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1. Introduction and statements of the results

Let Z be a three-dimensional complex manifold and M a (real) oriented four-
manifold. Z is said to be a twistor space of M if there exist a C*®°-map 7 : Z — M
and a fixed point free anti-holomorphic involution ¢ : Z — Z such that the following
conditions are fulfilled:

(1) w gives Z a C* S2%-bundle structure over M. The fiber L, := m!(p) for any
p € M is a complex submanifold of Z (which is biholomorphic to the complex projec-
tive line P1),

(2) o preserves each L, and the automorphism on M induced by o is the identity,

(3) for any p € M, N L,/Z (= the holomorphic normal bundle of L, in Z) is isomor-
phic to O(1)®2, where O(1) denotes the line bundle of degree one over L.

w is called the twistor fibration, o the real structure and L,, a twistor line. A complex
subspace X on Z is said to be real if 0(X) = X.

A fundamental theorem of Penrose’s twistor theory is that there exists a natural
one to one correspondence between twistor spaces Z of M and self-dual conformal
structures [g] on M [2].

Let Tz/p be the vertical C* tangent bundle with respect to 7. The Levi-Civita
connection of corresponding self-dual metric g on M naturally induces a holomorphic
structure on T'z/5,. When we regard Tz, as a holomorphic line bundle with this com-

1
plex structure, we denote it by K, *. This is called the fundamental line bundle and
satisfies (K 5%)‘82 ~ K,' (=the anticanonical bundle of Z) and o*K 5% ~ K;% (bi-

holomorphically). The complete linear system |K ;%| is called the fundamental system
and an element of the fundamental system is called a fundamental divisor [19].

Basic examples of compact self-dual manifolds are the Euclidean 4-sphere S* and
the complex projective plane CP? with Fubini-Study metric. Their twistor spaces are
the 3-dimensional projective space P2 and some flag manifold F respectively. Hitchin

*This work was partially supported by Research Fellowships of the Japan Society for the Promotion of Sci-
ence for Young Scientists.
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[8] showed that these are the only examples of compact Kahlarian twistor spaces. Later,
Poon [18] discovered twistor spaces of 2CP? (= connected sum of two complex projec-
tive planes) whose algebraic dimensions are three, i.e. Moishezon. Then LeBrun [13]
constructed such twistor spaces of nCP? (= connected sum of n complex projective
planes) for any n > 0.

In the following, we let Z denote a twistor space of nCP? (n > 0) for some
self-dual metric g on nCP?, where 0CP? means S* by convention. The fundamen-
tal system played important roles to study algebro-geometric structures of Z [8, 18,
13, 19, 14, 15, 12, 9]. In particular, Pedersen-Poon [14] proved that a real irreducible
fundamental divisor S on Z is non-singular and can be blown-down to P! x P! pre-
serving the real structure. Moreover, they showed that the resulting real structure 7
on P! x P! is given by (anti-podal map) x (complex conjugate). (The number of times
of the blowing-ups is readily seen to be 2n.) Then it is natural to ask whether the
converse is also true: Let pu: S — P! x P! be a rational surface obtained by 2n-times
blowing-ups preserving the real structure (including the case of infinitely near points).
Then does there exist a twistor space Z of nCP? which has a real fundamental di-
visor biholomorphic to S? The purpose of this paper is to obtain partial answers to
this problem by a detailed investigation of the construction by Donaldson-Friedman [4].
(See Remark 2.E.) Our main result is the following:

Theorem 1.1. Let n be any positive integer. Let Co C P! x P! be a real
non-singular rational (resp. elliptic) curve of bidegree (2,1) (resp. (2,2)). Then there
exists a set of n points {p1,--- ,pn} on Co (which may be infinitely near) with the
following property: Let p; € Cp (i = 1,--- ,n) be the 19 conjugate point of p; and
p: S — P! x P! the blowing-up at {p1,p,, -+ ,Pn,P,}. Then there exists a twistor
space Z of nCP? which has a real fundamental divisor biholomorphic to S.

REMARK 1.A. Strictly speaking, the blown-up points p; € C cannot be on some
closed subset Ay on P! x P!. See Proposition 2.1.

REMARK 1.B. In the following proof of this theorem, we also show that the
above (Z,S) satisfies H?(©,(—S5)) = 0. Hence by the theorem of Horikawa [10], S
is costable with respect to deformations of Z: namely for any real small deformation
S of S, there exists a real small deformation Z of the twistor space Z which contains

A —1
S as an element of |K, ?|

We recall that an elementary divisor is by definition a divisor on Z whose intersec-
tion number with a twistor line is equal to 1. An interesting property of these twistor
spaces is the following:

Proposition 1.2. Let Cy C P! x P! be a real non-singular curve of bidegree
(2,1) or (2,2) and {p1,--- ,pn} (n > 4) be any set of points on Cy (which may be
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infinitely near). Let p : S — P! x P! be the blowing-up at {p1,D,," -+ ,Pn,D,} and
C the proper transform of Co. Let Z be a twistor space of nCP? and assume that
Z has S as a real irreducible fundamental divisor. Then Z has no elementary divisor.
Further, in case of bidegree (2,1), Z is a Moishezon 3-fold.

Combining these two results, we obtain a negative answer to the question posed
by Pedersen-Poon [15, p.687, Question], which was recently proved by Kreussler [12]
using a completely different method:

Corollary 1.3. For any n > 4, there exists a Moishezon twistor space of nCP?
which has no elementary divisors.

Theorem 1.1 is proved by induction on n, based on the construction of
Donaldson-Friedman [4]. It is easy to see that Theorem 1.1 holds for the case n = 1.
We assume that Theorem 1.1 holds for the case n, i.e. let Z; be a twistor space of
nCP? which has a real irreducible fundamental divisor S; = S as in Theorem 1.1
and let C; C S; be the proper transform of Cy. In Section 2, using (Z1,51,C1) we
construct a triple of real normal crossing varieties Z' 2 S’ D C’, where S’ (resp. C’) is
a real Cartier divisor on Z’ (resp. S’). Then we shall state four propositions (2.2-2.5)
which are necessary to prove Theorem 1.1. Then we will prove Proposition 1.2. In
Section 3, we study deformations of the pair (S’,C’) and prove Propositions 2.2 and
2.3. Next in Section 4, which is the main part of this paper, we prove Propositions 2.4
and 2.5: i.e. we study deformations of the triple (Z’,S’,C’) and show that the triple
(Z',8',C") can always be smoothed to give a twistor space of (n + 1)CP? of the de-
sired type. To this end, we need a deformation theory of a triple of compact complex
spaces. In the final section, we shall develop this as a natural generalization of the
theory of Ran [20] and obtain natural long exact sequences containing forgetting maps.

ACKNOWLEDGMENT. The author would like to express his gratitude to Professor
A. Fujiki for many helpful conversations and encouragements.

2. The problem and the main construction

Let So := P! x P! be the product of two complex projective lines, (zo : 2;)
(resp. (wp : wy)) homogeneous coordinates on the first (resp. second) factor, and 7;(i =
1,2) the projection to the i-th factor. We have H?(Sy,Z) ~ PicSy ~ Z ® Z. Let
O(a,b) := 710(a) ® 730(b) denote a holomorphic line bundle over Sy, where O(k)
denotes the holomorphic line bundle over P! of degree k. Let 7o denote the real
structure on Sy which is defined by ((zo : 21), (wo : w1)) — ((=21 : 20), (Wo : W1)).
7o has no fixed points. Let S := {(wp : wy1) € P | wp,w; € R} C P! be the real
circle of the second factor and set Ag := p; '(S') ~ P! x S'.
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Let Z be a twistor space of nCP2, 7 : Z — nCP? the twistor fibration and o the

real structure on Z. Let K ;% be the fundamental line bundle over Z. Then Pedersen
and Poon [14] proved the following:

Proposition 2.1. Let S € |K 2%| be a real irreducible fundamental divisor. Then
S' is non-singular and can be blown-down to Sy preserving the real structure. The
resulting real structure on Sy is 9. Let p : S — Sy be such a blowing-down map.
Then the blown-up points on Sy are never on Ag. Further, A := p~1(Ay) is the set of
twistor lines on S, which are parameterized by S.

