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1. Introduction and statements of the results

Let Z be a three-dimensional complex manifold and M a (real) oriented four-

manifold. Z is said to be a twistor space of M if there exist a C°°-map π : Z —> M

and a fixed point free anti-holomorphic involution σ : Z —> Z such that the following

conditions are fulfilled:

(1) π gives Z a C°° S2-bundle structure over M. The fiber Lp := π~1(p) for any

p e M is a complex submanifold of Z (which is biholomorphic to the complex projec-

tive line P 1 ) ,

(2) σ preserves each Lp and the automorphism on M induced by σ is the identity,

(3) for any p G M, NLP/Z (= the holomorphic normal bundle of Lp in Z) is isomor-

phic to 0(1)® 2, where 0(1) denotes the line bundle of degree one over Lp.

π is called the twistor fibration, σ the real structure and Lp a twistor line. A complex

subspace X on Z is said to be real if σ(X) = X.

A fundamental theorem of Penrose's twistor theory is that there exists a natural

one to one correspondence between twistor spaces Z of M and self-dual conformal

structures [g] on M [2].

Let TZjM be the vertical C°° tangent bundle with respect to π. The Levi-Civita

connection of corresponding self-dual metric g on M naturally induces a holomorphic

structure on TZ/M When we regard TZ/M as a holomorphic line bundle with this com-

plex structure, we denote it by Kz

 2 . This is called the fundamental line bundle and

satisfies (K~^)®2 ~ K^1 (=the anticanonical bundle of Z) and σ^K~z^ ~ K~^ (bi-

holomorphically). The complete linear system \KZ

 21 is called the fundamental system

and an element of the fundamental system is called a fundamental divisor [19].

Basic examples of compact self-dual manifolds are the Euclidean 4-sphere S4 and

the complex protective plane CP2 with Fubini-Study metric. Their twistor spaces are

the 3-dimensional projective space P3 and some flag manifold F respectively. Hitchin

T h i s work was partially supported by Research Fellowships of the Japan Society for the Promotion of Sci-
ence for Young Scientists.
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[8] showed that these are the only examples of compact Kahlarian twistor spaces. Later,

Poon [18] discovered twistor spaces of 2CP2 (= connected sum of two complex projec-

tive planes) whose algebraic dimensions are three, i.e. Moishezon. Then LeBrun [13]

constructed such twistor spaces of nCP2 (= connected sum of n complex projective

planes) for any n > 0.

In the following, we let Z denote a twistor space of nCP2 (n > 0) for some

self-dual metric g on nCP2, where OCP2 means 5 4 by convention. The fundamen-

tal system played important roles to study algebro-geometric structures of Z [8, 18,

13, 19, 14, 15, 12, 9]. In particular, Pedersen-Poon [14] proved that a real irreducible

fundamental divisor S on Z is non-singular and can be blown-down to P 1 x P 1 pre-

serving the real structure. Moreover, they showed that the resulting real structure TQ

on P1 x P1 is given by (anti-podal map) x (complex conjugate). (The number of times

of the blowing-ups is readily seen to be 2n.) Then it is natural to ask whether the

converse is also true: Let μ : S —• P1 x P1 be a rational surface obtained by 2n-times

blowing-ups preserving the real structure (including the case of infinitely near points).

Then does there exist a twistor space Z of nCP2 which has a real fundamental di-

visor biholomorphic to S ? The purpose of this paper is to obtain partial answers to

this problem by a detailed investigation of the construction by Donaldson-Friedman [4].

(See Remark 2.E.) Our main result is the following:

Theorem 1.1. Let n be any positive integer. Let Co C P1 x P1 be a real

non-singular rational (resp. elliptic) curve of bidegree (2,1) (resp. (2,2)). Then there

exists a set of n points {pi, ,p n } on Co (which may be infinitely near) with the

following property: Let pi G Co (i = 1, , n) be the TQ conjugate point of pi and

μ : S —* P1 x P1 the blowing-up at {pi,p1 ? ,Pn>Pn} Then there exists a twistor

space Z of nCP2 which has a real fundamental divisor biholomorphic to S.

REMARK l.A. Strictly speaking, the blown-up points pi G CO cannot be on some

closed subset Ao on P1 x P 1 . See Proposition 2.1.

REMARK l.B. In the following proof of this theorem, we also show that the

above (Z,S) satisfies H2(θz(-S)) = 0. Hence by the theorem of Horikawa [10], S

is costable with respect to deformations of Z: namely for any real small deformation

5 of 5, there exists a real small deformation Z of the twistor space Z which contains

S as an element of \K~ 2

We recall that an elementary divisor is by definition a divisor on Z whose intersec-

tion number with a twistor line is equal to 1. An interesting property of these twistor

spaces is the following:

Proposition 1.2. Let Co C P 1 x P 1 be a real non-singular curve of bidegree

(2,1) or (2,2) and {pi, ,pn} (n > 4) be any set of points on Co (which may be
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infinitely near). Let μ : S —> P1 x P1 be the blowing-up at {pi,Pi, ,Pn,Pn}

C the proper transform of Co. Let Z be a twistor space of nCP2 and assume that

Z has S as a real irreducible fundamental divisor. Then Z has no elementary divisor.

Further, in case of bidegree (2,1), Z is a Moishezon 3-fold.

Combining these two results, we obtain a negative answer to the question posed

by Pedersen-Poon [15, p.687, Question], which was recently proved by Kreussler [12]

using a completely different method:

Corollary 1.3. For any n > 4, there exists a Moishezon twistor space of nCP2

which has no elementary divisors.

Theorem 1.1 is proved by induction on n, based on the construction of

Donaldson-Friedman [4]. It is easy to see that Theorem 1.1 holds for the case n = 1.

We assume that Theorem 1.1 holds for the case n, i.e. let Z\ be a twistor space of

nCP2 which has a real irreducible fundamental divisor S\ = S as in Theorem 1.1

and let C\ C S\ be the proper transform of Co. In Section 2, using (Z\,S\,C\) we

construct a triple of real normal crossing varieties Z' D S' D C, where S' (resp. C) is

a real Cartier divisor on Z' (resp. S') Then we shall state four propositions (2.2-2.5)

which are necessary to prove Theorem 1.1. Then we will prove Proposition 1.2. In

Section 3, we study deformations of the pair (S', C) and prove Propositions 2.2 and

2.3. Next in Section 4, which is the main part of this paper, we prove Propositions 2.4

and 2.5: i.e. we study deformations of the triple (Z',Sr,C) and show that the triple

(Z', S', C") can always be smoothed to give a twistor space of (n + 1)CP2 of the de-

sired type. To this end, we need a deformation theory of a triple of compact complex

spaces. In the final section, we shall develop this as a natural generalization of the

theory of Ran [20] and obtain natural long exact sequences containing forgetting maps.

ACKNOWLEDGMENT. The author would like to express his gratitude to Professor

A. Fujiki for many helpful conversations and encouragements.

2. The problem and the main construction

Let SO := P1 x P1 be the product of two complex protective lines, (z0 : z\)

(resp. (WQ : wι)) homogeneous coordinates on the first (resp. second) factor, and τr;(i =

1,2) the projection to the i-th factor. We have H2(S0,Z) ^ PicSΌ ~ Z Θ Z. Let

O(a,b) := πJΌ(α) 0 ^ O ( 6 ) denote a holomorphic line bundle over So, where O(k)

denotes the holomorphic line bundle over P1 of degree k. Let τ 0 denote the real

structure on SO which is defined by ((z0 21), (^o : wi)) i~> ((—^Γ : ^o)> (^o ^Γ))

r 0 has no fixed points. Let S 1 := {(u>0 : wι) G P1 | WQ,WI G R} C P1 be the real

circle of the second factor and set Ao := p^"1(S1) c± P1 x S 1 .
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Let Z be a twistor space of nCP2, π : Z —> n C P 2 the twistor fibration and σ the

real structure on Z. Let K z * be the fundamental line bundle over Z. Then Pedersen

and Poon [14] proved the following:

Proposition 2.1. Let S G \K^\ be a real irreducible fundamental divisor. Then

S is non-singular and can be blown-down to So preserving the real structure. The

resulting real structure on SQ is TQ. Let μ : S —> SQ be such a blowing-down map.

