

Title	On strongly separable algebras
Author(s)	Hattori, Akira
Citation	Osaka Journal of Mathematics. 1965, 2(2), p. 369-372
Version Type	VoR
URL	https://doi.org/10.18910/9966
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

ON STRONGLY SEPARABLE ALGEBRAS

AKIRA HATTORI

(Received July 27, 1965)

Let A be a separable algebra over a commutative ring R [1] with center C . There exists an element $\sum u_i \otimes v_i^0 \in A \otimes A^0$ such that

- i) $\sum xu_i \otimes v_i^0 = \sum u_i \otimes (v_i x)^0 \quad (x \in A),$
- ii) $\sum u_i v_i = 1$

The mapping $x \rightarrow \sum u_i x v_i$ is a projection $A \rightarrow C$, and C is a C -direct summand of A . While, the mapping $\lambda: x \rightarrow \sum v_i x u_i$ yields a C -direct decomposition $A = \lambda(A) \oplus [A, A]$, where $[A, A]$ is the C -linear subspace spanned by all $[x, y] = xy - yx$ [2]. In many important cases $\lambda(A)$ coincides with C , and we have $A = C \oplus [A, A]$. Giving the name strongly separable algebras, T. Kanzaki studied such a class of algebras. He first studied strongly separable algebras over a field [3], and then the general case was studied in utilizing the former results [4]. The objective of this note is to re-establish his results more simply, and to generalize in some respects.

Theorem 1. *The following three statements are equivalent for an algebra A over R .*

- 1) *There exists an element $s = \sum v_i \otimes u_i^0 \in A \otimes A^0$ such that*
 - i) $\sum v_i x \otimes u_i^0 = \sum v_i \otimes (xu_i)^0 \quad (x \in A),$
 - ii) $\sum v_i u_i = 1.$
- 2) *A is separable and $A = C \oplus [A, A]$*
- 3) *A is separable and there exists a symmetric C -linear map $\lambda: A \rightarrow C$ such that $\lambda(1) = 1$.*

REMARK. A is called *strongly separable* if A satisfies these conditions. The original definition by Kanzaki was given by the condition 1), formulated in another way, and he proved the equivalence of 1) and 2) [4, Th. 1].

Proof. 1) \Rightarrow 2). Put $\lambda(x) = \sum v_i x u_i$. λ is a C -linear map $A \rightarrow A$, is identity on C , and vanishes on $[A, A]$. ($\lambda(xy) = \sum (v_i x) y u_i = \sum v_i y (xu_i) = \lambda(yx)$.) It follows $C \cap [A, A] = 0$. For any $x \in A$, we have $x = \sum v_i u_i x$

$=\sum u_i x v_i + \sum [v_i, u_i x] \in C + [A, A]$. Hence we have $A = C \oplus [A, A]$. 1 is represented as

$$1 = \sum v_i u_i = \sum u_i v_i + \sum [v_i, u_i] = 1 + 0,$$

so that we have $\sum u_i v_i = 1$. Since we have moreover $\sum x u_i \otimes v_i^0 = \sum u_i \otimes (v_i x)^0$, A is separable.

2) \Rightarrow 3) Take the projection $\lambda: A \rightarrow C$.

3) \Rightarrow 1) As A is central separable over C , the mapping $\eta: A \otimes A^0 \rightarrow \text{Hom}_C(A, A)$ defined by $\eta(a \otimes b^0)(x) = axb$ is an isomorphism [1]. Let, in particular, $\lambda = \eta(\sum v_i \otimes u_i^0)$. Then we have

$$\text{ii)} \quad \sum v_i u_i = \lambda(1) = 1.$$

Further

$$\begin{aligned} \eta(\sum v_i y \otimes u_i^0)(x) &= \sum v_i y x u_i = \lambda(yx) \\ &= \lambda(xy) = \sum v_i x y u_i = \eta(\sum v_i \otimes (yu_i)^0). \end{aligned}$$

This means

$$\text{i)} \quad \sum v_i y \otimes u_i^0 = \sum v_i \otimes (yu_i)^0.$$

Hence $s_C = \sum_C v_i \otimes u_i^0$ is the desired element in $A \otimes A^0$.

