another difference between mcAlexNet and mAlexNet 
was that many c1 filters of mAlexNet failed to develop filter structure and were flat (Supplementary Fig. 3), 
indicating that convergence is important for the development of appropriate filter structures in multistream 
CNNs. Interestingly, if a filter in a stream was flat, the other filter in the same stream was also flat.

Relationships between classification accuracies and similarities in filter properties
Because similar properties of filters in the same stream emerged spontaneously in c1 of mcAlexNet, such 
organization likely plays an important role in the classification of input images. If this is the case, the degree of 
similarity in properties of filters in the same stream is likely to be related to classification accuracy in mcAlexNet. 
To examine this possibility, correlations between top-5 accuracy and median ∆OI, ∆CI, ∆pO, or ∆pH of filter 
pairs in the same stream of c1 in mcAlexNet were calculated using all 16 model instances. The median ∆OI was 
negatively related to top-5 accuracy (r = − 0.506, Fig. 7, top left), indicating that if filter pairs in the same stream 
in c1 of a model instance displayed higher similarity in OI (i.e., a smaller median ∆OI) than those of other 
model instances, then the classification accuracy of the model instance was higher than that of the other model 
instances.

There was a negative correlation between the median ∆pO and top-5 accuracy (r = − 0.418, Fig. 7, top center-
right) but this correlation was not significant. The median ∆CI and ∆pH were not related to top-5 accuracy 

Fig. 6.  Comparisons of similarities in filter properties in the first convolutional layer (c1) of another type of 
multistream convolutional neural network (mAlexNet) between two filters in the same stream and two filters 
from different streams. Comparisons of the median absolute differences in orientation index (∆OI, top left), 
color index (∆CI, top center-left), preferred orientation (∆pO, top center-right), and preferred hue (∆pH, 
top right) between two filters in the same stream and those from different streams are shown. Moreover, 
comparisons of the median distances of set of responses (dR, bottom left), pixel-by-pixel filter weights (dW, 
bottom center-left), amplitude spectrum of filter weights (dWas, bottom center-right), and pixel weight 
histograms (dWhist, bottom right) between two filters in the same stream and those from different streams 
are shown. Each line represents a model instance; the results from eight model instances were plotted. Other 
conventions are as in Fig. 3.
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(r = 0.1 and − 0.118, respectively, Fig. 7, top center-left and top right). There were also no correlations between 
top-5 accuracy and median dR, dW, dWas, or dWhist (r = − 0.035–0.25, Fig. 7, bottom). These results suggest 
that two filters in the same stream having similar orientation selectivity may play an important role in the 
classification of input images.

Because the median ∆OI was negatively related to classification accuracy in the aforementioned analysis, 
I examined the relationship between similarities in filter properties and classification accuracies by deleting a 
single stream of c1 in mcAlexNet. If similarities in properties of two filters in the same stream play an important 
role in the classification of input images, the effect on classification accuracy of deleting a stream with two filters 
with similar properties is likely to be more marked than that of deleting a stream with filters with dissimilar 
properties. To delete a stream of c1, output values of the max-pool layer of a stream after c1 were set to zero. 
The classification accuracy (top-5 accuracy) was calculated for the original mcAlexNet and the single-stream-
deleted mcAlexNet. Changes in top-5 accuracy (∆acc) were evaluated by calculating the difference between the 
top-5 accuracy calculated using original mcAlexNet and that calculated using single-stream-deleted mcAlexNet.

In a model instance, by deleting a single stream of c1 in mcAlexNet, top-5 accuracy decreased from 0.449 
to 0.353–0.439, and ∆acc was 0.010–0.096 (n = 32; Fig. 8A, vertical axis), indicating that the deletion of a single 
stream decreases classification performance, and that the degree of deletion differs among deleted streams.

A relatively large decrease in classification accuracy was observed if a stream with two filters with small 
∆OI was deleted (Fig. 8A, top left). The ∆OI correlated negatively with ∆acc in this model instance (r = − 0.475, 
Spearman’s correlation, n = 32; Fig. 8A, top left). The ∆CI also correlated negatively with ∆acc (r = − 0.401, n = 32; 
Fig. 8A, top center-left). There was a strong negative correlation between ∆pO and ∆acc (r = − 0.8, n = 5; Fig. 8A, 
top center-right), but this correlation was not significant, likely because of the small sample size. There was a 
weak relationship between ∆pH and ∆acc (r = − 0.2, n = 6), which was also not significant (Fig. 8A, top right). 
Note that analyses were limited to streams if both filters were selective to orientation (OI ≥ 0.5; for analyses using 
∆pO) or color (CI ≥ 0.5; for analyses using ∆pH). There were no or weak relationships between dR and ∆acc 
as well as between similarities in filter weights (dW, dWas, or dWhist) and ∆acc; these relationships were not 
significant (Fig. 8A, bottom).