We recall that since c}(S) = —3c3(Z) = 8 — 2n [8], the number of times of
blowing-ups is necessarily 2n. We are interested in the quenstion as to whether the
converse is also true:

Question 2.A.!  For any given 2n-times blowing-up p : S — Sy preserving the
real structure, with blown-up points not lying on Ay, does there exist a twistor space
Z of nCP? which has a real fundamental divisor biholomorphic to S ? 2

Though we could not give a complete answer to this question (cf.Remark 2.E
below), we prove the existence of Z for special types of S. To state our result precisely,
we introduce the following:

DEFINITION 2.B. We say that a non-singular rational surface S is of type (a,b)
if S is obtained by blowing-up Sy and if any blown-up points on Sy are on one and
the same irreducible curve Cy € |O(a,b)|. (Some or all of the blown-up points are
allowed to coincide, but in such cases the iterated blown-ups are required on the proper
transforms of Cy.) We call such S real if the above blowing-ups preserve 79, Cp is
real on Sy, and if the blown-up points do not lie on Ay.

(Although this definition does not uniquely determine the type of a given rational
surface, it is sufficient for our purpose.)

Next we will explain our main construction to prove Theorem 1.1. The notations
given in the following construction will also be used throughout Sections 2,3 and 4.

Let Z; be a twistor space of nCP? and assume that there exists a real irreducible
fundamental divisor S; € |K21%| whose type is (2,1) or (2,2). Let u: S; — So be a
blowing-down map as in Definition B and C; C S; the proper transform of Cy .

!From the differential geometric point of view, this is equivalent to the following: Let M° = P! x H? (H?
denotes the upper half plane) and p1,- - - ,pn a set of n points on M °, which may be infinitely near. Let M°
be the complex surface obtained by blowing-up {p1,- - - ,pn}. Then does there exist a scalar-flat Kiihler metric
on M° which is asymptotically isometric to the standard metric on M°?

20f course, the biholomorphic map is required to preserve the real structure.
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Let p; € C; be any point not lying on A; := u~(Ag). Then there exists a unique
twistor line L; C Z; through p; and p;. Let 01 : Z] — Z; be the blowing-up along
L; and Q; ~ P! x P! the exceptional divisor. Let S] and C; be the proper transforms
of S; and C; respectively and set I; := o] l(pl) and [; := oy 1(ﬁl). Then since S
intersect L transversally at p; and p;, 01|s; : S] — S is the blowing-ups at {p1,7;}
and {l,l,} are the exceptional curves. Further, we set p} := l;NC] and P} :=[; NCY.

On the other hand, let Z, := F := {(z,l) € P?> x P?" | z € I} (P?" denotes
the dual projective plane) be a flag manifold, which is the twistor space of CP? with
Fubini-Study metric. We fix any twistor line Ly C Z5 and let {DQ,—D—Q} be the (unique)
pair of elementary divisors on Zz such that Dy N Dy = Lo (transversal). It is easy to
see Dy ~ ¥, ~ D,, where ¥; := P(O(1) @ O) is the non-minimal Hirzebruch
surface. Let o2 : Z5 — Z; be the blowing-up along Lo, (2 the exceptional divisor and
D)y(~ Ds), Dy(~ D) the proper transforms of Dy, Dy respectively. D} and Dy are
disjoint and these define disjoint sections I and I3 of 02|, : @2 — Lo respectively.

Next, let ¢ : Q3 — @2 be a biholomorphic map preserving the real structures such
that ¢(I;) = I and ¢(I;) = lo. (The existence of such an isomorphism is clear.)

Then following Donaldson-Friedman [4] and Kim-Pontecorvo [11], we set

Z' = Z, Ug Zb,
S := 8y U, (Dy 11 Dy) = Dy Uy Sy U; Dy,

These are normal crossing varieties obtained by identifying ¢); and Q-, {ll,fl}
and {lz,l5} respectively by using ¢ and ¢| i,ui,- (Hence we denote Q := Q;,0 :=1;
and [ :=1I; (i = 1,2).) By construction, Z’ has a real structure and it preserves S’. S’
is a Cartier divisor on Z’. We further proceed as follows: We put ¢(p}) =: p, € I3 and
(D) =: Py € I and let f > p, (resp. f > Ph) be the fibers of D) — I, (resp. E; —13)
through p, (resp.D5). Then we set

C':=C; U (fILf)=fUCiUF.
p,p p p

It is obvious that C’ is a Cartier divisor on S’ and is preserved by the real structure on
S’. Thus we obtained a triple of normal crossing varieties Z’ O S’ D C’ which has a
real structure.

As for deformations of the pair (S’,C’), we have the following two propositions
which will be proved in Section 3:



D:

N. HONDA

D’

646

0

9
I—t
- >
=
-~
l_h
(<R
N
w
S o
R
= C
C(
¥ 9
<
8 8

4




DONALDSON-FRIEDMAN CONSTRUCTION 647

Proposition 2.2. Let (S’',C’) be the pair of normal crossing varieties as above.
Then the Kuranishi family of deformations of the pair (S’,C") is unobstructed.

Proposition 2.3. Let {S — B',C — B’ with C — S} be the Kuranishi family of
the pair (S',C"), where B’ denotes a sufficiently small open ball in T_lg,,c, containing
0.

If t € B’ is away from some hypersurface in B’ through 0, then the following
hold:

(1) the fibers S; of the Kuranishi family are rational surfaces of type (2,1) or
) according as Sy is of type (2,1) or (2,2) respectively,

(2) 3(S;) =8—2(n+1),

(3) moreover if t € B’ is real with respect to the real structure on Tls,’c,, then
Sy is real in the sense of Definition B.

(2,2

(See Section 3 for the notation Tg,,c, and real structure on it.)
The following condition is necessary for our induction proof of Theorem 1.1 to
work.

Condition 2.C. H2(Z1,0, (—51)) = 0.

As for deformations of the triple (Z’, S’,C’), we have the following two proposi-
tions which will be proved in Section 4:

Proposition 2.4. Let (Z1,S51,C1) be as above and assume that Condition 2.C
is satisfied. Let (Z',S',C") be the triple of normal crossing varieties constructed as
above. Then the Kuranishi family of deformations of the triple (Z',S’,C") is unob-
structed.

Proposition 2.5. Let {Z — B,S — B,C — B with C — S — Z} be the
Kuranishi family of the triple (Z',S',C"), where B is a sufficiently small open ball in
TIZ,7 s/ ¢+ containing 0. If t € B is away from some hypersurface in B through 0, then
(1) below holds. In addition, if such a t is real, then (2) and (3) below also hold.

(1) Z;, St and Cy are non-singular complex manifolds.

(2) Z; has a real structure oy and (Zi,04) has a structure of a twistor space of
(n+1)CP2.

(3) Sy is a real fundamental divisor on Z; and they satisfy H*(Z,,0 ; (—S;)) = 0.

(See Section 5 for the notation T'y, g, ., and also for the Kuranishi family and the
obstruction of deformations of a triple of compact complex spaces.)

Theorem 1.1 are proved by combining these four propositions with the aid of some
observations.

REMARK 2.D. Without considering the curve C;, we can show the following:
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Let Z, be a twistor space of nCP? with real irreducible fundamental divisor S;.
Let p € S1 be any points not lying on A; (= the set of twistor lines on Sp). Let
w: S7 — Si be the blowing-ups at p and D. Then there exists a twistor space Z of
(n + 1)CP? with real irreducible fundamental divisor S which is a small deformation
of S1.

The proof of this statement is lengthy but along the same line as that of [11]. So
we omit it. But the author could not prove the stronger version of the above statement
in the sense that the structure of S is biholomorphic to S7. (Of course this immediately
gives the completely affirmative answer to Question 2.A.) This is the reason why we .
consider the curve C;.