Then the blown-up points on SQ are never on AQ. Further, A := μ~1(Ao) is the set of

twistor lines on S, which are parameterized by S1.

We recall that since c\(S) = -\c\(Z) = 8 - 2n [8], the number of times of

blowing-ups is necessarily 2n. We are interested in the quenstion as to whether the

converse is also true:

Question 2.A.ι For any given 2n-times blowing-up μ : S —> So preserving the

real structure, with blown-up points not lying on AQ, does there exist a twistor space

Z of nCP2 which has a real fundamental divisor biholomorphic to S ? 2

Though we could not give a complete answer to this question (cf. Remark 2.E

below), we prove the existence of Z for special types of S. To state our result precisely,

we introduce the following:

DEFINITION 2.B. We say that a non-singular rational surface S is of type (a,b)

if S is obtained by blowing-up So and if any blown-up points on So are on one and

the same irreducible curve Co G \O(a,b)\. (Some or all of the blown-up points are

allowed to coincide, but in such cases the iterated blown-ups are required on the proper

transforms of Co.) We call such S real if the above blowing-ups preserve τ 0 , Co is

real on So, and if the blown-up points do not lie on Ao.

(Although this definition does not uniquely determine the type of a given rational

surface, it is sufficient for our purpose.)

Next we will explain our main construction to prove Theorem 1.1. The notations

given in the following construction will also be used throughout Sections 2,3 and 4.

Let Z\ be a twistor space of nCP2 and assume that there exists a real irreducible

fundamental divisor S± G \KZi

2 \ whose type is (2,1) or (2,2). Let μ : SΊ —» SO be a

blowing-down map as in Definition B and C\ C S\ the proper transform of Co .

^ r o m the differential geometric point of view, this is equivalent to the following: Let M° = P1 x H2 (H2

denotes the upper half plane) and p i , ,pnasetofn points on M°, which may be infinitely near. Let M°
be the complex surface obtained by blowing-up {pi, , p n } Then does there exist a scalar-flat Kάhler metric
on M° which is asymptotically isometric to the standard metric on M° ?

2Of course, the biholomorphic map is required to preserve the real structure.
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Let pi G C\ be any point not lying o n i i \— /x~1(A0). Then there exists a unique

twistor line L\ C Z\ through pi and pγ. Let σι : Z[ —> Z\ be the blowing-up along

L\ and Q\ ~ P1 xP1 the exceptional divisor. Let S[ and C[ be the proper transforms

of Si and C\ respectively and set l\ := <JΪι(pι) and Ii := cr^X(Pi) Then since S\

intersect L\ transversally at p\ and px, σι\S[ : S[ —• S\ is the blowing-ups at {pi,Pχ}

and {/i,/i} are the exceptional curves. Further, we set p[ := l\ ΠC[ and p[ := Ίι Γ\C[.

On the other hand, let Z2 := F := {(a;,/) G P 2 x P 2 * | z G /} ( P 2 * denotes

the dual projective plane) be a flag manifold, which is the twistor space of CP2 with

Fubini-Study metric. We fix any twistor line L2 C Z2 and let {D2, D2} be the (unique)

pair of elementary divisors on Z2 such that D2 Π D2 = L2 (transversal). It is easy to

see D2 ~ Σi ~ ^ 2 , where Σi := P(O{1) Θ O) is the non-minimal Hirzebruch

surface. Let σ2 : Z2 —> Z 2 be the blowing-up along L 2, Q2 the exceptional divisor and

D'2(~ D2),D2(~ D2) the proper transforms of D2,D2 respectively. D2 and D2 are

disjoint and these define disjoint sections l2 and Ί2 of σ2 |Q2 : Q2 —> L2 respectively.

Next, let φ : Q\ —> Q 2 be a biholomoφhic map preserving the real structures such

that φ(l\) = l2 and φ(ί\) — Ί2. (The existence of such an isomorphism is clear.)

Then following Donaldson-Friedman [4] and Kim-Pontecorvo [11], we set

Z1 := Z[ UQ Z2,

S' := S[ UιΊ(D2UD2) = D'2 UL S[ UΊD2.

These are normal crossing varieties obtained by identifying Qi and Q 2 , {hji}

and {12J2} respectively by using φ and φ\{ uj . (Hence we denote Q := Qi,l := k

and Ί := /̂  (z = 1,2).) By construction, Zf has a real structure and it preserves Sr. S'

is a Cartier divisor on Z'. We further proceed as follows: We put φ(p[) =: p2 G /2 and

φ(p[) =: p 2 G 72 and let / 3 p 2 (resp. / 3 p 2 ) t>e t n e fibers of D2 —>• Z2 (resp. D 2 ^^ ^2)

through p'2 (resp.p2) Then we set

cf:=c[ u_(/n7) = /ucjy7.
p',p7 p' p'

It is obvious that C is a Cartier divisor on S1 and is preserved by the real structure on

S'. Thus we obtained a triple of normal crossing varieties Z' D Sf 3 C' which has a

real structure.

As for deformations of the pair (Sf,Cf), we have the following two propositions

which will be proved in Section 3:
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Qι

patching(Qi, l i , l i )

and(Q 2 , l2,ϊ 2 )by Φ
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Proposition 2.2. Let (Sf,C) be the pair of normal crossing varieties as above.

Then the Kuranishi family of deformations of the pair (Sf,Cf) is unobstructed.

Proposition 2.3. Let {S -> B',C -> B' with C ^ S} be the Kuranishi family of

the pair (S', C), where Br denotes a sufficiently small open ball in Tλ

s, c , containing

0.

If t G B' is away from some hypersurface in B' through 0, then the following

hold:

(1) the fibers St of the Kuranishi family are rational surfaces of type (2,1) or

(2,2) according as SΊ is of type (2,1) or (2,2) respectively,

(2)c?(St) = 8-2(n + l),

(3) moreover if t G B' is real with respect to the real structure on Tλ

s, c,, then

St is real in the sense of Definition B.

(See Section 3 for the notation Tλ

s, c , and real structure on it.)

The following condition is necessary for our induction proof of Theorem 1.1 to

work.

Condition 2.C. i ϊ 2 ( Z i , θ Z l ( - S Ί ) ) = 0.

As for deformations of the triple (Z'\S', C"), we have the following two proposi-

tions which will be proved in Section 4:

Proposition 2.4. Let (^i ,SΊ,Ci) be as above and assume that Condition 2.C

is satisfied. Let (Zf\Sf\C) be the triple of normal crossing varieties constructed as

above. Then the Kuranishi family of deformations of the triple {Z'.S'.C) is unob-

structed.

Proposition 2.5. Let {Z -* B,S -> B,C -> B with C <-• S *-> Z) be the

Kuranishi family of the triple (Z',Sf\C), where B is a sufficiently small open ball in

T\, s, Cι containing 0. Ift^Bis away from some hypersurface in B through 0, then

(1) below holds. In addition, if such a t is real, then (2) and (3) below also hold.

(1) Zt,St and Ct are non-singular complex manifolds.

(2) Zt has a real structure σt and (Zt,σt) has a structure of a twistor space of

(n + l)CP 2.

(3) St is a real fundamental divisor on Zt and they satisfy H2(Zt, ΘZt(—St)) = 0.

(See Section 5 for the notation T\, s, c , and also for the Kuranishi family and the

obstruction of deformations of a triple of compact complex spaces.)

Theorem 1.1 are proved by combining these four propositions with the aid of some

observations.

REMARK 2.D. Without considering the curve CΊ, we can show the following:
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Let Z\ be a twistor space of nCP2 with real irreducible fundamental divisor S\.

Let p G Si be any points not lying on A\ (= the set of twistor lines on Si). Let

μ : S[ —> S\ be the blowing-ups at p and p. Then there exists a twistor space Z of

(n + 1)CP2 with real irreducible fundamental divisor S which is a small deformation

ofS[.