A similar tendency was observed in the 16 model instances; that is, similarities in selectivity indexes (OI and 
CI) were negatively correlated with ∆acc. The correlation between ∆OI and ∆acc was significant (p < 0.05) in five 
instances. The average r was − 0.268 ± 0.179 (mean ± SD, n = 16; Fig. 8B, top left), and the frequency distribution 

Fig. 7.  Relationships between classification accuracy (top-5 accuracy) and the median absolute differences 
or median distances in properties between two filters in the same stream of the first convolutional layer (c1) 
of a multistream convolutional neural network with convergence (mcAlexNet). Relationships between top-5 
accuracy and the medians of absolute differences in orientation index (∆OI, top left), color index (∆CI, top 
center-left), preferred orientation (∆pO, top center-right), and preferred hue (∆pH, top right) are shown. 
Moreover, relationships between top-5 accuracy and the median distances of set of responses (dR, bottom 
left), pixel-by-pixel filter weights (dW, bottom center-left), amplitude spectrum of filter weights (dWas, bottom 
center-right), and pixel weight histograms (dWhist, bottom right) are shown. Each point represents a model 
instance; the results from 16 model instances are plotted. A correlation coefficient (r) is provided for each 
panel. A single asterisk indicates significant correlations between two measures with p < 0.05.
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of r was shifted from zero to negative (p = 3.05 × 10−5; Wilcoxon signed-rank test). Correlation between ∆CI and 
∆acc was significant in seven instances. Average r was − 0.336 ± 0.163 (n = 16; Fig. 8B, top center-left), and the 
frequency distribution was shifted from zero to negative (p = 3.05 × 10−5). These results suggest that a stream 
having two filters with similar degrees of orientation selectivity or color selectivity plays an important role in the 
classification of input images.

Although there was a strong negative correlation between ∆pO and ∆acc in one model instance, the 
correlation coefficient was widely distributed between − 0.8 and 0.6, and the frequency distribution of r between 
∆pO and ∆acc (r = 0.082 ± 0.368, n = 12) was not shifted from zero (p = 0.508; Fig. 8B, top center-right). The 
frequency distribution of r between ∆pH and ∆acc (r = 0.025 ± 0.249, n = 13) was also not shifted from zero 
(p = 0.755 Fig. 8B, top right). No significant correlations were observed between ∆pO and ∆acc or ∆pH and 
∆acc. This analysis was limited to model instances in which five or more streams had two filters with orientation 
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or color selectivity. The results suggest that the contributions of two filters in the same stream that prefer 
similar orientations or colors in the classification of input images did not differ from those that prefer different 
orientations or colors.

A significant but positive correlation was observed between dR and ∆acc in one instance, and the frequency 
distribution of r was not shifted from zero (r = − 0.018 ± 0.181, n = 16; p = 0.404; Fig. 8B, bottom left). Similarly, 
a significant but positive correlation was observed between dW and ∆acc in one instance, and the frequency 
distribution of r was not shifted from zero (r = − 0.006 ± 0.175, n = 16; p = 0.669; Fig. 8B, bottom center-left). For 
dWas and dWhist, a weak tendency toward negative correlation was observed. A significant negative correlation 
between dWas and ∆acc was observed in one instance, and the frequency distribution of r was shifted from zero 
(r = − 0.099 ± 0.151, n = 16; p = 0.029; Fig. 8B, bottom center-right). Similarly, a significant negative correlation 
between dWhist and ∆acc was observed in two instances, and the distribution of r was also shifted from zero 
(r = − 0.125 ± 0.221, n = 16; p = 0.044; Fig. 8B, bottom right). These results suggest that two filters in the same 
stream with similar filter shapes but without close similarities in spatial phase may contribute weakly to the 
classification of input images.