REMARK 2.E. (1) The complex structure of Z is not uniquely determined even
if the complex structure of fundamental divisor is given, i.e. there is a continuous
family of twistor spaces with biholomorphic fundamental divisors, whereas the rough
geometric structure of Z is determined.

(2) Let Z be a twistor space of nCP? constructed by LeBrun [13]. Then Z has a
real irreducible fundamental divisor S of type (0,2) except that Cp in Definition B is
reducible. Conversely, if Z is a twistor space of nCP? which has a real irreducible
fundamental divisor of type (0,2), we can easily show that Z is necessarily a LeBrun
twistor space. (In fact, one can use the argument of the proof of Proposition 1.2 below
to reduce to a result of Poon [19, Theorem 3.1].)

(3) Let Z be a twistor space of nCP? constructed by Pedersen-Poon [16, Section 7].
Z has an effective action of the 2-dimensional torus T2. We showed [9] that the T2-
equivariant part of the fundamental system on Z is a pencil and that generic elements
of this pencil are non-singular toric surfaces obtained by 7"2-equivariant blowing-up of
P! x P!'. Hence Question 2.A is affirmative for some toric surfaces. We may prove
this result also by the method developed in the present paper (i.e. consider the triple
containing the cycle of rational curves), instead of using the 72-action.

(4) The existence of Z over nCP? which has a real irreducible fundamental divisor S
of type (2,1) was very recently proved by Kreussler [12] using very different method.
But the author does not know whether or not twistor spaces constructed in this paper
are biholomoprphic to those in [12].

REMARK 2.F. Let Z be a twistor space of nCP? which has an effective divisor.
Then the scalar curvature of the self-dual metric on nCP? corresponding to Z is of
positive type. In fact, if the scalar curvature is of negative type, there is no effective
divisor on Z [5, Théoreme 2]. Further, if the scalar curvature is of type O, nCP?
must be covered by a scalar-flat Kihler surface [17, Corollary 4.3]. But since nCP?
is simply connected, nCP? with the complex orientation reversed must admit a scalar-
flat Kahler metric, which is impossible since the intersection form of the 4-manifold is
negative definite. Thus, the scalar curvatures of each self-dual metric of nCP? which
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we treat is of positive type. So we may use the vanishing theorem of Hitchin [7] for
our twistor spaces.

Proof of Proposition 1.2. Let Z, u: S — P'x P! Cy C P! x P! and C (C S)
be as in Proposition 1.2. Following [14], we decompose S = (P! x H*) 11 AII(P! x
H™)7 (Here, (P! x H*) denote n points blowing-ups of P! x H*, where H* denote
the upper and lower half planes. When n = 0, this decomposition is given as follows:
So=P'xP'=P' x (HtUS'IUH )= (P'x H")II (P! x SH)II (P' x H™).
The case n > 1 is similar.)

Let {Ey,--- JE By, ,En} be the exceptional curves of p with E;-E; = —§;;,
1 <i,j < n, where we may assume E; C (P! x H*) and E; C (P! x H™)". Fur-
ther, by using the twistor fibration, we regard (P! x H*) (with the complex ori-
entation reversed) as a subset in nCP? (whose complement is S!) and set a; :=
[E;] € H3(nCP? Z) for 1 < i < n. Then {aj,---,an} is an orthonormal basis
of H?(nCP?, Z).

Let D be a holomorphic line bundle on Z whose restriction to a twistor line has
degree 1. If D has a non-zero section, the first Chern class of D must satisfy [19,
Lemma 1.9]

c1(D) = c1(Z Zaza,, o; = +1.
Then considering the structure of m|s : S — nCP? [14] (7 denotes the twistor fi-

braiton), we have

n

1 1
Dis = ch(Z)|S 3 ; oii|s
1 1« _
= ——KS 3 Zgi(Ei - E;)
(D -
( *0(-2,-2) +ZE +ZE Z «(E; — E;)
z-—l

1 & —
=uwo(L,1) -5 d (1-0)Ei - 5 > (+0)E;,

i=1 =1

where 1 : § — Sy denotes the prescribed blowing-down map.

Now we claim that Hi(D®KZ%) = 0 for any ¢ > 0. First, since D ® KZ%|L ~
Dl ® Ki|L ~ Op(1) ® Op(~2) ~ Op(~1), we have HY(D ® K1) = 0. Next,
by Serre duality, we have H(D ® K z%) ~ H3Y (D1 K Z%) and the right-hand-side
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vanishes for 3 — ¢ = 1 (by the Hitchin vanishing) and 3 — ¢ = 0. Finally, by Riemann-
Roch [8], we have

1
x(P®Kz)=0,

and hence we also have H!(D ® K%) =0.
Therefore by the cohomology exact sequence of

0->D®KZ —D— D|s— 0,
we have
) H(D) ~ HY(D|g) for any i>0.

Then in our situation, since we obtain S by blowing-up P! x P! on the non-singular

curve Cy of type (2,1) or (2,2), H°(D|s) = 0 by the formula (1) and the assumption

that n > 4. Thus by (2) for ¢ = 0, we conclude that there exists no elemetary divisor.
For the Moishezon part, we refer to [12]. O

3. Deformations of the pair

The purpose of this section is to prove Propositions 2.2 and 2.3. Although these
propositions contain statements for the two types of rational surfaces (of type (2,1) and
(2,2)), no independent treatment will be needed except the proofs of Lemma 3.3 and
Proposition 2.3. We use the following notations:

For a compact complex space X,

Q) x : the sheaf of Kahler differentials on X,

0% = &utp (x,Ox) : the p-th local Ext-sheaf,
Oy = 0% = Homo, (Qx,Ox) : the tangent sheaf,
T% :=Ext} (Q2x,0x): the p-th global Ext-group,

and for a Cartier divisor Y on X,

Qxy ={a € Qx ®O0x(Y) | f-da € Qx (f is a local defining equation of
Y in X)}, ie. Qx,y is the sheaf of Kéhler differentials on X which have at worst
logarithemic poles along Y,

eg(,Y = &ctéx (Qxyy, Ox),

eX,Y = eOX,Y’
Tg(,y = Extgx (Qxyy, Ox)

As for deformations, T'% (resp. T y) is the Zariski tangent space of the Ku-
ranishi family of deformations of X (resp. deformations of the pair (X,Y)) and T%
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(resp. T% y) is the obstruction space. In particular, if T'% (resp. T% y) vanishes, the
parameter space of the Kuranishi family is non-singular and the tangent space at the
reference point is naturally identified with T (resp. Ty y). Moreover, we have the
local to global spectral sequences:

E$?:= HP(X,0%) = T,
ER?:= HP(X,0% ) = T

Finally, if F is any Ox-module, we set (1Y) := F Qo, Ox(+Y) and Fly :=
F Qo Oy, where Ox (1Y) denote the invertible sheaves defined by +Y.

Througout this section, (S’,C’) denotes the pair of normal crossing varieties as in
Proposition 2.2.

Proposition 3.1.  We have H*(Og, o) =0 and T% o = 0. In particular, the
Kuranishi family of deformations of the pair (S’,C") is unobstructed.

To prove this, we need the following two lemmas:
‘ O080; for i=1
T ~ l )
Lemma 3.2. 6% o ~ { 0 for i> 2.

Lemma 3.3. H2((~)S{,C{) =0.

Lemma 3.2 can be proved almost in the same way as in Lemma 5.3 in [9]. So we
omit it. The proof of Lemma 3.3 will be given after that of Proposition 3.1.

Proof of Proposition 3.1. For the first one, we consider the exact sequence

O i @SI,CI g l/*(@ @ @—/

3) 81,C+1+1 ® eDé,fH DQ,}‘+Z)
— 6,(—p) ®O,(-F) — 0,

where v denotes the normalization of S’. It is easy to check that the cohomology of

the middle term is isomorphic to the direct sum of each cohomology group. Further,

since D) ~ %; and [ (resp. f) is a (+1)-section (resp. a fiber) of ¥; — P, it is

easy to see that H?(© Dyt ) =0=H 2(95, 7+Z)‘ Then by the cohomology exact
, .

sequence of (3) and the fact that H*(©,(—p’)) ~ H*(O,(1)) = 0, we have

2 ~ FH2
(4) H (eS’,C”) ~H (631,Ci+l+z)'
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But we have H2(© ~ H?(© s1,c1 ), as is easily shown by the exact sequence

Si,C{+l+Z)

5) 0—©6 — esi,Ci — O0(-1) ® Oy(—1) = 0.