The proof of this statement is lengthy but along the same line as that of [11]. So

we omit it. But the author could not prove the stronger version of the above statement

in the sense that the structure of S is biholomorphic to S[. (Of course this immediately

gives the completely affirmative answer to Question 2.A.) This is the reason why we

consider the curve C\.

REMARK 2.E. (1) The complex structure of Z is not uniquely determined even

if the complex structure of fundamental divisor is given, i.e. there is a continuous

family of twistor spaces with biholomorphic fundamental divisors, whereas the rough

geometric structure of Z is determined.

(2) Let Z be a twistor space of nCP2 constructed by LeBrun [13]. Then Z has a

real irreducible fundamental divisor S of type (0,2) except that Co in Definition B is

reducible. Conversely, if Z is a twistor space of nCP2 which has a real irreducible

fundamental divisor of type (0,2), we can easily show that Z is necessarily a LeBrun

twistor space. (In fact, one can use the argument of the proof of Proposition 1.2 below

to reduce to a result of Poon [19, Theorem 3.1].)

(3) Let Z b e a twistor space of nCP2 constructed by Pedersen-Poon [16, Section 7].

Z has an effective action of the 2-dimensional torus Γ 2 . We showed [9] that the T2-

equivariant part of the fundamental system on Z is a pencil and that generic elements

of this pencil are non-singular toric surfaces obtained by T2-equivariant blowing-up of

P1 x P1. Hence Question 2.A is affirmative for some toric surfaces. We may prove

this result also by the method developed in the present paper (i.e. consider the triple

containing the cycle of rational curves), instead of using the Γ2-action.

(4) The existence of Z over nCP2 which has a real irreducible fundamental divisor S

of type (2,1) was very recently proved by Kreussler [12] using very different method.

But the author does not know whether or not twistor spaces constructed in this paper

are biholomoprphic to those in [12].

REMARK 2.F. Let Z be a twistor space of nCP2 which has an effective divisor.

Then the scalar curvature of the self-dual metric on nCP2 corresponding to Z is of

positive type. In fact, if the scalar curvature is of negative type, there is no effective

divisor on Z [5, Theoreme 2]. Further, if the scalar curvature is of type 0, nCP2

must be covered by a scalar-flat Kahler surface [17, Corollary 4.3]. But since nCP2

is simply connected, nCP2 with the complex orientation reversed must admit a scalar-

flat Kahler metric, which is impossible since the intersection form of the 4-manifold is

negative definite. Thus, the scalar curvatures of each self-dual metric of nCP2 which
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we treat is of positive type. So we may use the vanishing theorem of Hitchin [7] for

our twistor spaces.

Proof of Proposition 1.2. Let Z, μ : S -» P 1 x P \ Co C P 1 x P 1 and C (C 5)

be as in Proposition 1.2. Following [14], we decompose S = ( P 1 x if+)~H A I I ( P 1 x

iί~)~. (Here, ( P 1 x H±)~denote n points blowing-ups of P 1 x iΓ^, where H*" denote

the upper and lower half planes. When n = 0, this decomposition is given as follows:

So = P 1 x P 1 = P 1 x (ίf+ I I S 1 II if~) = ( P 1 x ίf+) U ( P 1 x S1) II ( P 1 x i f " ) .

The case n > 1 is similar.)

Let {Ei, ,En,Eι, " , i£n} be the exceptional curves of μ with E ^ ^ = —δ%j,

1 < i,j < n, where we may assume Ei C ( P 1 x ff+)~and £ 2 C ( P 1 x H~)~ Fur-

ther, by using the twistor fibration, we regard ( P 1 x if±)~ (with the complex ori-

entation reversed) as a subset in nCP2 (whose complement is S1) and set αz :=

[Ei] e H2{nCP2,Z) for 1 < i < n. Then {αi, ,α n } is an orthonormal basis

of H2(nCP2,Z).
Let X> be a holomorphic line bundle on Z whose restriction to a twistor line has

degree 1. If V has a non-zero section, the first Chern class of V must satisfy [19,

Lemma 1.9]

_ 1 1 "

4 2 ̂ —^

Then considering the structure of τr|s : S —* nCP2 [14] (π denotes the twistor fi-

braiton), we have

(i) 1

 i = 1 „
= --(μ*O(-2,-2) + ΣEi-

»=1 i = l " i = l

1 " i " _
ι/*^r)/'Ί 1 ^ \ (Λ rr \ W \ (Λ -U rr \ T?

2 = 1 2 = 1

where μ : S —> SQ denotes the prescribed blowing-down map.

Now we claim that if * (2> <g> if | ) = 0 for any i > 0. First, since V ® K%\L ~

V\L ®KI\L - OL(1) (8) O L ( - 2 ) ^ 0 L ( - 1 ) , we have ff°(P(g)ίf|) - 0. Next,

by Serre duality, we have ίf*(2> ® if J ) 2̂  ί f 3 - ^ © - 1 0 if J ) and the right-hand-side
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vanishes for 3 — i = 1 (by the Hitchin vanishing) and 3 — i = 0. Finally, by Riemann-

Roch [8], we have

and hence we also have H1{V®Kl) = 0.

Therefore by the cohomology exact sequence of

0 -• V <g> κ\ -» V -> V\s -• 0,

we have

(2) Hl(V) ~ H^Vls) for any i > 0.

Then in our situation, since we obtain S by blowing-up P1 x P1 on the non-singular

curve Co of type (2,1) or (2,2), H°(V\S) = 0 by the formula (1) and the assumption

that n > 4. Thus by (2) for z = 0, we conclude that there exists no elemetary divisor.

For the Moishezon part, we refer to [12]. •

3. Deformations of the pair

The purpose of this section is to prove Propositions 2.2 and 2.3. Although these

propositions contain statements for the two types of rational surfaces (of type (2,1) and

(2,2)), no independent treatment will be needed except the proofs of Lemma 3.3 and

Proposition 2.3. We use the following notations:

For a compact complex space X,

Ω,χ : the sheaf of Kahler differentials on X,

Θp

x := Eκtv

Όχ (ίlχ, Oχ) : the p-th local Ext-sheaf,

Θx := Θ^ = Hom0χ(Ωχ,Oχ) : the tangent sheaf,

Tp

x := Ext£ χ ( Ω x , Oχ): the p-th global Ext-group,

and for a Cartier divisor Y on X,

Ωχ,y := {a G Ω,χ (g) Oχ(Y) | / dα G Ωx (/ is a local defining equation of

Y in X)}, i.e. Ωχ5y is the sheaf of Kahler differentials on X which have at worst

logarithemic poles along Y,

Θp

xγ :

As for deformations, Tλ

x (resp. T ^ y ) is the Zariski tangent space of the Ku-

ranishi family of deformations of X (resp. deformations of the pair (X, Y)) and T2

X
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(resp. T\ γ) is the obstruction space. In particular, if T\ (resp. T2

X Y) vanishes, the

parameter space of the Kuranishi family is non-singular and the tangent space at the

reference point is naturally identified with Tλ

x (resp. Tι

x Y). Moreover, we have the

local to global spectral sequences:

2 • —

Finally, if T is any Oχ-module, we set T{±Y) := JΓ<S)QX Oχ(±Y) and T\γ :=

F ®θχ Oγ, where 0 χ ( ± y ) denote the invertible sheaves defined by ±Y\

Througout this section, (S', C7) denotes the pair of normal crossing varieties as in

Proposition 2.2.

Proposition 3.1. We have H2(θs,tC,) = 0 and T2

S, c , = 0. In particular, the

Kuranishi family of deformations of the pair (Sf,C) is unobstructed.

To prove this, we need the following two lemmas:

DiθOj for i = l,
Lemma 3.2. v^, fV — Λ Λ

for z > 2.

Lemma 3.3. /ί 2 (Θ~, c,) = 0.

Lemma 3.2 can be proved almost in the same way as in Lemma 5.3 in [9]. So we

omit it. The proof of Lemma 3.3 will be given after that of Proposition 3.1.

