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1. Introduction

In this paper, we shall mainly study sufficient conditions for divergence of
solutions of a family of singulary perturbed equations as the positive parameter
8 tends to zero. In [4], J. Chaillou studied singular perturbations in Cauchy
porblems for hyperbolic operators with constant coefficients, but we shall study
singular perturbations in non-characteristic Cauchy problems for kowalewskian

operators.
Let P^D) and P2(D) be linear differential operators of kowalewskian with

constant coefficients. Put ord P1=m and ord P2=m'. Assume that m>m' .
Let us consider the following one-parameter family of Cauchy problems:

(£ P1(Z))+P2(Z)))φ) = 0 ( in R"

~l Φ) I Il=0 = φχ«'), =!,...,«

When the Cauchy problems (1.1) are uniquely solvable, we can set a problem
of the convergence of solutions.

Denote by <J? the Cauchy data space and by Φ=(φly •••, φm) an element of
JL. Denote by O(Cn~1} the set of entire functions defined in Cn~\ If JL=O
(Cn~l)m, then the Cauchy- Kowalewski theorem implies that the Cauchy problems

(1.1) are globally uniquely solvable. If oϊ=F"1(Co>(Λ11"1))*, where F"1 denotes
the inverse Fourier transformation, then the Cauchy problems (1.1) can be solv-
ed by the Fourier transformation.

Devide the equation of (1.1) by 6 and put 8~1=\m~m', where λ>0. Then

α i \- ι\— / i •" - z\—// — u , in
* I T^/ —1 I _t * 1

Since the convergence or divergence of solutions of (1.1) when £ J, 0 is equi-
valent to that of (1.2) when λ f oo, we shall deal with (1.2) instead of (1.1).

The reduced problem of (1.2) is

(U) {^lΓ=φίn; = Ί ; ^
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We shall introduce the notion of "admissibility" of singular perturbations

in Cauchy problems. Let Ur be a domain of Rn

x7
l and δ be a positive number.

DEFINITION 1.1. The Cauchy problems (1.1) in [— δ, δ]χ[/' with the

Cauchy data space <Jl are said to be admissible as a singular perturbation with

respect to a given Cauchy problem (1.3) if for every Cauchy data Φ in <Jl, the

solutions of (1.1) converge to that of (1.3) in C((— S, δ)x [/')• The unilateral

Cauchy problems (1.1) in [0, δ] X U' (resp. in [— δ, 0] X Uf) with the Cauchy data
space <Jl are said to be admissible as a singular perturbation with respect to a
given unilateral Cauchy problem (1.3) if for every Cauchy data Φ in cJ?, the

solutions of (1.1) converge to that of (1.3) in C((0, δ)x U') (resp. in C((— δ, 0)x

[/'))•

Denote the characteristic roots of P2(ξ)=Q with respect to ξ1 by σ}(ξ '),

;=1, — ,01'.

ASSUMPTION 1.2. There exists a point ξ'0 in Λ""1 such that for l^j<

REMARK. If Assumption 1.2 is satisfied, then there exists an open ball
B0=B(r0; ξΌ) of radius r0 with the centre ££ such that all σj(ξ ') are simple on

the closure of -Bo-

Let plfQ be the coefficient of ξ? in Px and ̂  be that of ξ?' in P2. Put

P=p2,o/Pι,o

CONDITION 1.3. (m—m'=2 and p<ϋ) or (m— m'=\ and p is real).

Let Assumption 1.2 be satisfied and B0 be the open ball in Remark to

Assumption 1.2. In Theorem in §3, we shall show that Condition 1.3 is neces-

sary and sufficient for the admissibility of the Cauchy problems (1.1) in Rn

with F""1(CoΓ(50))
>w and that Condition 1.3 is necessary for the admissibility of

the Cauchy problems (1.1) in [— δ, δ]x?7' with wider Cauchy data spaces.
We shall also study conditions for the admissibility of the unilateral Cauchy
problems (1.1) in Rn

+= {x<=Rn', ^>0} or in RtL= {x<=Rn\ ^<0}.

In [2], we have already studied that if the solutions uz of (1.1) converge

in C(RXl\ 3)'(Rn

x7
1)), then the limit satisfies (1.3). On this point, when Condition

1.3 is not satisfied, we shall show that the convergence in C(Rn) of the solutions uz

of (1.1) in Rn for a data Φ in F'l(Co(B0))m implies that φw'+ι(Π is represented
as a linear combination of φ/(£7)> .7=1, ••-,#*', where /\ denotes the Fourier
transformation.