81,C1+I+l

(We recall that [ and [ are (—1)-curves on S; and they intersect C} transversally.)
Hence, using Lemma 3.3, we get

(6) H%(8g o) = 0.

Next we show that T%, o, = 0. Since 6%, o, =0 for i > 2 (Lemma 3.2), the local
to global spectral sequence associated to Tfs",c' induces a long exact sequence

(7) O — HI(QSI’CI) g T‘ls"/’cl — HO(@IS/'CI) — H2(@SI’C/)
— T%/,c/ — Hl(@]S/’C/) d

Now that we have O, o, ~ O, ® O; (Lemma 3.2), H' (6%, ) = 0. Hence by (6) and

(7), we get T%, =0, as claimed. O

Proof of Lemma 3.3. We recall that S is a rational surface of type (2,1) (resp.(2,2)).
Then it is easy to see that C] + L (resp. C}) is an anticanonical element on S7, where
L is any irreducible curve of bidegree (0,1). Hence we have

H*(84(-C1)) ~H'(Qs; ® Ks; ® Og;(C1))”
~ H°(Qg;(—L))" (resp. H*(Qs;)")
=0

by Serre duality and the rationality of S]. (Here, for a vector space V, V* denotes
the dual vector space of V.) Then the claim immediately follows from the cohomology
sequence of

0—B8g(=C1) = Og; ; = Og; = 0. O

Let {S — B’,C — B’ with C — S} be the Kuranishi family of the pair (S’,C").
By Proposition 3.1, B’ can be regarded as a small open ball in T}g,,c, containing 0.
By (7) and Lemma 3.2, we have the following exact sequence

® 0— H'(Og c) = Ty o (9 H(O1 8 0;) — 0.

We note that the real structure on H°(O; @ O5) ~ C & C is given by (z,w) — (W, z)
for appropriate coordinates.
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Proof of Proposition 2.3. Letn € B’ C T?S,’C, be any element such that e(n) # 0
and e(7) # 0. Let A’ be any non-singular holomorphic curve in Té.,,c, through 0
whose tangent vector at 0 is 7 and let {S|ar — A’,C|as — A’} be the restriction on
A’ of the Kuranishi family of the pair (S’,C’). What we have to prove is that if we
choose A’ sufficiently small, any fiber (S;, C;), t € A’ — 0 of this family is a rational
surface of type (2,1) (resp. (2,2)) whose Chern number satisfies c?(S;) = 8 —2(n+ 1).
First, the smoothness of S; is obvious by the choice of 7. Next, we consider the
commutative diagram

T%’,C' — Tll
| l
H°(®% o) = H°O})

where the horizontal arrows are natural forgetting maps and the vertical arrows are
the maps induced by the local to global spectral sequence. It is easy to see O}, ~
C, ® C5, where C,, (resp. C5) denotes the sheaf whose support is p (resp. p) and the
stalk at p (resp. p) is C. It is clear that « is isomorphic. Hence, C’ is automatically
smoothed if S’ is, and C; (t € A’ — 0) is a non-singular rational (resp. elliptic) curve
since both f and f are non-singular rational curves.

By the assumption on S;, we have a birational morphism y; : S; — P! x P1. We
set pu:= py-01]g; : S§ — P x P! and let mg and my be any curves of bidegree (1,0)
and (0,1) respectively which do not pass through the blown-up points of u. Let m, m’
be the proper transforms of mg, my respectively. Then it is clear that m and m’ are
stable under any small deformations of S’ (in the sense of Kodaira), and that the self-
intersection number of each curve are unchanged. Let mt,m; C S; (t # 0) be such
preserved curves. Then it is obvious that the map pi¢ := @), X Pjpny| + St — Pl x P!
is a birational morphism and that u:(C}) is an element of |O(2,1)] (resp. |O(2, 2))).

Now we claim that C? = 4 — 2(n + 1) (resp. 8 — 2(n + 1)). To show this, we
consider the exact sequence

0 — Os/(C") = n(0s;(C1) & Opy (f) & O (f)) = Q1) ® Oi(F') — 0,

from which it immediately follows that H*(Og:(C")) ~ H*(Og;(C1)) for any i > 0.
Further, it is easy to check from Riemann-Roch that x(Og; (C7)) = 4 — 2n (resp. 7 —
2n). Hence we have x(Og/(C’)) = 4 — 2n (resp. 7 — 2n). Then by the invariance of
the Euler characteristic under flat deformations, we have x(Og,(Ct)) = 4 — 2n (resp.
7 — 2n). Therefore, by the exact sequence

0— OS; — OSt (Ct) — OC: (Ct) — 0,
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we have

x(0c,(Cr)) = x(0s,(Cr)) — x(Os,)
= (4-2n)—1 (resp. (7T—2n)—1)
= 3—2n (resp. 6 —2n)

Then by Riemann-Roch on C;, we have

o C? = X(0c,(C1) = 1+9(C)
=2-—2n (resp. 6 —2n),
where g(C;) denotes the genus of C;. Hence the claim follows.

Next we claim that c?(S;) = 8 —2(n+1). To see this, following [11], let 3: S —
S! x C be the blowing-up with center (I; x 0) IT (I; x 0) and we regard S as a family
over C in a natural manner. The fiber over 0 is biholomorphic to S’ and all the other
fibers are biholomorphic to S;. Thus, S’ can be smoothed to S7. It is clear that the
Chern number of the above S; (t € A’ — 0) is equal to that of S]. But it is obvious
that ¢2(S7) = 8 — 2(n + 1) and hence we have proved the last claim.

Therefore with the aid of (9) and the fact that yu;(C;) C P! x P is bidegree (2,1)
(resp. (2,2)), we have shown that S; (t € A’ — 0) is a rational surface of type (2,1)
(resp. (2,2)).

Finally, the claim for the real structure can be proved by using the same technique
of Donaldson-Friedman [4, pp. 225-226]. O

4. Deformations of the triple

The purpose of this section is to study deformations of the triple (Z’,.S’, C’) which
is constructed in Section 2, depending on the results of Section 5. We shall freely use
the notations in Section 2.

First we will prove the following proposition which will be needed to prove the
unobstructedness of deformations of the triple (i.e. Proposition 2.4).

Proposition 4.1. Let Z; be a twistor space of nCP? and S, a real irreducible
fundamental divisor. Let Zy = F be the flag twistor space, and (Z',S’) the pair of
normal crossing varieties, where Z' = Z1 U Z}, S' = S U (D}, HE;) as in Section 2.
Then we have

H?(04/(—5")) = H*(©4,(=51)),

H3(©4/(~5")) = 0.
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Here we need not assume that S; is of type (2,1) or (2,2). For the proof, we need
the following three lemmas which will be proved after the proof of the proposition
itself.

Lemma 4.2. The restriction map
r: HYO, o,(~Dj — Dy)) — HY(Og, (~l2 — I2))
is surjective.
Lemma 4.3. H'(©,, o (~Dj — Dy)) =0 for i >2.
Lemma 4.4. We have a natural isomorphism:

H"(@Z;’Ql(—S{)) ~ H*(©, (—851)) forany i>0.