The number of filters and the acquisition of similar filter properties in the same stream of c1 
in mcAlexNet
To examine whether the acquisition of similar filter properties in the same stream of c1 in mcAlexNet is 
dependent on the number of filters, a network with a smaller number of filters than mcAlexNet was constructed 
(smcAlexNet). smcAlexNet consisted of five hierarchically organized convolutional layers (c1–c5) and three 
pooling layers (Max-pool). c1 contained eight parallel streams (s0–s7), each equipped with two filters. c2 
contained four parallel streams (s0–s3), each equipped with 12 filters. c3 contained two parallel streams (s0 and 
s1), each equipped with 48 filters. c4 contained two parallel streams (s0 and s1), each equipped with 32 filters. 
Finally, c5 contained two parallel streams (s0 and s1), each equipped with 32 filters. The other architectures 
of smcAlexNet were similar to those of mcAlexNet. Thus, the number of filters in convolutional layers of 
smcAlexNet was reduced to 25% of the number of filters of mcAlexNet. In the present study, eight model 
instances of smcAlexNet, each trained with random initial values, were examined. After training, the top-5 
accuracy of smcAlexNet was 0.353 to 0.366 using the validation set. The analysis was limited to the median ∆OI, 
∆CI, ∆pO, and ∆pH, which captured similarities in filter properties in the same stream of c1 of mcAlexNet.

The properties of two filters in the same stream of c1 in smcAlexNet were less similar to each other than 
those of mcAlexNet. The median ∆CI (p = 3.70 × 10−4, Mann–Whitney U test; Fig. 9), ∆pO (p = 0.022), and ∆pH 
(p = 0.0071) of smcAlexNet were larger than those of mcAlexNet, whereas the median ∆OI (p = 0.697) did not 
differ between mcAlexNet and smcAlexNet. These results suggest that the acquisition of similar filter properties 
in the same stream of c1 in mcAlexNet is dependent on the number of filters, and indicate that properties of 
filters in the same stream of c1 become less similar to each other if the network contains a smaller number of 
filters.

Discussion
An important finding of the present study was that c1 filters in the same stream of mcAlexNet, which had 32 
streams in c1, acquired preferences for the same visual submodality after training. This result is consistent with 
my previous study using two-stream fully parallel AlexNet17, in which I revealed that color information and 
shape information are segregated into two different streams.

Another important and new finding of the present study was that two C1 filters in the same stream preferred 
similar orientations and/or colors after training. For example, if one filter preferred a vertical orientation, the 
other filter in the same stream also preferred a vertical orientation.

Fig. 8.  Effects of deleting a stream of the first convolutional layer (c1) in a multistream convolutional neural 
network with convergence (mcAlexNet) on classification accuracy (top-5 accuracy). (A) Relationships between 
changes in classification accuracy (∆acc) and absolute differences in orientation index (∆OI, top left), color 
index (∆CI, top center-left), preferred orientation (∆pO, top center-right), or preferred hue (∆pH, top right) 
between two filters in a deleted stream are shown. Relationships between ∆acc and the distances of set of 
responses (dR, bottom left), pixel-by-pixel filter weights (dW, bottom center-left), amplitude spectrum of 
filter weights (dWas, bottom center-right), or pixel weight histograms (dWhist, bottom right) between two 
filters in a deleted stream are shown. Each point represents a deleted stream; the results from 32 streams 
are plotted. For ∆pO and ∆acc, the results from five streams in which both filters were orientation selective 
(orientation index ≥ 0.5) are plotted. For ∆pH and ∆acc, the results from six streams in which both filters 
were color selective (color index ≥ 0.5) are plotted. The correlation coefficient (r) is provided for each panel. 
Double and single asterisks indicate significant correlations between two measures, with p < 0.01 and p < 0.05, 
respectively. (B) Frequency distributions of r between ∆acc and filter similarity measures of deleted streams. 
Frequency distributions of r between ∆acc and ∆OI (top left, ), ∆CI (top center-left), ∆pO (top center-right), 
∆pH (top right), dR (bottom left), dW (bottom center-left), dWas (bottom center-right), or dWhist (bottom 
right) of filters in deleted streams are shown. Red columns indicate significant correlations (p < 0.05). The 
mean ± standard deviation of r across model instances is provided for each panel. The results from 16 model 
instances are plotted. For ∆pO and ∆acc, results from 12 instances in which five or more streams had two filters 
with orientation selectivity (orientation index ≥ 0.5) are plotted. For ∆pH and ∆acc, results from 13 instances 
in which five or more streams had two filters with color selectivity (color index ≥ 0.5) are plotted. Double and 
single asterisks indicate significant shifts from 0 with p < 0.01 and p < 0.05, respectively.
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In the present study, by performing the experimental deletion of two filters in the same stream, the functional 
importance of the clustering of filters dealing with the same visual submodality was clarified. By contrast, in my 
previous study17, the functional importance of the clustering of filters dealing with the same visual submodality 
was not investigated. Furthermore, relationships between performance and similarity in stimulus preference 
(pO, or pH) of two filters in the same stream were also investigated in the present study.