In case of L2-theory, K. Uchiyama [6] studied Cauchy problems for the

future of hyperbolic equations with variable coefficients when the conditions of
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Case 2 or 4 in Theorem in §3 are satisfied under Assumption 1.2 for B0=R*~l.

2. Preliminaries

We shall state asymptotic behaviour of determinants appearing in the ex-

pression of solutions of the Cauchy problems. Since these have been proven
essentially in [1], the proofs will be omitted.

Let Pι(ξ) and P2(ζ) be polynomials of ξ ̂ Rn with constant coefficients as
follows :

(2.2) P2(ξ) = M

Here Pu(ξ') and p2,j(ζ'} are polynomials of ξ' with their orders not higher than
j and ^>ΦO. For a large positive parameter λ, we put

(2.3) ^(f)
By replacing λ | p\ ~l^m~m/^> for λ in (2.3), we may assume that

p = — exp ι0, 0^

Denote the characteristic roots of Pλ(£)=0 with respect to ξ1 by τy(λ, £'), j=l,

••-, m and those of P2(ξ)=Q with respect to |x by <ry(f'),y=l, ••-, τ/z', respectively.
We shall use the following notation:

— m

Θ = exp — - — - , where θ is the argument of —p.
m — m

By the same method as in Lemma 3.2, [1], we have the following:

Lemma 2.1. Let Assumption 1.2 be satisfied and B0 be the open ball in

Remark to Assumption 1.2. If the suffixes {j} of the characteristic roots τ/λ, £'),

y=l, •••, m are properly chosen, then there exists a positive number \(B0) such
that if \>\(B0), then TJ(\, ξ'),j=l, •••, m satisfy the following asymptotic pro-

perties on the closure of B0 :
forj=l, ,m'

(2.4) τy(λ, Π = <rj(ξ')+* -l τj.ι(ξ ')+λ-2 τΛ2(λ, ξ') ,

andforj=m'-\-\, •••, m

(2.5) τ;<λ, ξ')l\ =
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Here τjtl(ξ') are continuous on the closure of BQ and τy>2(λ, f') remain bounded on
the closure of BQ when λ f oo.

NOTATION 2.2. For complex numbers or functions ry and φ; ,y=l, •••, m

(W

where Λ=

J=m'+ +(m-l)

Λ = β^ίTi/^-Tί

(τm)β

/^, -, rί)

N/ Γ) / / ... f ' ... ' \ b tw'—U1 ••• wi

By the same method as in Lemma 2.4, [1], we have the following:

Lemma 2.3. Let Φ ie/orag to F~l(CΊf(Bo))m and denote by φ the Fourier
transform of φ with respect to x'. Assume that τy(λ, £'), J=l, •••, #ί satisfy the
asymptotic properties (2.4) ^wrf (2.5) m Lemma 2.1. 7%£w

(2.6) limD0(τι, — ,'

For k=l, —,mr

(2.7) lim DΛ(TI,

(2.8)
lim

•jφ^+i)'^ >

1 is- a dummy variable, that is, by the definition, Dm'+1(σly •••, σv+1; φly

, <ί>m'+ι) is independent of σw'+1.
convergences are uniform on the closure of B0.

Since all ry are distinct, it implies that
shall use the exact values of Ak/Ak+1.

for &=0, w'+l, We
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Lemma 2.4.

(2.9) A = ΘM-lΓ'

For k=m'-}-l, •••, m

(2.ιo) A = ®f-m' (-i)mm' r'2+

(2.11) AtlAM = r', * = »'+!, -, «-l

Proof. We have

(Ti/^-Tί)"7 = £»+~K— '-W

(2.12) = exp ( 2πt m'(m-m'-l) (m-m')l2\
\m — in' /

= exp (πί m'(m—mr—\)} .

Since m'(m—m'—V) = mm' (mod 2), then (2Λ2)=(—l)mm'. The Vandermonde
determinant DO(T^/+I, •••, τ'm)=D0(l, ζ, •••, ζ-^-^7-1) equals the difference product

Πo^<ι'^-.'-ι(f//-el) This implies (2.9).
Since (m— m'— 1) (m'+l)~(m— 1) (m'+l) (mod 2), it implies that

(2.13) (τ;/+1-τί.