Proof of Proposition 4.1. We have the following exact sequence of sheaves on
VAR
—
0—06z(-5)— V*(®z;,Q1(_Si) ® GZQ,QQ(_DQ — D))

(10) -
— Og(=1-1)—0,

where v : Z] I Z, — Z' denotes the normalization. Since v is a finite morphism, it is
easy to show

. —
HZ(V*(@Z;,QI(_SQ @ @Zé,QQ(_Dé - D,))) =~
. . =4
H (04 0,(~S1)) @ H(© 5, o, (~Dj — Dy)
for any 7 > 0. On the other hand, it is easy to check that H*(©y(—! — 1)) = 0 for

i > 2. Then by Lemmas 4.2, 4.3, 4.4 and the long exact sequence of cohomology
groups induced by (10), we have

Hi(@z'(_sl)) ’l’Hi(ZLez;,Ql(*Si))
~ H'(Z1,04,(-51))

for i = 2, 3. Further, by Serre duality, we always have H3(© 4, (—S’)) = 0, completing
the proof. |

In the following proofs of Lemmas 4.2 and 4.3 we write F' and F’ for Z, and Z}
respectively and omit the subscript 2 for simplicity.
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Proof of Lemma 4.2. We have the following exact sequence of sheaves on F’:
(1) 020 (-Q-D'-D) = Op o(-D'=D') = 64(~l—1) = 0.
We note that r is induced by the third arrow of this sequence. Hence we have only to

show that H2(© ., (—Q — D’ — ﬁ/)) =0.
We consider the exact sequence

12) 0—6p 30*0p — 0g(1,1) >0

(Here, the cokernel of o, is naturally isomorphic to ©4,; ® Oq(-1), where ©, /L
denotes the relative tangent sheaf associated to Q — L and Og(—1) denotes the tau-
tological line bundle over @, which is isomorphic to the normal bundle of Q in F’.
Further, it is easy to see that O, ; =~ 00(2,0) and Og(—1) ~ Og(—1,1), where
0Og(0,1) denotes the pullback bundle of the hyperplane bundle over L. Hence we
have ©4,; ® Og(—1) ~ 0q(1,1).)

On the other hand, we have the following isomorphisms of sheaves:

Op(-Q—D' -D') ~0"0p(-D - D)@ O (Q),
OF' (D' —D)|g = Og(~1 — 1) = 0g(~2,0),
OF' (-Q)lq = N = Oq(1,-1).

Then by tensoring O (—Q — D’ — 5') with (12) and using the above isomorphisms,
we get the exact sequence

0-60,(—-Q—-D'-D') - 0*0p(—D — D) ® O (Q) — Og — 0.
Taking cohomology of this exact sequence, we get
(13)  HOp(-Q - D' ~D) =~ H*0"Op(~D - D) ® Op/(Q).
On the other hand, by the Leray spectral sequence for o, it is easy to show that
(14) H (F',0*©p(-D — D) ® O (Q)) ~ H(F,0(—D — D))
for any i > 0. Now since D+ D € IK;%L

H?(©p(-D-D)) ~H'Qr ® Kr ® Op(D + D))"
~ H'(Qp ® K1)
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by Serre duality. But since K ;% is ample, H'(Qr @ K F%‘) = 0 by the Akizuki-Nakano
vanishing and hence we have H2(O(—D — D)) = 0. Therefore, by (13) and (14) we
obtain H2(0,,(-Q — D' —D')) =0. 0

Proof of Lemma 4.3. By considering the exact sequence
0— @F’,Q a_*) O'*@F - O'*NL/F —0

and checking that H*(0* Ny p) ~ H'(Np,r) = 0 for any i > 1, we have H/ (6. )
~ HI(c*Of) for j > 2. But by the Leray spectral sequence, we have H7(0*Op) ~
HI(®p) for any j > 0 and the latter vanishs for j > 2. Hence H’(Oy. ) = 0 for
7 > 2. Then considering the exact sequence

0—06 @F’,Q—"ND’/F’ EBNE’/F'_)O’

—_
F',Q+D'+D’

(which is valid since @,D’ and D’ intersect transversally) and checking that
H(Npryp') = 0= H'(Np ) for any 1 < i <3, we get

(15) HI(©,, o, pip) = H(Op o) =0 for j22.

Finally, checking that H*(6p,;) = 0 = H(©4, ;) for any i > 1 and using (15) and
the cohomology exact sequence of '

—
0— @F',Q(_DI —D)— 6F’,Q+D'+5’ —Op ;@ (—35,,7 — 0,

we have H* (O, o(—D' - D)) =0 fori > 2. ‘ O
Proof of Lemma 4.4. Tensoring Oz (—S]) ~ 0*Ogz, (—S51) with the exact se-

quence 0 — @Zi — 0*0, — 0q,(1,1) — 0 (cf. the proof of Lemma 4.2), we get
an exact sequence of sheaves

0= 0, (~S}) = 0"(©4,(~51)) = Og, (1,—1) = 0.
(Here, we use the fact that Oz (—S7)|q, ~ Og, (—1 — 1) = Og, (0, —2).) Considering
the cohomology exact sequence of this sequence and the Leray spectral sequence, we

have

(16) H'(©4(=51)) = H'(O4,(=51))
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for any ¢ > 0. On the other hand, we have an exact sequence
0— @z;,Ql(‘S{) - ez;(—si) — 0qg,(-1,-1) — 0.

Then the associated cohomology sequence of this and (16) imply the desired isomor-
phisms. |

Next we show the unobstructedness of deformations of the triple (2, .5’,C").

Proposition 4.5. Let (Z1,51) and (Z',S’) be as in Proposition 4.1. Assume
further that Sy is a (real) rational surface of type (2,1) or (2,2). Then we have
H?*(©4 g.c/) =0 and T% g o = 0. (See Section 5 for the notations.) In particu-
lar, the Kuranishi family of deformations of the triple (Z',S’,C") is unobstructed.

Proof. First we show that

: Oq i=1
6111 l: Q ’
2,50 {o i>2.

It is obvious that the assumptions of Proposition 5.6 are satisfied and hence we imme-
diately get the first one (i.e.the case ¢ = 1). For i > 2, by Proposition 5.5, we have a
long exact sequence

(17) e — @i /(_Sl) - @iZ',S',C' i e.ig/’cl - elz—’/—l(_sl) d

We recall ([4] and Lemma 3.2) that

P~ OQ 1=1, i ~ Ol@ol— =1,
ZZ710 0 i>2 ST 10 i>2.

Hence by (17), we have E-)"Z,’S“C, =0 for any ¢ > 2.
Next we show that H%(© 721,57, c) = 0. It is easy to see that the restriction map
Oz s .cr — Og o is surjective. Hence by (17), we have a short exact sequence

(18) 0— @Z/('—S,) - eZ’,S',C' — @S',C’ — 0.

Then by Proposition 3.1, it suffices to show that H%(6 ,,(—S’)) = 0. But this is an im-
mediate consequence of Proposition 4.1 and Condition 2.C. Hence we have H?(© 4, g
c) =0. ‘

Finally, let us consider the local to global spectral sequence for T, g . Now
since we have Oiz,’ s/, =0 for i > 2, we get a long exact sequence

0= HY Oz 5.0) = Th 5.0 = H(Oh 5.0) = H Oz g cr) =

19)
TQZ',S',C' i Hl(elz/7s/7cl) — e
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Hence, since ©%, 5 o ~ Oq and H*(O 4, 5 /) = 0, we have T%, g o, =0. O
The following diagram is a key to prove Proposition 2.5 and Theorem 1.1.

Proposition 4.6. We have the following commutative and exact diagram:

0 0 0 0
| | ! l
HY(©4/(-8") —"Hl(eZ',S',C')—') Hl(@s',C/) -  H*(©4(-5)) — 0
l l l !
Ext1(Qz/(5),0z) > Th oo > Theo —Ext}(Qz(8),0z)— 0
l l !
0 —  H%Oq) —HYO,®0;)— HY(Og(-l-1) — 0
| l !
0 0 0

Proof. The first (resp. third) row is obtained by the cohomology sequence of
(18) (resp. (17) for ¢ = 1) and Proposition 4.5. The second row is obtained by using
Propositions 5.5 and 4.5. Next, since S’ is a Cartier divisor on Z’, we have

Exti(QZI(S”),OZ/) Q’Sxti(Qzl,Ozl)®OZ/(—Sl)
N “(=8") i=0,1,
- 0 1> 2.

Hence we have HO(&xt'(Qz/(S'),0z/)) ~ H°(Og(~1—1)) = 0. Then the local to
global spectral sequence associated to Ext!(Q2z/(S’), Oz) and Proposition 4.1 induces
the first and forth columns.