In the present study, two filters in the same stream of c1 of mcAlexNet acquired similar properties. In 
mcAlexNet, filter weights were initially set to random values and there were no constraints on inputs to two 
filters in the same stream of c1. In principle, two filters in the same stream were therefore able to have any filter 
structures. However, two filters in the same stream acquired similar properties, such as OI, CI, pO, pH. The 
spontaneous appearance of filters with similar properties in mcAlexNet is consistent with a self-organization 
model of functional modular organization in the brain19.

The acquisition of similar properties in c1 filters of the same stream in mcAlexNet is reasonable because 
modular design has several computational advantages8. The presence of filters with similar OI and CI in the 
same stream allows for the analysis of input images in a certain visual submodality, and improves resolution 
in the submodality by circumventing combinatorial explosion. The single-stream-deletion experiment further 
confirmed that filters with similar OI and CI in the same stream play an important role in the classification of 
input images.

I must note that filters with similar degrees of stimulus selectivity in the same stream are required for the 
optimal task performance of mcAlexNet. The result cannot be generalized to other types of neural networks 
because the performance of the multi-stream architecture was inferior to that of conventional single-stream 
architecture.

Filters in the same stream of c1 also acquired similar pO or pH, which suggests that the presence of these 
filters in the same stream is beneficial for information processing in mcAlexNet. However, the single-stream-
deletion experiment failed to reveal the importance of filters with similar pO and pH in the same stream for 
classification of input images, suggesting that filters with similar stimulus preferences in the same stream are 
as important as those with different preferences. In future studies using mcAlexNet with more parallel streams, 
which may increase the sample size, it may be possible to reveal the relationship between the similarity in 
stimulus preference and ∆acc.

Although the present study revealed the acquisition of similar properties by filters in the same stream of c1 in 
mcAlexNet after training, the mechanisms of acquisition were unclear. The outputs of c1 filters from the 0th and 
1st filter-distance groups were integrated for the first time at c2 filters, and the filter properties of the 0th and 1st 
filter-distance group were similar to each other. These findings suggest the importance of sharing output targets 
in the acquisition of similar filter properties in mcAlexNet.

Fig. 9.  Comparisons of similarities in filter properties in the same stream of the first convolutional layer 
(c1) between a multistream convolutional neural network with convergence (mcAlexNet, orange) and a 
small mcAlexNet (smcAlexNet, blue). Comparisons of the median absolute differences in orientation index 
(∆OI, n = 16 for mcAlexNet, n = 8 for smcAlexNet; left), color index (∆CI, n = 16 for mcAlexNet, n = 8 for 
smcAlexNet; center-left), preferred orientation (∆pO, n = 16 for mcAlexNet, n = 7 for smcAlexNet; center-
right), and preferred hue (∆pH, n = 16 for mcAlexNet, n = 8 for smcAlexNet; right). Note that analyses were 
limited to streams if both filters were selective to orientation (orientation index ≥ 0.5) for analysis using ∆pO, 
or to color (color index ≥ 0.5) for analysis using ∆pH. As a result, in one model instance of smcAlexNet, 
no filter pairs were selective to orientation; this instance was excluded from the analysis of ∆pO. Other 
conventions are as in Fig. 3.
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Similar properties in c1 filters that emerged after training were not caused by the sharing of inputs. An 
analysis of the similarities in filter properties using R, W, Was and Whist revealed that filters in the same stream 
of c1 displayed similar, but not completely identical, properties; this suggests that two filters in the same stream 
of c1 may receive independent or unique inputs from each other, and create similar filter properties de novo.

The c1 filters in the same stream of mcAlexNet acquired preferences to the same visual submodality, and the 
deletion experiment revealed the importance of this organization for image classification. The results indicate 
the functional importance of orientation module and color module in the primary visual cortex. By contrast, 
although c1 filters in the same stream of mcAlexNet acquired preferences to similar orientations and colors, the 
deletion experiment failed to reveal the functional importance of this clustering. Together, these results suggest 
that the clustering of neurons with similar stimulus preferences may not play an important role in the primary 
visual cortex. Nonetheless, it has been suggested that the stochasticity inherent in neural activity can be reduced 
by integrating outputs from neurons with similar stimulus preferences20,21. The brain may thus make effective 
use of such functional organization.