Proof of Proposition 3.1. For the first one, we consider the exact sequence

where v denotes the normalization of S'. It is easy to check that the cohomology of

the middle term is isomorphic to the direct sum of each cohomology group. Further,

since Dr

2 ^ Σi and / (resp. /) is a (+l)-sectiόn (resp. a fiber) of Σi —> P 1 , it is

easy to see that H2{ΘD, f+ι) = 0 = H2(θ—, -, -). Then by the cohomology exact

sequence of (3) and the fact that H^θ^-p')) ~ ^ ( O z ( l ) ) - 0, we have
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But we have i 7 2 ( θ c , _, ,. ,7) ~ H2(θq, r,), as is easily shown by the exact sequence
1 > 1 ' ' 1 ' 1

(We recall that / and I are (—l)-curves on 5[ and they intersect C[ transversally.)

Hence, using Lemma 3.3, we get

(6) H2(βs,c,) = 0.

Next we show that T | , c , = 0. Since θ ^ , c , = 0 for % > 2 (Lemma 3.2), the local

to global spectral sequence associated to Tι

s, c , induces a long exact sequence

Now that we have θ ^ , c , ~OιθOj (Lemma 3.2), i ί ^ θ ^ , c,) = 0. Hence by (6) and

(7), we get T2

S, C/=0, as claimed. Π

Proof of Lemma 3.3. We recall that S[ is a rational surface of type (2,1) (resp.(2,2)).

Then it is easy to see that C[ + L (resp. C[) is an anticanonical element on S[, where

L is any irreducible curve of bidegree (0,1). Hence we have

H2(es,(-c[)) -

by Serre duality and the rationality of S[. (Here, for a vector space V, V* denotes

the dual vector space of V.) Then the claim immediately follows from the cohomology

sequence of

0 - Θs ί(-Cΐ) - θs,c, -> θ c , -> 0. D

Let {S -• Bf,C -». B ; with C «-> 5} be the Kuranishi family of the pair (S", C).

By Proposition 3.1, B' can be regarded as a small open ball in Tι

s, c , containing 0.

By (7) and Lemma 3.2, we have the following exact sequence

(8) 0 -+ flrl(θ5/fc) ^ τS',c> ( ^ ίf°(Oz θ Of) - 0.

We note that the real structure on H°(Oι Θ O y ) ^ C 0 C i s given by (z, w) \-+ (w, ~z)

for appropriate coordinates.
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Proof of Proposition 2.3. Let η e B' C T\, c , be any element such that e(η) φ 0

and e(rj) φ 0. Let Δ ' be any non-singular holomorphic curve in T\, c , through 0

whose tangent vector at 0 is η and let {<S|Δ' —• Δ ' , C | Δ ' —• Δ'} be the restriction on

Δ' of the Kuranishi family of the pair (S", C"). What we have to prove is that if we

choose Δ ' sufficiently small, any fiber (5*, C*), t e Δ ' — 0 of this family is a rational

surface of type (2,1) (resp. (2,2)) whose Chern number satisfies c\(St) = 8 — 2(n + 1).

First, the smoothness of St is obvious by the choice of η. Next, we consider the

commutative diagram

rril ηn\
1 S',C ~* λ C

I I

where the horizontal arrows are natural forgetting maps and the vertical arrows are

the maps induced by the local to global spectral sequence. It is easy to see θ ^ , ~

Cp 0 Cp, where Cp (resp. Cψ) denotes the sheaf whose support is p (resp. p) and the

stalk at p (resp. p) is C . It is clear that a is isomorphic. Hence, C is automatically

smoothed if S' is, and Ct (ί G Δ ' - 0) is a non-singular rational (resp. elliptic) curve

since both / and / are non-singular rational curves.

By the assumption on SΊ, we have a birational morphism μλ : S\ —> P1 x P1. We

set μ := μ\ σλ \Sf : S[ —> P 1 x P1 and let m 0 and mf

0 be any curves of bidegree (1,0)

and (0,1) respectively which do not pass through the blown-up points of μ. Let m,mf

be the proper transforms of rao,raό respectively. Then it is clear that m and mf are

stable under any small deformations of S' (in the sense of Kodaira), and that the self-

intersection number of each curve are unchanged. Let mt,m
f

t C St (t φ 0) be such

preserved curves. Then it is obvious that the map μt := Φ | m t |
 x Φ|m' | : St —>• P1 x P 1

is a birational morphism and that μt(Ct) is an element of |O(2,1)| (resp. |O(2,2)|).

Now we claim that Cf = 4 - 2(ra + 1) (resp. 8 - 2(n + 1)). To show this, we

consider the exact sequence

o - θs>(C) - Mosi(c[) Θ σDS(/) e owβ)) -> σ ^ ) e ^(p;) - o,

from which it immediately follows that H^Os'iC')) ~ W{Os^iC^)) for any z > 0.

Further, it is easy to check from Riemann-Roch that χ(0s ' (C{)) = 4 — 2n (resp. 7 —

2n). Hence we have χ{Os'{C)) = 4 — 2n (resp. 7 — 2n). Then by the invariance of

the Euler characteristic under flat deformations, we have χ(Ost(Ct)) — 4 — 2n (resp.

7 — 2n). Therefore, by the exact sequence

0 -* O 5 t - Os t (Ct) - Oσ t(Ct) -* 0,
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we have

= x(Ost(Ct))-x(OSt)
= ( 4 - 2 n ) - l (resp. (7 - 2n) - 1)

= 3 - 2 n (resp. 6 - 2ή)

Then by Riemann-Roch on Ct, we have

( 9 )

= 2-2n (resp. 6 - 2n),

where g(Ct) denotes the genus of Ct. Hence the claim follows.

Next we claim that c\{St) = 8 - 2(n + 1 ) . To see this, following [11], let β : S —•

S[ x C be the blowing-up with center (/i x 0) II (7χ x 0) and we regard 5 as a family

over C in a natural manner. The fiber over 0 is biholomorphic to Sf and all the other

fibers are biholomorphic to S[. Thus, S' can be smoothed to S[. It is clear that the

Chern number of the above St (t G Δ ' — 0) is equal to that of S[. But it is obvious

that c\{S[) = 8 — 2(ra + 1) and hence we have proved the last claim.

Therefore with the aid of (9) and the fact that μt(Ct) C P1 x P1 is bidegree (2,1)

(resp. (2,2)), we have shown that St (ί G Δ ' - 0) is a rational surface of type (2,1)

(resp. (2,2)).

Finally, the claim for the real structure can be proved by using the same technique

of Donaldson-Friedman [4, pp. 225-226]. •

4. Deformations of the triple

The purpose of this section is to study deformations of the triple (Z',S',Cf) which

is constructed in Section 2, depending on the results of Section 5. We shall freely use

the notations in Section 2.

First we will prove the following proposition which will be needed to prove the

unobstructedness of deformations of the triple (i.e. Proposition 2.4).

Proposition 4.1. Let Z\ be a twistor space of nCP2 and Si a real irreducible

fundamental divisor. Let Z2 = F be the flag twistor space, and (Zf,Sf) the pair of

normal crossing varieties, where Z' — Z[ U Z'2, Sf — S[ U (D'2 I I D 2 ) as in Section 2.

Then we have

H3(θz,(-S')) =
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Here we need not assume that SΊ is of type (2,1) or (2,2). For the proof, we need

the following three lemmas which will be proved after the proof of the proposition

itself.

Lemma 4.2. The restriction map

r : HHθz^i-D'z-D'z)) - H\θQ2(-l2-ϊ2))

is surjective.

L e m m a 4.3. i P ( Θ z , Q 2 ( - £ > ί > - D*2)) =0 for i>2.

Lemma 4.4. We have a natural isomorphism:

Wiθ^Q^-Si)) - ^ ( © ^ ( - S x ) ) for any i > 0.