Finally, the second (resp. third) column is induced from the local to global spectral
sequence associated to T, g o (resp. T, ) and Proposition 4.5 (resp. 3.1). The
commutativity of the diagram follows from the naturality of the construction.

(As was shown in the proof of Proposition 2.5, we have H2(© ,,(—S’)) = 0 under
Condition 2.C. So in such a case, we have Ext?(Qz/(S'),0z/) ~ H(Og(-1l —1))
~C\)) O

Proof of Proposition 2.5. Let £ € T, 5 o be any element whose image in
H°(Ogq) is non-zero in the above diagram. Let A C T, 5 o be any holomorphic
curve through 0 whose tangent vector at 0 is £ and let {Z]|ao — A,S|a — A,Cla —
A} be the 1-dimensional family obtained by restricting the Kuranishi family of the
triple (Z’,S’,C"). Then by the choice of &, the fiber Z;, t € A — 0 is a non-singular
3-fold if we take A sufficiently small. Next, put n := g(§) € Tls,’c,. Then by
the commutativity of the diagram in Proposition 4.6, n is mapped to an element of
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H°(O; ® O;) whose components are both non-zero. Hence, since the Kodaira-Spencer
class of 8’ — A is 5 (up to a non-zero constant), S; of the fiber is non-singular if
t € A — 0. Similar argument using the commutative diagram in the proof of Propo-
sition 2.3 shows that the fiber C; of C' — A is non-singular if ¢ € A — 0. Thus
(Z¢, S¢, Cy) is a triple of complex manifolds.

Next, assume that the above £ is a real element and A is a real curve in addition
to the above condition. Then the family {Z]|a — A,S|a — A,C|a — A} has a real
structure and Z; has a real structure of twistor space of (n + 1)CP? by Donaldson-
Friedman, so long as ¢t € A — 0 is real and A is sufficiently small. In this situation, S;
becomes a fundamental divisor on Z; as remarked in [9].

Finally, by Proposition 4.1 and Condition 2.C, we have H2(© ,,(—S’)) = 0. Then
by upper semi-continuity, if we take A sufficiently small, we have H?(©, (-S;)) = 0.
Thus we have completed the proof of the proposition. ]

Finally, we prove our main theorem, the statement of which can be restated as
follows by using the type of rational surfaces (Definition 2.B):

Theorem 4.7. For any positive integer n, there exists a twistor space Z of nCP?
which has a real fundamental divisor S of type (2,1). The same assertion also holds
for a rational surface of type (2,2).

In the following proof of the theorem, we further prove that the above (Z,S)
satisfies Condition 2.C (i.e. H?(©,(—S)) = 0) in addition to the above claims. (This
is necessary for our induction proof to work.)

Proof. We prove that the theorem and Condition 2.C hold by induction on n.
First we consider the case n = 1. Let S be a real fundamental divisor on F', which is
the twistor space of CP?. Since S is a two points blowing-up of P! x P1, it is clear
that S is of type (2,1) and also of type (2,2). Further we have H?(©p(—S)) =0 as in
the last part of the proof of Lemma 4.2. Thus we have shown the claim for the case
n =1

Next we assume that the statements for the case n: i.e. let Z; be a twistor space of
nCP? and assume that Z; has a real irreducible fundamental divisor S; of type (2,1)
(resp. (2,2)) and that Condition 2.C. is satisfied. Then by Proposition 2.5, there exists a
twistor space Z; of (n+1)CP? which has a real irreducible fundamental divisor S; and
they satisfy H?(Z;,©,, ® (—S;)) = 0. Further by the proof of Proposition 2.3 and by
virtue of the commutative diagram of Proposition 4.6, g(t) € Tls,,c, is not lying on
the hypersurfaces of Proposition 2.3. Hence by Propositon 2.3, S; is a (real) rational
surface of type (2,1) (resp. (2,2)). Hence the case n+1 is proved. Therefore the claims
of the theorem follow for any n > 1. O
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5. Deformation theory of a triple of compact complex spaces

In this section, we shall discuss a deformation theory of holomorphic maps X ER
Y % Z, where X,Y and Z are reduced compact complex spaces. The following
construction is similar to that of Ran [20], where he considers a deformation theory
of a holomorphic map f : X — Y. First we will work on a homologically-algebraic
category.

Let R, S and T be commutative rings and ¢ : R — S,¢ : S — T ring homomor-
phisms. We define a non-commutative ring R by

r 0 0 re€R
R := s1 sa O $1,82 €S
t1 to t3 ti,ta,t3 €T

where the multiplicative structure is given by

r 0 0 0 0

s1 s2 0 sy sy 0

ty, ta i3 tll t/2 té
rr! 0 0
= 519(r") + s28) S84 0

t1p(o(r')) + tatp(s)) + tat]  ta9p(sy) +tsty  tats

Let C be the category defined as follows:
The objects of C are quinteplets

{A B | A: R—module, B : S—module, C' : T—module, 7y : ¢—hom.,
4 : ¢—hom.}

and the morphisms of two objects A - B S Cand AL B % of C are triples
{a:A— A": R—hom., 3: B— B':S—hom., andy:C — C’': T—hom.}

such that the diagram

A4 2% B 2 C
(20 ol Bl 7l

Al ll) Bl i/) OI
commutes. On the other hand, let C’ be the category of left R-modules. Then C and
C’ are naturally equivalent:
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For any given object {A - B 3, C} of C, we define on A @ B @ C a left
‘R-module structure by

r 0 0 a ra
s1 s3 0 b | := s1y(a) + s2b
t1 ty t3 c tﬂ;(’}’((l)) + t26(b) + t3c

Let {a, 3,7} be a morphism from A LB Ctod 2 B % C'. Then we
associate (a,3,7): A®@BdC — A @ B ®C’' to {o,,7}. (e, B,7) is readily seen
to be a morphism of C’ by using the commutative diagram (20).

Conversely, if E is a left R-module, we set

100 000 00 0
A=|0o00]|E, B=[010]|E Cc=[00 0]E,
000 000 001
00 0 00 0
y=100]),6:=l000
000 010

Then {A > B 2 C'} becomes an object of C. If ® : E — E’ is a homomorphism
of R-module, then ® naturally induces homomorphisms A — A’, B — B’ and C —
C' as R,S and T-modules respectively. Further, it is easily verified that the above
correspondences are mutually converse. Thus, we have seen the equivalence of C and
C'.
. 8.

Let A; 3, Bj = C; (j = 0,1) be given objects of C. Then for any i > 0, we

define

Ext*((71,61), (70, 00)) := Ext’ (4, @ B; ® C1, Ao @ Bo ® Cy),

where the right-hand-side is the usual Ext-group of R-modules.

Next we apply these algebraic constructions to a deformation theory of holomor-
phic maps X Ly sz , where X,Y and Z are reduced compact complex spaces.
Associated to these objects, we firstly define the Grothendieck topology G = G(f,g)
as follows ([1, 20]): the open sets of G are the triples (W, V,U) where U C X,V CY,
and W C Z are open sets satisfying f(U) C V and g(V) C W. We then define the
non-commutative structure sheaf Og by

r 0 0 re Oz(W)
Oc(W,V,U) := s1 s2 0 81,82 € Oy (V)
t1 t2 t3 t1,t2,t3 € Ox(U)
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with the obvious multiplicative structure using the pull-backs of holomorphic functions.
The above equivalence of categories is naturally generalized to the equivalence of
the category of left Og-modules and the category

(¢ F g*’H—6> G|F : Ox—module, G : Oy —module, H : Oz—module,

v : Ox—hom, § : Oy —hom.}

(The morphisms of the last category is defined in the obvious ways.)
Then using pull-backs of Kahler differentials and holomorphic functions, we define

"f’g = &b (Qz & Qy & Qx,0z & Oy & Ox),

l}-’g = EXtéG(QZ Oy &0x,0z 0 Oy & Ox).
If both f and g are embeddings, we write

) _ ) 7 _ 7
©te =O%yvx: Tiy=Tzyx:

Then analogous to [20, Proposition 3.1], we have the following:

Proposition 5.1. Let X L. Y % Z be as above. Then the versal family of

deformations of X Ly % 7 exists. The Zariski tangent space at the reference point
of the parameter space is naturally identified with T}, g and the obstruction space is

T% g~ In particular, if T%g = 0 then any first order deformation of X Ly 5 7 can
be extended to an actual deformation.