Now, C is separable over R , and there exists $\sum p_j \otimes q_j \in C \otimes C$ such that $\sum c p_j \otimes q_j = \sum p_j \otimes q_j c$ ($c \in C$) and $\sum p_j q_j = 1$. The mapping $a \otimes b^0 \rightarrow \sum_R a p_j \otimes (b q_j)^0$ is a well-defined ring homomorphism $\sigma: A \otimes A^0 \rightarrow A \otimes A^0$ such that $\tau \sigma = \text{identity}$, where τ denotes the natural epimorphism $A \otimes A^0 \rightarrow A \otimes A^0$. Put $s = \sigma(s_C) = \sum v_i p_j \otimes (u_i q_j)^0$. We have

$$\text{i)} \quad \sum v_i p_j u_i q_j = \sum v_i u_i \sum p_j q_j = 1.$$

Since $s_C(x \otimes 1^0 - 1 \otimes x^0) = 0$, we have, applying σ ,

$$\text{ii)} \quad s(x \otimes 1^0 - 1 \otimes x^0) = 0.$$

Hence s has the desired properties. q.e.d.

Corollary [4, Lemma 1]. *A is strongly separable if and only if A is strongly separable over C and C is separable.*

We now study a strongly separable algebra A over its center C . Let A^* be the dual space of $A: A^* = \text{Hom}_C(A, C)$, considered as a two-sided A -module by $a\xi(x) = \xi(xa)$, $\xi a(x) = \xi(ax)$. Then the mapping $x \otimes \xi \rightarrow x\xi$ yields an isomorphism $A \otimes (A^*)^A = A^*$ [1]. But $(A^*)^A = \{\xi \in A^* \mid$

$a\xi = \xi a$, $a \in A\}$ consists of symmetric linear forms. Since $A = C \oplus [A, A]$, this set consists of scalar multiples of λ . It follows that the mapping $\tilde{\lambda} : x \rightarrow x\lambda$ gives an isomorphism of two-sided A -modules $A \cong A^*$ (i.e. A is a symmetric algebra).

In [2], we defined the rank element of a projective module. Since A is C -finite projective, we can speak of the rank element $r_C(A)$ which is an element of C . Then, as a natural generalization of [3, Theorem], we have

Theorem 2. *A central separable algebra A over C is strongly separable if and only if $r_C(A)$ is a unit of C .*

Proof. Assume that A is strongly separable. Since A is C -finite projective, we have an isomorphism $\theta : A^* \otimes_{\mathcal{C}} A^0 \cong \text{Hom}_C(A, A)$ by $\theta(\xi \otimes a^0)(x) = \xi(x)a$. Composing this with $\tilde{\lambda} \otimes 1 : A \otimes A^0 \cong A^* \otimes A^0$, we have an isomorphism $f : A \otimes_{\mathcal{C}} A^0 \cong \text{Hom}_C(A, A)$, which is defined by $f(a \otimes b^0)(x) = \lambda(ax)b$. Let $\theta(\sum \xi_i \otimes u_i)$ = identity of A (u_i as above), and $\xi_i = w_i \lambda$ ($w_i \in A$). Then we have $x = \sum \lambda(xw_i)u_i$. Since

$$\begin{aligned} f(\sum xw_i \otimes u_i^0)(y) &= \sum (xw_i y)u_i = yx \\ &= \sum (yw_i)u_i x = f(\sum w_i \otimes (u_i x)^0), \end{aligned}$$

we have

$$\sum xw_i \otimes u_i^0 = \sum w_i \otimes (u_i x)^0 \quad (x \in A).$$

It follows that $\sum w_i u_i$ is in the center C , and we have

$$r_C(A) = \sum \xi_i(u_i) = \lambda(\sum w_i u_i) = \sum w_i u_i.$$

But

$$\begin{aligned} 1 &= \sum v_i u_i = \sum \lambda(u_j w_i) v_j u_i = \sum \lambda(u_j)(v_j w_i) u_i \\ &= (\sum \lambda(u_j) v_j)(\sum w_i u_i). \end{aligned}$$

This shows that $r_C(A) = \sum w_i u_i$ is a unit of C .

Conversely assume that $r_C(A) = c$ is a unit of C . Consider the trace : $\text{Tr}(x) = \sum \xi_i(xu_i)$, where $\theta(\sum \xi_i \otimes u_i) = 1$ as above. We see that this is a symmetric linear form $A \rightarrow C$ and $r_C(A) = \text{Tr}(1)$ [2]. Put $\lambda = c^{-1}\text{Tr}$. Then λ is also a symmetric linear form $A \rightarrow C$, and satisfies $\lambda(1) = c^{-1}\text{Tr}(1) = 1$. Hence A is strongly separable. q.e.d.

References

- [1] M. Auslander and O. Goldman, *The Brauer group of a commutative ring*, Trans. Amer. Math. Soc. **97** (1960), 367–409.
- [2] A. Hattori, *Rank element of a projective module*, Nagoya Math. J. **25** (1965), 113–120.
- [3] T. Kanzaki, *A type of separable algebras*, J. Math. Osaka City Univ. **13** (1962), 39–43.
- [4] T. Kanzaki, *Special type of separable algebras over a commutative ring*, Proc. Japan Acad. **40** (1964), 781–786.