Proof of Proposition 4.1. We have the following exact sequence of sheaves on

Z':

0 - Θz,(-S') -+ i/.(θz ί i Q i(-Sί) θ θ z , Q 2 ( - ^ -D'2))

- > Θ Q H - Z ) - > 0 ,

where v : Z[ II Z'2 —> Z ' denotes the normalization. Since i/ is a finite morphism, it is

easy to show

^(©zi , Q l (-^)) θ W(ΘZ,Q2(-D'2 - D'2))

for any z > 0. On the other hand, it is easy to check that ff*(θQ(-Z -7)) = 0 for

i > 2. Then by Lemmas 4.2, 4.3, 4.4 and the long exact sequence of cohomology

groups induced by (10), we have

for i = 2,3. Further, by Serre duality, we always have H3(θz,(—Sf)) = 0, completing

the proof. Π

In the following proofs of Lemmas 4.2 and 4.3 we write F and F' for Z 2 and Z2

respectively and omit the subscript 2 for simplicity.
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Proof of Lemma 4.2. We have the following exact sequence of sheaves on F':

(11) 0 -> Θ F , ( - Q - D'-D1) -> Θ F , Q{-D' -Dr) -> Θ Q ( - / " 0 - 0.

We note that r is induced by the third arrow of this sequence. Hence we have only to

show that H2(ΘF, (-Q - D' - Ί?)) = 0.

We consider the exact sequence

(12) 0 -+ Θ F , ^ σ * θ F -> OQ(1,1) -> 0

(Here, the cokernel of σ* is naturally isomoφhic to Θ Q ,L <S> OQ(—1), where θ g ,L

denotes the relative tangent sheaf associated to Q —• L and OQ(—1) denotes the tau-

tological line bundle over Q, which is isomorphic to the normal bundle of Q in F'.

Further, it is easy to see that Θ Q / L ~ Og(2,0) and O Q ( - 1 ) ^ O Q ( - 1 , 1 ) , where

O Q ( 0 , 1) denotes the pullback bundle of the hyperplane bundle over L. Hence we

/

On the other hand, we have the following isomorphisms of sheaves:

Θ F ,(-Q - D' - D') ~ σ * θ F ( - D - D) 0 OF/(Q),

C - S')IQ - OQ(-l - Ί) = Og(-2,0),

Then by tensoring Op>(—Q — D' — D) with (12) and using the above isomorphisms,

we get the exact sequence

0 -> Θ F , ( - Q - £>' - ΰ ' ) -f σ * θ F ( - £ > - S ) ® O F ' ( < 3 ) -* OQ -+ 0.

Taking cohomology of this exact sequence, we get

(13) H2(ΘF,(-Q - £>' - ΰ')) ~ H2(σ*θF(-D - D) ® CF'(<9))

On the other hand, by the Leray spectral sequence for σ, it is easy to show that

(14) iP(F', σ*θF(-D - D)

for any i > 0. Now since D + ~D € |

i ί 2 ( θ F ( - £ » - D ) ) -
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_ i i

by Serre duality. But since KF

2 is ample, ^(flp ® KF) = 0 by the Akizuki-Nakano

vanishing and hence we have H2(ΘF(—D — D)) = 0. Therefore, by (13) and (14) we

obtain H2(ΘF,(-Q - Df - D*)) = 0. Π

Proof of Lemma 4.3. By considering the exact sequence

0 -> ΘF,Q ^ σ * θ F -> σ*7VL/F -> 0

and checking that iΓ(σ*iVL / j F) ~ iΓ(JV L / F ) = 0 for any i > 1, we have H^(βF, Q)

~ Hi(σ*θF) for j > 2. But by the Leray spectral sequence, we have H^(σ*θF) ~

Hj(θF) for any j > 0 and the latter vanishs for j > 2. Hence Hj(QF, Q) = 0 for

j > 2. Then considering the exact sequence

5 ' -^ ΘF>,Q - ^ ' / F ' θ i V 5 7 F , - 0,

(which is valid since Q, D' and D intersect transversally) and checking that

H^NDI/F') = 0 = H^N^/p,) for any 1 < i < 3, we get

(15) ffi(θF'Q+D'+ir) - HJ&F»,Q) = 0 for j > 2.

Finally, checking that ί f*(θ D / } i ) = 0 = &(&—, Ί) for any z > 1 and using (15) and

the cohomology exact sequence of

o _ θ F , Q ( - ^ - B') -> θ F , Q + D / + _ , - θ D , ι f θ θ_, > 7 -, o,

we have H^θp, Q(-Df - T>')) = 0 for i > 2. •

Proof of Lemma 4.4. Tensoring (9 Z /(-5() ~ σ*Oz1(—Sι) with the exact se-

quence 0 —> θ z , -> σ * θ Z i —> O Q ^ I , 1) -> 0 (cf. the proof of Lemma 4.2), we get

an exact sequence of sheaves

0 -> Θz,(-S[) -> σ * ( θ Z l ( - S i ) ) - O Q l ( l , -1) - 0.

(Here, we use the fact that OZ'1(-Sf

1)\Ql ~ OQl(-l - 1 ) = O Q ^ O , -2).) Considering

the cohomology exact sequence of this sequence and the Leray spectral sequence, we

have

(16) Hi(θz,(-S'1))^Hi(θZi(-S1))
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for any i > 0. On the other hand, we have an exact sequence

o - θ

zί,Ql(-s[) - ΘZ, (-si) - oQl(-h -i) - o.

Then the associated cohomology sequence of this and (16) imply the desired isomor-

phisms. •

Next we show the unobstructedness of deformations of the triple (Z7, £', C").

Proposition 4.5. Let (Zi,SΊ) and (Z',Sf) be as in Proposition 4.1. Assume

further that S\ is a (real) rational surface of type (2,1) or (2, 2). Then we have

H2(θz, sf c) = 0 and T\, s, Cr = 0. (See Section 5 for the notations.) In particu-

lar, the Kuranishi family of deformations of the triple (Z',Sf ,C) is unobstructed.

Proof. First we show that

OQ i = 1,
Z',Sr,C — {

It is obvious that the assumptions of Proposition 5.6 are satisfied and hence we imme-

diately get the first one (i.e. the case i = 1). For i > 2, by Proposition 5.5, we have a

long exact sequence

(17) —> θ ^ / ( — S f ) —> Q ι z ' , s ' , c ~* ®%S',C' ~^ ® z ' ( ~ S ' ) - + • • • •

We recall ([4] and Lemma 3.2) that

U z / ~ { 0 i > 2, Us'>c' ~ \ 0 i > 2.

Hence by (17), we have θ ^ , 5 , c , = 0 for any z > 2.

Next we show that H2(θz, s, c,) = 0. It is easy to see that the restriction map

®z',S',c ~^ ®S',c ^s surjective. Hence by (17), we have a short exact sequence

(18) 0 -> θ z , ( - 5 0 -> Θ z , j 5 , c , - , θ 5 , j C , - , 0.

Then by Proposition 3.1, it suffices to show that H2(QZ,{—S')) = 0. But this is an im-

mediate consequence of Proposition 4.1 and Condition 2.C. Hence we have H2(θz, s,

c)=0.

Finally, let us consider the local to global spectral sequence for Tτ

z, s, c,. Now

since we have θι

z, s, c , = 0 for i > 2, we get a long exact sequence

(βz,S',c) ~^ Tz,s,c, -^ H {Qz, s, c,) -^ H (θ z, s, c,)

T 1 22

z',s',cr
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Hence, since θ ^ , s, c , ~ OQ and H2(θz, s, c,) = 0, we have T\, s, c , — 0. •

The following diagram is a key to prove Proposition 2.5 and Theorem 1.1.

Proposition 4.6. We have the following commutative and exact diagram:

0

1
,(-S')) -> 0
I
S'),CV)^ 0
I
- l - l ) ) - > 0
I
o

Proof. The first (resp. third) row is obtained by the cohomology sequence of

(18) (resp. (17) for i = 1) and Proposition 4.5. The second row is obtained by using

Propositions 5.5 and 4.5. Next, since S' is a Carrier divisor on Z', we have

0

1

1

1
0

0

1

ί
z ,s ,c

- H°(OQ) ->.

1
0

0

1

1

1

1
0

, | θ ^ ( - = 0,1,
i > 2 .