The rest of this section is devoted to prove Propositions 5.5 and 5.6 below. In the
following, we assume that both f and g are embeddings and Y is a Cartier divisor on
Z. If X is a topological space, 0x denotes the zero-sheaf on X.

Lemma 5.2. Let X Ly 7 be as above, (G, Og) the associated Grothendieck
topology and the structure sheaf, and (G',Og') the Grothendieck topology and the

structure sheaf associated to X J, Y (c¢f [20]). Then for any i > 0, there exist canon-
ical isomorphisms:

Extlp, (07 ® Uy & Qx, 0z & Oy @ Ox) = Eaty , (Vy & Qx, Oy & Ox),
Extlo, (07 ® Qy ® x, 07 ® Oy @ Ox) = Extlp,, (U @ Ox, Oy @ Ox).
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Proof. Let0 — Oz® Oy &Ox — F be an injective resolution of Oz & Oy &
Ox as an Og-module which exists globally. By the above equivalence of categories,
each F", n > 0 can be written as

Fr=I"eJ"eKk",

where 77, 7" and K™ are Oz, Oy and Ox-modules respectively and we have homo-
morphisms

Iy = J® and 6" :J%x — K"

such that the following diagrams commute:

Z'nIY — In+1|y jn'x — Jn+1|X
’)’n i l,),n+1 Jnl l6n+1
j" — j"'H, xn — ’Cn+1.

Then each J™ & K™, n > 0 is an injective Og/-module. In fact, let 0 — S’ &

7 ®M s @ T be any exact sequence of Og/-modules and (o/,5) : ' & T —
J"™ @ K™ any homomorphism of Ogs-modules. Then the sequence 0 — 0z & S’ @

T Qutt) 0z &S & T is clearly an exact sequence of Og -modules and the map
(0,,8): 008" ®T' - I"dJT"®K™ is easily seen to be a homomorphism of Og-
module. Hence by the injectivity of " @ J" @ K™, there exists an Og-homomorphism
0,0,8):00S8SDT - I"® J"™ ® K" such that

(Oaa/)IBI) = (O,C!,ﬂ) : (O, K, V)'

Then (a,8) : S®T — J" @ K™ is the required homomorphism of Og-modules.
Therefore, the exact sequence

(21) 0—>Oy®0x-—>\70®}C0—>jl@K:1_;

is an injective resolution of Oy @ Ox as an Og/-module. Then the required long exact
sequences of the lemma follow if we note that there exists canonical isomorphism

Homo, (00 Qy ©Qx,T T &K') ~ Homo,, (Qy ©Qx, T ©K')

and the same for Hom. n

Lemma 5.3. Let (G,0¢g) and (G',Og') be as in Lemma 5.2 and P® Qd R
a projective Og-module. Then P,Q,R and Q & R are projective Oz,Oy,Ox and
Og-modules respectively.



DONALDSON-FRIEDMAN CONSTRUCTION 665
Proof. First we show that P is a projective Oz-module. We consider the diagram

P
e
F - F - 0,

where F — F' — 0 is any exact sequence of Oz-modules and o’ is any homomor-
phism of Oz-modules. Then the naturally induced map F &0y $0x — F' &0y $0x
(with the obvious Oz-module structures) is clearly a surjective homomorphism of O¢g-
modules and

(/,0,0): PO®QOR — F &0y ®0x

is a homomorphism of Og-modules. Hence by the projectivity of P & Q & R, there
exists (,0,0): PH QDR — F &0y & 0x which makes the diagram

PoQa@dR
(@,0,0) / 1 («,0,0)
FoOly®d0x — F d0yd0x — 0

commute. Then a : P — F is the required homomorphism.
Next we show that Q is a projective Oy-module. Let

Q
g
G 5 ¢ — 0

be any exact diagram of Oy -modules. We regard P & G’ ® 0x as an Og-module by
the commutative diagram

Ply = Ply
6l le=p06-6
o & ¢,

where § is the given Oy -homomorphism. Then
(id,3',0) : P®QBR - P& G ®0x

becomes a homomorphism of Og-modules by the commutativity of the above diagram.
On the other hand, since we have seen that P is a projective Oz-module, there exists
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an Oy-homomorphism € : P|ly — G such that the diagram

Ply

el \,¢

G 5 ¢ -0
commutes. Then

(id,m,0) : P®GD0x - PDG @ 0x

is easily seen to be a surjective Og-homomorphism, where we regard P & G @ Ox as
an Og-module by using €. Thus we get the following exact diagram of Og-modules:

POQoR
(id,w,0) | (id,0',0)
PeGo0x — PG ®0x — 0.
Hence by the projectivity of P & Q ® R, we have a homomorphism (id, 3,0) : P &
Q®R — P®G® 0x such that (id,,0) - (id,5,0) = (id,[’,0). Then (3 is the
required homomorphism. Thus we have proved that Q is a projective Oy -module. The
remaining claims are proved in a similar way. O

Lemma 5.4. In the situation of Lemma 5.2, there exist the following canonical
isomorphisms for any i > 0:

Exthy (7 ® 0y ® 0x,07 @ Oy ® Ox) ~ Extly_(Qz(Y), 0z),

Ext$, (Qz © 0y ® 0x,0z & Oy ® Ox) ~ Exty, (Qz(Y), 0z).
Proof. We first consider the following exact sequence of Og-modules:
(22) 0-0z(-Y)®0y ®0x - Oz Oy ® Ox — Oy & Oy & Ox — 0.
(Here, we note that since the diagram
0 — Oz(-Y) — Oz
l !

Oy — Oy

commutes, the second arrow of (22) is a homomorphism of Og-modules. On the other
hand, the Og-module structure of Oy @ Oy & Ox is given by id : Oy — Oy and the
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restriction of holomorphic functions.) It is easy to show that for any ¢ > 0, there exist
canonical isomorphisms

(23) Exth,(Qz ® 0y ®0x,0z(-Y) @0y ®0x) ~ &xt_(Qz,0z(-Y)),
and
4)  Extd,(Qz &0y &0x,05(~Y) @Oy & 0x) ~ Ext}, (27, 0z(~Y)).
Now we show that
(25) Extiy_ (07 @ Oy @ 0x, Oy ® Oy ® Ox) =0
for any 7 > 0. Let

PioQoRr 2P 00 1 0Ri > o 760y ®0x — 0

be a projective resolution of Qz @ 0y @ 0x which exists at least locally. An element
of

&t (Qz ® 0y & 0x, Oy & Oy & Ox)

is represented by «; : P; — Oy,B; : Qi — Oy and v; : R; — Ox such that the
following diagrams commute

Pily — Qi Qilx — Ry
aily | 1 Bi Bilx | Ly
Oy = Oy, Ox = Ox

and satisfying a; 1 - 0;41 =0, Biy1-0;,, =0 and ;41 -9}, = 0. (These are cocycle
conditions.) Then noting that Q. @ R. — 0y & 0x — 0 gives a projective resolution of
Oy ®0x as an Og/-module by Lemma 5.3 and hence 0 — Homo,, (Q-®R.,0y & Ox)
is an exact sequence, there exist §;_; : @Q;_1 — Oy and v;_1 : R;—1 — Ox such that
the following diagram commutes:

Qilx — R;
Bilx ™\ i
Oilx! Ox 1o
/Bi—llX/ NYi-1

Qi—1lx — Ri-1.
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Then we have the following diagram

Pily RN Q;
aily N\, / Bi
Oilyl Oy 19

N Bit
Pic1ly A= Qi1

with 0] - i = ¥i—1- (Oily), auly = Bi-¥i and B; = Bi—1 - 0. Now we set ;1 1=
Bi—1 - ¥i—1. Then we have

ai—1 - (Bily) = Bi—1 - i1+ (Bily) = Bic1 - 0 - i = B - i = ayly.
Therefore, if we let a;—1 also denote the naturally induced map P;_; — Oy, we have
a; = a;—1-0;. This means that (a;—1, B;i—1,7vi—1) gives an Og-homomorphism P;_1 ®

Qi1 ®Ri—1 — Oy ® Oy & Ox with (o, 55, 7:) = (-1, Bi—1,%i-1) - (8;,0.,0Y),
which implies that

(s, B5,1)] = 0 € &ty (Qz B 0y ®0x, 0y ® Oy @ Ox).