We have

Multiply the jth row of Z>0(τί/+ι, -,τί-ι,τί+ι, -,τi) by fC«-wo-i) | ; =2, ...,
m— w'— 1. Then

r(m-Wm-m'-2)(m-m'-l)/29 7) / / ... / / ... / \
b -^-Όvw'+l* > ~k—ly *k + l y > ' w^

== ΌO(T«+«/-*+I> *"> τ«_ι, τ«/+ι, •••, Tw+m/_A)

= (-Ija-'-w-w.^Tί,^!, -, τί,_0 .

Since
ζ'(»ί-Jfe)(»ί-w/-2)(»ι-w/-l)/2 __ £»-* / _ J\(»ι-ft)(»ι-w/-3)

and

(A-w'-l) (m-k)-(m-K) (m-m'-l] = (m-k) (k-m+2)

= —(m—k) (m—k—l)+(m—k) = m—k (mod 2) ,
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it implies that

(j 1 .v Dθ(Tm'+l, •"> TjU

( * } =?*-"'(- 1 ) " - T ^ l , - , - ! .

The power of ξ in ̂  is

(m'+ΐ) (m'+l—k)+k—m = m'2+m'+l—km' (mod ro— m')

and that of (—1) in Ak is

&— ro'— l+(ro— 1) (m'+l)+m— k = mm'+2m—2m'—2 = mm' (mod 2) .

The Vandermonde determinant D0(τ«/+1, •••, τ£,_ι) equals the difference product

UozKi'im-m'^'—t1)- Thus (2 10) is proven.
By easy calculation, (2.10) implies (2.11). [Q.E.D.]

3. The admissibility of singular perturbations

First we shall show the global unique solvability of (1.2) with entire func-

tions data. For a polynomial P(ξ)=*ΣΛpΛ ξ*9 denote M(P)=max \pΛ\ .
Oti

Devide the equation of (1.2) by plt0 and put p=p2,o/Pι,o and replace λ | p \ -l^m~m^
for λ. Then we may assume that \p\ — 1 and Pλ(ξ) is (2.3) satisfying (2.1) and

(2.2). Put M=M(P1)+M(P2). Then M(P^<\m~^M, for λ>l. For b(ξl9

— , ?«)=Σ3uι=* ξ*—ξι> denote b(p)=b(p, 1, —, 1). Then b(p) is a polynomial
of order m— 1 with positive coefficients. Put B— sup 6(p) p"(<*"1). The

P î
Cauchy-Kowalewski theorem in [5] implies that if φj9 jf=l, •• 9m are analytic in

I #f I ίgr, /=!,•••,«, then the formal power series solution of (1.2) converges

absolutely for sufficiently large p in

(3.1) ΊX=2\xi\+P\x,\<r{l-\'n->n' MBIp} .

Put ρ=2\m~m' MB and let r f oo, then (3.1) sweeps out the whole space for fixed
λ. When r<oo, it is difficult to check whether there exists a domain U in-

dependent of λ such that every solution uκ of (1.2) exists in U.

We shall use the same notation as in §2. Let Assumption 1.2 be satisfied

and BΌ be the open ball in Remark to Assumption 1.2. Since all <Tj(ξ') are

simple on the closure of B0y it implies that D0(σl9 ••-, σv)φO on the closure of

B0. For Φ in F-\C?(BJ)m, denote

d(ξ'\ Φ) = Dm'+1(σly ••-, σv+1; Φi,

and
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Then d(ξ'\ Φ)^0 is equivalent to g(ξ'\ Φ)*0. Denote for k=m'+l, ~m

Gk(x; Φ) = A. j-^ίf; Φ) exp iτk>1(ξ') xj ,•"•o
and

G(x; Φ) = ΠΓ-.'+ι G*(*; Φ) Π?-i'+ι(<3*(*; Φ)+r"" Gw.1(*; Φ))

Then G>(#; Φ) and G(#; Φ) are entire functions. Denote

U(G) = {x<=Rn G(x) Φ 0} , U(G)+ = U(G) ΓΊ Kt, , and

U(G)- = U(G)f\KL.