Some properties observed in c1 filters of mcAlexNet have been reported in the brain. Comparisons of dW 
and dWas between two filters in the same stream and two filters from different streams suggest that two filters 
in the same stream of c1 display similarities in shape but differ in spatial phase. Indeed, the ∆pP of two filters in 
the same stream was not different from that of two filters from different streams in 15 of the 16 model instances 
of mcAlexNet. Even in the one model instance with a significant difference, the ∆pP of two filters in the same 
stream was larger than that of two filters from different streams (Supplementary Table 1). The analysis suggested 
that two filters in the same stream preferred a variety of spatial phases. Consistent with these findings, adjacent 
neurons in the cat visual cortex prefer similar orientation, but prefer a variety of phases22. Furthermore, the 
results from the present study revealed that dR of two filters in the same stream did not differ from that of two 
filters from different streams. A low similarity in responses to a set of stimulus images between adjacent neurons 
has been observed in primate visual cortical areas23.

smcAlexNet, which had a smaller number of filters than mcAlexNet, displayed less similar properties of 
filters in c1 compared with mcAlexNet. This result might be relevant to the differences in visual cortex functional 
organization between rodents and primates. Adjacent neurons in the rodent visual cortex are tuned to a variety 
of stimulus orientations7, whereas those in the primate visual cortex are tuned to a specific stimulus orientation5. 
The present results suggest that, compared with the primate cortex, the relatively small number of neurons in the 
rodent cortex may cause the dissimilar orientation preferences of adjacent neurons in the rodent visual cortex.

Methods
mcAlexNet, mAlexNet, and smcAlexNet were constructed and trained as described in a previous report17. The 
networks consisted of five hierarchically organized convolutional layers (c1–c5) and three pooling layers. c1 
of mcAlexNet contained 32 parallel streams (s0–s31), each equipped with two filters. c2 contained 16 parallel 
streams (s0–s15), each equipped with 12 filters. Each c2 filter only received converging inputs from four filters 
in two streams of c1. c3 contained eight parallel streams (s0–s7), each equipped with 48 filters. Each c3 filter 
only received converging inputs from 24 filters in two streams of c2. c4 contained four parallel streams (s0–s3), 
each equipped with 64 filters. Each c4 filter only received converging inputs from 96 filters in two streams of c3. 
Finally, c5 contained two parallel streams (s0 and s1), each equipped with 128 filters. Each c5 filter only received 
converging inputs from 128 filters in two streams of c4. Outputs from the two streams of c5 were concatenated 
and fed into FCs, and then fed to the output layer for classification (Fig. 1).

mAlexNet was organized in a fully parallel manner from the first convolutional layer (c1) to the last 
convolutional layer (c5) without convergence. Outputs from the 32 streams of c5 were concatenated and fed 
into FCs, and then fed to the output layer for classification. Each stream of c1, c2, c3, c4, and c5 of mAlexNet 
contained two, six, 12, eight, and eight filters, respectively (Supplementary Fig. 3).

smcAlexNet contained smaller number of filters than mcAlexNet, but its architecture was similar to that of 
mcAlexNet. c1 of smcAlexNet contained eight parallel streams, each equipped with two filters. c2 contained four 
parallel streams (s0–s3), each equipped with 12 filters. Each c2 filter only received converging inputs from four 
filters in two streams of c1. c3 contained two parallel streams (s0 and s1), each equipped with 48 filters. Each 
c3 filter only received converging inputs from 24 filters in two streams of c2. c4 contained two parallel streams 
(s0 and s1), each equipped with 32 filters. Each c4 filter only received inputs from 48 filters in one stream of c3. 
Finally, c5 contained two parallel streams (s0 and s1), each equipped with 32 filters. Each c5 filter only received 
inputs from 32 filters in one stream of c4. Outputs from the two streams of c5 were concatenated and fed into 
FCs, and then fed to the output layer for classification.