Hence we have # ° ( £ t f H ί M S ' ) , ^ ' ) ) ^ H°(OQ(-l-Ί)) = 0. Then the local to

global spectral sequence associated to Extι(Ωzf(S'),Ozf) and Proposition 4.1 induces

the first and forth columns.

Finally, the second (resp. third) column is induced from the local to global spectral

sequence associated to Tι

z, s, c , (resp. Tι

s, c,) and Proposition 4.5 (resp. 3.1). The

commutativity of the diagram follows from the naturality of the construction.

(As was shown in the proof of Proposition 2.5, we have H2(θz,(—S')) — 0 under

Condition 2.C. So in such a case, we have Ext 2(ΩZ/(5 /),C )z0 - Hλ(OQ(-l -I))

Proof of Proposition 2.5. Let ξ G T\, s, c , be any element whose image in

H°(OQ) is non-zero in the above diagram. Let Δ C Tι

z, s, c , be any holomorphic

curve through 0 whose tangent vector at 0 is ξ and let { ^ | Δ —* Δ,«S|Λ —• Δ , C | Δ ~^

Δ} be the 1-dimensional family obtained by restricting the Kuranishi family of the

triple (Z', S", C"). Then by the choice of ξ, the fiber Zu t e Δ - 0 is a non-singular

3-fold if we take Δ sufficiently small. Next, put η := g(ξ) G Tλ

s, c,. Then by

the commutativity of the diagram in Proposition 4.6, η is mapped to an element of



660 N. HONDA

H°(Oι θ Oj) whose components are both non-zero. Hence, since the Kodaira-Spencer

class of Sf —> Δ is η (up to a non-zero constant), St of the fiber is non-singular if

t G Δ — 0. Similar argument using the commutative diagram in the proof of Propo-

sition 2.3 shows that the fiber Ct of C —> Δ is non-singular if t G Δ - 0. Thus

(Z t, St, Ct) is a triple of complex manifolds.

Next, assume that the above ξ is a real element and Δ is a real curve in addition

to the above condition. Then the family {Z\A —• Δ,«S |Δ —• Δ , C | Δ —> Δ} has a real

structure and Z* has a real structure of twistor space of (n + 1)CP2 by Donaldson-

Friedman, so long as t G Δ — 0 is real and Δ is sufficiently small. In this situation, St

becomes a fundamental divisor on Zt as remarked in [9].

Finally, by Proposition 4.1 and Condition 2.C, we have H2(ΘZ,(-S')) = 0. Then

by upper semi-continuity, if we take Δ sufficiently small, we have H2(ΘZt(—St)) — 0.

Thus we have completed the proof of the proposition. •

Finally, we prove our main theorem, the statement of which can be restated as

follows by using the type of rational surfaces (Definition 2.B):

Theorem 4.7. For any positive integer n, there exists a twistor space Z of nCP2

which has a real fundamental divisor S of type (2,1). The same assertion also holds

for a rational surface of type (2, 2).

In the following proof of the theorem, we further prove that the above (Z, S)

satisfies Condition 2.C (i.e. H2(ΘZ(—S)) = 0) in addition to the above claims. (This

is necessary for our induction proof to work.)

Proof. We prove that the theorem and Condition 2.C hold by induction on n.

First we consider the case n = 1. Let S be a real fundamental divisor on F, which is

the twistor space of CP2. Since S is a two points blowing-up of P1 x P 1 , it is clear

that S is of type (2,1) and also of type (2,2). Further we have H2(ΘF(-S)) = 0 as in

the last part of the proof of Lemma 4.2. Thus we have shown the claim for the case

n = l.

Next we assume that the statements for the case n: i.e. let Zγ be a twistor space of

nCP2 and assume that Z\ has a real irreducible fundamental divisor Si of type (2,1)

(resp. (2,2)) and that Condition 2.C. is satisfied. Then by Proposition 2.5, there exists a

twistor space Zt of (n+l)CP2 which has a real irreducible fundamental divisor St and

they satisfy H2(ZU ΘZt ® (St)) = 0. Further by the proof of Proposition 2.3 and by

virtue of the commutative diagram of Proposition 4.6, g(t) G T\, c , is not lying on

the hypersurfaces of Proposition 2.3. Hence by Propositon 2.3, St is a (real) rational

surface of type (2,1) (resp. (2,2)). Hence the case n +1 is proved. Therefore the claims

of the theorem follow for any n > 1. •
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5. Deformation theory of a triple of compact complex spaces

In this section, we shall discuss a deformation theory of holomorphic maps X —>

Y -̂ > Z, where X, Y and Z are reduced compact complex spaces. The following

construction is similar to that of Ran [20], where he considers a deformation theory

of a holomorphic map / : X —+ Y. First we will work on a homologically-algebraic

category.

Let R, S and T be commutative rings and φ : R —• S,ψ : S —> T ring homomor-

phisms. We define a non-commutative ring ΊZ by

r G R

si,s2 e S

where the multiplicative structure is given by

0

tx t2

rr'

s2s
f

2

0

0

Let C be the category defined as follows:

The objects of C are quinteplets

{A -U B —» C I A : JR—module, B : 5—module, C : T—module, 7 : φ—hom.,

5 : ^—hom.}

and the morphisms of two objects A -^ B -^ C and A! ^ B' —> C of C are triples

{a : A -> A' : β-hom., β : B ^ Br : S-hom., and 7 : C -> C" : Γ-hom.}

such that the diagram

(20)

A'

B

βi

B'
δ'

C

7 l

σ

commutes. On the other hand, let C be the category of left 7^-modules. Then C and

C are naturally equivalent:
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For any given object {A
7^-module structure by

B A C} of C, we define o n i θ β θ C a left

ra
+ s2b

t1δ(j{a))+t2δ{b)+t3c

Let {α,/3,7} be a morphism from A -ί+ B -> C to A' -U B' -> C. Then we
associate (α, /3,7) : i 0 5 0 C -> i ' 0 5 ' 0 C to {a, β, 7}. (α, /?,7) is readily seen
to be a morphism of C by using the commutative diagram (20).

Conversely, if E is a left 7 -̂module, we set

E, B:= E, C:=

δ:=

Then {A -^ B —• C} becomes an object of C. If Φ : E —• E" is a homomoφhism
of 7^-module, then Φ naturally induces homomorphisms A ^ A!,B ^ B' and C —>
C as R, S and T-modules respectively. Further, it is easily verified that the above
correspondences are mutually converse. Thus, we have seen the equivalence of C and
C.

Let
define

Ίj
Cj (j = 0,1) be given objects of C. Then for any i > 0, we

Ext4((71, £1), (70, <So)) := CUAO θ Bo 0 Co),

where the right-hand-side is the usual Ext-group of 7^-modules.
Next we apply these algebraic constructions to a deformation theory of holomor-

phic maps X —> Y -^ Z, where X, Y and Z are reduced compact complex spaces.
Associated to these objects, we firstly define the Grothendieck topology G = G(f,g)
as follows ([1, 20]): the open sets of G are the triples (W, V, U) where [ / C I , y c y ,
and VF C Z are open sets satisfying /(£/) C V and ^(V) C W. We then define the
non-commutative structure sheaf OQ by

r G
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with the obvious multiplicative structure using the pull-backs of holomorphic functions.

The above equivalence of categories is naturally generalized to the equivalence of

the category of left OQ -modules and the category

{ f g i f , g*H-^θ \T : (9χ-module, Q : Oy-module, H : (9z-module,

7 : Oχ— horn, δ : Oγ— horn.}

(The morphisms of the last category is defined in the obvious ways.)

Then using pull-backs of Kahler differentials and holomorphic functions, we define

Q)g := £tf£σ(Ω z 0 Ωy 0 Ωχ,0z Θ OY 0 Oχ),

T)g := Ext£G(Ωz 0 Ωy 0 Ω x , Oz 0 Oγ 0 Oχ).