Assume that <*(£ ' Φ) ί 0. Then Gk(0, x' Φ) ί 0 and (2. 1 1) implies that

G4(0, *';

Thus G(Λ; Φ)Ξ|ΞO and U(G(x\ Φ)) is a dense subset of Λw. There exists a data
Φ0 such that d(ξ'\ Φ0)^0. For example, define Φ0 by

ψχ*o = F-ι(/3(n <wry-1),./ = i, -, « >
where crw/+1(g') is a non-zero C°°-function satisfying ^w/+1(f 'JΦσy^ '),,/= 1, •••,
m' on the closure of B0 and yS(^) is a CΓ(β0)-function. Then rf(f ' Φ0) ΐ 0.

Theorem. Let Assumption 1.2 be satisfied and BQ be the open ball in Remark

to Assumption 1.2. Let the Cauchy data space be Jl=F~ί(Co(B0))m. Put p=

P2,0/Pl,0

Case 1. The case when m—m'^3 or when m—m'=2 and p is not real or
p>0. If J(£';Φ)$0, then the analytic solutions uκ of (1.2) diverge at every
point x in U(G(x\ Φ)) when λ f oo.

Case 2. The case when m—m'=2 and p<0 or when m—m'=l and p is

redly that is, the case when Condition 1.3 is satisfied. The Cauchy problems (1.2)
in Rn with Jl is admissible with respect to (1.3).

Case 3. The case when m—m'=l and Im Jp>0. The unilateral Cauchy
problems (1.2) in R- with JL is admissible with respect to (1.3). If d(ξ'\ Φ)^0,
then the analytic solutions wλ of (1,2) dίverege at every point x in U(G(x\ Φ))+

when λ f oo.

Case 4. The case when m—m'—l and Im p<0. The unilateral Cauchy
problems (1.2) in Rn+ with JL is admissible with respect to (1.3). If d(ξ'\ Φ)^0,
then the analytic solutions uκ of (1.2) diverege at every point x in C7(G(#;Φ))~
when λ f oo.

Proof. The partial Fourier transform with respect to #' of (1.2) is

(3.2)
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For fixed ξ', (3.2) is a one-parameter family of Cauchy problems of ordinary

differential equations. For Φ in F"1(C?(B0))U

9 put

CA(λ, I' Φ) = DΛ(rl9 -, τβ; &, -,

The solution ^(^x, £') of (3.2) is represented by

(3.3) vλ(xly ξ') = ΣLi Ck(\, £' Φ) exp iτk(\, ξ') x,.

Put u^(x)=^F~1(vλ(xlί ξ')). Then wλ is the solution of (1.2). Lemma 2.3 im-

plies that for Λ=l, •••, m'

(3.4)

and for k=m'-

(3.5)

Denote

•• ,m

lim

M+ = max -{ImθTy j = m'+l,

M^ = min {Imθry y = w'+l,

where τ/=£; m ~*= A./ '-,j=m'-\-l, •••, m. Both the maximum
m—m

and the minimum are attained by one j or two j. It is useful for searching the

leading term to illustrate the points θτy=θfJ'"w'"1, j=m'+ly •••, m on the com-

Figure la
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Figure Ib

plex plane. For example, we illustrate the case when m—m'=4. In case of
Figure la (0<0<ττ), &ζ3 attains the minimum. In case of Figure Ib (θ=π),
θζ2 and Θf3 attain the minimum. Thus, we have the following.
(1) If m—m'^Z or if m~-m'=2 and ρ==— Θ2 is not real or p>0, then M+>0
andM_<0.
(2) If m—m'=2 andp<Q or if m—m'=l andp is real, then M+=M_—0.
(3) If m—m'=\ and Im p=Im — Θ>0, then M+=M_<0.
(4) If m—m'=l and Im p=ϊm — Θ<0, then M+=M_>Q.

We shall show that M_<0 and rf(|'; Φ)ΐO imply that uλ diverge at every
point x in U(G(x\ Φ))+. Assume that only / attains the minimum. Fix a
point x in J?+. Denote

£*(λ, *;/) = F-1(CΛ(λ, f '; Φ) λw/ exp i(τΛ(λ, ?')—λΘτ/) Λι) >

for Λ=l, •••, w andy=m'H-l, " ym. Then

(3.6) u^(x) = λ"w/ exρ (£λθτ/ ι̂) Σ?=ι ^(λ, ΛJ; / ) .

