

| Title        | On strongly separable algebras                          |
|--------------|---------------------------------------------------------|
| Author(s)    | Hattori, Akira                                          |
| Citation     | Osaka Journal of Mathematics. 1965, 2(2), p.<br>369–372 |
| Version Type | VoR                                                     |
| URL          | https://doi.org/10.18910/9966                           |
| rights       |                                                         |
| Note         |                                                         |

# Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

# **ON STRONGLY SEPARABLE ALGEBRAS**

## AKIRA HATTORI

### (Received July 27, 1965)

Let A be a separable algebra over a commutative ring R [1] with center C. There exists an element  $\sum u_i \otimes v_i^0 \in A \otimes A^0$  such that

i)  $\sum_{i=1}^{\infty} x u_i \otimes v_i^0 = \sum_{i=1}^{\infty} u_i \otimes (v_i x)^0 \qquad (x \in A),$ 

ii) 
$$\sum u_i v_i = 1$$

The mapping  $x \to \sum u_i xv_i$  is a projection  $A \to C$ , and C is a C-direct summand of A. While, the mapping  $\lambda : x \to \sum v_i xu_i$  yields a C-direct decomposition  $A = \lambda(A) \oplus [A, A]$ , where [A, A] is the C-linear subspace spanned by all [x, y] = xy - yx [2]. In many important cases  $\lambda(A)$  coincides with C, and we have  $A = C \oplus [A, A]$ . Giving the name strongly separable algebras, T. Kanzaki studied such a class of algebras. He first studied strongly separable algebras over a field [3], and then the general case was studied in utilizing the former results [4]. The objective of this note is to re-establish his results more simply, and to generalize in some respects.

**Theorem 1.** The following three statements are equivalent for an algebra A over R.

- 1) There exists an element  $s = \sum v_i \otimes u_i^{\circ} \in A \otimes A^{\circ}$  such that i)  $\sum v_i x \otimes u_i^{\circ} = \sum v_i \otimes (xu_i)^{\circ}$   $(x \in A)$ , ii)  $\sum v_i u_i = 1$ .
- 2) A is separable and  $A = C \oplus [A, A]$
- 3) A is separable and there exists a symmetric C-linear map  $\lambda$ :  $A \rightarrow C$  such that  $\lambda(1) = 1$ .

REMARK. A is called *strongly separable* if A satisfies these conditions. The original definition by Kanzaki was given by the condition 1), formulated in another way, and he proved the equivalence of 1) and 2) [4, Th. 1].

Proof. 1) $\Rightarrow$ 2). Put  $\lambda(x) = \sum v_i x u_i$ .  $\lambda$  is a *C*-linear map  $A \rightarrow A$ , is identity on *C*, and vanishes on [A, A].  $(\lambda(xy) = \sum (v_i x) y u_i = \sum v_i y(xu_i) = \lambda(yx)$ .) It follows  $C \cap [A, A] = 0$ . For any  $x \in A$ , we have  $x = \sum v_i u_i x$ 

A. HATTORI

 $=\sum u_i x v_i + \sum [v_i, u_i x] \in C + [A, A]$ . Hence we have  $A = C \oplus [A, A]$ . 1 is represented as

$$1 = \sum v_i u_i = \sum u_i v_i + \sum [v_i, u_i] = 1 + 0$$
,

so that we have  $\sum u_i v_i = 1$ . Since we have moreover  $\sum xu_i \otimes v_i^0 = \sum u_i \otimes (v_i x)^0$ , A is separable.

2) $\Rightarrow$ 3) Take the projection  $\lambda$  :  $A \rightarrow C$ .

3) $\Rightarrow$ 1) As A is central separable over C, the mapping  $\eta: A \bigotimes_{\alpha} A^0 \rightarrow$ 

Hom<sub>c</sub>(A, A) defined by  $\eta(a \otimes b^0)(x) = axb$  is an isomorphism [1]. Let, in particular,  $\lambda = \eta(\sum v_i \otimes u_i^0)$ . Then we have

ii) 
$$\sum v_i u_i = \lambda(1) = 1$$
.

Further

$$egin{aligned} &\eta(\sum v_iy\otimes u_i^{
m o})(x)=\sum v_iyxu_i=\lambda(yx)\ &=\lambda(xy)=\sum v_ixyu_i=\eta(\sum v_i\otimes(yu_i)^{
m o})\,. \end{aligned}$$

This means

i)  $\sum v_i y \otimes u_i^0 = \sum v_i \otimes (y u_i)^0$ .

Hence  $s_c = \sum v_i \bigotimes_{\alpha} u_i^0$  is the desired element in  $A \bigotimes_{\alpha} A^0$ .

Now, C is separable over R, and there exists  $\sum p_j \otimes q_j \in C \otimes C$  such that  $\sum cp_j \otimes q_j = \sum p_j \otimes q_j c$   $(c \in C)$  and  $\sum p_j q_j = 1$ . The mapping  $a \otimes b^0 \rightarrow \sum ap_j \bigotimes_R (bq_j)^0$  is a well-defined ring homomorphism  $\sigma : A \bigotimes_C A^0 \rightarrow A \bigotimes_R A^0$  such that  $\tau \sigma =$  identity, where  $\tau$  donotes the natural epimorphism  $A \bigotimes_R A^0 \rightarrow A \bigotimes_R A^0$ . Put  $s = \sigma(s_c) = \sum v_i p_j \otimes (u_i q_j)^0$ . We have

i)  $\sum v_i p_j u_i q_j = \sum v_i u_i \sum p_j q_j = 1$ .