The orientation and color selectivity of each filter of c1 were quantified using selectivity indices. If a filter did 
not develop any structure (i.e., a flat kernel; for an example, see Supplementary Fig. 3), the filter was excluded 
from the analyses. Orientation selectivity was evaluated using circular variance18, as follows:

	
OI = 1 −

∣∣∣∑ iR (θ i) e
2π iθ i
180◦

∣∣∣∑
iR (θ i)

,

Here, OI is the orientation index and R(θi) is the filter weight amplitude at the i-th orientation. Filter weight 
amplitude was calculated by summating the amplitude within ± 15°, and was examined with an interval of 30°. 
The OI had a value between zero and one, and a larger OI reflected stronger orientation selectivity. The ∆OI was 
the absolute difference in OI between two filters and represented the similarity in OI. The pO was obtained by 
calculating the average vector in the complex plain. The ∆pO was the absolute difference in pO between two 
filters and represented the similarity in pO.
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Color selectivity was evaluated by calculating the r of the filter weight among R, G, and B channels17. If a filter 
was not color selective, weight values were correlated among channels. The smallest r among the three (rmin) was 
selected, and the CI was obtained using the following formula:

	 CI = rmin × (−0.5) + 0.5

The CI had a value between zero and one, and a larger CI reflected greater color selectivity. The ∆CI was the 
absolute difference in CI between two filters and represented the similarity in CI. Color preference was quantified 
using RGB values of a single pixel that was selected in the following way. The minimum and maximum weight 
values across all 64 c1 filters were transformed to RGB values by scaling them to 0 and 255, respectively. Next, 
the RGB values of a filter were summated for each R, G, and B channel. Among the summated RGB values, the 
largest color channel was selected. The pixels of the color channel with the largest value were then selected. From 
the RGB values of the pixels, the pH of the filter was calculated by converting the RGB color space to HSV color 
space. The ∆pH was the absolute difference in pH between two filters and represented the similarity in pH.

The responses of filters were examined using 1,000 images. From each of 1,000 categories of the validation set 
of ImageNet database16, one stimulus image was randomly selected to create a set of 1,000 stimulus images. The 
set was consistently used in the present study. Filter outputs (responses) were calculated for each stimulus image, 
and a set of responses of filters to 1,000 images was obtained. The similarity in the set of responses between two 
filters was evaluated by calculating the distance measure (dR), which was obtained using the following formula:

	 dR = (−0.5) × rR + 0.5

Here, rR is the Pearson’s r value of the set of responses between filters. The dR had a value between zero and one. 
If the responses to the stimulus set were similar to each other, dR was zero. The dR was examined using filters 
that had receptive field at the center.

Filter weight structure was evaluated using three measures. One measure was W, which was the pixel-by-
pixel filter weight, and was sensitive to exact x–y positions. Another measure was Was, which was the amplitude 
spectrum calculated after two-dimensional discrete Fourier transform of filter weights, and was not sensitive 
to shifts in x–y positions of filter weights. For the third measure, Whist, filter weights were discretized and a 
histogram was obtained; this measure was not sensitive to filter structure. From these measures, distances (dW, 
dWas, and dWhist) were calculated using the following formulae:

	 dW = (−0.5) × rW + 0.5

Here, rW is the Pearson’s r of W between two filters.

	 dW as = (−0.5) × rW as + 0.5

Here, rWas is the Pearson’s r of Was between two filters.

	 dW hist = (−0.5) × rW hist + 0.5

Here, rWhist is the Pearson’s r of Whist between two filters.
To examine the contribution of each stream of c1 to image classification, a single-stream-deletion experiment 

was performed. To delete a stream of c1, all output values of the max-pool layer of the stream after c1 were set 
to zero. The classification accuracy (top-5 accuracy) was calculated using the validation set for the original 
mcAlexNet and single-stream-deleted mcAlexNet. The ∆acc was the difference between the top-5 accuracy 
calculated using the original mcAlexNet and that calculated using single-stream-deleted mcAlexNet (i.e., 
∆acc = top-5 accuracy calculated using original mcAlexNet − top-5 accuracy calculated using single-stream-
deleted mcAlexNet).

Statistical analysis
All data were pooled for the statistical analyses. Analyses were performed using Python libraries (pandas, 
numpy, scipy, scikit-learn, matplotlib, and seaborn). The statistical tests used in the present study were the 
Mann–Whitney U test (two-tailed), Wilcoxon signed-rank test (two-tailed), Friedman test for repeated samples, 
and Kruskal–Wallis H-test. All r values are Spearman’s rank correlation unless otherwise stated. The statistical 
threshold for p-values was set at 0.05. Median values were calculated to represent populations, whereas the 
mean ± SD was calculated to represent population measures of module size and r values.

Data availability
Parts of the datasets generated and/or analyzed during the current study are available at the Osaka University 
Knowledge Archive (https://hdl.handle.net/11094/96433; https://doi.org/10.60574/96433). The remaining data 
are available from the corresponding author on reasonable request.
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