Lemma 2.1 implies that for k=l, * ,m'

(3.7) Im (τ*(λ, ξ')—\Qτί) = Im σk(ξ')—\M_ + O(\~l),

for k=m'+l, —, /-I, /+!, —, m

(3.8) Im (τA(λ, ξ')—\θτl) = λ(Im θrί—Λf.)+O(l),

and

(3.9) Im (τ/(λ, ?')—λθr/) = Im τ/a(
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Hence

λ-' |exp ί(τA(λ, n-

and

|exp/(τA(λ,£')—

remain bounded when λ f °° on the closure of £0 for fixed Λ?1>0. By (3.4)
and (3.5), Lebesgue's bounded convergence theorem implies that for &=1, •••,
/-I, /+!,..., in

(3.10)
λfo*

and

(3.11) lim £,(X, *; /) = G,(*; Φ) .
λfoβ

On the other hand,

|λ'm/ exp ί

diverge for fixed ^>0. Since Gt(x\ Φ)ΦO in U(G(x\ Φ))+, it implies that uλ(x)
diverge at every point x in U(G(x\ Φ))+.

Assume that / and /+! attain the minimum. Put L= Re θτ/+1. Then
L>0 and Re θτί=— L. Denote

Then lim J^(λ, Λ?; /)=0 and

(\, x\

Put

\K(XI) = π(n+mr/(m—mr))ILxl ,

for fixed ^>0. Then exp 2i\n Lx1=ζm/. Since

lim Et+l(\, x\ /+!) = G/+I(Λ?; Φ) ,
λfoo

£"/+1(λ, Λ?; /) = Eί+ί(\, x\ /+l) exp 2ίλ

and Al/Al+1=ζm\ it implies that

(3.12) = G,(x; Φ)+ςm''Gl+1(X , Φ)
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Obviously, (3.12)ΦO in U(G(x\ Φ))+. Thus uλn diverge when n f oo.
By the same argument, M+>0 and rf(£';Φ)^0 imply that % diverge at

every point x in U(G(x\ Φ))~.
We shall show that M_^0 implies the admissibility of the unilateral Cauchy

problems in R+. Fix a point x in Rn+. Lemma 2.1 implies that for k=l, •••,
m'

(3.13) I exp iτ,(λ, ?') *! I =exp (-Im crA(f

and for k=m'+ly •••, w

I exp iτA(λ,f ')*ιl
(3.14)

-λM_-Im

Hence (3.13) and (3.14) remain bounded on BQ when λ f oo. Denote

«b(*) = ΣΓli F-1 Γ ^(^";>^;^->^).exp ίσtf')
L o — < Γ /

Then u0 is the solution of (1.3). By (3.4) and (3.5), Lebesgue's bounded con-
vergence theorem implies that

lim uλ(x) = ΣLi F-1 (lim CΛ(λ, ξ'\ Φ) exp iτA(λ, f ') ̂ ) - UQ(X) .
λfoo λtoo

Obviously, this convergence remains true in C(R+).
By the same argument, M+r^O implies the admissibility of the unilateral

Cauchy problems in R*L and M+=M_=Q implies the admissibility of the
Cauchy problems in Rn. [Q.E.D.]

The divergent property can not be removed by any localization in #-space
and this property remains true for wider Cauchy data spaces. Thus we have
the following:

Corollary 1. Let Assumption 1.2 be satisfied and F~\C£(BQ))m be naturally
included in the Cauchy data space Jl. Assume that for every Φ in Jl, there exists
a unique continuous solution us of (1.1) in [— δ, δ]xC7'. Then Condition 1.3 is
necessary for the admissibility of the Cauchy problems (1.1) in [— δ, δ]x U' with
Jl with respect to (1.3).

Even when Condition 1.3 is not satisfied, there exists a data Φx such that
the solutions uλ(x\ Φ^ converge in C(Rn), for example, Φ1=(0y •••, 0) is a trivial
one. The proof of Theorem implies the following:

Corollary 2. Let Assumption 1.2 be satisfied and the Cauchy data space be
Assume that Condition 1.3 is not satisfied. Then it is neces-
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sary for the convergence of z/λ(#; Φj) in C(Rn) that the data Φ1=(φI, •••, φm)
satisfies

d(ξ'\ Φx) = ZV+ι(σ ι> — , σm'+1',φl9 •••, $m,+l) = 0 .

This implies that $«/+1 is represented as a linear combination of $jyj=\, •••, m'.
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