If both / and g are embeddings, we write

f,g Z,Y,X"> f,g Z,Y,X'

Then analogous to [20, Proposition 3.1], we have the following:

Proposition 5.1. Let X —• Y -̂ > Z be as above. Then the versal family of

deformations ofX^Y—>Z exists. The Zariskί tangent space at the reference point

of the parameter space is naturally identified with T^ g and the obstruction space is

T2fg. In particular, if T2fg = 0 then any first order deformation of X -^ Y -^ Z can

be extended to an actual deformation.

The rest of this section is devoted to prove Propositions 5.5 and 5.6 below. In the

following, we assume that both / and g are embeddings and Y is a Cartier divisor on

Z. If X is a topological space, 0χ denotes the zero-sheaf on X.

f 9

Lemma 5.2. Let X^-+ Fc—• Z be as above, (G, OQ) the associated Grothendieck

topology and the structure sheaf, and (G',OG') the Grothendieck topology and the

structure sheaf associated to X <-^Y (cf [20]). Then for any % > 0, there exist canon-

ical isomorphisms:

θ Ωy θ Ω x , Oz θ O y θ Oχ) ~ EXVΌGI (Ωy θ Ω x , Oγ θ

z 0 Ωy 0 Ω x , Oz 0 Oγ 0 Ox) ~ Extj,σ/ (Ωy 0 Ω x , Oγ 0 Ox).
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Proof. Let 0 -* Oz Θθγ Θθx ^ J7' be an injective resolution of OzθOyΘ

Oχ as an OQ-module which exists globally. By the above equivalence of categories,

each Tn, n > 0 can be written as

where ln,Jn and /Cn are Oz,Oγ and Oχ-modules respectively and we have homo-

moφhisms

7 : 1 \γ —• J/ and ό : ŷ |χ —> /C

such that the following diagrams commute:

in\γ -> τ n + 1 | y ^ n U -> ^ n + Ί χ

Then each Jn 0 /Cn, n > 0 is an injective 0G/ -module. In fact, let 0 -> 57 0

^ , (μ^) ^ φ /j- b e a n y e χ a c t s e q U e n c e of £)G,-modules and (μ\βr) : 5 ' θ f ->

J7n 0 /Cn any homomorphism of OG

f -modules. Then the sequence 0 —> 0z θ 5' 0

T ; ^ ^ 0^ 0 <S 0 T is clearly an exact sequence of ΌG -modules and the map

(0, a', β') : 0 0S' 0 T -+ ln 0 Jn 0 /Cn is easily seen to be a homomorphism of OG-

module. Hence by the injectivity of ln Θjn 0/Cn, there exists an OG-homomorphism

( 0 , α , / 3 ) : 0 θ ( S θ T - ^ Γ θ J n θ / C n such that

Then (α, yS) : <S 0 T —> J7n θ /Cn is the required homomoφhism of O^'-modules.

Therefore, the exact sequence

(21) 0 -+ OY θ Oχ -• J ° θ /C° -> J 1 θ /C1 ->

is an injective resolution of Oγ(&Oχ as an ΌQ1 -module. Then the required long exact

sequences of the lemma follow if we note that there exists canonical isomorphism

HomθG(0ΘΩγΘΩXiT Θ J Θ/C) ~HomoG,(ΩγΘΩχ,J' Θ/C)

and the same for Horn. •

Lemma 5.3. Let (G, OG) and (G r, OG>) be as in Lemma 5.2 and V θ QθΊl

a projective OQ-module. Then V,Q,ΊZ and Q(B1Z are projective Όz , Oγ, Oχ and

OQ' -modules respectively.
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Proof. First we show that V is a projective (D^-module. We consider the diagram

V
la'

T -> r -> o,

where T —> T' —• 0 is any exact sequence of Oz-modules and a' is any homomor-

phism of Oz -modules. Then the naturally induced map . F 0 0y Θ 0χ —> J 7 ' 0 0y Θ 0χ

(with the obvious Oz-module structures) is clearly a surjective homomorphism of OQ-

modules and

(α ;, 0,0) : P Θ β θ 71 -> T' 0 0y θ 0χ

is a homomorphism of (^-modules. Hence by the projectivity of V Θ QΘΊZ, there

exists (a, 0,0) : V 0 Q 0 7£ -> ^* 0 0y 0 0χ which makes the diagram

( α , 0 , 0 ) / I (α ;,0,0)
- > 0

commute. Then a : V —> Ĵ 7 is the required homomorphism.

Next we show that Q is a projective Oγ -module. Let

β

0 ^ ^ -^ 0

be any exact diagram of Oγ-modules. We regard V θ Q' θ 0χ as an C^-module by

the commutative diagram

V\γ = V\γ

δ I le':=β'δ

Q £ G\

where δ is the given 0y-homomorphism. Then

(id, /?', 0) : V θ β 0 U -> P 0 5X 0 0χ

becomes a homomoφhism of O^ -modules by the commutativity of the above diagram.

On the other hand, since we have seen that V is a projective Oz-module, there exists
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an Oy-homomorphism e : V\γ —• G such that the diagram

V\γ
el \ef

G Λ G' -> 0

commutes. Then

(id, π, 0) : P Θ G θ 0χ -> P θ G' θ 0χ

is easily seen to be a surjective OG-homomorphism, where we regard V 0 G θ 0χ as

an (De-module by using e. Thus we get the following exact diagram of θG?-modules:

(id, τr,O) |(id,/?',0)
G θ 0χ — ^ θ ^ θ O x -> 0.

Hence by the projectivity of V θ Q θ ΊZ, we have a homomorphism (id, /?, 0) : P θ

QθΊZ^VθGΦOx such that (id,π,0) (id,/3,0) = (id,/?',0). Then β is the

required homomorphism. Thus we have proved that Q is a projective CV -module. The

remaining claims are proved in a similar way. Π

Lemma 5.4. In the situation of Lemma 5.2, there exist the following canonical

isomorphisms for any i > 0:

JΩz θOyθ 0χ, Oz ΘθγΘ Oχ) ~

JQz Θ O y θ 0χ, Oz ΘOYΘ Oχ) - z

Proof. We first consider the following exact sequence of ΌQ-modules:

(22) 0 -> Oz(-y) Θ O y θ O χ ^ O z θ O y θ O χ - 4 θ y θ 0 y θ O χ ^ O .

(Here, we note that since the diagram

0 -+ Oz(-Y) - Oz

I I
Oy ~* Oy

commutes, the second arrow of (22) is a homomorphism of OQ-modules. On the other

hand, the 0G-module structure of Oγ θ Oγ 0 Oχ is given by id : Oγ —> Oy and the



DONALDSON-FRIEDMAN CONSTRUCTION 667

restriction of holomorphic functions.) It is easy to show that for any i > 0, there exist

canonical isomorphisms

(23) εxt^G{Ωz ΘOy Θ0x,Oz(-Y) θ θ y ΘO X ) ~ & f £ z ( Ω z , σ z (

and

(24) Extέ G (Ω z φ 0y θ 0χ,Oz(-Y) φ O y θ 0 x ) ~ Ext£ z (Ω z , O z

Now we show that

(25) Sxtl

Oo (ΩzΘ0γΘ0χ,OγΘθγΘθχ)=0

for any i > 0. Let

be a projective resolution of Ω z θ 0y 0 0χ which exists at least locally. An element

of

εχtι

θG(Ωz e o y θ θχ, θγ e e y e e>x)

is represented by α^ : V% —> Oy,A : Qi —>• Oy and 7̂  : ΊZi -^ Oχ such that the

following diagrams commute

OLi\Y\ ϊβi βi\xi ΪΊi
Oγ = Oγ, Oχ = Oχ

and satisfying α i + i ft+i = 0, βi+1 9 + 1 = 0 and ηi+1 d"+1 = 0. (These are cocycle

conditions.) Then noting that Q. θ ΊZ. -+ 0y θ 0χ —> 0 gives a projective resolution of

0yθ0χ as an OG/-module by Lemma 5.3 and hence 0 —> HomoG, (Q. θ 7 .̂, Oy θ Oχ

is an exact sequence, there exist /%_! : Q^_i —• Oy and 7^-1 : 7^i_i —> (9χ such that

the following diagram commutes:

Qi\x —> ^

βi-i\x/ \Ίi-i

Qi-i\x — > Tl
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Then we have the following diagram

<*i\γ\ / βi

diWi OY I %

\βi-l

Vi-xW ^ Qi-x

with d[' ψi = ψi-ι ($i|y), θίi\γ = βi-ψi and βi — βi-\ d[. Now we set oti-\ :=
βi-ι ^i-i. Then we have

<Xi-i (di\γ) = βi-i - ψi-i (di\γ) = βi-ι - d[ ^ = βi ψi = oti\γ.