Since  $s_c(x \bigotimes_{\sigma} 1^{\circ} - 1 \bigotimes_{\sigma} x^{\circ}) = 0$ , we have, applying  $\sigma$ ,

ii) 
$$s(x \bigotimes_{R} 1^{\circ} - 1 \bigotimes_{R} x^{\circ}) = 0$$
.

Hence s has the desired properties. q.e.d.

**Corollary** [4, Lemma 1]. A is strongly separable if and only if A is strongly separable over C and C is separable.

We now study a strongly separable algebra A over its center C. Let  $A^*$  be the dual space of  $A: A^* = \operatorname{Hom}_C(A, C)$ , considered as a twosided A-module by  $a\xi(x) = \xi(xa), \ \xi a(x) = \xi(ax)$ . Then the mapping  $x \otimes \xi \to x\xi$  yields an isomorphism  $A \underset{c}{\otimes} (A^*)^A = A^*$  [1]. But  $(A^*)^A = \{\xi \in A^* \mid$ 

370

 $a\xi = \xi a, a \in A$  consists of symmetric linear forms. Since  $A = C \oplus [A, A]$ , this set consists of scalar multiples of  $\lambda$ . It follows that the mapping  $\tilde{\lambda}: x \to x\lambda$  gives an isomorphism of two-sided A-modules  $A \cong A^*$  (i.e. A is a symmetric algebra).

In [2], we defined the rank element of a projective module. Since A is C-finite projective, we can speak of the rank element  $r_C(A)$  which is an element of C. Then, as a natural generalization of [3, Theorem], we have

**Theorem 2.** A central separable algebra A over C is strongly separable if and only if  $r_c(A)$  is a unit of C.

Proof. Assume that A is strongly separable. Since A is C-finite projective, we have an isomorphism  $\theta: A^* \bigotimes A^0 \simeq \operatorname{Hom}_c(A, A)$  by  $\theta(\xi \otimes a^0)(x) = \xi(x)a$ . Composing this with  $\tilde{\lambda} \otimes 1: A \otimes A^0 \simeq A^* \otimes A^0$ , we have an isomorphism  $f: A \bigotimes A^0 \simeq \operatorname{Hom}_c(A, A)$ , which is defined by  $f(a \otimes b^0)(x) = \lambda(ax)b$ . Let  $\theta(\sum \xi_i \otimes u_i) = \operatorname{identity}$  of A ( $u_i$  as above), and  $\xi_i = w_i\lambda$  ( $w_i \in A$ ). Then we have  $x = \sum \lambda(xw_i)u_i$ . Since

$$egin{aligned} &f(\sum xw_i\otimes u^{ extsf{0}}_i)(y) = \sum (xw_iy)u_i = yx \ &= \sum (yw_i)u_ix = f(\sum w_i\otimes (u_ix))^{ extsf{0}})\,, \end{aligned}$$

we have

$$\sum xw_i \otimes u_i^0 = \sum w_i \otimes (u_i x)^0 \qquad (x \in A)$$

It follows that  $\sum w_i u_i$  is in the center C, and we have

$$r_{c}(A) = \sum \xi_{i}(u_{i}) = \lambda(\sum w_{i}u_{i}) = \sum w_{i}u_{i}.$$

But

$$1 = \sum v_i u_i = \sum \lambda(u_j w_i) v_j u_i = \sum \lambda(u_j) (v_j w_i) u_i$$
$$= (\sum \lambda(u_j) v_j) (\sum w_i u_i) .$$

This shows that  $r_c(A) = \sum w_i u_i$  is a unit of C.

Conversely assume that  $r_C(A) = c$  is a unit of C. Consider the trace: Tr  $(x) = \sum \xi_i(xu_i)$ , where  $\theta(\sum \xi_i \otimes u_i) = 1$  as above. We see that this is a symmetric linear form  $A \to C$  and  $r_C(A) = \text{Tr}(1)$  [2]. Put  $\lambda = c^{-1}\text{Tr}$ . Then  $\lambda$  is also a symmetric linear form  $A \to C$ , and satisfies  $\lambda(1) = c^{-1}\text{Tr}(1) = 1$ . Hence A is strongly separable. q.e.d.

TOKYO UNIVERSITY OF EDUCATION

#### A. HATTORI

#### References

- [1] M. Auslander and O. Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367-409.
- [2] A. Hattori, Rank element of a projective module, Nagoya Math. J. 25 (1965), 113-120.
- [3] T. Kanzaki, A type of separable algebras, J. Math. Osaka City Univ. 13 (1962), 39-43.
- [4] T. Kanzaki, Special type of separable algebras over a commutative ring, Proc. Japan Acad. 40 (1964), 781-786.