Thus we have shown that (25) holds. Then the local to global spectral sequence shows
that

(26) EXtéG(ngaOy EBOx,(Qy@OyEBO)():O

for any 7 > 0.
Therefore by (25), the long exact sequence of local-Ext’s associated to (22) and
isomorphism (23) induces the isomorphism

&th (Qz ®0y ®0x,07 80y ®O0x) =~ &téz(ﬂzaoz(—Y))
= &téz(ﬂz(y)7oz)7

for any ¢ > 0 and by (26), the long exact sequence of global-Ext’s associated to (22)
and isomorphism (24) induces

EXtéG(Qz@Oy@Ox,Oz@OyéBO)() Extéz(ﬂz,OZ(—Y))

o~ Extéz (Qz(Y), Oz)

for any ¢ > 0. ]
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Proposition 5.5. Let X,Y and Z be compact complex spaces and f : X —
Y,g9:Y — Z closed embeddings and assume that Y is a Cartier divisor on Z. Then
we have the following two long exact sequences:

27)
g @iz(‘Y) - eiZ,Y,X - @ﬁ,,x - ®iZ+1(—Y) —

- = Extp, (22(Y),0z) = Thy x — Ty x — Extg (Qz(Y),07) — -
Proof. We consider the following short exact sequence of Og-modules:
02020y DU 2Oz BOx — Az D0y &0x — 0.

Then the required exact sequences immediately follow from this and Lemmas 5.2 and

5.4. U

Finally, we prove a proposition which is needed in Section 4. Let Z;, Z, be com-
pact complex manifolds of dimension n and W; C Z; (¢ = 1,2) be irreducible non-
singular divisors. We assume that there exists a biholomorphic map ¢ : W7 — W3 and
let Z = Z; Uy Zo be the normal crossing variety obtained by identifying W; and W,
by ¢. Let Y; C Z; (¢ = 1,2) be irreducible non-singular divisors which intersect W;
transversally and assume that ¢ induces a biholomorphic map between W; N'Y; and
Wy NYs. We set Y :=Y; UY,. Further, we suppose that X; (i = 1,2) are irreducible
non-singular divisors on Y;, X; intersect W; NY; transversally and ¢ induces a biholo-
morphic map between X; N W; and Xo N W, We set X := X; U X5. We get a triple
of normal crossing varieties Z 2 Y 2 X.

Proposition 5.6. Under this situation, we have © y y ~ ©%. (The right-hand-
side is isomorphic to Ny, /z, ® Nw,,z, [4].)

Proof. We prove this isomorphism by explicitly giving a projective resolution of
Qz ® Qy & Qx as an Og-module. Let p € W; ~ W, be any point. Then in a
sufficiently small neighborhood of p, Z,Y and X can be written as

Z={(z1,""+ ,Zn41) €U C C™1 | 2125 = 0},

Y ={(z1,-+ y2n41) €U S C™""! | 2129 = 2p 41 = 0},
X ={(21," " y2n41) €U CC™' | 2120 = 2, = 2p41 = 0},
where (z1,-+-,2n41) are coordinates on C™*1 and U is a sufficiently small open

neighborhood of 0 in C™*1. Then the sequence

0 1z/I; &Iy /T3 ®Ix/I%x — Qlz ® Wly & Qulx

(28)
—-)QZGBQyEBQX—>O
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is easily checked to be an exact sequence of Og-modules, where 77,7y and Zx de-
note the ideal sheaves of Z,Y and X in U respectively. (Here, Og-module structures
on each sheaf are given in natural ways.) Further, both Qu|z & Quly @ Qu|x and
I7/T% @Iy /IE ®Ix /1% are projective Og-modules. In fact, since )y is isomorphic
to Oy®" ) we have

(29) Qulz ® Qly & Qlx ~ FOO+D,

where we put F := Oz ® Oy @® Ox for simplicity. Hence Qu|z ® Quly ® Qulx is a
projective Og-module because Og (which is of course a free Og-module) has F as a
direct summand. On the other hand, we have an isomorphism

(30) Iz/I20Iyv/I2 ®Ix/I% ~F® (020 Oy @ Ox)® (07 ® 0y & Ox)

as Og-module, where the Og-module structure on the right-hand-side is given by re-
stricting holomorphic functions. (If one embeds Zz/Z% ® Zy /Z¢ ®Ix /1% in Qu|z &
Quly ®Qu|x, the above isomorphism (30) is explicitly described as follows: We have
isomorphisms

Iz/l% ~ Oz(21d22 + Z2d21),
Iy/I%/ ~ OY(ZleQ + ZQle) D Oy(dzn+1),
Ix/I% ~ Ox(21dzy + 22d21) ® Ox (dzn) ® Ox(dznt1)-

Then the isomorphism (30) is given by the following isomorphisms:

F ~ Oz(z1dz2 + 22dz1) & Oy (z1d2 + 22dz1) ® Ox(21d2e + 22d21),
0z @Oy ®Ox ~0z ® Oy (dznt1) ® Ox(dzni1)
0z 0y & Ox ~0z D0y & Ox(dzn))

Then since the right-hand-side of (30) is isomorphic to Og, Iz/Z% ®ZIy /T2 ®Ix/T%
is also a projective Og-module.

Therefore, (28) gives a projective resolution of 2z ® Qy & Qx as an Og-module.
On the other hand, the exact sequence

0—Tz/TI% — Qulz — Qz — 0

is clearly a projective resolution of 2z as an Oz-module. Then by definition of £xt!,
we have only to prove that the cokernel of the natural map
Homoc(ﬂulz D Quly &) Qle,f) —

31
©1) HomoG(Iz/I% @Iy/l?/ @Ix/zgf,]:)
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is canonically isomorphic to the cokernel of
(32) Homoz(QU|Z,Oz) *Homoz(zz/I%,OZ).
In fact by (29),we have

HOmoG (QUlZ (&) Quly (&) Qu|x,f) ~ ’HomoG (f, f)e)(n_H)

and the latter is easily seen to be isomorphic to Homeo, (OZ,OZ)@("H), which is

canonically isomorphic to Home, (Qu|z,Oz). On the other hand, by (30), we have

HDmOG(Iz/I%@Iy/:z—%@:zx/l?(,f) ~ HOM@G(]:,]:)
@HomoG(OZ@(Dy@Ox,f)
@HomoG(OZEBOy@Ox,]:)
~ Homoz(Iz/I%,Oz)
@Homoy((Qy,Oy)@Homox(OX,Ox)

and it is obvious that the map (31) is surjective on Homp, (Oy, Oy )& Home, (Ox,
Ox)-factors. Further it is obvious that under the above isomorphisms, the map (31)
and (32) are naturally identified. Thus we have proved the required isomorphism. []

REMARK 5.A. Let X 4, Y < Z be as in Proposition 5.5 and further assume
that X is a Cartier divisor on Y. Then it is actualy desirable to show the existence of
the follwoing exact sequences:

(33) o Oy x — 0Ly — &t (IX/Y/Ig(/wOX) =y
and
(34) NP TiZ,Y,X — TiZ’Y — Extéx (Ix/y/Ig(/y,Ox) — e,

where Txy denotes the ideal sheaf of X in Y. In fact, Proposition 5.6 easily follows
from (33).

REMARK 5.B. The local to global spectral sequence exists even if the structure
sheaf is a sheaf of non-commutative ring, as proved by Grothendieck [6, Théoreme
4.2.1].
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