Therefore, if we let a^_i also denote the naturally induced map Vi-\ —> Oγ, we have
on = oίi-i-di. This means that (ai-i,βi-ι,ηi-\) gives an UG-homomorphism Vi-ιΘ
Qi^eKi-i ^OYΘθYΘθχ with (α,,A, 7 i) = (a^u A-i,7z-i) ( f t ,^ ,^ 7 ) .
which implies that

[(α<,/3i,7i)] = 0 G & 4 G ( Ω ^ Θ Oy θ 0χ, Oy θ O r θ Oχ).

Thus we have shown that (25) holds. Then the local to global spectral sequence shows
that

(26) Ext£G (Ωz Θ O y θ O χ , O y θ O y θ Ox) = 0

for any i > 0.
Therefore by (25), the long exact sequence of local-Ext's associated to (22) and

isomorphism (23) induces the isomorphism

for any i > 0 and by (26), the long exact sequence of global-Ext's associated to (22)
and isomorphism (24) induces

~ Ext*Oz(Ωz,Θz(-Y))
~ Extέ z(Ω z(y),σ z).

for any z > 0. •
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Proposition 5.5. Let X, Y and Z be compact complex spaces and f : X <->

Y,g:Y^Z closed embeddings and assume that Y is a Cartier divisor on Z. Then

we have the following two long exact sequences:

(27)

z ) , Oz) - T\γx -> T\x z

Proof. We consider the following short exact sequence of OQ-modules:

Then the required exact sequences immediately follow from this and Lemmas 5.2 and

5.4. •

Finally, we prove a proposition which is needed in Section 4. Let Z\, Z 2 be com-

pact complex manifolds of dimension n and Wi C Zi (i = 1,2) be irreducible non-

singular divisors. We assume that there exists a biholomorphic map φ : W\ —» W2 and

let Z = ZiUφ Z2 be the normal crossing variety obtained by identifying W\ and W2

by φ. Let Y$ C Z^ (i = 1,2) be irreducible non-singular divisors which intersect Wi

transversally and assume that φ induces a biholomorphic map between W\ Π Y\ and

W2 Π Y2. We set y := Fi U Y2. Further, we suppose that Xι (i — 1, 2) are irreducible

non-singular divisors on Yi, X{ intersect WiΠYi trans versally and φ induces a biholo-

morphic map between X\ Π W\ and X2ΠW2. We set X := Xi U X2. We get a triple

of normal crossing varieties Z D Y D X.

Proposition 5.6. Under this situation, we have Q ι

z γ χ — θλ

z. (The right-hand-

side is isomorphic to NWl/Zl ® NW2/z2 [4].)

Proof. We prove this isomorphism by explicitly giving a projective resolution of

Ω^ 0 Ωy 0 flχ as an Oc-module. Let p e W\ ~ W2 be any point. Then in a

sufficiently small neighborhood of p, Z, Y and X can be written as

Z = {(zi, , zn+1) EUC Cn+1 I Zlz2 = 0},

Y = {(ZU , Zn+1) βUC C - + 1 I ZlZ2 = ^n+1 = 0},

X = {(*!, . . , Z n + 1 ) G ί / C C - + 1 I Z!Z2 = Zn = Z n + 1 = 0},

where (zι, - ,^n+i) are coordinates on Cn+1 and ί7 is a sufficiently small open

neighborhood of 0 in Cn+1. Then the sequence

0 -> I z / 2 | 0Ty/T^ 0 T χ / J i ^ Ωc/lz 0 Ωt/ly 0 ςiu\χ
(2o)

-> ΩZ 0 Ωy 0 Ω X -* 0
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is easily checked to be an exact sequence of 0G-modules, where Tz,Ίγ and 2χ de-

note the ideal sheaves of Z, Y and X in U respectively. (Here, OQ -module structures

on each sheaf are given in natural ways.) Further, both ΩJJ\Z 0 Ωjj\γ θ Ωfy|χ and

X^/2fΘJy/2y φIx/Xx are projective ©G-modules. In fact, since ΩJJ is isomorphic

to O ( / e ( n + 1 ) , we have

(29) Ωu\z 0 ΩU\Y θ Ωu\x ~ jr®^ 1),

where we put ^* := 0 Z θ Oγ 0 <9χ for simplicity. Hence Ωu\z θ Ω[/|y θ Ω[/|χ is a

projective Oo-module because OQ (which is of course a free C^-module) has J a s a

direct summand. On the other hand, we have an isomorphism

(30) ϊ z / 2 | θ Xy IX\ θ Xχ/Xi - J θ ( O Z θ O y θ 0 χ ) θ ( O z Θ O y θ O χ )

as C^G-module, where the Oc-module structure on the right-hand-side is given by re-

stricting holomorphic functions. (If one embeds Xz/^| θZy/Zy Θlχ/Iχ in Ωu\z θ

Ω[/|y θΩjr/|χ, the above isomorphism (30) is explicitly described as follows: We have

isomorphisms

Iz/I2

z c- Oz(z1dz2 + z2dz1),

XYIX\ - Oγ(z1dz2 + z2dz1) 0 Oy(d2?n+i),

Xχ/X2

x ~ Ox(z1dz2 + z 2 ^i ) θ Ox{dzn) θ

Then the isomorphism (30) is given by the following isomorphisms:

T ~ Oz{zχdZ2 4- 2?2d2?i) θ (9y(zidZ2 + ̂ 2 ^ l ) θ

0zθOYΘθχ~0zθ Oγ(dzn+1) θ Ox(dzn+1)

0z 0 0y 0 Oχ ~ 0z θ Oy 0

Then since the right-hand-side of (30) is isomoφhic to OG, Tzβ\ ®Zγ/Iγ

is also a projective Oc-module.

Therefore, (28) gives a projective resolution of Ωz 0 Ωy 0 Ωx as an O

On the other hand, the exact sequence

0 -> J z / 2 | -^ Ωu\z -+ Ω z -> 0

is clearly a projective resolution of Ωz as an Oz-module. Then by definition of Ext1,

we have only to prove that the cokernel of the natural map

HomoG(Ωυ\z 0 Ωv\γ 0
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is canonically isomorphic to the cokernel of

(32) HomOz(Ωu\z,Oz)

In fact by (29),we have

and the latter is easily seen to be isomorphic to Homoz{Oz,Oz) n , which is

canonically isomorphic to Homoz(Ωu\z,Oz). On the other hand, by (30), we have

ΘHomθG ( 0 z

@HomθG ( 0 z

Oγ, Oγ) θ 7-fomOχ(OX,OX)

and it is obvious that the map (31) is surjective on HomoY (Oγ, Oγ)θ Homox (Oχ,

Oχ)-factors. Further it is obvious that under the above isomorphisms, the map (31)

and (32) are naturally identified. Thus we have proved the required isomorphism. •

/ 9

REMARK 5.A. Let X -̂> Y -̂> Z be as in Proposition 5.5 and further assume

that X is a Carrier divisor on Y. Then it is actualy desirable to show the existence of

the follwoing exact sequences:

(33) -.. -> θ Z ϊy ι X - Θ^Y - εxthx{τxlγ/τ2

x/γ, θχ)

and

(34) > Tl

ZY^ -* T^γ - . Ext^χ (Ix/γ/I2

χ/γ, Ox)

where Xχ/y denotes the ideal sheaf of X in F . In fact, Proposition 5.6 easily follows

from (33).

REMARK 5.B. The local to global spectral sequence exists even if the structure

sheaf is a sheaf of non-commutative ring, as proved by Grothendieck [6, Theoreme

4.2.1].
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